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Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering

University of Toronto

2010

A high-order central essentially non-oscillatory (CENO) finite-volume scheme in com-

bination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for

solution of hyperbolic and elliptic systems of conservation laws on body-fitted multi-block

mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid so-

lution reconstruction procedure that combines an unlimited high-order k-exact least-squares

reconstruction technique following from a fixed central stencil with a monotonicity preserv-

ing limited piecewise linear reconstruction algorithm. The limited reconstruction is applied

to computational cells with under-resolved solution content and the unlimited k-exact recon-

struction procedure is used for cells in which the solution is fully resolved. Switching in the

hybrid procedure is determined by a solution smoothness indicator. The hybrid approach

avoids the complexity associated with other ENO schemes that require reconstruction on

multiple stencils and therefore, would seem very well suited for extension to unstructured

meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate

average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement

criterion based on the solution smoothness indicator is used to direct the steady and un-

steady refinement of the AMR mesh. The predictive capabilities of the proposed high-order

AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-

dimensional compressible gaseous flows as well as for advection-diffusion problems character-

ized by the full range of Péclet numbers, Pe. The ability of the scheme to accurately represent

solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth

solution content (i.e., shocks and other discontinuities) is shown for a range of problems.

Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved

and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
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Abstract

Dezvoltarea Metodei Volumelor Finite CENO de Ordin
Superior cu Adaptarea Discretizării Bazată pe Blocuri

Lucian Ivan

<lucian.ivan@utoronto.ca>

Doctor ı̂n Filosofie

Graduate Department of Aerospace Science and Engineering

University of Toronto

2010

O schemă numerică de ordin superior, centrată şi esenţial neoscilantă (CENO) de tipul

volumelor finite, ı̂n combinaţie cu un algoritm de adaptare a reţelei de discretizare bazat pe

blocuri (AMR) este propusă pentru obţinerea soluţiilor de sisteme hiperbolice si eliptice ce

provin din principii de conservare, pe reţele de discretizare multibloc ce urmăresc frontierele

domeniului de calcul. Discretizarea spaţială a termenilor de tip hiperbolic (nevâscos) este

bazată pe o procedură hibridă de reconstrucţie a soluţiei. Astfel, o reconstrucţie nelimitată

de ordin superior de tipul k-exact ı̂n sensul celor mai mici pătrate, care este derivată pe

baza unui şablon centrat şi fixat de puncte, este combinată cu un algoritm de reconstrucţie

pe porţiuni care este linear şi limitat, şi care păstrează monotonia soluţiei. Reconstrucţia

limitată este aplicată ı̂n celulele de calcul ı̂n care conţinutul soluţiei nu este total rezolvat, iar

procedura de reconstrucţie nelimitată k-exact este utilizată pentru celulele ı̂n care soluţia este

complet reprodusă. Alegerea metodei ı̂n procedura hibridă este determinată automat de către

un indicator ce caracterizează netezimea soluţiei. Abordarea hibridă evită complexităţile

asociate cu alte scheme ENO care necesită reconstrucţia pe multiple şabloane de puncte

şi, de acceea, pare foarte indicată pentru extinderea la reţele de discretizare nestructurate.

Fluxurile eliptice (viscoase) de ordin superior sunt calculate pe baza unui gradient de ordin k

obţinut printr-o medie aritmetică şi derivat din reconstrucţii cu ordin de acurateţe (k+1). Un

nou criteriu pentru rafinarea h a reţelei, derivat pe baza indicatorului de netezime al solutiei,

este utilizat pentru a direcţiona adaptarea reţelei de discretizare pentru cazuri staţionare si

nestaţionare. Capabilităţile de prezicere ale schemei propuse de ordin superior şi cu rafinarea

reţelei de calcul sunt demonstrate pentru ecuaţiile Euler şi Navier-Stokes care guvernează

curgerea gazelor compresibile ı̂n două dimensiuni precum şi pentru probleme de convecţie-

difuzie caracterizate de un ı̂ntreg domeniu de numere Péclet, Pe. Abilitatea schemei de a
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reprezenta soluţii cu extreme netede şi, ı̂n acelaşi timp, de a manipula ı̂n mod robust soluţii

cu conţinut nerezolvat si/sau discontinuu (adică, unde de şoc şi alte discontinuităţi) este

demonstrată pentru o gamă largă de probleme. Mai mult deĉıt at̂ıt, abilitatea metodei de a

rafina reţeaua de discretizare pentru atingerea rezoluţiei dorite in regiuni ı̂n care conţinutul

soluţiei este fie neted dar nerezolvat, fie discontinuu este dovedită.
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wish to acknowledge Prof. M. Buruiană, Prof. S. Mitran and Mrs. and Dr. V. Silivestru.

I have no words to describe the respect and thankfulness to my parents, Steluta and

Ilie Ivan, and sisters, Mihaela and Daniela Ivan. They have been ardent proponents of my

endeavours, and for that I am forever grateful. Last, but certainly not least, I owe my

profoundest thanks to my loving wife, Cristina, and dearest children, Isabella and Eduard,

for their great sacrifice, patience, inspiration and understanding during this whole endeavour.

vi



Finally, I would like to acknowledge the financial support from Ontario Graduate Schol-

arship (OGS) and other sources.

Computational resources for performing all of the calculations reported herein were pro-

vided by the SciNet High Performance Computing Consortium at the University of Toronto

and Compute/Calcul Canada through funding from the Canada Foundation for Innovation

(CFI) and the Province of Ontario, Canada. The author is very thankful for access to these

computational resources.

Lucian Ivan
University of Toronto Institute for Aerospace Studies
October 12, 2010

vii



CONTENTS

Abstract ii

List of Tables xi

List of Figures xii

List of Symbols xix

1 Introduction 1

1.1 Motivation: Enable LES for Practical Combustion Devices . . . . . . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 High-Order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Solution Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Conservation Equations of Interest 27

2.1 Advection-Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 High-Order CENO Finite-Volume Scheme 35

3.1 Finite-Volume Method for Conservation Equations . . . . . . . . . . . . . . . 36

3.2 Body-Fitted Quadrilateral Grids . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Semi-Discrete Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Explicit Temporal Discretization Methods . . . . . . . . . . . . . . . . . . . 41

viii



3.5 Numerical Residual Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 CENO Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 k-Exact Least-Squares Reconstruction . . . . . . . . . . . . . . . . . 51

3.6.2 Monotonicity Enforcement . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.3 Reconstruction at Boundaries and Implementation of High-Order Bound-

ary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Inviscid (Hyperbolic) Flux Evaluation . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Viscous (Elliptic) Flux Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 75

4 High-Order CENO with Parallel Adaptive Mesh Refinement 77

4.1 Parallel Block-Based AMR Algorithm . . . . . . . . . . . . . . . . . . . . . . 77

4.2 CENO Scheme on Body-Fitted Multi-Block Mesh . . . . . . . . . . . . . . . 80

4.3 High-Order Solution Transfer on AMR Grids . . . . . . . . . . . . . . . . . . 84

4.4 Refinement Criteria Based on High-Order Solution . . . . . . . . . . . . . . 86

4.5 Domain Decomposition and Parallel Implementation . . . . . . . . . . . . . 87

4.6 Computational Resources Used for Numerical Simulations . . . . . . . . . . 89

5 Numerical Results 90

5.1 Assessment of Properties of CENO Discretization . . . . . . . . . . . . . . . 90

5.2 Function Reconstruction on Fixed Mesh . . . . . . . . . . . . . . . . . . . . 93

5.2.1 One-Dimensional Smooth Trigonometric Function . . . . . . . . . . . 93

5.2.2 One-Dimensional Smooth Exponential Function with Large Gradients 96

5.2.3 One-Dimensional Discontinuous Step Function . . . . . . . . . . . . . 98

5.2.4 Two-Dimensional Smooth Trigonometric Function . . . . . . . . . . . 99

5.2.5 Two-Dimensional Abgrall’s Function . . . . . . . . . . . . . . . . . . 102

5.3 Function Reconstruction with AMR . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Solution of the Advection-Diffusion Equation on Fixed Mesh . . . . . . . . . 107

5.4.1 Circular Advection of Smooth Inflow Variation . . . . . . . . . . . . . 107

5.4.2 Circular Advection of Discontinuous Inflow Variation . . . . . . . . . 107

5.4.3 Numerical Investigation of Elliptic Operator Discretization . . . . . . 107

5.4.4 Residual-Based Accuracy Assessment for Poisson Equation . . . . . . 110

5.4.5 Heat Conduction Equation with Source Term . . . . . . . . . . . . . 112

5.4.6 Solution of the Laplace Equation on Curved Boundaries . . . . . . . 112

ix



5.4.7 Two-Dimensional Channel Flow Problem . . . . . . . . . . . . . . . . 114

5.5 AMR Solution of the Advection-Diffusion Equation . . . . . . . . . . . . . . 116

5.6 Solution of the Euler Equations on Fixed Mesh . . . . . . . . . . . . . . . . 118

5.6.1 One-Dimensional Blastwave Interaction Problem . . . . . . . . . . . . 118

5.6.2 Sod Shock-Tube Problem . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.3 Ringleb Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.4 Subsonic Flow Past Circular Cylinder . . . . . . . . . . . . . . . . . . 124

5.6.5 Supersonic Flow Past Circular Cylinder . . . . . . . . . . . . . . . . . 125

5.7 Solution of the Euler Equations with AMR . . . . . . . . . . . . . . . . . . . 126

5.7.1 Supersonic Flow Past Circular Cylinder . . . . . . . . . . . . . . . . . 126

5.7.2 Smooth Translation of Density Variation . . . . . . . . . . . . . . . . 128

5.8 Solution of the Navier-Stokes Equations on Fixed Mesh . . . . . . . . . . . . 130

5.8.1 Laminar Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.8.2 Steady Laminar Subsonic Flow Past Circular Cylinder . . . . . . . . 131

5.8.3 Unsteady Laminar Subsonic Flow Past Circular Cylinder . . . . . . . 135

5.9 Solution of the Navier-Stokes Equations with AMR . . . . . . . . . . . . . . 137

5.9.1 Unsteady Laminar Subsonic Flow Past Circular Cylinder . . . . . . . 137

5.10 Computational Cost of High-Order Scheme . . . . . . . . . . . . . . . . . . . 144

6 Conclusions and Recommendations 148

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . . . 151

References 155

APPENDICES 173

A Properties of Quadrilateral Elements and Function Integration 174

B Calculation of Geometric Moments 181

x



LIST OF TABLES

3.1 Examples of condition numbers of the coefficient matrix of the least-squares

reconstruction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 General form of the left-hand-side matrix, A, corresponding to a constrained

least-squares reconstruction in which two variables are coupled. . . . . . . . . 72

5.1 The slope values corresponding to each convergence error plot shown in Fig. 5.16.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Error norms, simulation CPU time and memory requirements associated with

the unlimited and limited 2nd-order, and the 4th-order CENO schemes ob-

tained for the periodic linear convection of the density variation shown in

Fig. 5.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1 Analytical expression for computing the geometric moment of powers (2, 1),(
x2y1

)
I
, function of the coordinates of the quadrilateral vertices. . . . . . . 177

xi



LIST OF FIGURES

1.1 Time evolution of local temperature in a turbulent flame as captured by DNS,

LES and RANS approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Grid points used in the discrete representation of the numerical solution. . . 8

1.3 Illustration of high-order k-exact approximations . . . . . . . . . . . . . . . . 12

1.4 Illustration of Gibbs-like phenomenon near solution discontinuity. . . . . . . 13

1.5 Plots of estimated computational cost vs. error in one-space dimension for

several shock-capturing schemes . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Illustration of block-based mesh adaptation on a body-fitted grid. . . . . . . . 23

3.1 Illustration of body-fitted quadrilateral structured grids. . . . . . . . . . . . . 39

3.2 Schematic representation of quadrilateral element types. . . . . . . . . . . . . 40

3.3 Illustration of k-exact reconstruction for smooth analytic functions represented

on resolved and under-resolved grids. . . . . . . . . . . . . . . . . . . . . . . 62

3.4 The graph of f(α) = α
(1−α)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Representation of geometric elements near boundaries for a quadrilateral mesh. 67

4.1 Adaptive mesh refinement quad-tree data structure and associated adaptive

blocks for a quadrilateral body-fitted mesh . . . . . . . . . . . . . . . . . . . . 79

4.2 Illustration of refined multi-block grid and various types of inter-block commu-

nication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Comparison between the low- and high-order representations of a multi-block

computational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Representation of the valid combinations of boundary types for the SW block

corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



4.5 Depiction of a coarse cell division into four fine cells for low- and high-order

block boundary elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Bock distribution among the processors of a multi-processor architecture. . . 88

5.1 Piecewise cubic (k = 3) hybrid CENO reconstruction of the smooth trigono-

metric function f(x) = sin(2x) + 2 cos(x) . . . . . . . . . . . . . . . . . . . . 94

5.2 L1, L2, and L∞ norms of the reconstruction errors for ENO and hybrid CENO

reconstructions of the function f(x) = sin(2x) + 2 cos(x) . . . . . . . . . . . 95

5.3 Reconstruction of f(x) = e−4x sin(5x) on cell-centred one-dimensional uniform

mesh for −5 < x < 5 containing 64 and 100 computational cells . . . . . . . 97

5.4 L1 and L∞ norms of the reconstruction errors for ENO and hybrid CENO

reconstructions of the function shown in Fig. 5.3 . . . . . . . . . . . . . . . . 97

5.5 Reconstruction of a discontinuous step function on a one-dimensional uniform

mesh for −1 < x < 4 containing 11 computational cells . . . . . . . . . . . . 98

5.6 Exact solution of function u(x, y) = 1.1 + cos(πx2 + 4πy) and the quartic

solution reconstruction on a regular mesh with 40×40 computational cells. . 99

5.7 The regular and disturbed body-fitted meshes with 40× 40 cells used in the

convergence study of the function depicted in Fig. 5.6. . . . . . . . . . . . . 100

5.8 Convergence history for L1, L2, and L∞-norms of the reconstruction error for

the smooth trigonometric function u(x, y) = 1.1 + cos(πx2 + 4πy) . . . . . . 101

5.9 Contours of the exact and the fourth-order CENO reconstructed solutions for

the non-smooth two-dimensional function of Abgrall . . . . . . . . . . . . . . 102

5.10 Cross sections of the CENO reconstructed solutions of the Abgrall function for

different orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.11 L1 norm of the reconstruction error versus the number of computational cells

for Abgrall’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.12 Contour plots of a third-order CENO reconstruction solution of the Abgrall’s

function on AMR meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.13 Sequence of AMR meshes generated by the block-based refinement algorithm

for the refinement of the Abgrall’s function . . . . . . . . . . . . . . . . . . . 106

5.14 Predicted 4th-order CENO solution and error convergence history for the cir-

cular advection of a smooth inflow variation . . . . . . . . . . . . . . . . . . 108

xiii



5.15 Numerical and exact solution plots for the circular advection of top-hat inflow

variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.16 L1, L2 and L∞ norms of the residual error obtained for Poisson equation

~∇ · (~∇u) = a eβ u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.17 Fourth-order CENO solution to the heat conduction equation . . . . . . . . . 113

5.18 Error norms for the problem defined in Fig. 5.17 obtained with different re-

construction orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.19 Fourth-order solution to the Laplace equation and associated error norms for

cubic and quartic polynomial interpolants . . . . . . . . . . . . . . . . . . . . 114

5.20 Numerical CENO prediction of channel flow problem and convergence error

history for different Péclet numbers . . . . . . . . . . . . . . . . . . . . . . . 115

5.21 Contour plots and sequence of refined meshes for CENO prediction to circular

advection of a smooth and discontinuous inflow . . . . . . . . . . . . . . . . 117

5.22 Numerical solutions of the one-dimensional blast wave interaction problem . 118

5.23 Comparison between the numerical prediction of the 4th-order CENO with

different mesh resolutions and the exact solution for Sod’s shock tube problem 119

5.24 Predicted density profiles in the regions defined in Fig. 5.23 obtained with a

4th-order ENO, a 4th-order CENO and a 2nd-order TVD scheme on different

mesh resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.25 Predicted Mach number and error norms for subsonic Ringleb’s flow . . . . . 121

5.26 Predicted Mach number and error norms for transonic Ringleb’s flow . . . . 123

5.27 Predicted Mach number distributions and error norms in entropy for M=0.38

subsonic flow past a circular cylinder . . . . . . . . . . . . . . . . . . . . . . 124

5.28 Predicted Mach number distribution for M =1.5 flow past a circular cylinder

obtained using the 4th-order CENO scheme on a 160×160 grid . . . . . . . . 125

5.29 Numerical results for M=2.1 flow past a circular cylinder obtained using the

4th-order CENO scheme on the final refined AMR mesh . . . . . . . . . . . . 126

5.30 Sequence of adaptively refined AMR mesh for supersonic flow past a circular

cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.31 Representation of initial and final solutions for the smooth translation of den-

sity variation with unsteady AMR . . . . . . . . . . . . . . . . . . . . . . . . 128

5.32 Computed error norms for the smooth translation of density variation problem 129

xiv



5.33 Variation of the non-dimensional velocity components at Rex = 8, 000 and

distribution of skin friction coefficient for a laminar flat plate problem . . . . 131

5.34 Prediction of Mach number and streamlines for laminar flow over cylinder at

M∞=0.1 and Re=30 on a mesh with 51,200 cells. . . . . . . . . . . . . . . . 132

5.35 Comparison of drag coefficients predicted by the 4th-order CENO and the 2nd-

order scheme for the laminar flow over cylinder at M∞=0.1 and Re=30 . . 133

5.36 The parallel speedup and efficiency achieved for the steady laminar flow past

cylinder by the 4th-order CENO algorithm as a function of the number of

computing cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.37 Entropy prediction and streamlines for vortex shedding flow past circular cylin-

der at Re=110 obtained using the 4th-order (k=4) CENO scheme . . . . . . 136

5.38 Time dependent variation of the lift and drag coefficients for the flow past

circular cylinder at Re=110 obtained using the 4th-order CENO scheme . . 136

5.39 Entropy field prediction and density contour lines for vortex shedding flow past

circular cylinder at Re=110 obtained on the initial AMR mesh . . . . . . . . 138

5.40 Variation of the drag coefficient for unsteady vortex shedding flow past the

circular cylinder as a function of physical time obtained using the 4th-order

CENO scheme in conjunction with the block-based AMR algorithm . . . . . . 139

5.41 Predicted entropy and density fields for unsteady vortex shedding obtained on

the first five AMR meshes at various time instances . . . . . . . . . . . . . . 141

5.42 Comparison between the drag coefficients predicted by the 4th-order CENO

scheme and previously reported values . . . . . . . . . . . . . . . . . . . . . . 142

5.43 Predicted flow fields for vortex shedding over the cylinder on a sequence of

dynamically refined meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.44 Exact and predicted 4th-order CENO solution for the periodic linear advection

of the density variation ρ(x, y) = 1.0 + 0.5 cos (π T(x)) sin (5 π T(x)) . . . . 145

xv



LIST OF SYMBOLS

Alphanumeric Symbols

A the domain of a two-dimensional control volume

A cell area

a local speed of sound

2D two-dimensional

Cp gas specific heat at constant pressure

Cv gas specific heat at constant volume

Dk
p1p2

polynomial coefficient of powers (p1, p2) in the k-exact polynomial approxima-

tion

E total energy

e specific total energy

F x inviscid flux in vector notation

~F flux dyad

~FE elliptic flux vector

~FH hyperbolic flux vector

G y inviscid flux in vector notation

ı̂, ̂ Cartesian unit vectors

~~I identity tensor

I index denoting an element pertained to the cell in which the reconstruction is

performed

xvi



i, j ordered pair of indices to identify a computational cell in a two-dimensional

multi-block mesh

J index denoting an element pertained to any neighbour in the reconstruction

supporting stencil

k polynomial order

mx, my x- and y-components of linear momentum

ND number of unknown coefficients in the k-exact polynomial approximation

~n unit outward vector normal

Nf number of faces of a control volume

p gas pressure

p1, p2 indices used in the two-dimensional k-exact polynomial approximation

~q molecular heat flux vector

qx, qy x- and y-components of molecular heat flux

R spatial residual vector

Re Reynolds number

R gas constant

S source term vector

~~S strain rate tensor

T gas temperature

t time

U conserved solution variables in vector notation

u scalar solution variable

uki,j k-exact polynomial solution approximation for a cell (i, j)

V control volume

~V velocity vector

vx, vy x- and y-components of velocity

xvii



W primitive solution variables in vector notation

~Xi,j centroid of the cell (i, j) of a two-dimensional multi-block mesh

(xp1yp2)CV geometric moment of powers (p1, p2) of a generic control volume, CV, about its

own centroid(
x̃p1yp2

)
IJ

geometric moment of powers (p1, p2) of the neighbour cell J about the centroid

of the reconstructed cell, I

x, y Cartesian coordinates

Greek Symbols

∆` length of the cell face

∆ LES filter size

γ gas specific heat ratio

κ generic diffusion coefficient in the advection-diffusion equation or fluid thermal

conductivity in the Navier-Stokes equations

µ gas molecular viscosity

ν gas kinematic viscosity

Ω closed surface of the control volume

ω Gaussian-quadrature weighting coefficient

φ non-linear source term (a scalar function)

ρ gas density

τxx, τyy, τxy two-dimensional components of the molecular fluid stress tensor

~~τ molecular fluid stress tensor

Abbreviations

AMR Adaptive Mesh Refinement

BC(s) Boundary Condition(s)

CENO Central Essentially Non-Oscillatory

CFD Computational Fluid Dynamics

xviii



CFL Courant-Friedrichs-Lewy Number

DNS Direct Numerical Simulation

DOF Degrees of Freedom

ENO Essentially Non-Oscillatory

FEM Finite Element Method

FV(M) Finite Volume (Method)

HPC High-Performance Computing

IC(s) Initial Condition(s)

LES Large Eddy Simulation

LHS Left-Hand-Side

ODE Ordinary Differential Equation

PDE(s) Partial Differential Equation(s)

RANS Reynolds Average Navier-Stokes

RHS Right-Hand-Side

SGS Subgrid-Scale

TFI Transfinite Interpolation

TV Total Variation

TVB Total Variation Bounding

TVD Total Variation Diminishing

xix



Chapter 1

INTRODUCTION

“Nothing ever built ... arose to touch the skies unless some man dreamed that it

should, some man believed that it could, and some man willed that it must.”

by Charles F. Kettering (1876-1958), American engineer & inventor

Since the dawn of computational fluid dynamics (CFD) and the landmark established by

the earliest numerical solution for flow past a cylinder carried out by Thom in 1933 [1], many

great minds have been contributing their efforts to transforming the discipline of CFD into

the modern research and design tool that currently impacts and cuts across all technical fields

where the flow of a fluid is important. Indeed, current state-of-the-art CFD techniques are

nowadays employed successfully for prediction of flow fields with complex physical phenom-

ena and sophisticated geometries. Undoubtedly, these magnificent achievements in CFD have

been nourished by the tremendous progress in high-performance computing (HPC) hardware

over the years, and most notably by the introduction of vector and parallel processing in the

last three to four decades. The present availability of such impressive computational power

has opened up new horizons in the complexity and magnitude of scientific problems studied

with CFD methods and has set new frontiers for research in improved CFD algorithms.

1.1 Motivation: Enable Large Eddy Simulation for

Practical Combustion Devices

In recent years, the accurate prediction of the type of flows encountered in practical combus-

tion devices has become of prime importance to the engineering and scientific community due

to the environmental and health issues posed by pollutants released from fossil fuel burning

combustion devices and to the soaring price of oil-based fuels determined by global decrease

in the availability of so-called “easy oil” [2]. Technical combustion devices are characterized

1
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by very complicated flow patterns, such as swirling flows, breakdowns of large-scale vortical

structures and recirculation regions, the accurate prediction of which is still a challenging

problem. Therefore, the development of advanced combustion capabilities that allow the de-

sign of the next generation of combustion systems, having ultra-low nitrogen oxides (NOx)

production, substantial thermal efficiency improvements, as well as significant reduction in

carbon dioxide (CO2) emissions, is of current interest to the combustion community.

One avenue for studying combustion is offered by numerical simulations and, with increas-

ing HPC resources, this approach is being considered more and more often. Indeed, rapid

improvements in commodity computing hardware and the recent development of distributed-

memory multi-processor clusters for HPC have dramatically extended the application spec-

trum of computational methods and improved the accuracy with which physically complex

flows characterized by a wide range of spatial and temporal scales can be currently predicted.

Thus, traditionally computationally expensive numerical simulations such as those of tur-

bulent non-reacting and reacting flows, and numerical computation of complex unsteady

aerodynamic flows, have been performed for realistic, complex, three-dimensional (3D) ge-

ometries with discretizations of millions of grid points. For turbulent flows, not only has

this enhanced HPC hardware allowed the use of increased resolution for flow simulations

with classical Reynolds Averaged Navier-Stokes models [3], but it has also made more rou-

tine the study of more sophisticated modelling techniques, such as large eddy simulations of

turbulence for both scientific interest and practical engineering applications [4].

The numerical prediction of combustion processes is challenging as a wide variety of com-

plex physical phenomena are involved, including multi-component and multi-phase transport

phenomena, complex finite-rate chemical reactions, radiative heat transfer and turbulence.

The presence of turbulence in a flow, even in a non-reacting one, represents a big increase

in the complexity of the problem and makes the study of the reacting flows one of the most

challenging fields of engineering science. The spectrum of approaches for turbulence repre-

sentation is dominated by three main categories, Direct Numerical Simulation (DNS), Large

Eddy Simulation (LES) and Reynolds Average Navier-Stokes (RANS) Modelling. In the

case of turbulent reacting flows additional modelling is required for each approach to ac-

count for the interaction between chemistry and turbulence. There have been a number of

computational studies involving DNS that attempt to resolve detailed chemical kinetics and

transport phenomena [5, 6, 7], but they have been restricted to very small (O(1) cm) ideal-
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ized configurations and to short simulation times. The huge discrepancy between the scale

of the realistic problems and those that can be computed using DNS presently and in the

foreseen near future generally restrict the application of this method to academic research,

where it can produce valuable information and insight that is not available by using other

techniques.

For many flows of engineering interest, the classical RANS approaches have proved to

be very successful, but there are some applications for which a difference of several orders

of magnitude between the unsteadiness of the flow and the turbulent fluctuations does not

exist. For flows for which a clear separation of scales cannot be established, a sufficiently

complex representation of the turbulent quantities must be formulated, in order to better

represent the wide range of turbulent scales. At the same time, the representation must

have a reduced computational cost as compared with DNS so as to be applicable to practical

engineering problems.

The LES formulation represents a very promising tool in which the large turbulent scale of

motions, that carry most of the turbulent kinetic energy and depend on the geometry of the

system, are completely resolved, while the effect of the small scale fluctuations is introduced

by turbulence closure models. The underlying premise is that the small-scale turbulence is

weaker, contributing less to the turbulent energy, and is therefore less critical. Also, it is

more isotropic and has a more universal structure. It is thus more amenable to modelling.

Figure 1.1 shows schematically the typical differences between the results obtained using the

three aforementioned turbulence representations. While DNS will provide the full unsteady

solution of the problem, RANS approximation can at most represent only the time averaged

solution. Since LES is a technique intermediate between DNS and RANS, the unsteady

character of the problem can be represented, but the fidelity of the solution in space and

time will be affected.

In LES, the turbulent fields are separated into large-scale resolved and small-scale un-

resolved contributions. A low pass spatial filtering operation applied to the instantaneous

turbulent fields removes turbulent motions of length scales smaller than the filter size, ∆.

The governing equations for the remaining large-scale field are amenable to discretization

using a mesh with grid spacing of order ∆ or smaller. Since the closure terms accounting

for turbulence/chemistry interactions are modelled, a very dynamic research area in LES is

represented by the study of different subgrid-scale (SGS) models. The filtering operation can



1.1 MOTIVATION: ENABLE LES FOR PRACTICAL COMBUSTION DEVICES 4

Figure 1.1: Time evolution of local temperature in a turbulent flame as captured by DNS,

LES and RANS approaches.

be done implicitly or explicitly. Implicit filtering does not require explicit definition of the

spatial filter. Instead, the procedure exploits the discrete nature of any numerical solution

method and the filtering is due to the representation of the solution on a finite mesh. As

such, the filter size, ∆, is generally directly related to the grid spacing. It follows that the

smallest resolved scales are actually under-resolved and any attempts to overcome this lack

of accuracy by employing smaller mesh sizes have also the negative effect of changing the

initial LES problem (i.e., new turbulent scales are added to the resolved field). Because of

numerical dissipation, the energy content of the smallest resolved scales is under-predicted

which also leads to under-predictions from the small-scale models. Therefore, a better al-

ternative is to use an explicit filtering operation. Such an approach has the advantages of

making sure that all the terms involved in the governing equations are numerically repre-

sented with the same order of accuracy (i.e., no aliasing errors), that the LES solution is

the same, regardless of the mesh size, and that no commutation errors between the filtering

operation and the spatial derivative of solution content are introduced at transition regions

of different filter width. Explicit filtering and its combination with different discretization

methods are currently actively researched [8].

Unfortunately, for the current computational capabilities the number of computational
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cells required to accurately represent the smallest resolved scales with a low-order scheme

(i.e., first or second order) may turn out to be prohibitive, especially in the wall layers where

the size of the resolved eddies varies with the distance from the wall. This is especially true

for upwind finite-volume schemes in which numerical dissipation is added automatically for

stability and robustness purposes through the solution of a Riemann problem that is solved

at every interface. While such numerical schemes allow for the robustness of the solver near

solution discontinuities and for an easier implementation of the boundary conditions (BCs),

they might also introduce numerical dissipation that is larger than the contribution from the

SGS model [9]. Therefore, the investigation of improved solution algorithms, such as the use

of higher-order spatial discretizations to make sure the numerical dissipation associated with

the resolved large scales is smaller than the truncation error of the SGS models, represents

an open research area. Many researchers already consider high-order numerical schemes a

key feature for obtaining precise LES results [10].

Undoubtedly, the high solution-accuracy requirements of LES techniques have been a

driving force for the development of high-order methods which have the potential to capture

fine solution details with a lower mesh resolution and at a reduced total computational

cost than the standard lower-order spatial discretizations (i.e, methods up to second order).

However, the application of a high-order scheme to turbulent combustion simulation can

be challenging due to large gradients (or discontinuities due to insufficient mesh resolution)

that are expected to occur in the temperature and other flow field variables close to the

flame front. This means that the high-order spatial discretization must be designed so as

to provide the required accuracy throughout the flow field and yet remain monotone and

robust in regions of under-resolved solution content.

Adaptive mesh refinement (AMR) is another approach for coping with the computational

cost of large-scale numerical simulations, such as LES of turbulent combustion. For numerical

simulations of complex flows characterized by a wide range of spatial and temporal scales

both high-order discretizations and AMR are often demanded. For example, it is pointed

out by Moin and Krishnan [11] that even ENO schemes as high as sixth-order can be too

dissipative for the prediction of shock/turbulence interactions without refinement of the

mesh in the vicinity of the shock wave. In other work, Jameson [12] has shown that high-

order methods can be considerably more efficient than low-order AMR schemes for flows

containing structures such as vortices, eddies and/or turbulence and concluded that high-
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order schemes combined with AMR may provide very effective means of obtaining high

solution accuracy. Moreover, even if a combination of high-order discretization and AMR can

reduce significantly the cost of large-scale numerical simulations, a parallel implementation

of these approaches is usually necessary in order to make the solution of such problems

affordable on currently HPC hardware.

Consequently, it is felt that the design of a numerical algorithm that can successfully

address the aforementioned issues arising in LES simulation of turbulent combustion should

be based on a robust high-order spatial discretization procedure that can also be combined

effectively with both mesh adaptation and an efficient parallel implementation.

1.2 Thesis Objectives

The main motivation for this research then stems from the high computational cost associated

with the simulation of turbulent combusting flows using compressible LES techniques in con-

junction with standard low-order spatial discretization procedures, as described above. Nev-

ertheless, similar numerical challenges are encountered in many other scientific/engineering

applications and the numerical methods developed in this thesis can be applied to this larger

class of problems. The overarching objective of the research is to develop an efficient finite-

volume procedure that, when used in conjunction with parallel implementations and AMR

techniques, can make the performance of large-scale calculations, such as DNS and LES for

engineering applications, more routine.

As such, this thesis aims to develop a robust high-order upwind finite-volume spatial

discretization algorithm capable of providing significant computational savings to large-scale

scientific computing applications such as the aforementioned ones. Part of this objective

is to investigate strategies for obtaining high-order accuracy for curved body-fitted multi-

block meshes. In order to facilitate analysis yet be practical, the high-order framework is

developed for solving representative hyperbolic and/or elliptic conservation laws, such as the

advection-diffusion, the Euler and the Navier-Stokes equations. Despite its development for

a restrictive class of governing equations, the high-order framework is designed to be easily

applied to numerical simulations of more complex flows, such as reacting and non-reacting

LES in future follow-on studies. As previously mentioned, such physically complex flows are

typically characterized by a wide range of spatial and temporal scales and therefore both
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high-order discretizations and adaptive mesh refinement are often demanded. Consequently,

the other objective of the research is to integrate the proposed high-order discretization with a

two-dimensional parallel block-based AMR algorithm and to investigate refinement criteria

other than physics-based techniques for directing the refinement process. The research is

also expected to pave the way to some natural extensions of high-order algorithms, such

as mesh refinement based on a posteriori error estimates, concurrent h-p-adaptation and

h-p-multigrid methods.

1.3 Background

Not surprisingly, developing and exploring high-order methods to reduce the cost of numer-

ical simulations is an active area of research, particularly for large-scale scientific computing

applications such as DNS and LES of turbulent non-reactive and combusting flows, numerical

computation of complex unsteady aerodynamic flows, aeroacoustic modelling, and compu-

tational electromagnetics. Standard lower-order spatial discretizations can exhibit excessive

numerical error and are therefore very often not practical for the applications listed above.

Improved numerical efficiency may be achieved by raising the order of accuracy of the spatial

discretization, thereby reducing the number of computational cells required to achieve the

desired solution accuracy. Moreover, for complex flows both high-order discretizations and

adaptive mesh refinement may be required. Computational grids that automatically adapt

to the solution of the governing equations are very effective in treating problems with dis-

parate length scales, providing the required spatial resolution while minimizing memory and

storage requirements. The main concepts and overviews of high-order methods and AMR

techniques are reviewed next.

1.3.1 High-Order Methods

Basic Concepts and Elements

Current numerical algorithms for finding solutions to partial differential equations (PDEs) of

the type encountered in the governing fluid flow equations are based on replacing the integrals

or the partial derivatives (as the case may be) in these equations with discretized algebraic

forms, which in turn are solved for the flow field values at discrete points in time and/or in
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space. The solution of the algebraic equations represents an approximation that converges to

the continuous analytical solution of the PDEs in the limit that the number of discrete points

approaches infinity (i.e., as the mesh spacing goes to zero) if the numerical scheme satisfies

certain conditions, such as those imposed by the Lax equivalence theorem for finite-difference

methods [13]. The error of the approximate solution relative to the analytical solution is a

function of the number of grid points and the truncation error of the numerical scheme, a

subject amply discussed in a number of textbooks [14, 15]. For the sake of completeness,

several finite-difference approximations are presented below to illustrate what the scheme

truncation error is and how it affects the accuracy of the numerical solution.

Here, two approaches are considered for deriving algebraic difference quotients to replace

the first order partial derivative,
(
∂u
∂x

)
i,j

, of a continuous flow variable, u, at the discrete

point (i, j) shown in Fig. 1.2. The first approach uses the Taylor’s series expansion with

respect to a neighbouring point, ui+1,j, given by

ui+1,j = ui,j +

(
∂u

∂x

)
i,j

∆x+

(
∂2u

∂x2

)
i,j

(∆x)2

2
+

(
∂3u

∂x3

)
i,j

(∆x)3

6
+ · · · (1.1)

Figure 1.2: Grid points used in the discrete representation of the numerical solution.
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to determine an expression for the first order derivative as(
∂u

∂x

)
i,j

=

(
ui+1,j − ui,j

∆x

)
︸ ︷︷ ︸
Finite-difference

−
(
∂2u

∂x2

)
i,j

∆x

2
−
(
∂3u

∂x3

)
i,j

(∆x)2

6
+ · · ·︸ ︷︷ ︸

Truncation error

, (1.2)

in which both the finite-representation of the partial derivative and the truncation error

are identified. The truncation error in Eq. (1.2) indicates what is being neglected in this

approximation and because its lowest-order term involves ∆x to the first-power it means

that this particular finite-representation, called a forward difference, provides a first-order-

accurate approximation to the exact derivative, formally written as(
∂u

∂x

)
i,j

=
ui+1,j − ui,j

∆x
+ O(∆x) . (1.3)

Equivalently, it is said that the order of accuracy of the forward difference approximation is

one.

Similarly, a finite-difference quotient of second-order accuracy can be derived as(
∂u

∂x

)
i,j

=
ui+1,j − ui−1,j

2∆x
+ O(∆x2) (1.4)

which is called a central difference approximation as fully described in the textbook by Lomax

et al. [14]. The textbook of Lomax et al. also demonstrates how differencing schemes of any

order can be constructed systematically based on Taylor tables.

The Taylor series expansions discussed above are in fact equivalent to standard polyno-

mial series representations on uniform mesh and as such, the differencing schemes presented

earlier actually represent the application of more general polynomial approximation tech-

niques to uniform meshes. In this general approach, truncated polynomial series are used to

approximate the continuous variation of the flow variable u over a given domain. The order

of accuracy in this method is dictated by the polynomial order, k. For example, in k-exact

reconstruction as proposed by Barth [16], the polynomial coefficients are computed so as

the integrals of the polynomial function over a set of control volumes recover the average

values of variable u in those elements, as explained in details in Chapt. 3. In the case of

known pointwise solution values, these coefficients are determined by fitting the polynomial

function to the variable values at a set of discrete neighbouring points, which can be taken

equal or larger than the number of unknown coefficients.
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Hence, assuming that u(x) can be expressed by the quadratic polynomial approximation

uk(x) = u2(x) = a+ b x+ c x2 , (1.5)

the unknown parameters a, b and c can be determined by constraining the polynomial

expression at a number of points equal to the number of unknowns as follows:

u2(0) = ui,j = a

u2(∆x) = ui+1,j = a+ b∆x+ c∆x2

u2(−∆x) = ui−1,j = a− b∆x+ c∆x2 , (1.6)

where ui,j, ui+1,j and ui−1,j are assumed to be known. The solution of this linear system is

a = ui,j , b =
ui+1,j−ui−1,j

2∆x
and c =

ui+1,j−2ui,j+ui+1,j

2∆x2 . It can be easily seen that
(
∂u
∂x

)
i,j

= b

yields the same expression as Eq. (1.4) for the first-order derivative, which shows that a

quadratic polynomial provides a second-order-accurate representation of this derivative.

It is obvious from Eqs. (1.3) and (1.4) that, neglecting round-off errors or finite precision

arithmetic of the computer, the accuracy of the finite-difference approximation increases with

the decrease of ∆x, the error becoming zero in the limit of infinite mesh resolution. Note

that even if the order of truncation error does not quantify an exact value for the absolute

error introduced by each approximation, it gives a clear indication of how the discretization

error should behave as the mesh resolution is varied uniformly and smoothly. Hence, consid-

ering a given mesh resolution characterized by ∆x1 on which the numerical approximation

introduces an error, E1, the error, E2, generated by the first-order finite-difference given

by Eq. (1.3) is half of E1 when the mesh resolution is doubled while maintaining the same

relative point distribution, but four times less than E1 in the case when the second-order

approximation, Eq. (1.4), is used. It is worth observing that under the same doubling mesh

resolution condition, a fourth-order approximation would reduce the error sixteen times,

thereby providing motivation for employing higher-order approximations in the numerical

scheme.

To exemplify the concepts introduced so far and to illustrate the practical significance

of a high-order approximation an example of k-exact reconstruction is considered in which

the reconstruction of different polynomial orders is applied to the one-dimensional smooth

trigonometric function f(x) = sin(2x) + 2 cos(x) over a domain with 11 discrete elements in
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which the exact average values had been calculated. The piecewise numerical approximations

corresponding to constant (k = 0), quadratic (k = 2), cubic (k = 3) and quartic (k = 4)

polynomials are shown at the top of Fig. 1.3. In the same figure the numerical derivatives

obtained based on the quartic polynomial are compared against the first four analytical ones

of this trigonometric function. It can be easily observed that as the polynomial order is

increased the corresponding piecewise numerical approximation recovers the exact function

with a smaller and smaller error. Moreover, solution jumps at interfaces are also reduced.

Obviously, the quartic polynomial produces the best approximation of all orders considered.

This is expected as its truncation error has order five (i.e., O(∆x5)). Note also that the

accuracy of the derivative prediction decreases as the derivative order increases, the worst

situation being encountered for the 4th-order derivative, shown in the bottom-left corner.

This behaviour is also expected as each differential operation reduces by one the order of the

truncation error in the polynomial approximation.

It is worth re-emphasizing here several well-known aspects regarding the properties of

high-order approximations. One thing to bear in mind is that increasing the order does not

necessarily increase the accuracy, especially in polynomial interpolation, and the equivalency

between the two is subject to additional conditions. An important fact is that the aforemen-

tioned numerical properties are only valid provided that the function to be approximated is

smooth in the sense that all derivatives up to the order of the truncation error are continuous

(i.e., at least Ck+1-continuity). A violation of this condition renders incorrect the use of a

Taylor series expansion with a degree higher than the order of discontinuity of the exact

function and can lead to large errors in the numerical approximation. An illustration of this

problem is provided by the k-exact reconstruction for a discontinuous function as shown in

Fig. 1.4(a), in which Gibbs-like phenomena (i.e., spurious oscillations proportional to the size

of the jump) can be identified in the vicinity of the discontinuity. Moreover, the spurious

oscillations observed near discontinuity do not disappear as the mesh resolution is increased,

a fact shown in Fig. 1.4(b).

In addition to introducing significant errors near discontinuities, there are other problems

related to the occurrence of over- and undershoots in the solution approximation. First,

the values predicted by the polynomial approximation may lie outside the allowable range

(e.g., for compressible gaseous flow, reconstructed values of pressure and/or density may be

negative, violating positivity requirements for these variables arising from the physics) and
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Figure 1.3: Comparison of k-exact reconstructions relative to the exact function shown for

k= 0, 2, 3 and 4 in the top two plates. The rest of the figures illustrate the first four exact

function derivatives and their approximation based on the quartic (k=4) reconstruction.
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second, these wiggles can grow in time and completely pollute the accuracy of the numerical

discretization. Equally hazardous to the numerical scheme can be the wild oscillations that

may occur for smooth function interpolation with significantly high orders (e.g., five, six and

higher), a behaviour known in the literature as the Runge’s phenomenon [17]. The occurrence

of Runge oscillations is one of the main reasons why it is seldom the practice that very high

interpolation orders are used, unless there is quite rigorous monitoring of estimated errors.

A more robust and frequently used approach is to define the high-order interpolant as a

piecewise function comprised of lower order interpolants, such as cubic and quartic, on each

domain interval. Therefore, in addition to accuracy another important issue in the design of

space discretizations is the robustness property of the numerical scheme, which refers to the

behaviour of the scheme near large solution gradients and/or discontinuities.

An obvious question that may arise is why one would use a high-order polynomial ap-

proximation near such problematic regions, considering that it can lead to the aforemen-

tioned issues. Note that these regions correspond not only to areas in which the solution

would naturally exhibit physical discontinuities but also to domains on which the solution is

presently deemed under-resolved due to a lack of sufficient mesh resolution and appears as

discontinuous on the current grid. Naturally, if one knew a priori where those regions with

solution discontinuities were located, which is seldom the case in general, then one would not

(a) Low mesh resolution (b) Higher mesh resolution

Figure 1.4: Illustration of Gibbs-like phenomenon for a cubic (k= 3) reconstruction on two

different resolution meshes.
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employ high-order polynomial approximation at those locations. Moreover, discontinuous re-

gions typically coexist with smooth solution regions for which high-order approximations can

present significant advantages as it has been shown. In conclusion, high-order polynomial

approximations are desirable for regions where they can accurately resolve the solution with

fewer mesh points than the lower-order ones, but they also must posses a mechanism to

ensure the robustness of the numerical approximation near sharp solution variations.

Finally, a big challenge associated with using high-order solution procedures is that in

general, regardless of the method of choice (e.g., finite-differences, finite-volume or finite-

element algorithms), the computational cost of the numerical scheme increases with the

order of accuracy and therefore it can mitigate the benefits generated by smaller truncation

errors. In our practical example, the evaluation of the quartic polynomial is obviously more

expensive than the cost associated with the quadratic one as additional coefficients are

determined. On the positive side, due to a lower truncation error a higher-order method

would require fewer computational cells than a lower-order one to obtain the same level of

accuracy, that may translate into fewer numerical operations and ultimately into a reduced

total computational cost for the entire problem solution. In other words, there is a trade-off

between the order of accuracy and the computational cost associated with it, and whether a

high-order method would successfully manage to reduce the cost of a numerical simulation

is in many cases very dependent on the characteristics of the problem under consideration

and the efficiency with which the high-order accuracy is obtained. Consequently, it may be

that not all flow problems necessitate a high-order treatment and that only certain types

of flows, such as the aforementioned ones, are potentially well suited to the application of

high-order methods.

Overview of the Development of High-Order Methods

In the last decades, there have been a number of studies of high-order schemes. For hyperbolic

conservation laws and/or compressible flow simulations, the challenge has been to achieve

accurate discretizations while coping in a reliable and robust fashion with discontinuities and

shocks. The essentially non-oscillatory (ENO) schemes first proposed by Harten et al. [18]

provide robust frameworks for high-order finite-volume discretizations of hyperbolic systems.

Such schemes remain uniformly accurate yet are essentially non-oscillatory in the sense that

they do not produce Gibbs-like O(1) oscillations at discontinuities, although small spurious
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oscillations may be generated having a magnitude on the order of the truncation error (i.e.,

O(∆xk+1)). The latter disappears as the mesh is refined. The first interpolation technique

proposed by Harten et al. to provide the ENO property is based on an adaptive-stencil strat-

egy, in which the stencil leading to the “smoothest” reconstruction is selected and therefore

stencils containing discontinuities are avoided. More recently, Harten and Chakravarthy [19]

have proposed a technique for Cartesian grids to obtain an ENO reconstruction on a fixed

central stencil by hybridizing the high-order reconstruction with a first-order formulation.

Abgrall [20] and Sonar [21] have since extended the ENO concept for application to flow

prediction on unstructured grids. In addition, so-called weighted ENO (WENO) schemes

have been developed for both structured and unstructured meshes [22, 23, 24]. However, the

difficulty with these finite-volume approaches has been the extension of the method to multi-

dimensional problems and large systems of coupled PDEs. The computational challenges are

primarily related to the selection of stencils on multi-dimensional meshes, particularly in the

case of unstructured grids [20, 21, 25, 26], and the poor conditioning of the linear systems

that define the solution reconstructions for these stencils [25, 26]. The requirement of using

a different stencil for each flow variable is also perceived to be problematic, particularly

for problems in combustion, where there can be a large number of species present in the

reactive mixture of gases. More recently, Haselbacher [26] has explored the use of fixed sten-

cil central reconstruction in the formulation of WENO schemes for unstructured meshes,

but schemes of accuracy higher than second order were not formulated. Additionally, some

perceived challenges associated with non-compact high-order finite-volume schemes are the

larger stencils which may lead to problems with the boundary-condition implementation and

efficient parallelization of the algorithm. For application to practical engineering problems

and arbitrary boundary topologies, the ability of the approach to deal with all of these chal-

lenges is especially important. Although successful implementations have been developed, in

general the computational costs and complexity of implementing ENO and WENO schemes

have limited their widespread application. Nevertheless, combinations of high-order ENO

and WENO schemes with AMR for both structured and unstructured meshes have been

developed and applied to engineering problems such as the prediction of high-speed flows as

described in the recent work by Wolf and Azevedo [27].

Other researchers have considered more flexible high-order finite-volume schemes, which

may be more easily extended to multi-dimensional problems and to unstructured meshes.



1.3 BACKGROUND 16

For example, Barth and Fredrickson [16, 28] developed a high-order finite-volume approach

for unstructured mesh based on k-exact least-squares reconstruction. Following on their

work, Ollivier-Gooch [29, 30] has more recently proposed a data-dependent weighted least-

squares reconstruction procedure (DD-ENO), that uses a fixed stencil and seeks to enforce

monotonicity of the scheme by introducing data-dependent weights for each point in the

stencil. To circumvent some deficiencies in the DD-ENO procedure, Ollivier-Gooch et al.

reconsidered the use of non-linear limiters for controlling oscillations and defined a high-

order limiting strategy in combination with a k-exact reconstruction procedure [31, 32].

Capdeville recently revisited the DD-ENO concept and formulated a compact Hermite least-

square monotone (HLSM) reconstruction scheme in one-dimension [33]. Additionally, Colella

et al. [34] have developed a high-order finite-volume method in mapped coordinates for

discretization of linear elliptic and hyperbolic PDEs. Their approach has been already

extended to nonlinear systems of hyperbolic conservation laws on locally-refined grids by

McCorquodale and Colella [35]. To suppress undesirable solution oscillations, the latter

authors applied a fairly elaborate combination of slope limiters, slope flattening and artificial

viscosity to their numerical scheme. Moreover, their proposed multidimensional limiting

strategy employs a modified version of the one-dimensional limiter formulated by Colella

and Sekora [36] for preserving accuracy at smooth extrema.

Before continuing it should be noted that, recent evidence obtained on more theoret-

ical grounds for the class of high-order upwind finite-volume methods with explicit time-

integration scheme applied to one-dimensional wave propagation problems suggests that the

original ENO schemes are more cost-effective for an imposed level of solution error than

the WENO counterparts. The results of the performance analyzes carried out by Piroz-

zoli [37, 38] for different upwind shock-capturing schemes, which are also shown in Fig. 1.5

courtesy of S. Pirozzoli [38], clearly indicate that, based solely on cost-effectiveness (i.e., com-

putational cost for a given level of accuracy), any future development of multi-dimensional

high-order finite-volume schemes should be considered more in the vein of the original ENO

approach due to Harten et al. [18] than along the lines of the WENO methods, which suffer

somewhat from a lack of robust, reliable, and accurate means for evaluation of the stencil

weights. Note that the computational cost, C, in Pirozzoli’s analyzes has been determined

based on a normalized measure of the CPU time per grid point per time step required for

one residual evaluation of each scheme considered in the study.
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Figure 1.5: Plots of estimated computational cost vs. error in one-space dimension for

several shock-capturing schemes, courtesy of S. Pirozzoli [38]. The following schemes have

been considered in the study: (1) second-order total variation diminishing with the minmod

(TVD-MM), superbee (TVD-SB) and Van Leer (TVD-VL) flux limiters; (2) third-order

compact scheme of Cockburn and Shu [39] with minmod limiter (CS3); (3) WENO schemes

with accuracy order of three (WENO3), five (WENO5) and seven (WENO7); and (4) ENO

schemes with accuracy order of two (ENO2), three (ENO3), four (ENO4) and five(ENO5).

High-order finite-element schemes have also been considered for fluid flows involving dis-

continuities. In particular, the class of schemes now generally referred to as discontinuous

Galerkin (DG) schemes have gained in popularity. Cockburn et al. [40, 41, 42] were the first

to formulate a family of high-order total variation bounded (TVB) schemes for nonlinear

systems of conservation laws referred to as Runge-Kutta discontinuous Galerkin (RKDG)

methods. By combining elements from the finite-element and finite-volume methods, Cock-
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burn et al. have obtained a family of numerical schemes that improve the data locality and

yet allow for discontinuous solution spaces. Hence, a flexible high-order spatial discretiza-

tion with a greatly reduced stencil size can be formulated. The reduced stencil is beneficial

for both boundary-condition implementation and algorithm parallelization. To ensure non-

oscillatory properties of the predicted solutions near discontinuities and/or large gradients,

DG methods have been considered in combination with different limiting strategies, such

as TVB- [42] and WENO-type [43] limiters. Additionally, Barter and Darmofal [44] formu-

lated a DG scheme with a PDE-based artificial viscosity model to avoid spurious numerical

oscillations in the proximity of shocks. Xu et al. [45] have also recently applied a hierarchi-

cal reconstruction (HR) strategy to DG methods in combination with a WENO-type linear

reconstruction in each hierarchical level. Despite the interest generated by the DG formula-

tion over the last decade, high-order DG schemes do suffer from a more restrictive time-step

stability limit that is exacerbated as the solution order is increased [46] and from a relatively

high computational cost per cell associated with the solution of the additional unknowns for

the high-order terms within the cell. The former can be particularly problematic for explicit

time-marching schemes. Partly in response to the latter, it is noted that Dumbser et al. [47]

have recently formulated a unified framework for finite-volume and discontinuous Galerkin

methods on unstructured mesh which introduces a new family of reconstructed DG schemes

denoted as PNPM methods.

In other work, Wang et al. [48, 49] and Liu et al. [50] have proposed variants of the

DG formulation, referred to as spectral volume (SV) and spectral difference (SD) methods,

for obtaining high-order solutions to hyperbolic conservation equations. In fact, DG, SV

and SD methods share many similarities, the main difference consisting in how the degrees

of freedom of each scheme are chosen and updated. A new perspective regarding the DG,

SV and SD methods has been introduced by Huynh [51], who was able to recover all these

methods in one-space dimension as particular cases of a general formulation based on a flux

reconstruction (FR) approach to high-order schemes for hyperbolic laws. For dealing with

undesirable solution oscillations, the SV and SD methods have been usually considered in

combination with total variation diminishing (TVD) and TVB limiting strategies. However,

Yang and Wang [52, 53] have recently combined a SD scheme for arbitrary unstructured

grids with a compact high-order hierarchical moment limiter. More recently, Wang and

Gao [54, 55] have generalized Huynh’s flux reconstruction approach to mixed grids and
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formulated a unifying lifting collocation penalty (LCP) method for Euler equations and

applied it to smooth flows. An advantage of their unified formulation is that the relative

cost of LCP method with respect to a DG scheme was inferred easily by simply comparing

the main operations required for the two algorithms. In addition, the newly proposed LCP

formulation is shown to be more efficient in both memory and CPU time than DG methods.

Alternative high-order schemes have also been developed and are currently being pursued

for application on either unstructured and/or multi-block structured meshes. For example,

recent advances in high-order residual distribution (RD) methods [56, 57] are represented by

the non-linear ‘mapped’ distribution schemes proposed by Abgrall and Roe [58]. More re-

cently, Abgrall [59] have formulated an essentially non-oscillatory RD scheme for hyperbolic

problems. Additionally, Guzik and Groth [60, 61] have compared higher-order RD and FV

schemes quantitatively and proposed a new high-order mapped RD method for hyperbolic

conservation laws. In other work, Dias and Zingg [62] have developed a high-order paral-

lel Newton-Krylov finite-difference algorithm for three-dimensional structured multi-block

meshes and inviscid aerodynamic flows. One of the key features of the latter method is

the use of simultaneous approximation terms (SATs) [63] to deal with block interfaces and

boundaries, which allows it to be more flexible with respect to the multi-block grid topology.

High-order schemes for PDEs governing diffusion processes and/or having a more elliptic

nature (e.g., conservation equations governing viscous flows) have also been considered. In

these cases, it is desirable that the discretization of the elliptic operator remain accurate while

satisfying a maximum principle, even on stretched/distorted meshes [64, 65]. Even standard

lower-order spatial discretizations may not always have these characteristics. Sun et al. [66]

and May and Jameson [67, 68] have considered the applications of the SV and SD methods,

respectively, to viscous flows. The latter have also applied their scheme in combination with

AMR to the Navier-Stokes system of equations. More recently, Gao and Wang [69] and

Haga et al. [70] have applied the LCP formulation to Navier-Stokes equations on two- and

three-dimensional mixed grids, respectively. Barad and Colella have proposed a fourth-order-

accurate AMR scheme for Poisson’s equation [71] and Ollivier-Gooch and van Altena [72]

describe a general high-order framework for the solution of the advection-diffusion equation

on unstructured mesh. In other work on diffusion problems on unstructured grids, van Leer

et al. [73, 74] proposed a recovery-based DG method that eliminates the introduction of ad

hoc penalty or coupling terms found in traditional DG methods. More recently, Oliver and
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Darmofal [75] applied the DG with a PDE-based artificial viscosity model to aerodynamic

flows governed by RANS equations. Finally, De Rango and Zingg [76] have considered the

application of high-order finite-difference methods to the prediction of turbulent aerodynamic

flows.

In spite of the advances in high-order methods outlined above, there is still no consen-

sus for a robust, efficient, and high-order accurate scheme that fully deals with all of the

aforementioned issues and is applicable to more arbitrary mesh configurations. Additionally,

with respect to the class of high-order finite-volume methods, it seems that there is not yet

a formulation which to allow an efficient extension of the ENO ideas to multi-dimensional,

multi-variable, and complex boundary-condition problems.

1.3.2 Solution Adaptivity

Overview of Mechanics of Adaptation

Solution-adaptation procedures are widely used and accepted strategies for improving the ac-

curacy of numerical simulations while limiting the increase in computational cost. Currently,

several different adaptation strategies have emerged to adjust the degrees of freedom (DOF)

of a solution procedure. These approaches which originate in the finite-element method

(FEM) community have been quickly adopted by the finite-volume practitioners and further

refined to fulfil the needs in this branch of computational science. They can be classified

into four broad categories depending on whether the changes introduced during the adap-

tation process affect the computational grid and/or the order of accuracy of the numerical

scheme (i.e., the degree of the element in FEM). They are as follows: (1) p-adaptation, (2)

h-adaptation, (3) r-adaptation and (4) h-p-adaptation methods. A first analysis of mathe-

matical properties of all these procedures in the context of FEM has been carried out by Gui

and Babuška in [77]. A brief review of these adaptation strategies, in which the advantages

and disadvantages of each method are also pointed out, is given below.

In p-adaptation, sometimes referred to as p-refinement, increased accuracy is achieved

by changing the interpolation order of the numerical scheme locally while the mesh remains

fixed. In spite of the excellent error convergence achieved by this method for smooth flow

variations, difficulties arise for flows in which non-smooth solutions and/or discontinuities

are present. For such situations, a strongly refined mesh near singularities or discontinuities
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is very important to get the desired accuracy. Such a mesh can be generated by performing

h-adaptation where the grid is locally modified so as to increase the mesh resolution near

solution features that need to be resolved while the order of interpolation is unchanged. This

approach offers the potential for large savings through optimized mesh resolution. Further in-

crease in computational efficiency can be obtained by coarsening the mesh concurrently with

the refinement process in regions of over-refinement. The h-adaptation methods can be per-

formed isotropically or anisotropically (i.e., directional refinement) and can be very effective

for improving mesh efficiency in boundary layers, wakes, shocks and near complex geometries

as well as in tracking sharp flow features that move through the computational domain. In

general, h-refinement is considered to be the standard version of performing solution adap-

tation, mainly for reasons of cost and ease of programming as compared to p-adaptation.

Adaptive re-meshing, known as r-adaptation, is a simpler variation of h-adaptation in which

the mesh nodes are reallocated while maintaining the same number of DOF. The mesh re-

distribution in this case is usually solved by employing algorithms based on a spring analogy

[78] or on a linear elasticity analogy [79, 80]. In general, this adaptation procedure is less

expensive than re-meshing the entire solution domain and easier to program than h-type

adaptation. In addition to many other applications [81, 82], this approach has proved very

useful in adjusting the mesh for minor shape modifications arising in applications of shape

optimization algorithms [83].

Finally, there are problems in which regions of rapidly varying physical changes coexist

with large domains of smoothly varying flows (i.e., large length scale disparity), such as the

thin premixed flame sheet deformation, and for which a combination of h and p-adaptation

may be highly advantageous [84]. In general, h-p-adaptation algorithms simultaneously refine

the mesh and increase the order of accuracy of the numerical scheme, employing either one

or both of the adaptation strategies in different regions depending on which approach is

deemed to be more beneficial to solution accuracy. A remarkable property of this combined

approach is the capability to produce exponential convergence rates [77, 85]. However, the

choice of adaptation method in a particular area, that is h and/or p-adaptation, is not always

clear and suitable criteria must be developed to aid that decision [84]. The formulation of

adaption criteria is the weakest link of automatic solution adaptivity methods and much

literature has been devoted to this matter. More on this subject will be described in a later

section.



1.3 BACKGROUND 22

In this thesis, the adaptation strategy considered for study in conjunction with the pro-

posed high-order finite-volume algorithm is based on an h-refinement method. Nevertheless,

the computational framework developed over the course of this project could be extended

relatively easily to include both p and h-p-adaptation due to its already embedded capability

to generate numerical solutions of different accuracy orders. However, these directions have

not been extensively pursued and rather than covering a broad area, the research has been

focused instead on the challenges presented by the integration of a high-order algorithm

on body-fitted mesh with a block-based AMR technique. Therefore, only elements of the

block-based h-type adaptation technique considered herein are described next.

Block-Based AMR

Following the work of Berger and Oliger [86] in adaptive meshing techniques for hyperbolic

PDEs in multiple space dimensions, many related grid adaptation strategies have been devel-

oped since and applied to a variety of engineering problems [87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99]. Currently, the following broad categories of AMR methods can be identified:

“patch-based”, “cell-based”, “block-based”, and “hybrid block-based”. An overview of all

these AMR approaches is provided in the recent work by Gao [100].

In a block-based AMR technique, mesh adaptation is accomplished by the refining and

coarsening of appropriate solution blocks. In general, each block has the same number of cells

(i.e., they are self-similar) for computational efficiency and ease of implementation. In the

refinement case, the mesh resolution is increased by dividing the block requiring refinement

into four (in two-dimensions) new solution blocks which provides a resolution change of two.

An illustration of this procedure is depicted in Fig. 1.6, in which the initial solution block and

the final refined multi-block mesh after two refinement levels are shown in Fig. 1.6(a) and

(b), respectively. In a similar manner, solution block coarsening is carried out by merging

four neighbour blocks into one block with twice as lower mesh resolution. Consequently,

a hierarchical tree-like data structure (e.g., a quadtree in two-dimensions) naturally lends

itself for tracking the connectivity between blocks. In addition, the block-based AMR is

well suited to parallel implementation via domain decomposition, in which case efficient and

readily scalable parallel algorithms have been shown to result [98].
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(a) A body-fitted coarse grid (b) A refined body-fitted grid consisting of

seven self-similar grid blocks

Figure 1.6: Illustration of block-based mesh adaptation on a two-dimensional body-fitted grid.

Block boundaries are depicted with thick lines while thin lines show the interior mesh.

Adaption Criteria

As previously mentioned, the crux of automatic mesh adaptation methods is the a priori

translation of the user interest in resolving representative simulation characteristics such as

flow features (e.g., shock waves, wakes, boundary layers) and/or output functionals (e.g.,

lift, drag), into a set of mathematical statements which to instruct the solution procedure

to automatically direct the adaptation process so as to capture those required details with

the desired level of accuracy. Obviously, the quality and the convergence properties of the

numerical solution are very dependent on the chosen criteria and how mesh adaptation is

performed. Moreover, whether the resultant adapted mesh is optimum in the sense that it

produces the lowest error in a quantity of interest relative to the exact analytical solution for

a specified number of DOF is definitely arguable (see [101] for an analysis of optimal mesh

adaptation). In practice, a combination of multiple criteria are typically employed to get the

desired effect: that is a reduced mesh size for the same desired level of solution error.

A common strategy is to adapt the grid based on the presence of strong local flow

features, such as shock waves and/or high vorticity regions, which are identified using the

so-called “physics-based” criteria. These indicators use flow variable gradients to isolate

regions of rapid solution variations. Some disadvantages of this approach are that in general,

it may require extensive tuning of the adaptation parameters in order to capture all desirable

features and it also presents difficulties in identifying non-local (i.e., convective) features, such
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as wakes [102]. Moreover, continuous local refinement of the dominant features of the flow

do not necessarily result in a reduction of the discretization error, especially in the context

of adaptive high-order solution procedures. A better alternative may be to perform mesh

adaptation based on a posteriori error estimates, in which the adaptation is directed based

on interpolation [103, 104] and/or residual [105] error estimators.

For applications in which it is important to predict integral quantities such as lift and

drag forces on aircraft configurations, the aforementioned adaptation techniques may not

always identify all regions that contribute significantly to the accuracy of these functionals

and a more appropriate approach to direct mesh adaptation would be to use output error

estimates based on adjoint analysis [106, 107, 108, 109, 110]. Basically, this method computes

the discrete sensitivity of output functionals with respect to local solution residual using a

dual-weighted residual method and consequently resolves more accurately those areas which

contribute mostly to their accuracy (i.e., regions in which the output functionals are most

sensitive to). A current disadvantage of this approach is that for unsteady flow adaptation

the computation of the solution of adjoint equations (i.e., the sensitivities), which is required

by this method, is a very expensive operation [111].

This work seeks to advance the capabilities of the block-based AMR algorithm pro-

posed by Groth et al. [98, 112] for standard second-order upwind finite-volume schemes on

body-fitted multi-block meshes. The approach has been already successfully applied to the

prediction of laminar and turbulent diffusion flames[92, 96], micron-scale flows [113], and

multi-phase rocket motor core flows [98]. This thesis research considers the extension of

this framework to high-order solution of inviscid and viscous problems and the investigation

of refinement criteria other than physics-based. The somewhat novel refinement indicators

proposed in this work are based on a measurement of the degree of smoothness of high-order

solution interpolants within their neighbourhood. Although this type of error quantification

is not strictly speaking a direct measurement of the local interpolation error, it is shown to

be quite effective, at least for a certain range of mesh resolutions. The proposed refinement

criteria are shown to recognize regions with large discretization errors and/or unresolved

solution content and to prevent over-refinement of regions in which the solution has been

already resolved. Moreover, the assessment of accuracy and capability of the proposed com-

bined high-order adaptive algorithm has been carried out to determine the potential savings

of such an approach. However, it is felt that the proposed refinement indicators should be
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better considered in conjunction with error estimators. Particularly, smoothness-based indi-

cators can represent an inexpensive solution to obtain adequate grid resolutions from which

output error estimates can become reliable and refine the solution with the desired accuracy.

1.4 Overview of Dissertation

In response to the main thesis objectives and previous research outlined above, the following

avenues of research were pursued in this work:

• formulation of a high-order central essentially non-oscillatory (CENO) finite-volume

scheme for solution of hyperbolic and elliptic systems of conservation laws;

• development of a fourth-order CENO scheme in conjunction with a parallel block-based

adaptive mesh refinement (AMR) algorithm for body-fitted multi-block quadrilateral

meshes and study of the predictive capabilities of this algorithm for solutions of the

advection-diffusion, the Euler and the Navier-Stokes equations;

• formulation of a smoothness indicator which enables identifying regions of under-

resolved and/or non-smooth solution content and assessment of the usefulness of an

h-refinement criterion based on the smoothness indicator for mesh adaptation; and

• demonstration of a competitive high-order ENO-like formulation for multi-dimensional,

multi-variable, and complex boundary-condition problems.

Additionally, the detailed knowledge about the discretization properties of the AMR

CENO solution procedure obtained in this work based on analytical and numerical investi-

gations carried out on a restrictive class of governing flow equations provides a good starting

point for the application of the scheme to more complicated governing equation sets, such

as those present in simulation of LES of turbulent combustion. The detailed characteriza-

tion of the scheme included herein can prove especially valuable for such situations in which

the algorithm development process is challenged by the lack of analytical or manufactured

solutions [114] for numerical scheme verification and by the typical large computational cost

required even by modest simulations used in the verification process.

This thesis document is organized as follows. Chapter 2 serves to review the conservation

equations considered to be solved in this work and highlights their important mathematical
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properties. In Chapt. 3, the numerical procedure proposed in this thesis for solving inviscid

and viscous flows is presented in detail. The focus of this chapter is on introducing the

high-order CENO approach and on assessing the properties of the discretization procedure.

The extension of the CENO approach to multi-block meshes is considered in Chapt. 4.

Furthermore, the same chapter treats the coupling of the CENO procedure with parallel

block-based AMR techniques and introduces the refinement criteria considered in this work.

Chapter 5 is devoted to numerical results obtained with the high-order CENO framework

and includes both validation and simulation cases. Finally, conclusions and directions for

future work are summarized in Chapt. 6.



Chapter 2

CONSERVATION EQUATIONS OF

INTEREST

“Equations are more important to me, because politics is for the present, but an

equation is something for eternity.”

by Albert Einstein (1879 - 1955), German-born theoretical physicist

The high-order solution procedure developed and thoroughly investigated in this work is

applied to solutions of the advection-diffusion, the Euler and the Navier-Stokes equations,

which are representative of many physical transport processes yet facilitate numerical anal-

ysis. This chapter provides a review of the conservation equations considered herein and

emphasizes mathematical properties relevant for the development of numerical procedures.

2.1 Advection-Diffusion Equation

The advection-diffusion equation is a very convenient mathematical model for the develop-

ment of numerical solution algorithms for it contains many of the features of more com-

plicated governing equation sets used in practical fluid flow modelling applications, yet it

retains a simplicity that readily permits direct analysis. Moreover, this generic scalar trans-

port equation has been the subject of intense studies because of its appearance in modelling

a broad range of physical phenomena which occur in fields as diverse as combustion, geology

and biophysics thus its mathematical properties are well documented in the literature.

The particular form of the advection-diffusion equation considered herein is given by

∂u

∂t︸︷︷︸
Transient term

+ ~∇ · (~V (~r, u) u)︸ ︷︷ ︸
Advective term

= ~∇ · (κ(~r, u) ~∇u)︸ ︷︷ ︸
Diffusive term

+ φ(~r, u)︸ ︷︷ ︸
Source term

, (2.1)

27
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where u is the solution (a scalar quantity), ~V is the advection velocity vector, κ is the

diffusion coefficient, and φ is a non-linear source term. In Eq. (2.1), the time variation of the

local solution, accounted for by the transient term, occurs due to the existence of a velocity

field, ~V , which convects the scalar quantity u and thus introduces an advective term in the

equation, due to the diffusive transport of u generated by solution gradients and represented

in the equation by the diffusive term, and due to any sources or sinks that either create

or destroy u which are accounted for by the source term. In the most general case, ~V and

κ are functions of the position vector, r, as well as the solution, u. Based on the relative

magnitudes of the advective and diffusive fluxes, the solutions of this equation can range

from those having a more hyperbolic nature and governed by wave propagation phenomena

to those having a more elliptic nature and governed by diffusive processes.

This thesis considers numerical solutions of the two-dimensional (2D) planar form of the

advection-diffusion equation, Eq. (2.1), which can be written in Cartesian coordinates as

∂u

∂t
+
∂

∂x

(
vx(~r, u)u

)
+
∂

∂y

(
vy(~r, u)u

)
=
∂

∂x

(
κ(~r, u)

∂u

∂x

)
+
∂

∂y

(
κ(~r, u)

∂u

∂y

)
+φ(~r, u), (2.2)

where vx and vy are the components of the advection velocity vector, ~V , in the Cartesian x-

and y-coordinate directions. In this two-dimensional formulation of the advection-diffusion

equation the position vector, ~r, is a function of the two spatial coordinates, x and y. Several

relevant forms of this equation are described next.

An example of a hyperbolic PDE is provided by the scalar linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0 , (2.3)

which is recovered from Eq. (2.2) by considering only the one-dimensional advection term

with a constant wave propagation speed, a, and no diffusion or source terms. This equation

is hyperbolic for any real value of the PDE eigenvalue, which is the coefficient a. This PDE

will simply translate an initial condition (IC) with velocity a in the positive or negative

x-direction, depending on the sign of a. The analytical solution can be obtained with the

method of characteristics [115]. Consequently, this particular PDE provides a very useful

mean of testing the accuracy of numerical discretizations, especially when used in combina-

tion with periodic boundary conditions [14]. Note that discontinuous profiles are admitted

solutions of this PDE which raises questions about how the spatial discretization should
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be performed so as to avoid the occurrence of Gibbs phenomenon near solution discontinu-

ities/large gradients.

At the opposite end of the spectrum, the classical Poisson’s equation

∇2u = φ(x, y, u) (2.4)

is an example of elliptic PDE to which Eq. (2.2) can be reduced by including only the

diffusive and source terms and set κ to be constant. The Laplace equation, ∇2u= ∆u= 0,

is the simplified version of Poisson’s equation, Eq. (2.4), for zero source term. Analytical

solutions of these equations, and in general to elliptic PDEs, are characterized by their

smooth profiles. Moreover, they satisfy a maximum principle which is another fundamental

property. Statements of this principle in different forms are provided in the literature [116,

117], and for sake of completeness, the strong formulation given in [116] is reproduced without

proof below.

Theorem 2.1.1. The maximum-minimum theorem. Consider a harmonic function u(x, y)

continuous in some closed bounded region Ḡ = G + Γ. Then the values of u in G cannot

exceed its maximum on Γ nor can they be less than its minimum on Γ.

Theorem 2.1.1 basically says that if a function achieves its maximum in the interior of

the domain, the function is uniformly constant. This property is very difficult to enforce

in numerical solutions, especially on skewed meshes, and therefore, weaker formulations are

better suited to development of numerical algorithms. Thus, the weak principle says that the

maximum of the function is to be found on the boundary, but may re-occur in the interior

as well. Other even weaker formulations exist which merely bound a function in terms of

its maximum on the boundary. Numerical violations of this principle may introduce non-

physical phenomena, such as heat flowing from lower to higher temperature [65].

In conclusion, it is very desirable that numerical schemes used for the solution of the

advection-diffusion equation do not introduce excessive artificial dissipation, large dispersion

error and spurious oscillations arising from the discretization of the hyperbolic term, and

provide an accurate discretization of the elliptic term while satisfying a maximum principle,

even on stretched and/or distorted meshes.
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2.2 Euler Equations

The governing equations of inviscid compressible gas flow represent a system of conservation

laws for mass (i.e., continuity), momentum (i.e., Newton’s second law) and energy (i.e., first

law of thermodynamics), called the Euler equations. A fluid is defined to be inviscid if it

has no or negligibly small viscosity, which means that the fluid can support no shearing

stress and no thermal conductivity, and consequently it flows without energy dissipation in

the absence of any heat source terms, such as those accounting for radiation heat transfer

[118]. For many flow situations, the inviscid fluid approximation is a relatively adequate

assumption, allowing the Euler equations to be successfully applied to a large range of

practical flow problems. From a mathematical perspective, approximating real fluids (i.e.,

fluids with viscosity) as inviscid or “ ideal” introduces considerable simplifications to the

governing equations of motion. Thus, in comparison to the second-order system of Navier-

Stokes equations governing the dynamics of continuous real fluids as described in Sect. 2.3

to follow, the Euler equations for inviscid flows are a first-order system of non-linear coupled

PDEs.

This thesis research considers the numerical solution of the one- and two-dimensional

forms of the Euler equations of inviscid compressible gas dynamics with neglected external

body forces, which can be expressed in the conserved form as

∂U

∂t
+ ~∇ · ~F = 0 , (2.5)

where U is the conserved variable solution vector, ~F is the solution flux dyad, and t is time.

For one space dimension, the Euler equations are given by

∂U

∂t
+
∂F

∂x
= 0 , (2.6)

where U has the form

U =
[
ρ, ρvx, ρe

]T

, (2.7)

x is the spatial coordinate, ρ is the gas density, vx is the velocity of the gas, e = p/(ρ(γ −
1)) + v2

x/2 is the specific total energy, p = ρRT is the pressure, T is the gas temperature, R

is the gas constant, γ is the specific heat ratio, and

F = [ρvx, ρv
2
x + p, vx(ρe+ p)]T , (2.8)
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is the solution flux vector. For a polytropic gas (thermally and calorically perfect gas), the

ratio of specific heats, γ, is a constant and the specific heats are given by Cv = R/(γ − 1)

and Cp = γR/(γ − 1).

Note that the system given by Eq. (2.6) has three dependent conserved variables, that are

the gas density, ρ, the momentum in x-direction, mx = ρvx, and the total energy, E = ρe,

which are function of the two independent variables, the spatial coordinate, x, and the time,

t. The non-conservative form of Eq. (2.6) can be obtained by formulating this equation

in terms of the primitive variable vector, W = [ ρ, vx, p ]T , instead of the conserved one.

Although the two formulations, conserved and non-conserved, are mathematically equiva-

lent, the former formulation is better suited for shock-capturing methods whereas the latter

may produce unsatisfactory results [115]. However, there are other important advantages

in using primitive variables as part of the numerical procedure, including easier specifi-

cation/implementation of physical boundary conditions and better control on the model

positivity, which for Euler equations corresponds to positive pressure, p > 0, and density,

ρ>0, as will be discussed in the description of high-order numerical scheme to follow.

For 2D planar flows, the conserved form of the Euler equations are as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 , (2.9)

where U is given by

U =
[
ρ, ρvx, ρvy, ρe

]T
, (2.10)

x and y are the two spatial coordinates, vx and vy are the velocity components in the x- and

y-coordinate directions, e = p/(ρ(γ − 1)) + (v2
x + v2

y)/2, and

F = [ρvx, ρv
2
x + p, ρvxvy, vx(ρe+ p)]T

G = [ρvy, ρvxvy , ρv
2
y + p, vy(ρe+ p)]T , (2.11)

are the x- and y-direction solution flux vectors. The corresponding vector of primitive

solution variables in this case is

W =
[
ρ, vx, vy, p

]T

. (2.12)

The mathematical properties of the Euler equations are analyzed and presented in detail

in [15]. It can be shown that the unsteady Euler equations are hyperbolic in time, whereas
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the mathematical behaviour of the steady equations (i.e., for ∂U
∂t

= 0) depend on a non-

dimensional form of flow speed called Mach number, M, which is defined as

M =
‖ ~V ‖
a

=

√
v2
x + v2

y

a
,

where ‖ ~V ‖ is the local velocity magnitude and a is the local sound speed given by

a =
∂p

∂ρ
=

√
γp

ρ
=
√
γRT

for a polytropic gas. Thus, for subsonic Mach number, M< 1, the steady Euler equations

are elliptic in space whereas they become hyperbolic for supersonic Mach, M>1 [119]. The

location where the local velocity is equal to the local speed of sound, that is a Mach number

of unity, is called a sonic or critical point. In the case of hyperbolic Euler equations, the

information is propagated along the characteristic lines and there exists a limited domain of

influence and dependence characteristic to each point in the computational domain, making

this problem suitable for the application of a space-marching procedure [14]. In contrast,

in the case of elliptic equations, information is propagated everywhere in all directions and

consequently every point in the domain can influence and is influenced by any other point.

Obviously, for such situations the space-marching methods are not suitable and the solution

procedure must be carried out simultaneously for all interior and boundary points in the

computational domain. A general approach to circumvent the problem of finding steady state

solutions with both subsonic and supersonic regions is to solve the unsteady Euler equations,

which are hyperbolic in time, with a time-marching method until all time derivatives become

acceptably small, indicating that the steady-state has been reached.

2.3 Navier-Stokes Equations

As previously mentioned, the Navier-Stokes equations provide a more complete description

of real fluids than Euler equations, as they account for diffusive transport phenomena such

as viscous stresses and heat conduction. This mixed type system of conservation laws can

be written in the form

∂U

∂t
+ ~∇ · ~F =

∂U

∂t
+ ~∇ · ~FH (U) + ~∇ · ~FE

(
U, ~∇U

)
= S , (2.13)
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where, differently from Eq. (2.6) shown in the previous section, an arbitrary source term

vector, S, is introduced and the solution flux dyad, ~F, represents this time the sum of a hy-

perbolic term, ~FH, which depends on the solution vector and accounts for convective trans-

port phenomena and an elliptic term, ~FE, associated with diffusion processes and therefore,

dependent on both the solution and the solution gradient.

For two-dimensional planar flows, the Navier-Stokes equations are as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂Fv

∂x
+
∂Gv

∂y
= 0 , (2.14)

where U is given by Eq. (2.10) and the x- and y-direction components of the hyperbolic

solution flux vector, ~FH(F,G), are the same as those defined for Euler equations in Eq. (2.11)

and of the elliptic flux vector, ~FE(Fv,Gv), are

Fv = −[0, τxx, τyx, vxτxx + vyτxy − qx]T

Gv = −[0, τxy, τyy, vxτyx + vyτyy − qy]T , (2.15)

respectively. The components τxx, τyy and τxy of the molecular fluid stress tensor, ~~τ , are

function of the velocity gradients and the molecular fluid viscosity, µ, and given by

~~τ = 2µ(
~~S − 1

3

~~I ~∇ · ~V ) ,
~~S= ~∇~V , (2.16)

where
~~S is the strain rate tensor. The molecular heat flux, ~q (qx, qy), is modelled using

Fourier’s law of conduction as ~q = −κ~∇T , where κ is the thermal conductivity of the fluid.

An important similarity parameter that characterizes the regimes of viscous flows is the

Reynolds number which is defined as the ratio of inertial to friction forces expressed as:

Re =
ρV d

µ
=
V d

ν
,

where V is the magnitude of the relevant velocity, d represents the characteristic length of

interest and ν is the gas kinematic viscosity. Thus, incompressible flows with equal Reynolds

number are mechanically similar and this property can facilitate, among other things, the

head-to-head comparison of experimental observations and numerical simulations. Note that

in order to have mechanically-similar compressible flows both Mach and Reynolds numbers

must be required to be the same. Moreover, Reynolds numbers are also used to differentiate

between laminar and turbulent flow regimes [120].
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Mathematically, the complete Navier-Stokes equations of Eq. (2.13) are a second-order

system of non-linear coupled PDEs of hybrid nature, being parabolic-hyperbolic in time and

space but becoming of mixed elliptic-hyperbolic type in space for the steady formulation.

In spite of their widely application throughout engineering and natural sciences, a number

of fundamental mathematical questions about solutions of the Navier-Stokes equations such

as their existence, uniqueness and smoothness are yet unanswered and constitute grand

challenges for the mathematics community. These issues are beyond the current work scope,

but they are amply discussed by Temam [121] and very recently by Doering [122] in a survey

on the current state of the mathematical theory and on the remaining open questions.



Chapter 3

HIGH-ORDER CENO

FINITE-VOLUME SCHEME

“Willst du ins Unendliche schreiten,

Geh nur im Endlichen nach allen Seiten.”

If you want to reach the infinite,

Explore every aspect of the finite.

by Johann W. von Goethe (1749-1832), German writer & polymath

The Finite Volume Method (FVM) has proved to be one of the most versatile discretiza-

tion techniques used in CFD for solving the partial differential equations encountered in fluid

flows [123]. A detailed presentation of this method is provided in the textbooks by LeVeque

[123], Hirsch [124], Toro [115] and Lomax et al. [14]. In finite-volume methods the integral

form of the conservation law is enforced discretely in each of the many contiguous control

volumes (namely cells, elements, finite volumes) making up the computational domain. The

most compelling feature of the FVM is that the resulting solution satisfies the conservation

of conserved quantities such as mass, momentum, energy, and species. This important fea-

ture of the FVM generally makes it the method of choice for computing many compressible

flows in which discontinuous solutions arise, as any discontinuity must satisfy the Rankine-

Hugoniot or similar jump conditions [115]. Since finite volume methods are conservative

they automatically satisfy the jump conditions and hence give physically correct weak solu-

tions and ensure correct wave propagation speeds. Another advantage of the FVM is that,

due to its formulation, it can be easily applied to both structured and unstructured meshes

as well as hybrid grids. Despite the current widespread implementation of many variants

of first and second-order FV algorithms in many research and commercial CFD packages

(e.g., Clawpack [123], FUN3D [125, 126], Fluent [127]), the high-order counterpart of these

35
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methods still represents an active area of research and is not widely available yet.

In the present work, a high-order central essentially non-oscillatory (CENO) cell-centred

Godunov-type finite-volume scheme is proposed for solving the hyperbolic and elliptic sys-

tems of conservation laws described in Chapt. 2 on body-fitted multi-block mesh in conjunc-

tion with a block-based adaptive mesh refinement technique. This proposed variant of the

original ENO scheme is not based on either selecting or weighting reconstructions from mul-

tiple stencils. Instead, a hybrid solution reconstruction procedure is used that combines the

unlimited high-order k-exact least-squares reconstruction technique of Barth [16] based on

a fixed central stencil with a monotonicity preserving limited piecewise linear least-squares

reconstruction algorithm [16]. This hybrid approach avoids the complexity associated with

other ENO and WENO schemes that require reconstruction on multiple stencils and provides

an accurate and robust numerical algorithm.

This chapter presents a detailed description of the proposed high-order CENO finite-

volume scheme as applied to single-block, body-fitted, quadrilateral mesh. Sections 3.1 and

3.2 summarize the key elements involved in the cell-centred FVM and its application to

quadrilateral computational cells. Section 3.3 presents the high-order spatial discretization

of the solution residual. The time-marching schemes used in this thesis research are de-

scribed in Sect. 3.4. Details on the numerical evaluation of the hyperbolic and elliptic terms

are provided in Sect. 3.5, 3.7 and 3.8. The hybrid CENO solution reconstruction is pre-

sented in Sect. 3.6 which fully describes the k-exact least-squares reconstruction technique,

the solution monotonicity enforcement using the smoothness indicator and the boundary-

condition prescription for straight and curved geometric boundaries. The extension of the

CENO algorithm to multi-block structured meshes and its implementation in conjunction

with a parallel block-based AMR strategy is considered in Chapt. 4.

3.1 Finite-Volume Method for Conservation Equations

The systems of conservation laws described in Chapt. 2 (Equations (2.1), (2.6), (2.9) and

(2.14)) can all be re-expressed in vector form as

∂U

∂t
+ ~∇ · ~F = S , (3.1)
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by making the appropriate substitutions for the conserved variable solution vector, U, the

flux dyad, ~F, and the non-linear source vector, S. The advection-diffusion equation, Eq. (2.1),

represents a degenerate form of Eq. (3.1) in the sense that the solution, the flux dyad and

the source term vectors reduce to scalar quantities in this case.

The FVM used herein starts from the integral form of the Eq. (3.1) for an arbitrary fixed

(i.e., time-invariant) control volume in which the volume integrals that contain divergence

terms are converted to surface integrals using the divergence theorem to provide the form

d

dt

∫
V

U dv +

∮
Ω

~n · ~F dΩ =

∫
V

S dv , (3.2)

where V is the control volume, Ω is the closed surface of the control volume, and ~n is

the unit outward vector normal to the closed surface. In two-space dimensions the control

volume reduces to an area and the closed surface to a closed curve. Equation (3.2) is exactly

satisfied for any control volume as well as for the whole computational domain regardless

of the number of control volumes. It follows that even a coarse grid solution exhibits exact

integral balances, because the flux entering a given volume is identical to that leaving the

adjacent element. In other words, one cell’s loss is another cell’s gain.

Equation (3.2) can be further manipulated in terms of average values of solution vari-

ables, a procedure illustrated herein for a two-dimensional (2D) fixed control volume. Thus,

the averaged value of the solution within a computational cell, U, can be defined by an

integration over the control volume as follows:

U ≡ 1

A

∫∫
A

U da , (3.3)

where A is the area of the two-dimensional domain A. Substituting this definition into

Eq. (3.2) and separating the spatially integrated terms, the final form of the integral conser-

vation equation for a two-dimensional coordinate frame can be written as

dU

dt
= − 1

A

∮
Ω

~F · ~n d`+
1

A

∫∫
A

S da , (3.4)

where d` is an element of the closed contour containing the control volume or cell of interest.

Equation (3.4) describes the time evolution of the averaged conserved variables U, that are

the unknowns or DOF of the FVM, due to the net contribution of the solution fluxes through

the boundary of the computational cell and that of the surface sources tending to increase or
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decrease the solution variables. Another important fact is that the use of cell-averaged data

in Eq. (3.4) results in data that is discontinuous with that of neighbouring cells, allowing

finite-volume schemes to naturally account for discontinuities (e.g., shocks) in the flow-field.

Despite the fact that Eq. (3.4) can be applied to any tessellation element, practical

considerations regarding the calculation of the spatial integrals which are present on the right-

hand-side of this equation suggest the use of simple geometric elements that are sufficiently

flexible to allow descriptions of complex geometric boundaries. Common elements in 2D

are triangles, quadrilaterals and hexagons. As the proposed high-order FVM is primarily

developed for structured grids, that is a grid characterized by regular connectivity that can

be expressed as a two or three dimensional array, the elements considered herein are convex

quadrilaterals (i.e., a four-sided polygon with every internal angle less than 180 degrees)

which represent the appropriate choice for a structured body-fitted mesh. Nevertheless, the

proposed high-order algorithm can be extended relatively easily to other element types. The

next section outlines some of the important features of the body-fitted structured mesh.

3.2 Body-Fitted Quadrilateral Grids

The two-dimensional structured multi-block body-fitted meshes used in this research repre-

sent a collection of single-block structured grids, each of which has the boundary geometry

defined by four curved boundaries which are provided as piecewise polynomial splines of

an order consistent with that of the finite-volume numerical scheme. Details regarding the

interconnection between the building blocks of the multi-block grid can be found in Chapt. 4

while this section focuses on the structure of a single-block constituent of this grid.

An example of a regular single-block body-fitted quadrilateral structured mesh is shown

in Fig. 3.1(a). An irregular mesh which takes advantage of the flexibility of quadrilaterals and

somewhat resembles an unstructured mesh although still logically structured is illustrated in

Fig. 3.1(b). The latter mesh has been obtained with an iterative algorithm that randomly

perturbed the interior nodes of the regular mesh. Although the perturbed mesh does not

present computational advantages and it most likely introduces discretization errors larger

than those obtained on the regular mesh, it has been considered in this work when examining

the robustness and accuracy of the high-order method on highly irregular meshes.

Representative quadrilateral elements of the type considered in this work are depicted
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(a) A regular grid with 40×40 cells (b) An irregular grid obtained by disturbing the

mesh shown in (a)

(c) Detail of the irregular mesh

Figure 3.1: Illustration of two-dimensional body-fitted quadrilateral structured grids. Block

boundaries are depicted with thick lines while thin lines show the interior mesh.

in Fig. 3.2, in which each of the four faces is identified with the initials of the cardinal

directions (i.e., North, South, East and West) based on the relative position with respect to

the element centroid, ~Xi,j. The four nodes of the computational element are specified by a

combination of two cardinal directions. The two element types depicted in Fig. 3.2(a) and

(b) are distinguished from one another by the connector, S, between two adjacent nodes,

which can be either a straight or a curved line. Straight-edge quadrilaterals are always used

for interior cells whereas quadrilaterals with curved edges may be required for representing
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(a) A quadrilateral with only straight edges (b) A quadrilateral with straight and curved edges.

The South curved edge contains a singular point

Figure 3.2: Schematic representation of convex quadrilateral elements considered in this

work. Each face and node is identified by its corresponding cardinal direction (i.e., N, S,

E, W) relative to the element centroid, ~Xi,j. The figure also shows the unit outward vector

normal, ~n, at a given location and the length of a face, ∆`.

the boundaries of the body-fitted mesh with high-order accuracy. Note that curved-edge

quadrilaterals need not be used for schemes up to second-order even if the domain is bounded

by curved boundaries. Note also that in any two-dimensional computational cell maximum

two curved edges can occur and they need not be smooth curves. If any edge contains

singular points as shown in Fig. 3.2(b), the control volume defined by the four mesh nodes,

SW, SE,NE,NW, becomes a polygon with a total number of Nf faces which represents the

sum of the straight-line and smoothly-curved segments. Computation of geometric properties

of quadrilaterals relevant for the current work and the numerical integration of functions over

such domains are described in detail in Appendix A.

3.3 Semi-Discrete Form

Applying the integral form of the conservation equation Eq. (3.4) to a 2D polygonal control

volume, (i, j), and using a NG-point Gaussian quadrature numerical integration procedure

to evaluate the solution flux along each of the Nf polygonal faces, the form of Eq. (3.4)
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becomes

dUi,j

dt
= − 1

Ai,j

Nf∑
l=1

NG∑
m=1

(
ω~F · ~n ∆`

)
i,j,l,m

+ Si,j = Ri,j(U) , (3.5)

where the variable Ui,j is the conserved solution state for cell (i, j), Ai,j is the area of the

cell, ω is the quadrature weighting coefficient, and ∆` and ~n are the length of the cell face

and unit vector normal to the cell face or edge, respectively. Each quadrilateral element has

Nf =4 unless it falls in the rare case when it contains curved edges with singular point. The

average source term, Si,j, is defined as

Si,j =
1

Ai,j

∫∫
Ai,j

S da , (3.6)

and the vector Ri,j is the so-called residual vector operator.

Equation 3.5 represents a coupled system of non-linear, first-order Ordinary Differential

Equations (ODE) which equates the time variation of the averaged conserved solution in cell

(i, j) (the left-hand-side (LHS)) to the spatial solution residual (the right-hand-side (RHS)).

This semi-discrete form of the integral equation, Eq. (3.4), forms the basis for devising both

low- and high-order solution procedures, depending on the accuracy with which the LHS and

RHS of Eq. (3.5) are resolved. A Godunov-type finite-volume algorithm for solving an initial

or boundary value problem (IVP or BVP) given by Eq. (3.5) starts from a set of specified

initial and boundary values of U and involves three major steps for obtaining the final

solution states: 1) reconstruction in which an approximation to U( ~X) is constructed; 2)

residual evaluation which approximates the RHS of Eq. (3.5) based on the reconstruction

function; and 3) time integration, in which the solution is advanced to the next time level

based on the residual value. The remainder of this chapter presents in detail each of these

steps in reverse order with an emphasis on the methodology used for obtaining a high-order

accurate numerical procedure.

3.4 Explicit Temporal Discretization Methods

The time integration of Eq. (3.5) can be carried out with either implicit or explicit time-

marching schemes. As noted in the introduction, the focus of this thesis research has been on

the investigation of high-order spatial discretization procedures and little emphasis has been
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given to temporal aspects of the FVM. Consequently, this work has been restricted to stan-

dard explicit time-integration schemes based on considerations of simplicity and availability.

Future work will consider the integration of high-order CENO scheme with an implicit time-

marching method. Note that combinations of high-order FVM and implicit time integration

methods have been already proposed in the literature for inviscid compressible flows [31].

In this work, different explicit time-marching schemes are adopted to carry out the time

integration of Eq. (3.5) depending on whether the problem to be solved represents a steady

or unsteady calculation. For steady-state calculations the system of equations is marched

until the transient part of the solution is removed and

Ri,j(U) = 0. (3.7)

It is easily noted that the accuracy of the solution in these situations is entirely dependent

on the accuracy of the spatial residual operator and any stable time-marching scheme can

be used to obtain solutions of any accuracy order. In particular, the explicit optimally-

smoothing multi-stage scheme developed by van Leer et al. [128, 129] has been used to obtain

the solution for all the steady-state test cases considered in this work. It is noted however

that these schemes were designed to provide optimal damping of the high frequency content

of the solution when used with a lower-order (i.e., up to second-order) upwind scheme. It is

also noted that the number of iterations required to remove the transient part in a steady-

state calculation is greatly determined by how effective a time-marching scheme is in damping

the high-frequency content of the solution. This aspect has important implications on the

computational effort required by a high-order spatial algorithm to reach the steady-state

solution as the high-order discretization is designed specifically to resolve the high-frequency

solution content. To put it in perspective, it will take a lot more computational effort for a

high-order algorithm to reach a steady-state solution starting from a rough initial guess as

compared to that of a low-order method on the same mesh resolution, on one hand due to a

higher computational cost per node of the first relative to the latter and on the other hand

due to reduced dissipation and their ability to preserve the transients longer in the iterative

procedure. A better strategy, used frequently over the course of this research for steady-state

calculations, is to obtain first a better initial guess with a low-order spatial discretization

and then to switch to a high-order algorithm for resolving the fine solution details.

On the other hand, for time-accurate calculations it is deemed desirable to integrate
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the set of ODEs given by Eq. (3.5) with a time-marching method that is at least of the

same order of accuracy as that of the spatial discretization scheme in order to obtain a

consistent high-order discretization procedure. Consequently, for time-accurate problems,

either a two- or four-stage standard Runge-Kutta scheme is used, depending on the accuracy

of the spatial reconstruction. The details and analysis of these well-known time-marching

schemes are omitted from this thesis as there are several comprehensive textbooks on the

subject [14, 15, 124].

The maximum allowable time-step for the stability of the time-marching schemes used

herein is provided by

∆t = CFL min [τh, τe, τs] (3.8)

where τh, τe and τs correspond to the stability criterion for the hyperbolic, the elliptic and

the source term, respectively. The Courant-Friedrichs-Lewy number, CFL, is used to ensure

stability of the time-marching scheme and typically, values of less than unity are used herein.

The relationships for estimating the stability criterion for each term depend on the studied

system of equations. Hence, for the advection-diffusion equation the stability criteria take

the particular form

τh=
∆x

|V |max

, |V | > 0 ; τe=
1

2

∆x2

κmax

, (3.9)

where ∆x is the estimated length of a mesh computational cell and |V |max and κmax are the

largest velocity and diffusion coefficient occurring in that cell. The source stability criterion,

τs, is defined differently for each particular form of the source term. Similarly, the stability

criteria used for the Navier-Stokes equations are

τh=
∆x

(|V |+ a)max

; τe=
1

2

∆x2

νmax

, (3.10)

where the largest velocity magnitude has been replaced by the largest acoustic wavespeed

and the diffusion coefficient by the gas kinematic viscosity. The Euler equations require only

the criterion for the hyperbolic term in Eq. (3.10). Moreover, no restrictions are imposed by

τs when solving Euler and Navier-Stokes equations as no sources have been considered with

these equation sets.

As a final note, it should be mentioned that for the unsteady problems in which a com-

parison between a high-order and a low-order method has been carried out in this thesis, the

order of the time-marching scheme for the low-order spatial discretization was chosen based
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on the objective of the analysis. Hence, for problems in which the accuracy comparison

was the main concern both high-order and low-order simulations were carried out with the

same time accurate method and CFL-number. On the other hand, for problems in which

the computational cost for a given accuracy was analyzed, the second-order Runge-Kutta

method having the same CFL-number as that of the fourth-order one was used for the low-

order spatial discretization which provides a consistent scheme in the space-time domain.

Although a fourth-order Runge-Kutta scheme may reduce the error for a given spatial reso-

lution, it would also increase the computational cost of the low-order scheme and thus may

result in an unfair comparison. One could also argue that the opposite may be true and the

low-order scheme in space may be penalized by the lack of accuracy in time and a better

option would be to use a fourth-order time-marching method even for the low-order spatial

discretization. As the reader can easily spot there is a fine line here and the best choice

depends most likely on the problem at hand. However, as long as the leading error is due to

the spatial discretization the two approaches will produce very similar error results and the

choice should be based solely on computational performance reasons.

3.5 Numerical Residual Evaluation

High-order accurate solutions of Eq. (3.5) are sought here in two space dimensions by ap-

plying a high-order spatial discretization to the solution residual vector, Ri,j, in conjunction

with high-order polynomial solution reconstruction, upwind discretization of the hyperbolic

flux and centrally weighting discretization of the elliptic flux. Thus, the high-order CENO

numerical procedure requires the computation with high-order accuracy of both the contour

and surface integrals making up the spatial residual while ensuring the stability of the nu-

merical scheme. The computation of these two integrals is explained next, starting with the

surface integration of the source term.

There are two situations which arise in the computation of the average source term, Si,j,

defined by Eq. (3.6). The first possibility is that the particular form of the source term

can be integrated analytically and the resulting expression is a function only of the space

geometry and/or the average solution data. In such situations, the average source term is

computed accurately by simply providing the average solution and geometry data with the

appropriate order of accuracy. However, analytical integration is limited to simple source
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term expressions in which the solution dependency is at most linear. Therefore, a high-order

accurate calculation of the average source term for non-linear expressions relies in general on

numerical integration of an appropriate order. This work considers only smooth non-linear

source terms and as such, the quadrature integration techniques described in Appendix A for

convex quadrilaterals are applied. Moreover, the source term expression must be accurately

estimated at each integration point in order to obtain a high-order accurate Si,j, which

implies in turn that a high-order representation of the solution is required for integrating

non-linear expressions of the form S = S(U( ~X)). In the FVM described herein the high-order

polynomial solution reconstruction is used for this purpose. Finally, it should be mentioned

that either large uncertainty and/or high computational cost related to the calculation of the

source term may render useless or impractical a high-order quadrature integration, in which

case a second-order approximation (i.e., the source term evaluated at the cell centroid) would

suffice for practical computations. Such situations could arise in combustion simulations in

which evaluation of chemistry source terms is a very computationally expensive operation.

The high-order accurate numerical computation of the net flux through the boundary of

a computational cell starts with the selection in Eq. (3.5) of a number of Gauss quadrature

points, NG, dictated by the desired order of solution accuracy at which the numerical flux,

~F · ~n, is evaluated. Clearly, the approximate quadrature rule must be of sufficient order

so as to generate the desired solution accuracy while not being overly accurate to create

a waste of computer resources. Note that just increasing the order of the quadrature rule

without computing the flux function more accurately at each integration point can only

result in increased accuracy (i.e., a lower absolute value of the error) and not in high-order

accuracy (i.e., an increase in the order of solution accuracy) [28]. Hence, for high-order

accuracy the numerical flux representing the sum of the non-linear hyperbolic and elliptic

fluxes, ~F · ~n= ~FH(U) · ~n+~FE(U, ~∇U) · ~n, needs to be estimated at each quadrature point,

m, of a cell face, l, with a flux function that approaches the true flux at the rate imposed

by the expected order of accuracy in the asymptotic limit of infinitely small mesh size. This

requirement translates to a similar set of conditions on the accuracy of the solution state,

U, and solution gradient, ~∇U, used to calculate both the hyperbolic, ~FH, and elliptic, ~FE,

fluxes. Other than this, the flux function is required to produce a dissipative and stable

scheme.

In this work, the hyperbolic flux at each inter-cellular face is determined using a high-
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order upwind formulation, originally pioneered by Godunov for linear and the inviscid gas-

dynamics equations in 1959 [130]. In this landmark paper, Godunov proposes a monotone

scheme by introducing information about the propagation of physical properties of the gov-

erning equations into the numerical discretization to prevent the growth of unwanted solution

oscillations in the vicinity of sharp solution variations (e.g., shocks). For hyperbolic equa-

tions, this procedure is equivalent to using information about the propagation of the solution

content along the characteristic lines in the space-time domain. Consequently, the procedure

for computing the hyperbolic flux at a cell interface is based on the wave structure emerg-

ing at an interface with discontinuous solution data, which is equivalent to solving a local

Riemann problem with the left and right solution states, Ul and Ur, as initial data [115].

Thus, the hyperbolic numerical flux, ~FH · ~n, at the quadrature points is given by

~FH · ~n = F(Ul,Ur, ~n) , (3.11)

where the numerical flux F is evaluated by solving the Riemann problem in a direction

defined by the normal to the face with Ul and Ur. In the present algorithm, both exact

and approximate Riemann solvers can be used to solve the Riemann problem and evaluate

the numerical flux. Details of the flux functions considered in this thesis for each of the

governing equation sets described in Chapt. 2 are given in Sect. 3.7.

The left and right solution states, Ul and Ur, are determined by performing piecewise

k-order polynomial solution reconstruction within each computational cell, which obviously

makes the spatial accuracy of the finite-volume scheme very dependent on the order of

the solution reconstruction. Since the truncation error for k-order exact reconstruction is

O(∆xk+1), a (k+1)-order accurate spatial discretization can be achieved based on this recon-

struction for smooth hyperbolic problems. Consequently, the number of Gauss quadrature

points at which the numerical flux is evaluated is chosen on the basis of the order of the

solution reconstruction. To determine the optimum number of quadrature points for a de-

sired accuracy recall that an N -point Gaussian quadrature rule integrates polynomials of

degree 2N − 1 exactly, providing a 2N -order accurate formula [131]. Following this rule,

the practise adopted here is to use one quadrature point (NG=1) for second-order schemes

(piecewise linear, k= 1, reconstruction) and two quadrature points (NG = 2) for third- and

fourth-order schemes (piecewise quadratic, k=2, and cubic, k=3, reconstruction) to ensure

that the order of accuracy of the schemes is preserved. Ample details of the polynomial
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solution reconstruction considered in this work are provided in Sect. 3.6.

In a similar manner to hyperbolic fluxes, numerical elliptic fluxes, ~FE · ~n, must be evalu-

ated at each quadrature point of each computational cell face. High-order elliptic fluxes can

be calculated by using information from the (k + 1)-order accurate solution approximation

obtained in the reconstruction step. Note that a (k + 1)-order accurate solution reconstruc-

tion will usually produce a k-order accurate gradient (i.e., one order less due to differential

operation), which should in turn lead to a k-order accurate pointwise flux evaluation and

finally, a k-order accurate flux integral. It is thus inferred that a (k+1)-order accurate spatial

discretization scheme for both hyperbolic and elliptic terms on arbitrary meshes, implies the

use of a k-order exact gradient (i.e., a gradient with (k+1)-order truncation error) for the eval-

uation of elliptic fluxes, which here is derived from a (k+1)-order exact reconstruction. Thus,

having determined the left and right (k+1)-order exact piecewise solution reconstructions,

Uk+1
l ( ~X) and Uk+1

r ( ~X), a unique (k+1)-order accurate solution gradient at the inter-cellular

face is obtained as the arithmetic mean of the left and right reconstruction gradients. Note

that, the arithmetic mean procedure may provide a (k+1)-order accurate gradient from two

k-order exact reconstructions if error cancellation occurs, a situation which arises only for

odd reconstruction orders and for generally regular meshes. Note also that, as previously

stated, a (k+1)-order exact solution reconstruction can provide a (k+2)-order accurate spatial

discretization of the hyperbolic term if the optimum number of Gauss integration points is

used, but only a (k+1)-order accurate discretization of the elliptic term under the same con-

ditions. For this reason, even if a piecewise quartic (k=4) reconstruction has the potential to

generate a 5th-order discretization of the hyperbolic flux in combination with at least three

quadrature points (NG = 3), it will only provide a 4th-order accurate discretization of the

elliptic flux. As the proposed residual discretization seeks to obtain a global (k + 1)-order

accurate scheme on arbitrary meshes, this condition is achieved herein by carrying out a

(k+1)-order exact solution reconstruction to ensure a k-order exact solution gradient and

by choosing the number of quadrature points which are optimum for k-order exact solution

reconstruction. Consequently, a consistent 4th-order accurate scheme for both hyperbolic

and elliptic operators is formed here with a piecewise quartic reconstruction (k=4) and two

quadrature points (NG= 2). More details about the high-order discretization of the elliptic

operator are provided in Sect. 3.8.
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3.6 CENO Reconstruction

The main purpose of the reconstruction process in a FVM is to compute in each computa-

tional cell a piecewise polynomial representation of the solution that can provide accurate

values for calculating the numerical flux at each Gauss quadrature point. The reconstruc-

tion operation is a strictly-mathematical procedure in which no physical characteristics of

the problem are directly included and depends solely on the average solution states provided

as input data. Consequently, it can be equally applied to any of the independent solution

variables regardless of their physical meaning and of whether they represent conserved, prim-

itive or characteristic quantities. Note that in our computational framework for multivariate

PDEs we prefer to perform the reconstruction with the primitive solution states whereas the

solution update is carried out with the conserved variables. To map the average conserved

into average primitive states and vice-versa our algorithm applies the same relationships as

those used for pointwise mapping. An exact conversion between the two types of average

quantities cannot be obtained for non-linear relationships with this approach. Very recently,

McCorquodale and Colella [35] have proposed a transformation which provides a fourth-order

accurate conversion between the aforementioned solution variables. Although no corrections

have been considered herein, it seems that the error introduced by the conversion of the

average quantities based on pointwise mapping does not seem to affect the order of accuracy

of the high-order scheme, a fact demonstrated in Sect. 5.6.3 by numerical experiments with

both sets of variables.

As previously explained, the accuracy of the reconstruction procedure has direct im-

plications on the overall numerical accuracy of the scheme and any attempt to formulate a

high-order FV numerical procedure should start with the reconstruction step. In general, the

functions considered to describe the solution variations are chosen as piecewise polynomials of

an order dictated by the desired accuracy for the numerical scheme. In Godunov-type finite-

volume schemes, the task at hand in the reconstruction step is to compute the polynomial

coefficients in each computational cell starting from the integral cell averages. In general,

this is the most difficult task in the solution process and for many governing equation sets

it represents the most computationally-expensive operation, depending on the efficiency of

the numerical flux function and the complexity of the source terms. This is particularly true

for the classical Euler and Navier-Stokes equations. Consequently, the efficient design of
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the reconstruction procedure can have significant impact on the computational performance

of the numerical scheme. Moreover, its impact grows in importance with the increase in

the order of accuracy as high-order reconstructions can quickly become more complex and

expensive than their low-order counterparts.

A high-order central ENO (CENO) method is used herein for performing the piecewise

k-order polynomial reconstruction within each of the computational cells. Before proceeding

further with a description of CENO method, we shall re-emphasize several disadvantages of

other ENO and WENO schemes that motivated the search for a new ENO variant which is

able to overcome some of these drawbacks. As mentioned in Sect. 1.3.1, the original ENO

reconstruction proposed by Harten et al. [18] constitutes a robust framework for obtaining

uniform accurate high-order discretizations of any order. However, the idea of selecting the

“smoothest” reconstruction in some norm encounters tremendous practical issues when ex-

tended to multi-dimensional problems with large numbers of unknowns. In particular, the

challenges are associated with the stencil selection algorithm and the large computational

cost resulting from carrying out multiple reconstructions on different stencils with a differ-

ent stencil for each solution variable. The stencil switching behaviour encountered during

a simulation can also prevent some algorithm optimizations that are possible with a fixed

stencil. Additionally, ENO schemes require reconstruction with characteristic variables to

obtain accurate results when discontinuous wave interactions occur in the simulation [18].

While WENO schemes have solved some of the problems associated with ENO methods,

such as convergence to steady-state solutions, they still suffer from the necessity of perform-

ing reconstructions on multiple stencils, with different stencils for each variable, and may

employ extra algorithms for dealing with singular stencils [26] and occurrence of negative

weights [132], especially on unstructured meshes. In addition, the weights may require some

tuning such that the central stencil, recognized to be the most accurate one, is recovered

in the smooth parts of the solution [133, 134]. A step forward in the direction of reducing

the number of reconstructions to a maximum of two has been taken by the DD-ENO pro-

cedure [29, 30]. Unfortunately, in addition to requiring two reconstructions everywhere in

the solution domain this method can also fail in some situations to assign sufficiently small

weights to the non-smooth data which can result in non-monotone solutions. It should be

also mentioned that in some situations the original ENO-type reconstructions may lead to

negative values of density and pressure due to their design principle (i.e., selection of the



3.6 CENO RECONSTRUCTION 50

“smoothest” stencil) which does not strictly enforce solution monotonicity. This aspect has

been pointed out in the literature [20, 135]. Despite all these drawbacks, both ENO and

WENO schemes provide a solid starting point for the search for more effective high-order

discretizations.

The proposed CENO variant of the original ENO scheme is not based on either selecting or

weighting reconstructions from multiple stencils. Instead, a hybrid solution reconstruction

procedure is used that combines the high-order k-exact least-squares reconstruction tech-

nique of Barth [16] based on a fixed central stencil with a monotonicity preserving limited

piecewise linear least-squares reconstruction algorithm [16]. Due to cancellation of trunca-

tion errors, use of the central stencil will generally provide the most accurate reconstruction.

In the case of unstructured mesh, the central stencil should be interpreted as a stencil that

includes all nearest neighbour cells up to a specified order. Unfortunately, the resulting

k-exact reconstruction from a central stencil near under-resolved solution content, sharp so-

lution gradients and/or discontinuities exhibits undesirable solution oscillations (wiggles) as

illustrated in Fig. 1.4, which can deteriorate solution accuracy or generate non-physical solu-

tion values. Therefore, in the CENO approach a limited reconstruction procedure is applied

to computational cells with under-resolved solution content and the unlimited k-exact re-

construction scheme is used for cells in which the solution is fully resolved. Switching in the

hybrid procedure is determined by a solution smoothness indicator that indicates whether

or not the solution is resolved on the computational mesh. This hybrid approach avoids the

complexity associated with other ENO and WENO schemes that require reconstruction on

multiple stencils which in some cases can produce poorly conditioned coefficient matrices.

Additionally, the same fixed stencil is used for each variable and the solution of the least-

squares problem for the reconstruction can then be made quite efficient. For this reason, the

hybrid CENO algorithm would seem very well suited for solution reconstruction on unstruc-

tured mesh. Another benefit of the CENO approach is that mesh adaptation can be directed

based on the ability of the scheme to differentiate between resolved and under-resolved or

non-smooth solution content.

The CENO reconstruction leads to a finite-volume scheme for hyperbolic conservation

equations that is high-order accurate for smooth solutions even near extrema and avoids the

appearance of O(1) numerical oscillations in under-resolved regions and for solutions contain-

ing strong discontinuities and/or shocks. Note however that in the proposed formulation the
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formal ENO property of uniform accuracy is lost for non-smooth solutions. Accuracy to any

order is possible by simply expanding the support for the cell-centred reconstruction. Note

that in earlier work, Harten and Chakravarthy [19] have proposed a technique to obtain an

ENO reconstruction on a fixed central stencil by hybridizing the high-order reconstruction

with a first-order formulation. The switching in their proposed hybrid central ENO scheme

was based on undivided differences and the total variation diminishing (TVD) property

[136] and not directly on the smoothness of the reconstructions. More recently, Haselbacher

[26] has since explored the use of fixed stencil central reconstruction in the formulation of

WENO schemes for unstructured mesh, but Haselbacher’s approach is somewhat different

to the current approach and schemes of accuracy higher than second order (piecewise linear

reconstruction) were not formulated.

In what follows, a detailed summary of the proposed high-order CENO reconstruction is

provided, including discussions of the k-exact least-squares reconstruction, monotonicity en-

forcement, solution smoothness indicator and treatment of high-order boundary conditions.

3.6.1 k-Exact Least-Squares Reconstruction

In piecewise k-exact polynomial reconstruction, it is assumed that a solution variable, u, at

any location, ~X, in computational cell (i, j) has the general form

uki,j( ~X) =
k∑

p1=0

k∑
p2=0

(p1+p2≤k)

(x− x̄i,j)p1 (y − ȳi,j)p2 Dk
p1p2

, (3.12)

where (x, y) are the Cartesian coordinates of the position vector, ~X, at the point of inter-

est, (x̄i,j, ȳi,j) are the coordinates of the cell centroid ~Xi,j, k is the order of the piecewise

polynomial interpolant, the summation indices p1 and p2 must satisfy the condition that

p1 + p2 ≤ k, and Dk
p1p2

are the coefficients of the k-exact polynomial approximation to be

determined. The latter are in general functions of the mean or average value solution, ūi,j,

within the cell and its neighbours. In general, the number of coefficients, ND, for a particular

order k and one solution variable is determined with the following relation

ND =
1

d!

d∏
n=1

(k + n) , (3.13)
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where d represents the number of space dimensions. For 2D problems d=2 and ND becomes

ND =
(k + 1)(k + 2)

2
. (3.14)

To determine the coefficients, Dk
p1p2

, the following conditions are required to be satisfied

by the reconstruction procedure:

i) the solution reconstruction must reproduce exactly polynomials of degree N≤k;

ii) the solution reconstruction must preserve the mean or average value within the com-

putational cell;

iii) the reconstruction procedure must have compact support.

The first condition is equivalent to

uki,j( ~X − ~Xi,j)− uexact( ~X) = O(∆xk+1) , (3.15)

which is assumed to hold anywhere in the vicinity of cell (i, j). The k-exactness property is

also motivated by Barth [137] with the fact that for sufficiently smooth solutions it ensures

that the difference between the predicted solution states at inter-cell boundaries diminishes

with increasing k at a rate proportional to hk+1 where h is a maximum diameter of the two

cells. As we shall see in Sect. 3.7, this property has direct implications on the amount of

dissipation introduced by the Riemann solver. The second condition requires the integral of

the piecewise polynomial approximation to recover the cell average data, which gives

ūi,j =
1

Ai,j

∫∫
Ai,j

uki,j( ~X)dx dy . (3.16)

Finally, the third condition involves the number and locality of the neighbouring solution

states used in the cell reconstruction.

The evaluation of the coefficients, Dk
p1p2

, requires the Eq. (3.16) to be supplemented by

at least ND − 1 additional equations which are determined as follows. Based on the relation

expressed by Eq. (3.15), the mean preservation condition is extended to the neighbourhood

of the reconstructed cell and similar relations to Eq. (3.16) are written for a set of neighbours

which together with the reconstructed cell form the so-called reconstruction supporting sten-

cil. For brevity, the cell in which the reconstruction is performed will be denoted by index

I and any of the neighbours in the supporting stencil by index J .



3.6 CENO RECONSTRUCTION 53

The minimum size of the compact stencil is determined by the number of unknown coef-

ficients, ND, but in practise, additional neighbours are included to make the reconstruction

more robust in the presence of stretched meshes and solution gradients not aligned with the

mesh. For body-fitted quadrilateral mesh, the current k-exact reconstruction scheme uses a

symmetric fixed central stencil which includes 8 neighbour cells for k=1 and 24 neighbours

for k=2, 3 and 4. This particular choice ensures the homogeneity of the reconstruction oper-

ator but can also incur significant overdetermination for some reconstruction orders. Thus,

the most disadvantageous situation occurs for the quadratic reconstruction which includes

about four times more cells than the minimum required for ND = 6. However, this ratio

becomes 2.5 and only 1.67 for cubic (k=3) and quartic (k=4) reconstruction, respectively.

To compute the polynomial coefficients with an overdetermined supporting stencil, we

seek to minimize the error, EJ , in predicting the mean value in each J neighbour, written

as

EJ =
1

AJ

∫∫
AJ

uki,j( ~X − ~Xi,j)dx dy − ūJ . (3.17)

The evaluation of the coefficients Dk
p1p2

requires the least-squares solution of an overdeter-

mined system of linear equations A x−B = E, where the coefficient matrix, A, of the linear

system depends only on the mesh geometry and can be partially calculated in a preprocess-

ing step. The average solution data at each time step is contained in the matrix, B, and

the mean value error in each control volume is in matrix, E, which has the norm minimized

in the least-squares sense. Depending on how many solution variables are present in the

discretization procedure, the matrices x, B and E can have either a single column if there is

only one solution variable or more columns for multiple solution variables with each column

belonging to one solution unknown.

The preservation of the average value ūI within the reconstructed cell is explicitly enforced

by expressing the coefficient, Dk
00, as a function of the other unknowns as

Dk
00 = ūI −

k∑
p1=0

k∑
p2=0

(p1+p2 6=0)

Dk
p1p2

(xp1yp2)I , (3.18)

where the term (xp1yp2)I is defined below. Thus, the linear system that needs to be solved
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for all unknowns except Dk
00 has the form

L1

L2

...

LJ
...

LNn


︸ ︷︷ ︸

A



D01

D02

...

Dp1p2

...


I︸ ︷︷ ︸

x

−



w1(ū1 − ūI)
w2(ū2 − ūI)

...

wJ(ūJ − ūI)
...

wNn(ūNn − ūI)


︸ ︷︷ ︸

B

=



E1

E2

...

EJ
...

ENn


︸ ︷︷ ︸

E

(3.19)

where Nn is the number of neighbours in the supporting stencil and the generic row LJ in

the coefficient matrix, A, of the linear system, Eq. (3.19), is given by

LJ =
(
wJ

(
x̂0y1

)
IJ

wJ

(
x̂0y2

)
IJ

. . . wJ

(
x̂p1yp2

)
IJ

. . .
)
, (3.20)

where the geometric weight wJ is specific to each control volume J and serves the purpose

of improving the locality of the reconstruction. The matrix coefficient
(
x̂p1yp2

)
IJ

depends

only on the mesh geometry of I and J cells and has the expression(
x̂p1yp2

)
IJ

=
(
x̃p1yp2

)
IJ
− (xp1yp2)I , (3.21)

where (xp1yp2)I represents the geometric moment of powers (p1, p2) of control volume I (i.e.,

the reconstructed cell) about its own centroid and is given by

(xp1yp2)I =
1

AI

∫∫
AI

(x− x̄i,j)p1 (y − ȳi,j)p2 dx dy , (3.22)

and
(
x̃p1yp2

)
IJ

represents the geometric moment of powers (p1, p2) of the neighbour J about

the centroid of the reconstructed cell I. Thus, the geometric moment
(
x̃p1yp2

)
IJ

is obtained

by integrating over the domain AJ of a given neighbour J the geometrically-dependent

monomial expression in Eq. (3.12) as follows(
x̃p1yp2

)
IJ

=
1

AJ

∫∫
AJ

(x− x̄i,j)p1 (y − ȳi,j)p2 dx dy . (3.23)

Details of the procedure used in the computation of the geometric moments given by Eq. (3.22)

and Eq. (3.23), including discussion about memory requirements in case of stored data, can

be found in Appendix A and B.
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As previously mentioned, geometric weights of the form presented below are assigned to

each control volume in order to have a more localized reconstruction

wJ =
1

| ~XJ − ~Xi,j|
θ
, (3.24)

where ~XJ is the centroid of neighbour cell J , and values considered herein for the exponent

θ are either one or two. The importance of distance weighting in the least-squares recon-

struction for stretched meshes with surface curvature has been investigated by Mavriplis in

[138]. In general, the inverse squared distance weighting has been found to be more accurate.

However, the inverse distance was still used for certain problems.

Both Householder QR factorization algorithm [139] and orthogonal decomposition by

SVD method [139] can be used to solve the weighted least squares problem represented by

Eq. (3.19) and determine the polynomial coefficients for all solution variables concurrently,

the latter being favoured for the computation of the left pseudo-inverse matrix A−1 [140]

as described below. Note that use of a fixed central stencil here avoids the complexities

associated with ENO and WENO schemes that require reconstruction on multiple stencils

as well as many of the difficulties associated with poorly conditioned coefficient matrices

for the least squares problems. In addition, the use of a fixed stencil allows the pseudo-

inverse matrix A−1 to be stored and reused for the calculation of all solution variables at

successive time steps as long as the computational grid is not modified. In particular, it was

found that such a procedure can provide a computational speed-up by a factor of about 5

for high-order two-dimensional Euler computations compared with the situation in which

the coefficient matrix, A, is formed and a least-squares subroutine is called for each spatial

reconstruction. Although the procedure based on reusing the pseudo-inverse matrix requires

extra storage, the additional memory requirements are not that substantial and are generally

readily available on most modern distributed memory architectures. Thus, the dimensions

of the pseudo-inverse matrices encountered in this work are 2×8 for linear (k=1), 5×24 for

quadratic (k=2), 9×24 for cubic (k=3) and 14×24 for quartic (k=4), which corresponds to

storing 16, 120, 216 and 336 floating point numbers, respectively. Moreover, these memory

requirements do not depend on the number of solution variables since the same pseudo-

inverse matrix is employed for the computation of each solution unknown. This procedure

therefore represents a practical approach for reducing the cost of the proposed high-order

reconstruction and is used here.
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Finally, to provide concrete examples concerning the condition number, κ(A), of the

coefficient matrix, A, for the least-squares problem corresponding to different reconstruction

orders, k, several representative quadrilateral meshes have been analyzed herein. Note that

the condition number has been estimated here based on L∞ norm of the matrix, such that

κ∞(A) = ||A||∞ ||A−1||∞, where the pseudo-inverse matrix, A−1, has been determined as

described above. Thus, Table 3.1 depicts the maximum values of κ∞(A) associated with the

linear (k=1), quadratic (k=2), cubic (k=3) and quartic (k=4) solution reconstructions on

Cartesian grids with aspect ratio, ar, of 1, 240 and 14,012, respectively, and on the regular

smooth and irregular grids illustrated in Fig. 3.1(a) and (b), respectively. In this study, the

effect of different geometric weighting formulations, wJ , on the condition number for the

least-squares problem has also been considered, and the results are also shown in the table.

An analysis of the data in Table 3.1 reveals that the condition numbers of the coefficient

matrix increase with the increase in the reconstruction order. This trend is somewhat ex-

pected as the elements of the coefficient matrix, A, corresponding to larger reconstruction

orders are determined based on a larger range of powers of the distances between points

in the stencil. Additionally, the data shows that larger and larger maximum values occur

as the mesh deviates more and more from the Cartesian square grid, the largest values

encountered in this study corresponding to the Cartesian grid with highest aspect ratio.

However, the data also reveals that significant improvements in the condition number can

be obtained, even up to two orders of magnitude, by using some sort of geometric weighting.

For the current scheme and the meshes studied herein it seems that the inverse-distance

geometric weighting (i.e., wJ = |∆ ~XIJ |−1) provides the lowest condition number values for

all reconstruction orders analyzed. Moreover, although the condition numbers encountered

on Cartesian meshes with a high aspect ratio of ar=14, 012 are very large, it is argued that

a high-order scheme may not require such high aspect ratios to accurately resolve solution

features of thin boundary and/or shear layers in practice.

Therefore, it seems that for the reconstruction orders and the meshes considered in this

work, the corresponding condition numbers can be dealt with, but caution should be ex-

ercised when considering both higher than quartic reconstruction orders or very high grid

aspect ratios. For the latter cases, it may be more appropriate to consider polynomial ex-

pansions which can provide lower condition numbers, such as the expansion in barycentric

coordinates described by Abgrall [20] for triangle elements, or application of regularization
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techniques for solving ill-conditioned systems [141].

Table 3.1: The condition numbers of the coefficient matrix, A, obtained based on L∞ norm

of the matrix for different geometric weighting formulations and for several representative

meshes, which are as follows: the Cartesian grids with aspect ratio, ar, of 1, 240 and 14,012;

the regular smooth grid shown in Fig. 3.1(a); and the irregular grid shown in Fig. 3.1(b).

Geometric κ∞(A)
Mesh Weighting

wJ = |∆ ~XIJ |−θ k=1 k=2 k=3 k=4

Cartesian Grid θ=0 2.0 25.4 452.2 6,748.4

ar=1 θ=1 1.7 22.0 273.2 3,223.8

θ=2 1.3 32.6 335.3 4,007.2

Cartesian Grid θ=0 227.6 292,335.1 5.71×108 9.69×1011

ar=240 θ=1 1.8 1,116.6 1.72×106 2.01×109

θ=2 239.0 245,311.9 3.15×108 4.03×1011

Cartesian Grid θ=0 12,780.4 8.40×108 8.78×1013 1.10×1014

ar=14, 012 θ=1 1.8 60,118.4 4.66×109 9.17×1013

θ=2 15,047.1 8.32×108 5.40×1013 2.78×1014

Regular θ=0 4.1 172.9 9,232.4 524,247.3

Smooth Grid θ=1 2.2 77.5 3,815.2 171,418.2

θ=2 3.2 141.9 4,928.2 192,885.6

θ=0 5.2 191.7 10,552.5 699,826.2

Irregular Grid θ=1 2.4 84.1 4,661.8 199,873.8

θ=2 4.6 203.2 6,688.5 240,616.7
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3.6.2 Monotonicity Enforcement

“A problem well stated is a problem half solved.”

by Charles F. Kettering (1876-1958), American engineer & inventor

In his 1959 paper [130], Godunov introduced the important concept of monotonicity and

proved in a theorem that currently bears his name that among schemes of second-order

accuracy for the linear advection equation with constant coefficients there are none which

transform any monotonic function into other monotonic one between two successive time

steps. The theorem implies that any higher-order linear schemes (i.e., k > 0), although

more accurate for smooth solutions, tend to introduce spurious oscillations (wiggles) where

discontinuities or shocks arise. To overcome these drawbacks, various high-resolution, non-

linear techniques have been proposed in the literature.

Using the concept of total variation first introduced by Harten [136], these methods

can be formally classified into total variation diminishing (TVD), total variation bounding

(TVB) and essentially non-oscillatory (ENO) schemes. It should be pointed out that all

these monotonicity concepts introduce gradually less restrictive conditions for satisfying

monotonicity which allow them to increase the spatial solution accuracy while still to be

sufficient to guarantee the convergence of the numerical solution to weak solutions of the

solved PDE. Technically, a numerical scheme is said to be TVD if the following condition

holds true at any time step n

TV(un+1) ≤ TV(un) , (3.25)

where the total variation, TV, of a one-dimensional numerical solution, u(x), is defined as

TV(u) ≡
∑
i

|ui+1 − ui| . (3.26)

Harten [136] showed that all TVD schemes are monotonicity preserving, which means the

following properties are maintained as function of time :

i) No new local extrema in x (i.e., spatial coordinate) may be created

ii) The value of a local minimum is non-decreasing, the value of a local maximum is

non-increasing.
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A general framework for generating second-order, upwind, TVD discretizations was

formulated by Van Leer [142, 143] with the introduction of Monotone Upstream-centred

Schemes for Conservation Laws (MUSCL) scheme. In the MUSCL approach, the TVD con-

ditions are ensured by restricting the amplitude of the gradients appearing in the piecewise

linear solution reconstructions via non-linear slope limiting. Similar results can also be ob-

tained by applying flux limiting [144]. Since their introduction in the early 1970s, various

limiter functions have been defined in the literature. A detailed description of several limiters

along with their properties is given in [15, 144, 145]. Note that TVD schemes are globally

second-order, but reduce to first-order accuracy at local extrema. The introduction of the

limiters within second-order upwind schemes has the effect of removing solution oscillations

near discontinuous and/or almost discontinuous solution content, producing monotone pro-

files. However, it also has the effect of reducing locally the accuracy of the solution around

smooth extrema, a phenomenon known as “peak clipping”. This phenomenon occurs due to

the fact that limiters, in general, cannot readily distinguish between sharp discontinuities and

local smooth extrema and results in a degradation of the scheme spatial accuracy in smooth

regions. Even for smooth solutions, the clipping of extrema effectively reduces the order

of accuracy of the numerical scheme to O(∆x) in the L∞-norm, potentially rendering too

dissipative a TVD procedure for simulation of complex flows characterized by a significant

presence of solution minima and maxima. Nevertheless, several limiting procedures for pre-

serving accuracy at smooth extrema, at least for specific schemes, have also been proposed.

Included in this category of extremum preserving limiters are the recently proposed limiters

by Colella and Sekora [36] and by McCorquodale and Colella [35], and the parameter-free

generalized moment limiter of Yang and Wang [52, 53] based on a hierarchical approach.

The class of TVB schemes attempt to avoid to some extent the problem of clipping the

extrema at the expense of compromising the solution monotonicity near discontinuities/large

gradients. These schemes are defined by the following property [146]:

TV(un) ≤ B, (3.27)

where the constant B is fixed, greater than zero and depends only on the total variation of

the initial solution, TV (u0). Consequently, TVB schemes tolerate large spurious oscillations

provided only that the oscillations remain bounded.

However, formulation of truly uniform second- and even higher-order schemes that do
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not exhibit O(1) spurious oscillations near discontinuities was possible by enlarging the TVD

concept to a broader class of schemes, designated as ENO. This new concept introduced by

Harten et al. in their landmark paper [18], allowed spurious oscillations to exist in smooth

regions on the level of the scheme truncation error, thereby allowing the numerical discretiza-

tion to provide high-order accuracy even around smooth extrema, while avoiding a Gibbs-like

phenomenon to occur near discontinuities, that is no solution oscillations proportional to the

size of the solution jump exist. Moreover, the spurious oscillations would diminish as the

mesh is refined at a rate imposed by the order of the scheme. Following Harten et al. [18],

the ENO property in terms of total variation is defined as

TV(un+1) = TV(Eh • un) ≤ TV(un) + O(∆xk+1) , (3.28)

where Eh is the discrete operator representing the effect of all stages of the numerical scheme

in the process of advancing the solution from time level n to level n+1. In case of Godunov-

type finite-volume schemes, the ENO condition is translated directly to ENO criteria for

the reconstruction procedure. A reconstruction algorithm that provides the ENO property

was also presented in the original work of Harten et al. [18] and was based on selecting

the “smoothest” reconstruction stencil among several candidates. The quality of being the

smoothest stencil (i.e., leading to the solution reconstruction with the least variation in

some norm) was determined based on the value of the largest divided difference, which,

for one-dimensional problems, gives a clear indication of how oscillatory a reconstruction

may be. Note that direct extensions of this selection criterion to multi-dimensions are not

easily possible and other methods to characterize the reconstruction smoothness are often

necessary. However, despite its inherent difficulties for extension to multi-dimensions with

more irregular and unstructured meshes, the ENO algorithm proposed by Harten et al. is

still possibly the most cost-effective accurate approach for high-order finite-volume schemes,

as discussed in Sect. 1.3.1. Note also that the ENO property as defined by Harten et al.

does not require the existence of a stencil selection algorithm, the latter representing merely

one of the means in which the former can be provided to a numerical scheme.

In the current work, an alternative approach is considered for providing a numerical

scheme with the ENO property. The proposed CENO scheme described herein combines

the unlimited high-order k-exact least-squares reconstruction described in Sect. 3.6.1 with

a monotonicity preserving limited piecewise linear least-squares reconstruction algorithm.
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The limited reconstruction procedure is applied to computational cells with under-resolved

solution content and the unlimited k-exact reconstruction scheme is used for cells in which

the solution is fully resolved. Switching in the hybrid procedure is determined by a solution

smoothness indicator that indicates whether or not the solution is resolved on the com-

putational mesh. Note that by design the piecewise k-exact polynomials would introduce

spurious numerical oscillations on the level of truncation error in smooth regions as shown

in Fig. 1.3. Unfortunately, these otherwise small oscillations become large in under-resolved

regions generating a Gibbs-like phenomenon. Even smooth analytic functions can generate

this phenomenon if the mesh is under-resolved, a behaviour illustrated in Fig. 3.3 with the

cubic reconstruction of f(x) = e−4x sin(5x) represented on two different mesh resolutions.

As can be easily observed in Fig. 3.3(b), the reconstruction performed on the under-resolved

mesh exhibits the same behaviour as that for a discontinuous data, Fig. 1.4, which demon-

strates that the smoothness property of discrete data is in general very dependent on the

particular mesh resolution. Consequently, a reliable smoothness indicator must be able to

identify correctly as smooth those reconstructions that oscillate on the level of truncation

error and as non-smooth those polynomials that exhibit large oscillations relative to the

solution content within the neighbourhood. As the reader can spot, defining what is an

acceptable and unacceptable degree of oscillation for a large range of solution length scales

represented on a given mesh resolution can be problematic, especially for reconstructions in

multiple dimensions, and the task at hand is by far not an easy one at all. The next section

will describe the particular form of the smoothness indicator considered in this work and

how it manages to overcome the resolution problem in a relatively simple way.

Smoothness Indicator

The proposed CENO scheme preserves solution monotonicity in regions of large gradients or

discontinuities by reverting the high-order k-exact reconstruction to a limited piecewise linear

(k=1) reconstruction. This approach of preserving solution monotonicity by “dropping” the

reconstruction order leads to a non-uniformly accurate reconstruction (i.e., reconstructions of

lower and higher order coexist in the computational domain) for under-resolved and/or non-

smooth solution content. However, the reconstruction procedure remains uniformly accurate,

even in the presence of smooth extrema, as long as the solution is smooth everywhere. In the

current work, the slope limiters of Barth-Jesperson [16] and Venkatakrishnan [147] are used
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(a) Exact solution (red) and piecewise constant data for

low- and high-resolution shown in green and blue

(b) Reconstruction on low-resolution mesh

(c) Reconstruction on high-resolution mesh

Figure 3.3: Cubic (k = 3) reconstruction of analytical function f(x) = e−4x sin(5x) on two

mesh resolutions. Note the large oscillations for the under-resolved mesh shown in (b).
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in the limited reconstruction, but other limiters would do almost equally as well. In order

to detect regions where the order of the reconstruction should be reduced and the limiters

applied, a smoothness indicator is computed for every variable individually within each cell

as part of a post-analysis step after the unlimited k-exact reconstruction has been performed.

The smoothness indicator is then used in the manner described below to ensure that the

limited linear reconstruction procedure is applied to computational cells with under-resolved

and/or non-smooth solution content and the unlimited k-exact reconstruction scheme is

where the solution is fully resolved.

The form of the smoothness indicator used here was inspired by the definition of multiple-

correlation coefficients that are often used in evaluating the accuracy of curve fits [139].

The basic idea is to assess how accurately the truncated polynomial expansion represents

the solution data within the reconstruction stencil. This is achieved by comparing the

reconstructed solution to those in neighbouring cells. In the case of non-smooth solution

data, the intrinsic assumption of solution smoothness made in determining the accuracy

of k-exact reconstruction, given by Eq. (3.15), is definitely incorrect and the post-analysis

of the obtained reconstructions should illustrate this fact. It should also be clear that for

smooth solution content, the predictions of the reconstructions within neighbouring cells

should become increasingly more similar as the mesh is refined, in a manner similar to the

way in which the difference between the predicted solution states at inter-cell boundaries

diminishes. Therefore, this approach naturally accounts for transitions from under-resolved

to resolved solution content with increasing mesh resolution.

The smoothness indicator, S, is calculated in terms of a smoothness parameter, α, as well

as information about the number of unknowns (degrees of freedom), DOF , and size of the

stencil, SOS, used in the reconstruction. It is taken to have the form

S =
α

max ((1− α), ε)

(SOS −DOF )

(DOF − 1)
, (3.29)

where α is determined as follows

α = 1−

∑
γ

∑
δ

(
ukγ,δ(~̄rγ,δ)− uki,j(~̄rγ,δ)

)2

∑
γ

∑
δ

(
ukγ,δ(~̄rγ,δ)− ūi,j

)2 , (3.30)

and where the ranges of the indices, γ and δ, are taken to include all control volumes in the

reconstruction stencil for cell (i, j), ~̄rγ,δ is the centroid of the cell (γ, δ), and the tolerance, ε,
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has been introduced in order to avoid division by zero. A suitable value for ε has been found to

be 10−8. It should be evident that the parameter, α, compares the values of the reconstructed

solution at the centroids of neighbouring cells used in the solution reconstruction for cell (i, j).

Note also that the average value in the reconstructed cell is used to normalize the relative

predictions of the reconstructions. The range for α is −∞ < α ≤ 1 and it will approach

unity as the solution becomes smooth and near perfect matching of the reconstructions

in adjacent cells is achieved. The quotient in the expression for α can become a ratio of

two very small numbers or 0
0

in situations with little or no solution variation is encountered.

This scenario would translate into the problem that reconstructions of free-stream conditions

are not deemed as smooth and a second reconstruction would be required in these regions.

Obviously, such situations can be easily avoided by computing α only in those regions of the

domain where a minimum level of solution variation relative to a reference solution value

is encountered. The variation of α
(1−α)

is depicted in Fig. 3.4 and the figure shows that S

rapidly becomes large as α approaches unity.

Once evaluated, the smoothness indicator, S, is then compared to a pass/no-pass cutoff

value, Sc. As appropriate value for the cutoff was determined from a wide range of numerical

experiments and values for Sc in the range 1,000-5,000 seem to work well. It should be pointed

Figure 3.4: The graph of f(α) = α
(1−α)

.
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out that smoothness indicators for smooth solutions are typically orders of magnitude larger

than the range of cutoff values (e.g., 100,000). Moreover, typical values for cells located in

the “middle” of discontinuities are close to 10. Thus for S<Sc, the solution is deemed to be

under-resolved and/or non-smooth and the high-order k-exact reconstruction is replaced by

limited linear reconstruction in that cell. For S>Sc, the unlimited high-order reconstruction

is deemed to be acceptable and retained. Finally, it should be pointed out that the effect

of a reconstruction which contains discontinuous data is reflected in the smoothness indica-

tor calculation of few neighbours and consequently, any solution discontinuity is typically

confined to within at most 7 to 10 cells.

Numerical experiments with the smoothness indicator calculated using only information

from a reduced set of neighbour reconstructions have recently shown that a more local

approach can be as successful as using the whole supporting stencil in identifying smooth

and non-smooth reconstructions correctly, while significantly reducing the computational

cost and improving the locality of this operation. Thus, instead of using the reconstructions

of all cells that are part of the supporting stencil, two algorithms have been devised using

only the first-degree (i.e., the nearest) neighbours. The first algorithm used all first-degree

neighbours, including the corners, and the reconstructions have been compared at the cell

centroids. The second algorithm used only the neighbours that shared a face with the

reconstructed cell and the reconstructions have been compared at the Gauss quadrature

points of each shared face. Obviously, these two approaches require fewer evaluations for

each smoothness check and can potentially confine the non-smooth data to a more local

region. However, more extensive testing of these ideas is required prior to making conclusive

statements on alternative evaluation procedures for the smoothness indicator.

Monotonicity enforcement for systems of conservation laws

For systems of conservation laws, the reconstruction procedure can be applied to different

sets of interrelated solution variables, such as conserved, primitive or characteristic variables,

and it is important to realize that enforcing monotonicity on the variables that are used for

reconstruction does not necessarily ensure the solution positivity when the conditions for

positivity are expressed in terms of a different set of equivalent solution variables. For such

situations, the recommended approach is to detect non-smooth solution regions based on the

reconstructed variables and subsequently to perform a limited piecewise linear reconstruction
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with those variables on which positivity conditions are formulated. As an example, the

solution procedure of Euler and Navier-Stokes equations that is based on the high-order

reconstruction of the conserved variables should enforce positivity of density and pressure

by performing a limited reconstruction of the primitive variables in those regions detected

as non-smooth based on the conserved ones.

3.6.3 Reconstruction at Boundaries and Implementation of High-

Order Boundary Conditions

Correct high-order treatment of boundary conditions is a crucial element for developing ac-

curate numerical schemes. It is especially important for high-order methods, where errors

due to geometrical approximation may dominate the discretization error, mitigating the full

capabilities of a high-order scheme. One approach to imposing high-order boundary con-

ditions is to make use of extra rows of ghost cells which are added beyond the geometric

boundary of the computational domain. Solution states are then imposed in the ghost cells

in such a way that the reconstructed solution and/or flux at the boundary flux interior cell

approximates those associated with the particular boundary condition. An alternative ap-

proach is to enforce the boundary conditions by constraining the least-squares reconstruction

in control volumes adjacent to the boundary as described by Olivier-Gooch and Van Altena

[72]. In the current work, both procedures (i.e., ghost cells and constrained reconstruc-

tion) for boundary-condition prescription have been implemented and are described herein.

Note that in this work it has not been considered the possibility to reduce by one the order

of the scheme at boundaries, a procedure shown by Gustafsson [148] to produce the same

convergence rate as that of the interior scheme, due to additional algorithm complexities.

In order to obtain high-order accuracy at boundaries, the geometric data (i.e., cell area,

centroid, geometric moments, normals, edge lengths, locations of the Gauss quadrature inte-

gration points) are computed to the same order of accuracy as that of the interior scheme. A

typical configuration encountered near curved geometric boundaries is depicted in Fig. 3.5,

in which curved-edge quadrilaterals are used to represent the geometric boundary accurately.

The reader is reminded that computation of the required geometric properties of quadrilat-

eral cells is described in detail in Appendix A.
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Figure 3.5: Schematic representation of geometric elements at the boundaries of a quadrilat-

eral mesh. The blue vectors represent the local normals at the Gauss quadrature points.

High-Order BCs via Ghost Cells

As outlined above, there are two approaches considered for implementing boundary condi-

tions which have direct implications on the reconstruction algorithm used near boundaries.

If additional layers of ghost cells are used for specifying boundary conditions, the recon-

struction algorithm for the cells near boundaries is the same as that outlined for an interior

cell. Note that in our implementation of BCs with additional ghost cells, the reconstruction

stencil remains unmodified near boundaries and the order of the polynomial interpolation is

unchanged. While different approaches may be used in conjunction with the CENO algo-

rithm described herein and potentially offer some advantages, they have not been considered

in the current work. Thus, the only requirements for implementing high-order BCs with

ghost cells are to ensure that sufficient layers of ghost cells are used in order to carry out the

reconstruction and the computation of the smoothness indicator in all necessary cells and to

specify accurate solution data in each ghost cell. Before discussing the first requirement, it

should be pointed out that the latter condition cannot be always easily satisfied, especially
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when curved boundaries are present. A more appropriate approach to dealing with these

situations is the use of constrained reconstruction which is described later in this section.

Turning our attention to the first condition, we note that the minimum number of ghost cells

is defined by the size of the reconstruction stencil and the number of neighbours used to as-

sess the smoothness indicator. For CENO reconstructions of orders up to four the minimum

number of ghost cells varies between three and five. Note that for a standard second-order

scheme with a least-squares reconstruction a minimum of two ghost cells is required, the first

one to be used for computing the flux through the domain boundary and the second one

to be included in the reconstruction of the former. To understand why more than two cells

are required in the case of CENO, it is instructive to look at the requirements of a quartic

reconstruction. First, the reconstruction of the ghost cell used in the boundary flux calcula-

tion will require two additional ghost cells for obtaining its symmetric central reconstruction

stencil with 24 neighbours, which brings to three the minimum number of required ghost

cell layers. This number would be sufficient if the smoothness indicator were not calculated

for the reconstruction of the first ghost cell near boundary. However, depending on how

many neighbours one wants to use for assessing the smoothness indicator of that cell, more

additional layers are required for performing the reconstructions of the neighbours. Thus,

one needs a total of five layers of ghost cells when all cells in the reconstruction stencil are

used for checking the smoothness and four layers instead when the smoothness indicator is

calculated only with the first-degree neighbours.

High-Order BCs via Constrained Reconstruction

Implementing BCs with additional layers of ghost cells can work well for relatively straight

boundaries, but may give rise to large errors when the geometry is more highly curved.

The difficulty consists in specifying accurate solution information in the ghost cells which

then translates to accurate high-order reconstructions that correctly resemble the solution

variation required for the particular boundary condition. A concrete illustration of the

difficulties encountered in such a process is provided by the implementation of inviscid solid

wall boundary condition, ~V · ~n = 0. This boundary condition can be implemented in the

weak sense by mirroring the velocity vector in the interior cells adjacent to the boundary

into the correspondent ghost cells [149]. For straight geometric boundaries this approach

works well, but for curved boundaries one is immediately confronted with the problem of
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providing a suitable normal for the mirroring process which results in accurate high-order

reconstructions for the velocity components. The problem is further exacerbated by the fact

that the aforementioned condition ~V ·~n = 0 should be ideally satisfied everywhere along the

solid boundary and must be definitely fulfilled at the flux calculation points, which can be

more than one. Obviously, these requirements on the velocity vector, which translate into

conditions on the least-squares reconstructions of the two velocity components, are difficult,

if not impossible, to be satisfied with the information provided by the ghost cells.

Therefore, a better alternative is to enforce the boundary conditions using only informa-

tion from the interior domain and from the required boundary values at the Gauss integration

points along the boundary. Thus, additional constraints are added to the reconstruction pro-

cedure to ensure that the values taken by the polynomial approximations of the interior cells

next to the boundary at the Gauss integration points are exactly those required by the partic-

ular boundary condition. By constraining the least-squares reconstruction in control volumes

adjacent to the boundary, complex boundary conditions can be enforced. Nevertheless, for

certain boundary conditions this approach might be too difficult, and therefore, in the cur-

rent implementation both procedures (i.e., ghost cells and constrained reconstruction) are

allowed. In general, boundary conditions which include linear relations between the recon-

structed variables are relatively easy to be implemented with the constrained reconstruction

approach whereas non-linear relations can be difficult to specify.

The general boundary-condition framework developed as part of this thesis research al-

lows for two basic types of constraints to be specified. They are: 1) Cauchy (i.e., combination

of Dirichlet and Neumann) conditions which can be applied individually to any reconstructed

variable as the need may be; and 2) linear relations among variables which are applied as

coupling constraints to a set of reconstructed variables. Thus, any boundary condition that

can be expressed by these two basic types can be accommodated by the framework. Each

of these boundary types is discussed in detail below. In order to solve the enlarged system

of equations arising from the constrained least squares reconstruction (boundary constraints

plus reconstruction conditions), Gauss elimination with pivoting is used to eliminate the

rows associated with the boundary-condition constraints, and the remaining least-squares

problem is again solved using Householder QR factorization. Note that, in general, storage

of a pseudo-inverse matrix A−1 for re-use is not possible in this case, as entries in the matrix

A can change even for a fixed mesh. Even though some performance penalties are incurred
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in the proposed approach for constrained BCs they will be restricted only to those cells

adjacent to boundary.

Similarly to the derivation outlined in [72], the equation used to describe the Cauchy

boundary condition at each flux integration point is derived for a reconstructed variable,

u, as follows. The function f( ~X, a, b) which provides the value of the Cauchy boundary

condition at each location ~X of interest can be expressed as

f( ~X, a, b) = a( ~X) fD( ~X) + b( ~X) fN( ~X) (3.31)

where the coefficients a( ~X) and b( ~X) define the contribution of the Dirichlet, fD=u( ~X), and

Neumann, fN = ∂u( ~X)
∂n

, components respectively. All elements in the linear combination are

considered to be known at each Gauss integration point. Thus, for a given integration point,

~Xg, the Dirichlet condition can be expressed in terms of the cell reconstruction, uk( ~X), as

fD( ~Xg) = uk( ~Xg) =
k∑

p1=0

k∑
p2=0

(p1+p2≤k)

(xg − x̄i,j)p1 (yg − ȳi,j)p2 Dk
p1p2

. (3.32)

Similarly, the Neumann condition becomes

fN( ~Xg) =
∂uk( ~Xg)

∂n
= ∇uk( ~Xg) · ~ng (3.33)

= ngx
∂uk

∂x

∣∣∣∣
~Xg

+ ngy
∂uk

∂y

∣∣∣∣
~Xg

=
k∑

p1=0

k∑
p2=0

(p1+p2≤k)

(xg − x̄i,j)(p1−1) (yg − ȳi,j)(p2−1)

[
p1 (yg − ȳi,j)ngx + p2 (xg − x̄i,j)ngy

]
Dk
p1p2

.

Replacing the equations for fD, Eq. (3.32), and fN , Eq. (3.33), in Eq. (3.31) the general

constraint equation which must be satisfied at a flux calculation point ~Xg becomes

f( ~Xg) = f(a, b, fD, fN)
∣∣∣
~Xg

(3.34)

=
k∑

p1=0

k∑
p2=0

(p1+p2≤k)

{
∆X(p1−1)

g ∆Y (p2−1)
g

[
a ∆Xg ∆Yg + b p1 ∆Yg n

g
x + b p2 ∆Xg n

g
y

]}
Dk
p1p2

where ∆Xg = xg − x̄i,j, ∆Yg = yg − ȳi,j, and a and b linear coefficients are specific to the

location of interest. This equation is valid for any reconstruction order k and the general term
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between braces can be used directly to generate the entries corresponding to any combination

of p1 and p2 in the LHS matrix of the linear system for a particular integration point.

An example of coupled constraints is the implementation of inviscid solid wall condition,

~V · ~n = 0, which is imposed by solving a coupled constrained reconstruction with the veloc-

ity components and requiring that the velocity vector is tangent to the geometry at every

Gauss integration point. Thus, the equation that needs to be satisfied by the reconstruction

coefficients of the x- and the y-velocity components, (Dk
p1p2

)u and (Dk
p1p2

)v respectively, is

k∑
p1=0

k∑
p2=0

(p1+p2≤k)

∆Xp1
g ∆Y p2

g ngx(D
k
p1p2

)u +
k∑

p1=0

k∑
p2=0

(p1+p2≤k)

∆Xp1
g ∆Y p2

g ngy(D
k
p1p2

)v = 0 . (3.35)

The matrix A for a constrained least-squares reconstruction in which two variables are

coupled contains entries for the relational constraints, for the individual constraints of each

variable and for the exactly and approximately satisfied mean conservation equations pro-

vided by the reconstructed cell and the neighbours that are part of the stencil, respectively.

Thus, the matrix A in one cell has the general form shown in Table 3.2, where all equations

above the horizontal line are solved exactly and those below this line have the error mini-

mized in the least-squares sense. Note the importance of pivoting in the Gauss elimination

algorithm applied to the constrained equations in order to avoid division by zero.

In the boundary-condition framework, the practical implementation of high-order bound-

ary conditions starts with the requirement that each of the four block boundaries defined

by boundary splines must have one of the two approaches for boundary-condition imple-

mentation specified: that is either boundary-condition specification based on ghost cells

or constrained reconstruction. Note that there are no restrictions regarding the choice of

boundary-condition implementation for each geometric boundary, so any combination is ac-

ceptable. The treatment of the interior boundaries between active solution blocks, in the

case of multi-block meshes, is always done using reconstruction with ghost cells. However,

this level of flexibility for implementing boundary conditions requires exercising care in the

way the reconstruction stencils are defined such that one always obtains a valid yet compact

stencil. The validity of a stencil is assessed based on the condition that there are sufficient

equations to compute the reconstruction coefficients. For multi-block meshes, as discussed

in Chapt. 4, it is also required that the stencils of overlapping ghost and interior cells in

adjacent blocks are identical for the sake of consistency.
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Table 3.2: General form of the left-hand-side matrix, A, corresponding to a constrained

least-squares reconstruction in which two variables are coupled.

A =



· · ·
Relational Constraints

Between Variable 1 and 2

· · ·
· · ·

Individual Constraints

for Variable 1

· · ·

. . .

0
. . .

. . .

0
. . .

· · ·
Individual Constraints

for Variable 2

· · ·
Mean Conservation for Variable 1 · · · 0 · · ·

· · · 0 · · · Mean Conservation for Variable 2

· · ·
Approximately Satisfied

Mean Conservation Equations

for Variable 1

· · ·

. . .

0
. . .

. . .

0
. . .

· · ·
Approximately Satisfied

Mean Conservation Equations

for Variable 2 · · ·



To develop a systematic way of defining consistent and valid reconstruction stencils for

any combination of BC implementations, two criteria are considered for determining the

particular type of a specific block boundary. The first criterion categorizes a block boundary
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based on whether the ghost cells behind it can be part or not of reconstruction stencils. Thus,

a block boundary that allows its ghost cells to support solution reconstructions is termed

transparent. In contrast, a boundary that obstructs the use of ghost cells in reconstruction

stencils is labelled opaque. The second criterion divides block boundaries into constrained

and unconstrained, based on whether the BCs associated to a particular boundary are imple-

mented or not via constrained reconstruction. The presence of a boundary which requires the

BCs to be enforced via constrained reconstruction automatically excludes any usage of the

ghost cells behind it and thus, the boundary becomes opaque and constrained. In general,

opaque boundaries are associated with BCs enforced with constraints but for multi-block

meshes, as discussed in the next chapter, situations arise in which a boundary is deemed to

be opaque, although it is unconstrained, so as to maintain consistency of reconstruction sten-

cils in adjacent blocks. This type of block boundary is denoted as opaque and unconstrained.

Note that the effect of an opaque boundary on the central stencil of an interior cell is to

significantly reduce the number of supporting neighbouring cells used in the reconstruction.

To illustrate the stencil construction issues in the presence of opaque boundaries, it is

instructive to study the situation of a quartic reconstruction for a corner cell which has both

boundary edges requiring constrained reconstruction. One can easily observe that the central

stencil obeying the restrictions imposed by the opaque boundaries includes only 9 instead

of 25 cells, which means one does not have enough equations to compute all 15 polynomial

unknowns for the reconstruction. In case the reconstructed variable has physical boundary

conditions that need to be satisfied at the Gauss integration points, which may or may not

be the case for multivariate PDEs, the system of equations is completed with four additional

constraints of the type of Eq. (3.34), so instead of 9 one would have 13 equations. Even in

this situation, there are still insufficient equations to find the solution, so the stencil would

be deemed as invalid. The approach used herein to avoid any occurrence of invalid stencils is

to extend the supporting reconstruction stencil for any interior cell affected by the presence

of opaque boundaries towards the interior domain. For the aforementioned example, this

procedure would result in a stencil with 16 cells which provides a sufficiently large set of

linear equations (i.e., one exactly and 15 approximately satisfied) to compute all 15 quartic

polynomial unknowns.

To have well-posed problems for multivariate PDEs with boundary conditions based on

constrained reconstruction, the number of variables for which constraints are imposed must
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be in agreement with conditions imposed by the characteristics for the problem [124]. Note

that in this approach no Riemann problem is solved at the boundary and therefore, the

upwinding procedure must be directly embedded in the constrained reconstruction. An

interesting situation arises for implementing the far-field boundary condition based on con-

straints. While the solution of a Riemann problem would ensure the correct propagation of

the information for this BC, with constrained reconstruction one has to choose the number

and the variables to which the constraints are applied based on the direction of the flow be-

fore the reconstructions are carried out. An estimation of the flow direction at the boundary

has been considered herein based on the method suggested by Gottlieb and Groth [150] and

adequate constraints for either inflow or outflow conditions are then imposed accordingly.

Finally, it is worth mentioning that in our implementation, a constrained reconstruction

identified as non-smooth is reverted to a limited linear least-squares reconstruction which

satisfies the boundary conditions with ghost cells and the boundary flux is calculated as

though no constraints would exist for that particular cell edge.

3.7 Inviscid (Hyperbolic) Flux Evaluation

An upwinding formulation is used herein to evaluate the hyperbolic flux at each quadrature

point. Thus, given the left and right solution values, ul and ur, at the quadrature points,

the hyperbolic flux in the advection-diffusion equation, Eq. (2.1), is given by

~FH · ~n =

ul (~V · ~n) if ~V · ~n ≥ 0,

ur (~V · ~n) if ~V · ~n < 0.
(3.36)

The left and right solution states, ul and ur, are determined by performing piecewise k-order

CENO solution reconstruction within each computational cell, as outlined in Sect. 3.6.

For Euler and Navier-Stokes equations, the upwinding procedure is obtained by solving

a Riemann problem at each Gauss quadrature point with the left and right solution vec-

tor states, Ul and Ur. In the present algorithm, both exact and approximate Riemann

solvers can be used to solve the Riemann problem and evaluate the numerical flux. The

Roe linearized Riemann solver [151], HLLE and modified HLLE flux function due to Linde

[152, 153, 154], and the exact Riemann solver of Gottlieb and Groth [150] have all been

implemented and may be used. In general, the approximate Riemann problem can be writ-



3.8 VISCOUS (ELLIPTIC) FLUX EVALUATION 75

ten as a centrally weighting average of the left and right solution fluxes and some sort of

numerical dissipation proportional to the solution jump at the interface, which results in

F(Ul,Ur, ~n) =
1

2

(
~FH(Ul, ~n) + ~FH(Ur, ~n)

)
− 1

2
|A(Ul,Ur, ~n)|(Ul −Ur) , (3.37)

where A(Ul,Ur, ~n) is a linearized dissipation matrix which depends on the local eigenstruc-

ture of the flux Jacobian matrix and is characteristic to each particular Riemann solver. For

multi-dimensional problems, the normal flux is computed by applying a rotation of the left

and right solution states along the local normal direction [115]. Note that the amount of

numerical dissipation in Eq. (3.37) is very dependent on the difference between the left and

right solution states. As this difference decreases in the resolved solution regions with the

increase in the order of reconstruction, as explained in Sect. 3.6.1, one can easily understand

the one of the basic mechanisms through which the high-order procedure improves the nu-

merical solution at each flux calculation point. Not only is the numerical flux more accurate,

due to better solution approximations, but the amount of numerical dissipation introduced

by the upwind spatial discretization is also significantly reduced. The downside of the latter

is that the numerical scheme can have a greater tendency to become unstable.

3.8 Viscous (Elliptic) Flux Evaluation

In a similar manner to hyperbolic fluxes, numerical elliptic fluxes in the advection-diffusion

equation given by Eq. (2.1), ~FE · ~n = −κ ~∇u · ~n , must be evaluated at each quadrature

point of each control volume face. Having determined the left and right (k+1)-order accurate

scalar solution reconstructions, ukl (
~X) and ukr( ~X), a k-order accurate solution gradient at

the inter-cellular face is obtained as the arithmetic mean of the left and right reconstruction

gradients and thus, the elliptic flux at the calculation point, ~X, is evaluated as

~FE · ~n = −κ
[

1

2

(
~∇ukl ( ~X) + ~∇ukr( ~X)

)]
· ~n . (3.38)

Similarly, numerical diffusion fluxes, ~FE · ~n, in the Navier-Stokes equations given by

Eq. (2.14) through Eq. (2.16), are evaluated in the following manner

~FE · ~n = ~FE

(
U, ~∇U

)
· ~n = ~FE

(
1

2

(
Uk
l ( ~X) + Uk

r( ~X)
)
,
1

2

(
~∇Uk

l ( ~X) + ~∇Uk
r( ~X)

))
· ~n ,

(3.39)
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where the two-dimensional reconstruction gradient, ~∇Uk, at a given location ~X is given by

~∇Uk( ~X) =
∂Uk

∂x

∣∣∣∣
~X

ı̂+
∂Uk

∂y

∣∣∣∣
~X

̂ . (3.40)

In the above equation, Eq. (3.40), ı̂ and ̂ are the Cartesian unit vectors and the derivative

of the reconstructed polynomial in the x- and y-direction, ∂Uk

∂x
and ∂Uk

∂y
, respectively, are

computed based on the polynomial coefficients as

∂Uk

∂x

∣∣∣∣
~X

=
k∑

p1=0

k∑
p2=0

(p1+p2 6=0)

p1(x− x̄i,j)p1−1(y − ȳi,j)p2Dk
p1p2

, (3.41a)

∂Uk

∂y

∣∣∣∣
~X

=
k∑

p1=0

k∑
p2=0

(p1+p2 6=0)

p2(x− x̄i,j)p1(y − ȳi,j)p2−1Dk
p1p2

. (3.41b)

To summarize, this chapter introduced the high-order CENO FV algorithm and its im-

plementation on single-block structured meshes. Moreover, a detailed anatomy of CENO

schemes has been performed and several relevant properties have been revealed. Numerical

investigation of the proposed CENO discretization is performed in Chapt. 5. The next chap-

ter will take the CENO scheme to another level of complexity by introducing its application

in combination with a flexible, parallel, block-based, AMR procedure.



Chapter 4

HIGH-ORDER CENO WITH

PARALLEL ADAPTIVE MESH

REFINEMENT

The CENO finite-volume scheme described in Chapt. 3 is now considered for application

on multi-block structured mesh subject to automatic solution-directed mesh adaptation.

Strategies for how to provide high solution accuracy in steady and unsteady flows at grid

resolution changes are investigated. Moreover, refinement criteria other than physics-based

are formulated and examined. Additionally, the domain-decomposition method for paral-

lel implementation on multi-processor architectures and the inter-processor communication

associated with the high-order algorithm are discussed.

4.1 Parallel Block-Based AMR Algorithm

As previously mentioned in Sect. 1.3.2, the implementation of the proposed adaptive high-

order CENO finite-volume algorithm is considered using the block-based AMR framework

proposed and developed by Sachdev et al. [98], Gao and Groth [92, 112], and Gao et

al. [155] for body-fitted mesh. Thus, a flexible block-based hierarchical data structure is

used in conjunction with the CENO finite-volume scheme to facilitate automatic solution-

directed mesh adaptation on two-dimensional body-fitted multi-block quadrilateral mesh.

The method allows for the use of anisotropic mesh and is well suited to parallel implemen-

tation via domain decomposition. In contrast to the lower-order variant, the high-order

mesh adaptation procedure described in this work requires the development of inter-block

communication dependent on the order of solution accuracy and formulation of high-order

77
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treatment of physical boundaries, boundary conditions and solution transfer between AMR

grids. Aspects of the block-based AMR algorithm for multi-block quadrilateral mesh and

second-order finite-volume scheme are described in the work by Sachdev et al. [98]. This

approach has been already successfully applied to the prediction of various complex flows

[92, 96, 113], and here it is extended to high-order accuracy.

In the block-based AMR algorithm considered herein, mesh adaptation is accomplished

by the dividing and coarsening of appropriate solution blocks. In regions requiring increased

cell resolution, a “parent” block is refined by dividing itself into four “children” or “offspring”

(see Fig. 4.1(b)). Each of the four quadrants or sectors of a parent block becomes a new block

having the same number of cells as the parent and thereby doubling the cell resolution in the

region of interest. This process can be reversed in regions that are deemed over-resolved and

four children are coarsened into a single parent block. The mesh refinement is constrained

such that the grid resolution changes by only a factor of two between adjacent blocks and

the minimum resolution is not less than that of the initial mesh.

A hierarchical tree-like data structure with multiple “roots”, multiple “trees”, and addi-

tional interconnects between the “leaves” of the trees is used to keep track of mesh refinement

and the connectivity between solution blocks (see Fig. 4.1(a)). The blocks of the initial mesh

are the roots of the forest which are stored in an indexed array data structure. Associated

with each root is a separate “quadtree” data structure that contains all of the blocks making

up the leaves of the tree created from the original parent blocks during mesh refinement.

Each grid block corresponds to a node of the tree. Traversal of the multi-tree structure

by recursively visiting the parents and children of solution blocks can be used to determine

block connectivity. However, in order to reduce overhead associated with accessing solution

information from adjacent blocks, the neighbours of each block are computed and stored,

providing direct interconnects between blocks in the hierarchical data structure that are

neighbours in physical space. One of the advantages of the hierarchical quadtree data struc-

ture is that it readily permits local mesh refinement. Local modifications to the multi-block

mesh can be performed without re-gridding the entire mesh and re-calculating all solution

block connectivities.

As described in previous chapters, the solution of the conservation equations by the

CENO finite-volume method provides area-averaged solution quantities within quadrilateral

computational cells and these cells are embedded in structured blocks consisting of Ncells =
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(a) Hierarchical data structure (b) Depiction of the blocks A, B, and C

Figure 4.1: (a) Adaptive mesh refinement quad-tree data structure, and (b) associated self-

similar solution blocks of the quadrilateral body-fitted mesh with different resolution levels.

Nx ×Ny cells, where Nx and Ny are even, but not necessarily equal integer values. Solution

data associated with each block are stored in indexed array data structures and it is therefore

straightforward to obtain solution information from neighbouring cells within blocks.

The hybrid CENO solution reconstruction procedure is used in conjunction with standard

multi-grid-type restriction and prolongation operators to evaluate the solution on all blocks

created by the coarsening and division processes, respectively. Details of the application

of CENO reconstruction to multi-block mesh and the high-order solution transfer between

AMR grids are given in Sect. 4.2 and Sect. 4.3, respectively.

In order that the finite-volume scheme can be applied to all blocks in a more independent

manner, some solution information is shared between adjacent blocks having common inter-

faces. This information is stored in additional layers of overlapping “ghost” cells associated

with each block. The number of ghost cells required depends on the accuracy of the scheme

and follow the same guidelines laid out in Sect. 3.6.3. An illustration of the additional layers

of ghost cells for a refined O-grid mesh and the types of existing inter-block communication

are depicted in Fig. 4.2. As can be seen in Fig. 4.2(b), at interfaces between blocks of equal

resolution, such as B and C, a one to one correspondence exists and thus, the ghost cells

are simply assigned the solution values associated with the appropriate interior cells of the

adjacent blocks. At resolution changes, such as those occurring between the coarse block
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A and the refined blocks B and C, as shown in Fig. 4.2(b), either a coarse to fine or a fine

to coarse solution transfer is required depending on whether the ghost cells belong to the

coarse or the fine adaptive block. In these situations, restriction and prolongation opera-

tors, similar to those used in block coarsening and division, are employed to evaluate the

ghost cell values, the design of which is based on solution conservation and accuracy ratio-

nales. Within the AMR approach, additional inter-block communication is also required at

interfaces with resolution changes to strictly enforce the flux conservation properties of the

finite-volume scheme [86, 87]. In particular, the interface fluxes computed on more refined

blocks are used to correct the interface fluxes computed on coarser neighbouring blocks and

ensure the solution fluxes are conserved across block interfaces.

4.2 CENO Scheme on Body-Fitted Multi-Block Mesh

The high-order CENO algorithm described in the previous chapter for a single block is ex-

tended herein to multi-block meshes by storing in each constituent solution block enough

(a) Planar view of refined O-grid mesh with

one coarse and four refined blocks.

(b) Exploded view of the blocks A, B and C, showing the

overlapping ghost cell layers of each block and representing

schematically the types of information transfer occurring be-

tween interior and ghost cells.

Figure 4.2: (a) Illustration of refined multi-block O-grid and (b) associated types of inter-block

communication (i.e., fine to coarse, coarse to fine, and equal resolution).
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information to allow the performance of the high-order solution reconstruction and residual

calculation in each computational cell without intermediate data transfer from neighbouring

blocks. Since there is no inter-block communication during the high-order residual evalua-

tion, the CENO algorithm can be directly applied to each block independently in the way

described in Sect. 3.6. The information incorporated in the overlapping layers of ghost cells

is in general sufficient to allow an independent high-order reconstruction and residual evalua-

tion in each cell of an interior block, but additional information must be typically exchanged

between the neighbouring blocks near physical boundaries to carry out the reconstruction

process. The additional exchanged data is primarily related to the geometry of the curved

boundaries and the boundary conditions imposed in the adjacent blocks. Note that this data

is not exchanged at every iteration and/or time step. In fact, it is only updated when the

multi-block topology near physical boundaries is modified, such as during mesh adaptation.

To see why the exchange of this additional information is required for the application

of the high-order solution procedure to a boundary block, it is instructive to look at the

differences depicted in Fig. 4.3 between a low- and a high-order representation of a corner

block in a multi-block mesh. As can be seen in Fig. 4.3(b), a low-order representation of the

“true” physical domain boundaries, shown in Fig. 4.3(a), requires only information about the

location of all grid nodes along the boundary, including those associated with the ghost cells.

This is a consequence of the fact that the faces of the quadrilateral control volumes can be

obtained by connecting the adjacent nodes with straight segments. Thus, this knowledge is

typically sufficient to develop a solution procedure up to 2nd-order accuracy. In contrast, the

edges of the high-order boundary elements shown in Fig. 4.3(b) cannot be constructed based

only on the node locations and information for the boundary splines is required. The extra

pieces of information required by the high-order reconstruction procedure applied to ghost

cells adjacent to physical boundaries are provided by storing extension (ghost) boundaries.

Hence, ghost boundaries provide local information about the nearby representation of phys-

ical boundary splines shared by adjacent blocks, and this role is very similar to that of the

overlapping layers of ghost cells. Not only are these ghost boundaries useful for computing

the geometric properties of the ghost cells, but they also provide essential information about

the way in which the BCs are imposed and consequently, they influence the choice of the

reconstruction supporting stencil in the neighbourhood and the type of the reconstruction

(i.e., constrained or unconstrained) in their adjacent ghost cells.
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(a) “True” physical domain

(b) Low-order domain representation (c) High-order domain representation

Figure 4.3: (a) Illustration of the “true” domain and its division into multiple blocks; and

(b) the low- and (c) the high-order mesh representations for the corner block. Straight line

segments are sufficient for representing interior block boundaries. The extension (ghost)

boundaries provides complete information about the properties of the neighbouring splines.
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As anticipated, the main complication arising in the high-order CENO reconstruction

on multi-block mesh is the formulation of an algorithm that provides identical or consis-

tent supporting stencils for the overlapping ghost and interior cells of adjacent blocks near

physical boundaries for all possible combinations of methods to impose BCs (i.e., via ghost

cells or constrained reconstruction). To make this point clear, let’s assume that the west

block boundary in Fig. 4.3(c) requires constrained reconstruction (i.e., an opaque and con-

strained boundary) and its south extension boundary (i.e., the west block boundary of the

south neighbour) requires BCs specified by ghost cells (i.e., a transparent and unconstrained

boundary). Obviously, both ghost and interior cells in the proximity of the SW corner of this

block require a special treatment. Their reconstruction supporting stencil must be chosen

to obey the conditions imposed by the nearby splines and at the same time must remain a

valid stencil. Note also that the same conditions must be mirrored in the south neighbour

block where the SW corner is substituted for the NW cell. Depending on the type of the

boundaries that meet in a corner there are 16 distinctive cases that can exist but after the

non-realizable situations are eliminated only 8 are left. These realizable combinations are

illustrated schematically for a SW block corner in Fig. 4.4.

It should be clear from Fig. 4.4 that the top four cases do not present any problems

for formulating a valid reconstruction stencil if the rules outlined in Sect. 3.6.3 for opaque

boundaries are followed (i.e., do not use cells beyond the constrained boundary and enlarge

the stencil as required in the opposite direction to that of the boundary). The bottom four

cases are made consistent by setting the unconstrained extension boundary closest to the

constrained boundary as unconstrained and opaque boundary and follow similar rules as those

Figure 4.4: Representation of the valid combinations of boundary types for the SW block

corner.
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previously mentioned. Additionally, the process of enlarging the stencil is subject to ensuring

that identical stencils can be obtained in the adjacent blocks. The implementation improves

the computational efficiency of the scheme on blocks with constrained reconstruction by

marking the type of the reconstruction (i.e., no reconstruction, central stencil reconstruc-

tion, modified stencil unconstrained reconstruction and constrained reconstruction) in each

constituent computational cell as a preprocessing step.

4.3 High-Order Solution Transfer on AMR Grids

In the refinement process of a grid block the geometry of the newly created cells belonging

to the offspring is obtained by dividing the domain of each coarse interior cell into four

fine cells denoted as I, II, III and IV , as illustrated in Fig. 4.5. The new nodes represent

the midpoint of each coarse face and the weighted average of the four coarse corners. Note

that a body-fitted mesh is obtained herein by ensuring that the inserted points are on the

boundary splines representing the physical curved boundaries and this approach is taken

for both low- and high-order boundary representations. Note also that the utilization of

high-order boundary elements for curved boundaries, as seen in Fig. 4.5(b), ensures natu-

rally the equality of the coarse element area, AΩ, and the summation area of the offspring

(i.e., AI + AII + AIII + AIV ) thereby avoiding the necessity for correction algorithms during

(a) Low-order boundary representation (b) High-order boundary representation

Figure 4.5: Depiction of a coarse cell division into four fine cells for low- and high-order

block boundary elements.
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solution distribution procedure. Based on this property the following solution conservation

equation can be written for each average conserved solution quantity, ūΩ, of the coarse cell

ūΩAΩ = ūIAI + ūIIAII + ūIIIAIII + ūIVAIV . (4.1)

In order to maintain the high-order solution accuracy for combinations of CENO algo-

rithm with the aforementioned block-based AMR approach accurate solution transfer oper-

ators must be formulated. Note that the procedure for correcting the fluxes across block

interfaces with different grid resolution always ensures the conservation properties of the

numerical scheme but it does not necessarily ensure high-order accuracy of the solution.

Therefore, accurate solution transfer between the overlapping interface cells is required for

steady-state calculations and, additionally, between the interior cells of the parent and chil-

dren blocks in unsteady flow AMR simulations.

The restriction and prolongation operators used herein are derived from the conservation

property of the solution content for overlapping cell domains expressed as Eq. (4.1). Ad-

ditionally, a high-order accurate solution transfer from the coarse cell to the fine cells (i.e.,

prolongation) is provided here by incorporating information about the solution distribution

over the coarse cell domain. In particular, to distribute the average solution quantity among

offspring with high-order accuracy the high-order polynomial reconstructions of all solution

variables in the coarse cell are integrated over the domain of each fine cell, which reads for

the domain I

ūI =
1

AI

∫∫
AI

ukcoarse( ~X)dx dy , (4.2)

where the surface integral is computed exactly with an appropriate-order Gauss quadrature

contour integration as indicated in Fig. 4.5(b) and explained in Appendix A.

It should be clear that the prolongation operator described above automatically satisfies

Eq. (4.1) if the interpolant ukcoarse represents the reconstruction of a conserved quantity of the

governing equation set. However, this type of solution distribution does not enforce explicitly

the positivity conditions, such as non-negative pressure and density, and consequently, in case

they are violated, a direct injection approach (i.e., ūI = ūII = ūIII = ūIV = ūΩ) is used herein.

For reconstructions performed with derived quantities such as primitive solution states,

W̄ , the approach considered in this work is to compute the average conserved state of each

fine cell by correcting the average quantities obtained from integration of the coarse recon-
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struction polynomials with any non-zero solution error distributed uniformly over the coarse

cell domain. Thus, the average conserved solution state for a fine cell s is given by

Ūs = Ū ′s + ∆Ū = f
(
W̄ ′
s

)
+

1

AΩ

[
ŪΩAΩ −

IV∑
i=I

f
(
W̄ ′
i

)
Ai

]
, (4.3)

where f(W ) represent the mapping function of the derived quantities into the conserved

ones. As in the previous case, direct injection is used if non-physical values are encountered.

4.4 Refinement Criteria Based on High-Order Solution

In previous work, the coarsening and division of blocks was directed using multiple physics-

based refinement criteria [92, 96, 98, 113]. In this work, an h-refinement criterion based on

the solution smoothness indicator is defined and used to control refinement of the body-

fitted multi-block AMR mesh. The form considered herein for the CENO-based refinement

criterion is:

Rc = e−
max(0,S)

Us∗Sc (4.4)

where Us is a scaling coefficient. Based on the range of S and the above definition for the

refinement criterion, it should be evident that Rc always takes values in the range (0, 1]. Each

block is then assigned the maximum Rc value of all cells within the block and in order to

decide which blocks are to undergo mesh refinement, refining and coarsening thresholds are

used. The coefficient, Us, is introduced for convenience and provides an easy way of adjusting

the values of the coarsening and refining thresholds relative to the value of the cutoff Sc.

For multiple reconstructed variables a unique Rc is obtained by taking the maximum value

among all or a reduced set of solution variables. Note that the proposed refinement criterion

is non-dimensional and consequently, the relative importance of different variables for AMR

can be easily assessed based only on their relative smoothness.

Hence, the solution accuracy can be significantly improved by directing mesh adaptation

based on the proposed refinement criterion only as long as there is a tight correlation between

the discretization error and the local solution smoothness as measured by the smoothness in-

dicator. Note that many dominant local solution features, such as unresolved and/or poorly

resolved smooth solution content, shear layers, and discontinuities/shockwaves, may exhibit

such a correlation at least for a range of mesh resolutions, if not continuously as in the
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case of solution discontinuities. Over resolving of non-smooth solution features (e.g., dis-

continuities) can be avoided by specifying a maximum allowable level of mesh refinements.

Since many flows are characterized by a direct relation between the final accuracy of the

solution and the level with which the aforementioned types of dominant solution features

are resolved, it should be clear that using smoothness-based mesh adaptation, at least in the

initial stage of the solution procedure, can appropriately identify regions required for mesh

refinement. However, this may not necessarily be the case for a desired targeted solution

accuracy, in which case it would be more appropriate to devise a combined mesh adaptation

based on both smoothness and a posteriori error estimates, such as the one described below.

Note that instead of competing with each other, the two approaches are rather complimen-

tary. Smoothness-based adaptation can provide adequately resolved solutions for which error

estimates are then reliable and the solution can be refined to the desired level of accuracy.

Another way to exploit the high-order solution reconstruction for adaptive mesh refine-

ment is to construct a posteriori error estimates based on different p-th order polynomial

approximations similar to the formulations proposed by Barth and Larson [156]. However,

this approach has been only briefly explored in this work by assessing the effectiveness of

estimating the error magnitude and location introduced by low-order reconstructions of ana-

lytical functions when the “true” function representation is replaced with a high-order poly-

nomial interpolant. In particular, it has been confirmed that cubic and quartic polynomials

provide a reliable way of approximating the “true” analytical solution and can be effectively

used for truncation error estimation in conjunction with linear or quadratic reconstructions.

4.5 Domain Decomposition and Parallel Implementation

Although the block-based AMR approach described above is somewhat less flexible and

incurs some inefficiencies in solution resolution as compared to a cell-based approaches (i.e.,

for the same solution accuracy, generally more computational cells are introduced in the

adapted grid), the block-based method offers many advantages over cell-based techniques

when parallel implementation of the solution algorithm is considered and computational

performance issues are taken into account.

Domain decomposition involves decomposing a computational mesh and distributing the

sub-meshes among the processors of a multi-processor architecture. In particular, the multi-
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block quadrilateral mesh and quadtree data structure lends itself naturally to geometric

decomposition as the solution blocks can be easily distributed to the processors, with more

than one block permitted on each processor as shown in Fig. 4.6. Thereby, it should enable

efficient and scalable implementations of the CENO FV scheme on distributed-memory ho-

mogeneous multi-processor (identical processors) architectures, as previously demonstrated

by various 2nd-order algorithms [92, 96, 98, 113] and illustrated by the parallel efficiency

study shown in Sect. 5.8.2 of numerical results.

The parallel implementation of the block-based AMR scheme has been carried out using

the C++ [157] version of the MPI (message passing interface) library [158]. Additionally,

C++ templates are used extensively throughout our parallel AMR and high-order CENO im-

plementation thereby providing a flexible and unique framework for all flow solvers, avoiding

code redundancy and improving software maintainability. Inter-processor communication

is mainly associated with block interfaces and involves the exchange of ghost-cell solution

values and conservative flux corrections at every stage of the multi-stage time integration

procedure. Consequently, the amount of exchanged data between processors is proportional

to the total number of ghost cells in a block whereas the computational work per block is

varying with the number of interior cells, Ncells =Nx × Ny. As the ratio of the number of

ghost cells to the interior cells is decreasing inversely proportional with the square of Nx

and Ny, it results that the parallel efficiency of the high-order scheme is very dependent

on the number of interior cells and it rapidly increases as the blocks get larger and larger.

Figure 4.6: Bock distribution among the processors of a multi-processor architecture.
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To improve the efficiency of the parallel communication, message passing of the ghost-cell

values and flux corrections is performed by consolidating inter-processor messages.

4.6 Computational Resources Used for Numerical Sim-

ulations

Computational resources for performing all of the calculations reported herein were provided

by the SciNet High Performance Computing Consortium at the University of Toronto and

Compute/Calcul Canada through funding from the Canada Foundation for Innovation (CFI)

and the Province of Ontario, Canada.

All of the computations were carried out on two clusters, the General Purpose Cluster

(GPC) and the Tightly Coupled System (TCS). The GPC consists of Intel Xeon E5540

(2.53 GHz) nodes whereas the TCS cluster is based on IBM Power6-575 (4.7 GHz) nodes.

Both systems are connected with a high-speed, low-latency, non-blocking 4x-DDR Infiniband

interconnect.



Chapter 5

NUMERICAL RESULTS

“Results! Why man, I have gotten a lot of results. I know several thousand

things that won’t work.”

by Thomas A. Edison (1847-1931), American inventor

To demonstrate the capabilities of the proposed high-order CENO scheme described in the

previous chapters, numerical results are presented in this chapter for solution reconstruction

in one- and two-space dimensions, as well as for various one- and two-dimensional flow

problems governed by the advection-diffusion, the Euler and the Navier-Stokes equations.

Moreover, the predictive capabilities of the CENO scheme are illustrated with results on

both fixed and AMR meshes. Additionally, in order to facilitate the interpretation of the

numerical results, the next section provides a summary of the methods used for analyzing

the proposed high-order algorithm.

5.1 Assessment of Properties of CENO Discretization

“Wir müssen wissen. Wir werden wissen.”

We must know. We will know.

by David Hilbert (1862-1943), German mathematician (his tombstone epitaph)

The process of validation and verification of CFD solutions and techniques currently

represents an important component of establishing the credibility of newly proposed CFD

algorithms in the context of computational science and engineering. Moreover, with powerful

computers becoming more common, credibility of simulation techniques must be established

through rigorous and systematic error quantification [114, 159]. The purpose of this section

is to describe the investigation techniques used for the analysis of the CENO algorithm and

for determining the discretization properties of this numerical scheme.

90
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The verification of the proposed CENO algorithm and the analysis of its discretization

properties have been thoroughly investigated over the course of this research following the

methods established in the literature, such as those described by Roache [114] and Zingg

[160]. Thus, the techniques considered in this work include: comparisons between high- and

low-order solutions for the same grid resolution; systematic grid convergence studies carried

out for a large range of problems based on either analytic solutions, solution invariants

or accurate converged solutions obtained on very fine meshes; solution visualization with

high-resolution; quantification of errors on highly distorted meshes; numerical investigations

regarding the recovery of mathematical principles; and, last but not least, comparisons

with the prediction of other similar techniques and/or experimental values. Several details

regarding the application of the aforementioned techniques in this work are now discussed.

Accurate visualization is crucial for assessing the solution quality of CFD simulations.

It is especially important for high-order methods, where fine solution details reflected in

the simulation data may be lost in the process of visualization with low-resolution meth-

ods. It is a very common problem that sharp features captured by high-order algorithms

get “smeared out” by the low interpolation techniques used in most of the current plotting

packages, determining erroneous interpretations of the numerical results and the capabili-

ties of the numerical scheme [161, 162]. At the very least, one should plot the simulation

data with higher mesh resolution in order to reproduce the high-order solution variations

with increased fidelity. Another choice is to employ more accurate and efficient, but also

more complex, visualization techniques that both reproduce and exploit the mathematical

structure of high-order methods, such as the ray-tracing procedure described by Meyer et

al. [162]. The approach considered in this work was to enhance the high-order solution

visualization by including additional plotting points. For pure reconstruction studies, a sub-

grid mesh of arbitrary resolution was superimposed over the geometry of each quadrilateral

element and thus, very accurate visualizations were possible by evaluating the polynomial

reconstruction at the nodes of the subgrid mesh. However, such an approach is not practical

when performing realistic flow simulations due to the generation of large volumes of data

and therefore, the compromised solution adopted herein is to plot the reconstruction values

at nine points in each quadrilateral element, which were chosen as follows: the four vertices,

the four face midpoints and the centroid. Note that even with the relatively reduced set of

points used here, it is still possible to visualize the solution discontinuities across element
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interfaces and equally important, to judge “continuous to the eye” profiles more accurately.

Accurate visualization represents only one element in analyzing high-order methods, and

far more convincing results are provided by systematic grid convergence studies with error

quantification [114, 160]. One of the requirements for performing accurate convergence

studies is to generate sequences of refined meshes which to guarantee a uniform and smooth

mesh-spacing variation throughout the domain. This condition has been satisfied in this

work by either employing transfinite interpolation (TFI) algorithm [163] for mapping uniform

grids of different resolution in a computational domain to the physical domain with irregular

boundaries used for numerical studies, or by including finer nodes in between the nodes of the

coarser mesh in a systematic way. Note that an alternative approach to the latter technique

is to generate the sequence of meshes by coarsening, as outlined in [160]. Furthermore,

the curved boundaries of the computational domains considered in this work are all defined

with a sufficient number of control points at each grid resolution level so as to avoid any

discretization errors that may occur due to inaccuracy of the geometry representation.

Critical to convergence studies is the error quantification process itself. Thus, for exact

solutions and/or solution invariants the numerical error of the scheme was assessed in the

L1, L2 and L∞ norms as follows:

L1 = |E|1 =
1

AT

∑
i,j

∫∫
Ai,j

∣∣∣uki,j(x, y)− uexact(x, y)
∣∣∣ da , (5.1)

L2 = |E|2 =

{
1

AT

∑
i,j

∫∫
Ai,j

[
uki,j(x, y)− uexact(x, y)

]2

da

}1/2

, (5.2)

L∞ = |E|∞ = max
i,j

{
1

Ai,j

∫∫
Ai,j

∣∣∣uki,j(x, y)− uexact(x, y)
∣∣∣ da} , (5.3)

where i and j indices describe all interior cells of the structured mesh, uki,j(x, y) represents the

polynomial reconstruction of the predicted solution and uexact(x, y) is the exact solution at the

error calculation point. Note that the error norms defined in Eq. (5.1)−(5.3) can be applied

to any exact solution field, regardless of whether it represents a reconstructed variable or a

derived quantity of the variables that are reconstructed. An example of solution invariant

used for accuracy assessment herein is provided by the constancy of the entropy for isentropic

flows. The accurate calculation of the surface integrals in Eq. (5.1)−(5.3) is performed

herein with the adaptive Gauss-Lobatto quadrature procedure outlined in Appendix A, in

which at least eight exact digits are sought in the integration result.
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For problems in which accuracy assessment is based on errors in functional estimation,

such as prediction of aerodynamic lift and drag coefficients, accurate and efficient functional

estimation is obtained by integrating the reconstructions of relevant dependent flow quan-

tities, such as fluid pressure for lift and/or normal velocity gradient for drag, along the

specified geometric surfaces, which in general are curved. The curvilinear function integra-

tion procedure used herein is a Gauss quadrature rule of five points for each quadrilateral

edge, the details of which are provided in Appendix A.

The reminder of this chapter presents a large volume of numerical experiments which

provide credibility to the proposed CENO algorithm and illustrate the predictive capabil-

ities and performance of the current implementation for problems in one and two-space

dimensions.

5.2 Function Reconstruction on Fixed Mesh

Several representative examples of one- and two-dimensional function reconstruction have

been included herein to demonstrate the accuracy and robustness of the CENO reconstruc-

tion approach which lies at the core of the proposed high-order finite-volume scheme. More-

over, comparisons between the CENO and the original ENO reconstructions are provided

for both smooth and discontinuous one-dimensional functions.

5.2.1 One-Dimensional Smooth Trigonometric Function

To assess the accuracy of the hybrid CENO scheme, reconstructions of the smooth trigono-

metric function f(x) = sin(2x)+2 cos(x) on cell-centred one-dimensional uniform meshes are

compared to the exact solution. In Fig. 5.1, the cubic (k= 3) reconstruction obtained with

32 computational cells for −5 < x < 5 is shown together with the exact function. It can be

seen in the figure that this smooth function features multiple extrema and inflection points

which can be accurately captured only with polynomials of appropriate order. Low-order

methods cannot properly resolve such solution features. The 3rd-order CENO reconstruction

resolves properly all smooth extrema of the function on the current mesh and consequently,

the reconstructed polynomial is deemed smooth in every computational cell.

The L1, L2, and L∞ norms of the reconstruction error associated with hybrid CENO
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Figure 5.1: Piecewise cubic (k=3) hybrid CENO reconstruction of the smooth trigonometric

function f(x) = sin(2x) + 2 cos(x) on a one-dimensional uniform mesh of 32 computational

cells is compared to the exact function for −5 < x < 5.

reconstruction are shown in Fig. 5.2(a) and Fig. 5.2(b). Results are given for piecewise linear

(k = 1), quadratic (k = 2), cubic (k = 3), and quartic (k = 4) reconstruction and compared

to reconstruction errors obtained using the original ENO scheme of Harten et al. [18]. It is

evident that the reconstruction errors of the CENO scheme are quite comparable to those of

the ENO approach, and the expected theoretical asymptotic convergence rates of the 2nd-,

3rd-, 4th-, and 5th-order accurate methods are achieved (the order of accuracy of k-exact

CENO schemes is k + 1 for smooth resolved functions). Note also that for under-resolved

meshes, the switching to limited linear reconstruction employed by the CENO scheme as

a mechanism to preserve monotonicity produces absolute errors that are similar to those

obtained by selecting the smoothest stencil in the ENO approach.
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(a) Error norms for piecewise linear and quadratic

(b) Error norms for piecewise cubic and quartic

Figure 5.2: L1, L2, and L∞ norms of the reconstruction errors for ENO and hybrid CENO

reconstructions of the function shown in Fig. 5.1 as a function of the number of computational

cells. (a) Piecewise linear (k = 1) and quadratic (k = 2) reconstructions, and (b) piecewise

cubic (k=3) and quartic (k=4) reconstructions are shown.
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5.2.2 One-Dimensional Smooth Exponential Function with Large

Gradients

A similar set of numerical results are shown in Fig. 5.4 for the reconstruction of the smooth

function f(x) = e−4x sin(5x) on the domain −5 < x < 5. Results are depicted for cubic

(k = 3) and quartic (k = 4) CENO reconstructions and compared to ENO reconstructions.

This function features a very large peak near x = −4.5 (refer to Fig. 5.3) which determines

large oscillations to non-monotone reconstructions when it is under-resolved as shown in

Fig. 3.3. The proposed CENO scheme is able to handle this feature in an accurate and also

robust manner. For meshes containing less than 40-50 cells, the function is under-resolved

and monotonic piecewise linear reconstruction of the peak is obtained. As more cells are

added, the function is then resolvable on the mesh and a smooth 4th-order reconstruction

of the function is achieved with the expected asymptotic convergence rate of this 5th-order

accurate scheme. Again, the reconstruction errors of the CENO scheme are very comparable

to those of the ENO approach.
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Figure 5.3: Reconstruction of f(x) = e−4x sin(5x) on cell-centred one-dimensional uniform

mesh for −5 < x < 5 containing 64 and 100 computational cells. Results obtained using

piecewise cubic (k=3) ENO and hybrid CENO schemes are compared to the exact function.

Figure 5.4: L1 and L∞ norms of the reconstruction errors for ENO and hybrid CENO

reconstructions of the function shown in Fig. 5.3 versus the number of computational cells

(piecewise cubic (k=3) and quartic (k=4) reconstructions are shown).
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5.2.3 One-Dimensional Discontinuous Step Function

The robustness of the CENO approach is now illustrated by considering the reconstruction of

a discontinuous step function on a one-dimensional uniform mesh for −1 < x < 4 containing

11 computational cells. Results obtained using piecewise linear (k = 1), quadratic (k = 2),

cubic (k = 3), and quartic (k = 4) ENO and hybrid CENO schemes are compared to a

piecewise constant representation and the exact function (refer to Fig. 5.5). It is quite

evident that the discontinuous solution is not resolvable on any mesh and the hybrid CENO

scheme is able to recognize this and reverts to a monotonic piecewise linear representation

of the solution. Note that the solutions obtained with the CENO reconstruction for all

reconstruction orders near discontinuity overlap each other, which is a consequence of the

switching to a limited linear reconstruction in that region.

Figure 5.5: Reconstruction of a discontinuous step function on a one-dimensional uniform

mesh for −1 < x < 4 containing 11 computational cells. Results obtained using piecewise

quadratic (k = 2), cubic (k = 3), and quartic (k = 4) ENO and hybrid CENO schemes are

compared to a piecewise constant representation and the exact function.
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5.2.4 Two-Dimensional Smooth Trigonometric Function

The properties of the CENO reconstruction for two-dimensional smooth solution variations

are now illustrated with the trigonometric function u(x, y) = 1.1 + cos(πx2 + 4πy) and the

domain defined by the Ringleb’s flow [164] solution between the streamlines corresponding

to k = 0.75 and k = 1.5, and the iso-velocity contour q = 0.5 (see Sect. 5.6.3 for more details

about the Ringleb’s flow). The exact solution for this problem and the quartic (k=4) CENO

reconstructed solution on a mesh with 40×40 cells are shown in Fig. 5.6. As can be easily

observed, the quartic CENO reconstruction captures all the smooth extrema of the function

very well on this relatively coarse mesh which is shown in Fig. 5.7(a), generating a solution

profile that is visually indistinguishable from the exact solution. Note also that the solution

gradients are not at all aligned with the mesh in this test.

To quantify the errors of the CENO reconstruction procedure for this problem conver-

gence studies have been carried out with different parameters and two types of meshes ranging

from 10×10 to 160×160 computational elements. The first sequence of meshes was repre-

sented by regular grids similar to the one shown in Fig. 5.7(a) whereas the second sequence

was generated by disturbing randomly the nodes of the meshes in the first category. The

disturbed mesh with 40×40 computational cells used for this study is shown in Fig. 5.7(b).

To evaluate the accuracy of the CENO procedure the cubic (k = 3) and quartic (k = 4)

(a) Exact solution (b) Quartic (k=4) solution reconstruction

Figure 5.6: Exact solution of function u(x, y) = 1.1+cos(πx2 +4πy) and the quartic solution

reconstruction on a regular mesh with 40×40 computational cells.
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(a) Regular grid (b) Disturbed grid

Figure 5.7: The regular and disturbed body-fitted meshes with 40×40 cells used in the con-

vergence study of the function depicted in Fig. 5.6.

reconstructions have been considered in three cases: A) using only k-exact reconstruction,

B) using CENO reconstruction with a pass/no-pass cutoff value Sc = 1, 000 and C) using

CENO reconstruction with Sc=5, 000. In Fig. 5.8 the corresponding convergence history in

all these situations is presented for L1, L2, and L∞ error norms. The results verify that the

theoretical convergence orders based on different error norms which are four for the cubic

and five for the quartic reconstruction, respectively, are achieved at least in the asymptotic

limit. Additionally, the error norms obtained on the disturbed meshes are very similar to

those corresponding to the regular grids, although the absolute error is slightly larger, and

they are both very close to the asymptotic convergence rates indicated with the triangles

depicted in the figures.

The influence of the cutoff value, Sc, can also be inferred from the plots. First, note that

all considered reconstructions produce similar errors on a mesh with 10×10 cells regardless

of the cutoff value which confirms the fact that this mesh is well under-resolved. Next, a

“transition” regime occurs in which not all cell reconstructions are considered resolved based

on the cutoff value and differences between the k-exact and the CENO errors are observed.

The extent of this transition regime is a function of the cutoff value but also of the order of

the reconstruction, as can be seen be comparing the plots in Fig. 5.8(a) and (b). Finally,

after a minimum resolution has been attained and all cell reconstructions are deemed to be

smooth, the solution maintains only the character of the k-exact reconstruction and becomes
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insensitive to cutoff values in the recommended range. Note that for the complex solution

variation considered herein and a cubic reconstruction, the minimum resolution corresponds

to around 60 to 100 cells in one-space dimension. However, the quartic reconstruction is

able to capture more accurately the inflections of the tested function with fewer cells and

consequently, enters into the final regime at a minimum resolution of around 40 to 60 cells.

(a) Cubic (k=3) reconstruction on regular mesh

(b) Quartic (k=4) reconstruction on regular mesh (c) Quartic reconstruction on disturbed mesh

Figure 5.8: Cubic and quartic convergence history for L1, L2, and L∞-norms of the recon-

struction error of the function u(x, y) = 1.1 + cos(πx2 + 4πy). Three cases are considered

based on the cutoff value, Sc: A) k-exact, B) Sc=1, 000 and C) Sc=5, 000.
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5.2.5 Two-Dimensional Abgrall’s Function

The reconstruction of a non-smooth function in two dimensions by the proposed hybrid

CENO scheme is considered next. Reconstruction of the function examined in previous

studies by Abgrall [165] and Ollivier-Gooch [30] is considered. A contour plot of Abgrall’s

function is given in Fig. 5.9(a). A similar contour plot of a fourth-order (k = 4) CENO

reconstructed solution of this function for a stretched 80×80 non-uniform mesh is given in

Fig. 5.9(b) and cross sections of the reconstructed solutions using the 2nd-order (k = 2),

3rd-order (k=3), and 4th-order (k=4) CENO schemes for the 80×80 non-uniform mesh are

depicted in Fig. 5.10 and compared to the exact representation of the function as well as those

for simple piecewise constant reconstruction. It is evident that the CENO reconstruction

accurately represents the Abgrall’s function in smooth regions while providing virtually non-

oscillatory reconstructions near discontinuities.

A quantitative assessment of the error for this problem has also been performed. Figure

5.11 shows the variation of the L1 error norm corresponding to piecewise constant (k =

0), linear (k = 1) and cubic (k = 3) reconstructions for a sequence of Cartesian meshes

ranging from 50×50 to 400×400 computational cells. The results show that, regardless of

the reconstruction order, the CENO reconstruction procedure always generates a first-order

(a) Exact function (b) Fourth-order CENO reconstruction

Figure 5.9: (a) The exact solution of the non-smooth function of Abgrall; (b) contours of a

fourth-order (k=4) CENO reconstructed solution for a stretched 80×80 non-uniform mesh.
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Figure 5.10: Cross sections of 2nd-order (k = 2), 3rd-order (k = 3), and 4th-order (k = 4)

CENO reconstructed solution of the Abgrall function along the line shown in Fig. 5.9(a)–(b).

accurate solution for this problem. This fact is expected due to the presence of discontinuous

solution data in the reconstructed function and due to the design of the CENO scheme.

However, a relatively significant reduction in the magnitude of the error for a particular

mesh resolution can also be observed (i.e., the error curves are shifted downwards) as the

order of the reconstruction is increased. Obviously, this effect is due to a better representation

of the function in the smooth regions by higher-order polynomials and translates in fewer

computational cells required to obtained a desired accuracy. In particular, the piecewise

cubic reconstruction requires about 40% fewer computational cells than the linear one for

the arbitrary desired accuracy indicated in the figure, which represents a significant number

considering the fact that Abgrall’s function exhibits an abundance of discontinuous regions.

5.3 Function Reconstruction with AMR

Reconstruction of Abgrall’s function is now re-considered in conjunction with AMR. A con-

tour plot of a third-order (k=3) CENO reconstructed solution of this function on an initial

uniform 10×10 Cartesian mesh consisting of 1 block and 100 computational cells is shown
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Figure 5.11: L1 norm of the reconstruction error obtained for Abgrall’s function with piece-

wise constant (k= 0), linear (k= 1) and cubic (k= 3) reconstructions versus the number of

computational cells.

in Fig. 5.12(a). The initial 10×10 mesh is given in Fig. 5.13(a). A sequence of refined mesh

is then generated using the h-refinement criterion defined in Sect. 4.4. The Abgrall function

is re-imposed on each mesh level before the mesh is further refined. A sequence of eight

mesh refinements was carried out and the resulting multi-block AMR meshes are depicted in

Fig. 5.13. The final mesh consisted of 3,535 blocks 10×10 and 353,500 cells with a refinement

efficiency of η = 0.946. The reconstructed solution on the finest mesh using the 4th-order

CENO scheme is shown in Fig. 5.12(b). A cross section of the cubic CENO reconstructed

solution along the section line shown in Fig. 5.12(b) is depicted in Fig. 5.12(c) and compared

to the exact representation of the Abgrall function. In addition, the regions in which the hy-

brid CENO scheme uses the unlimited cubic and limited linear reconstruction procedures are

shown in Fig. 5.12(d). It can be seen that the regions where limited piecewise reconstruction

is used correspond to regions where Abgrall’s function is either not C0 or not C1 continuous.

The refinement of the AMR mesh is automatically directed toward these regions. Another

important observation is that the proposed h-refinement criterion is capable of identifying

all of the discontinuous regions, regardless of the strength of the solution jumps.
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(a) Solution on the initial mesh (b) Solution on the final mesh

(c) (d) Distribution of unlimited and limited regions

Figure 5.12: (a) Contour plot of a third-order (k = 3) CENO reconstructed solution of the

Abgrall’s function on an initial uniform 10×10 Cartesian mesh consisting of 1 block and

100 computational cells; (b) the cubic reconstructed solution on the mesh obtained after eight

mesh refinements which consists of 3,535 blocks and 353,500 cells; (c) Cross section of the

cubic CENO reconstructed solution is compared against the exact solution of the Abgrall’s

function along the section line shown in (b); and (d) regions in which the CENO scheme

uses unlimited cubic and limited linear reconstruction.
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(a) Initial Mesh (b) Two levels of refinement (c) Three levels of refinement

(d) Four levels of refinement (e) Five levels of refinement (f) Six levels of refinement

(g) Seven levels of refinement (h) Eight levels of refinement (i) Nine levels of refinement

Figure 5.13: (a)-(i) Sequence of AMR meshes generated by the block-based refinement algo-

rithm for the refinement of the Abgrall’s function (refer to Fig. 5.12). The initial mesh (a)

consisted of 1 block and 100 computational cells. The final mesh (i) had 3,535 blocks 10×10

and 353,500 cells with a refinement efficiency of η=0.946.
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5.4 Solution of the Advection-Diffusion Equation on

Fixed Mesh

The accuracy and robustness of the hybrid CENO algorithm is now assessed based on solu-

tions to the advection-diffusion equation discussed in Sect. 2.1 obtained on fixed meshes.

5.4.1 Circular Advection of Smooth Inflow Variation

To begin the assessment of the accuracy of the CENO scheme for the advection-diffusion

equation, the problem of circular advection with a constant angular velocity and a smooth

inflow solution variation u(x, 0) = ed sin6(π d) if d ∈ [0 : 1], otherwise 0, where d = x− 0.3, is

first considered. The BCs for the problem are shown in Fig. 5.14(a). The predicted solution

on a 80×80 Cartesian mesh using the 4th-order (k = 4) CENO is shown in Fig. 5.14(a).

The L1, L2, and L∞ norms of the error in the predicted solution for both 4th-order versions

(k= 3 and k= 4) of the proposed CENO finite-volume scheme obtained on a series of grids

ranging in size from 40×40 to 200×200 are given in Fig. 5.14(b) for this smooth problem.

As the mesh is refined, the slopes of the L1-, L2- and L∞-norms for both 4th-order schemes

approach in the asymptotic limit -4.53, -4.55 and -4.58 for the cubic reconstruction (k=3),

and -4.94 in all error norms for the quartic reconstruction (k = 4), respectively, indicating

that the expected theoretical accuracy has been achieved in each case.

5.4.2 Circular Advection of Discontinuous Inflow Variation

To test the robustness of the CENO scheme in the presence of large gradients or discontinu-

ities, a similar problem but with a top-hat inflow function was used. The results shown in

Fig. 5.15(a)–(b) demonstrate that the hybrid CENO algorithm can obtain monotone solu-

tions by switching to a limited linear reconstruction in the regions detected as non-smooth.

5.4.3 Numerical Investigation of Elliptic Operator Discretization

Prior to discussing results that concern the advection-diffusion equation with non-zero dif-

fusion operator, it is important to consider some of the properties of the proposed elliptic

discretization as defined by Eq. (3.38)−(3.41). Clearly, computing the interface gradients
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(a) (b)

Figure 5.14: (a) Predicted 4th-order (k= 4) CENO solution to the circular advection of the

smooth inflow variation defined in the text obtained on an 80×80 Cartesian mesh; (b) L1,

L2 and L∞ error norms in the solution for cubic and quartic CENO reconstructions.

(a) (b)

Figure 5.15: (a) Predicted solution for the circular advection of top-hat inflow variation

obtained using a 4th-order (k= 4) CENO scheme on a Cartesian mesh with 150x150 com-

putational cells. Several velocity streamlines as well as the cross-section line A-A are also

shown; (b) Numerical and exact solution profiles along the cross-section line A-A.

by averaging the reconstructions used for the discretization of hyperbolic operators has im-

portant computational advantages but it also raises questions about its usability, as similar

formulations with second-order discretizations lead to several problems such as odd-even
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solution decoupling [3, 64]. To shed some light on whether the current elliptic discretization

suffers from any of the problems reported in the literature, a series of investigations have

been performed for different reconstruction orders. While the accuracy of Eq. (3.38) can be

readily observed to be k-order accurate based on the design of the scheme, other properties

of the resulting discretization such as positivity (related to local satisfaction of a discrete

maximum principle) or odd-even solution decoupling can be only inferred from more careful

analysis.

For these purposes, it is convenient to apply the proposed elliptic discretization to the

Laplace operator, L(u) = ∇2u, and analyze the influence coefficient (i.e., the weight) of each

entry in the supporting stencil [64]. Thus, the resulting discrete version of the local Laplacian,

L̃(u)=
N∑
n=0

αnūn, represents a linear combination of average solutions, ūn, pertaining to cells

with influence on the residual computation, R0, for the Laplace equation, L̃(u) = 0, in the

cell of index n= 0. Hence, the sufficient condition for the discrete Laplacian based on an

N -point stencil to satisfy a discrete version of the maximum principle, that is

min(ū1, ū2, . . . , ūN) ≤ ū0 ≤ max(ū1, ū2, . . . , ūN), (5.4)

is to require that all coefficients satisfy αn≥ 0 for n ∈ [1, N ]. Note that for a given elliptic

discretization scheme and a supporting stencil the influence coefficients, αn, and consequently

the positivity of the scheme, depend only on the local mesh geometry and not on the actual

solution. Since these weights represent partial derivatives of the residual R0 with respect

to average solutions ūn, a convenient and more generic way to compute them for arbitrary

mesh geometries is by a finite-differencing approximation. As proposed by Coirier [64], the

positivity and stability of the scheme can then be characterized in terms of α0 and α̃min

where

α̃min =
min(αn, 0)√

1

N

∑
n

α2
n

, n ∈ [1, N ] . (5.5)

Ideally, α0 < 0 for stability and α̃min = 0 for positivity [65]. Moreover, it is important to

assess whether or not the dangerous situation of odd-even solution decoupling may occur

as a manifestation of checkerboard patterns of coefficients αn = 0 (i.e., the n-neighbour cell

does not influence the Laplacian residual R0).

In the current work, different mesh topologies were analyzed including Cartesian, stretched,
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and randomly disturbed quadrilateral grids. Analysis of the proposed discretization proce-

dure has shown that odd-even solution decoupling does not occur. In terms of the stability

and positivity, it was found that α0 < 0 (i.e., the schemes are stable) but also α̃min < 0 for dis-

cretizations of all order, unfortunately implying that, while stable, none of the discretizations

satisfy the discrete maximum principle. This result agrees with the general perception that,

for finite-volume discretizations, accuracy and positivity are essentially conflicting properties

[64]. Note that for square Cartesian meshes, values for α̃min are found to be -0.823 for k=2,

-0.362 for k = 3 and -0.854 for k = 4 when inverse distance geometric weighting is used in

the k-exact reconstruction. However, the positivity can be improved by using an inverse

distance squared geometric weighting, for which α̃min was found to be -0.051 for k=2, -0.247

for k = 3 and -0.324 for k = 4. For non-Cartesian meshes, large variations in the value of

α̃min are possible (−5 < α̃min < 0), depending on the regularity and topology of the mesh.

It should be mentioned that for the test problems and the computational meshes discussed

in this results section, the lack of strict positivity of the elliptic discretization did not seem

to represent an obvious issue, at least for the range of cases considered.

5.4.4 Residual-Based Accuracy Assessment for Poisson Equation

To investigate the accuracy of the proposed algorithm for discretization of elliptic operators,

convergence studies based on the residual error to Poisson equation ~∇ · (~∇u) = a eβ u have

been performed using the exact solution u(x, y)= 1
β

[
ln
(

8C
aβ

)
−2 ln |(x+ A)2 + (y +B)2 − C|

]
,

where A= 2.0, B = 1.0, C = 2.0, a= 2.5 and β = 0.001. The domain in this study was the

rectangular box defined by 0.5≤x, y≤4.5. The L1, L2 and L∞ norms of the flux integral (i.e.

the residual) errors obtained for a sequence of Cartesian and randomly disturbed meshes are

shown in Fig. 5.16(a) and (b), respectively, for quadratic (k= 2), cubic (k= 3) and quartic

(k = 4) interpolants. The correspondent slopes of the L1-, L2- and L∞-norms were deter-

mined based on all measured error values and are shown in Table 5.1 for both Cartesian and

disturbed meshes.

The results of Fig. 5.16 and Table 5.1 show that both cubic and quartic interpolants

produce a 4th-order scheme for Cartesian meshes in all error norms, whereas the quadratic

reconstruction generates a 2nd-order one. The result for k= 3 in Fig. 5.16(a) demonstrates

that due to error cancellations a cubic interpolant is also able to generate a 4th-order scheme

for elliptic operator discretizations. However, an analysis of the error norms in Fig. 5.16(b)
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(a) Error norms for Cartesian meshes (b) Error norms for distorted meshes

Figure 5.16: L1, L2 and L∞ norms of the residual error to Poisson equation ~∇ · (~∇u) = a eβ u

for piecewise quadratic (k= 2), cubic (k= 3) and quartic (k= 4) reconstructions versus the

number of computational cells of (a) Cartesian meshes and (b) randomly distorted meshes.

Table 5.1: The slope values corresponding to each convergence error plot shown in Fig. 5.16.

Mesh Reconstruction L1 L2 L∞

Order

k=2 1.99 2.01 1.93

Cartesian Grid k=3 3.98 4.07 3.89

k=4 3.77 4.02 3.87

k=2 1.41 1.47 1.10

Distorted Grid k=3 1.99 2.05 1.86

k=4 3.35 3.53 3.18

reveals that the error cancellation effect does not occur on the randomly disturbed meshes

and as such, the error norms of cubic and quartic reconstructions differ by one. Unfortu-

nately, this is not a rigorous convergence study due to the random disturbance of the nodes

and as a result, the error norms of both reconstructions are somewhat lower than the ex-

pected theoretical ones. However, the numerical results provide support for the point made

concerning the effects of error cancellation.
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5.4.5 Heat Conduction Equation with Source Term

The predictive capability of the proposed algorithm was also determined for solutions to

the Poisson equation ∇2 u = 6u, using the boundary conditions and the domain shown in

Fig. 5.17(a) by finding the converged steady-state solution to the equation ∂u
∂t

= ∇2 u− 6u.

Although a general exact solution exists for the Poisson equation shown above, the boundary

conditions imposed for this problem makes the solution independent of the y-direction and

consequently, an analytic solution can be obtained by solving a second-order ODE with

constant coefficients. Hence, the analytic solution for this particular problem is:

u (x, y) =

(
e
√

6
2

(1+2x) − e−
√

6
2

(1+2x)
)

e
√

6

e2
√

6 − 1
. (5.6)

Figure 5.17(b) shows the 4th-order solution (k = 4) obtained with the high-order algo-

rithm and with Dirichlet boundary conditions implemented based on the exact solution on a

disturbed computational grid with 100 cells. The result of the grid convergence studies car-

ried out for this problem and presented in Fig. 5.18 demonstrates that the numerical solution

converges with the theoretical order of accuracy in all L1, L2 and L∞ norms for quadratic

(k= 2) and quartic (k= 4) reconstructions. For linear (k= 1) and cubic (k= 3) approxima-

tions the L1, L2 and L∞ norms of the solution error converge with a rate that is one order

higher, due to error cancellations on uniform Cartesian meshes. Thus, for linear (k = 1),

quadratic (k= 2) and cubic (k= 3) reconstructions, the L1 norms of the solution error are

2.14, 2.21 and 4.16 respectively, and for quartic reconstruction (k=4) L1 = 4.37, L2 = 4.40

and L∞ = 4.25. For comparison, the error norms obtained for the 4th-order scheme (k=4)

on distorted meshes are also shown in Fig. 5.18 and confirm that the theoretical order of

accuracy is again obtained.

5.4.6 Solution of the Laplace Equation on Curved Boundaries

The numerical scheme was also investigated for solutions to the Laplace equation and ge-

ometries with curved boundaries such as the annulus domain shown in Fig. 5.19(a). Dirichlet

boundary conditions were implemented along the domain contour based on the exact solution

considered for this problem which was u(x, y) = eµx (A cos(µ y) + B sin(µ y)), where A= 1,

B = 2 and µ= 1.5. The predicted solution obtained using the 4th-order (k= 4) high-order
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(a) (b)

Figure 5.17: (a) Definition of the diffusion problem and (b) 4th-order solution to diffusion

problem obtained on distorted computational grid.

Figure 5.18: L1, L2 and L∞ error norms for the heat conduction problem as a function

of mesh density obtained using the high-order scheme with linear (k=1), quadratic (k=2),

cubic (k=3), and quartic (k=4) interpolants for Cartesian meshes. Error norms for quartic

polynomial are also shown for disturbed meshes.

scheme on a curvilinear mesh with 40×40 cells is shown in Fig. 5.19(a). The L1, L2, and L∞

norms of the error in the predicted solution for cubic (k=3) and quartic (k=4) interpolants

are given in Fig. 5.19(b) for this problem. The slopes of the L1- and L2-norms reach in the
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asymptotic limit -3.86 and -3.85 for k=3 and -3.86 and -3.81 for k=4, respectively. As can

be easily observed, even if the slope of the cubic and quartic polynomials are basically the

same and both very close to the theoretical value, there is about one order difference between

the magnitudes of the errors, demonstrating the benefits of using quartic interpolants.

5.4.7 Two-Dimensional Channel Flow Problem

The application of the proposed CENO scheme is now considered for problems involving

both advection and diffusion terms for a range of Péclet numbers. Solution of the advection-

diffusion equation Eq. (2.1) with a constant velocity, ~V = (v0, 0), and constant diffusion

coefficient, κ(x, y)=κ0 =0.01, on the rectangular domain of length L=3 and unit width was

considered for three different Péclet numbers, depending on the value of v0. The studied

Péclet numbers correspond to Pe = 0.1, at which diffusion dominates the flow, to Pe = 1, at

which advection and diffusion are equally represented and to Pe=10, which is representative

for an advection dominated problem.

The boundary conditions for this problem, as shown in Fig. 5.20, are

u(x, 0) = u(x, 1) = 0 , u(0, y) = sin(π y) , and
∂u(L, y)

∂x
= 0 . (5.7)

A similar study was considered by Ollivier-Gooch and Van Altena for the evaluation of high-

(a) (b)

Figure 5.19: (a) Fourth-order (k=4) solution to the Laplace equation on a mesh with 40×40

computational cells. (b) L1, L2 and L∞ norms of the error as a function of mesh density

obtained with the cubic (k=3) and quartic (k=4) polynomial interpolants.
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(a) Pe=10.0 (b) Pe=0.1

(c) Pe=1.0 (d) Pe=10.0

Figure 5.20: (a) Numerical prediction of channel flow problem on an 80×40 Cartesian mesh.

(b)-(d) L1, L2 and L∞ norms of the solution error as a function of mesh density obtained

with cubic (k=3) and quartic (k=4) interpolants for different Péclet numbers.

order finite-volume schemes in [72]. The analytic solution to this problem can be determined

by the method of separation of variables and can be arranged such that to avoid numerical

problems for convection dominated flows in the following form:

u(x, y) =
sin(π y)(

R [eL(R−1)]
r1 − 1

) (R [e(RL+x−L)
]r1 − er2 x) (5.8)

where r1,2 = v0
2κ0
±
√

v20
4κ2

0
+ π2 and R = r2

r1
.

The numerical solution obtained for Pe = 10 on an 80×40 Cartesian mesh is shown in

Fig. 5.20(a) and the error norms for this advection-diffusion problem associated to each
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of the three Péclet numbers are shown in Fig. 5.20(b)–(d). The results show that the

errors generated by the quartic polynomial are consistently lower than those of the cubic

interpolant by at least one order of magnitude for all Péclet numbers and get the theoretical

accuracy in all norms. Thus, the L1- and L2-norms for k = 4 are -4.02 and -4.08 for Pe =

0.1, -4.30 and -4.46 for Pe = 1.0 and -3.92 and -3.95 for Pe = 10.0, respectively. In the

case of cubic interpolant, the error norms are -3.92 and -3.85 for Pe = 0.1, -3.88 and -3.81

for Pe = 1.0 and -3.53 and -3.62 for Pe = 10.0, respectively. It can be also seen in the

error plots that, for the same accuracy level, the cubic interpolant requires almost twice as

many computational cells as the quartic one. Taking into account that both polynomial

reconstructions, quartic and cubic, use the same reconstruction stencil, the only extra cost

associated with quartic reconstruction is to determine five additional variables during the

least-squares reconstruction procedure.

5.5 AMR Solution of the Advection-Diffusion Equation

The application of the proposed high-order CENO finite-volume scheme to the solution of

circular advection at constant angular velocity is again considered. In this case, the inflow

function was chosen such that to test both the accuracy and robustness of the scheme as well

as the capability of the high-order scheme in conjunction with AMR. The inflow variation was

u(x, 0)=e2 d sin6(2 π d) if d ∈ [0 : 0.8], otherwise 0, where d=x− 0.4. The same boundary

conditions as those shown in Fig. 5.14 were used for this problem. The predicted solution

obtained using the 4th-order CENO scheme (k=3) on a final mesh consisting of 2,911 blocks

and 291,100 computational cells is shown in Fig. 5.21(a). The solution profile along the cross-

section A-A is compared against the exact solution in Fig. 5.21(b). The initial mesh and the

final mesh are depicted in Fig. 5.21(c) and (e), respectively. The results clearly show that the

proposed AMR scheme in conjunction with the h-refinement criteria based on the smoothness

indicator of the hybrid CENO reconstruction technique is capable of refining both under-

resolved (in-accurate) and non-smooth regions of the solution and will not unnecessarily

refine resolved solution content. The smooth peaks are all well captured by the high-order

scheme whereas the solution discontinuity is well identified by the smoothness indicator and

well resolved by the hybrid CENO scheme in conjunction with the AMR procedure.
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(a) Fourth-order CENO prediction (b)

(c) Initial mesh (d) Three levels of refinement

(e) Six levels of refinement

Figure 5.21: (a) Fourth-order (k = 3) CENO prediction to circular advection of a smooth

and discontinuous inflow variation on final mesh; (b) Comparison of numerical and exact

solutions along the cross section A-A; (c) Initial mesh with 16 10×10 blocks and corresponding

regions in which CENO scheme uses limited linear reconstruction (shown in red); (d) Refined

mesh after 3 level of refinement (d) Final refined mesh after 6 refinement levels with 2,911

10×10 blocks and refinement efficiency of η=0.955.
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5.6 Solution of the Euler Equations on Fixed Mesh

The application of the proposed high-order CENO finite-volume scheme to the numerical

solution of a hyperbolic system of nonlinear conservation laws has also been investigated.

Here, numerical solutions of the one- and two-dimensional forms of the Euler equations of

compressible gas dynamics described in Sect. 2.2 are considered.

5.6.1 One-Dimensional Blastwave Interaction Problem

The accuracy and robustness of the CENO scheme is investigated first with the classical

blastwave interaction problem of Woodward and Colella [166]. Numerical results for this

case are shown in Fig. 5.22 for both the 4th-order CENO scheme with cubic (k=3) hybrid

reconstruction and a 4th-order version of the original ENO scheme using locally defined

characteristic variables. Results for a 2nd-order TVD scheme with limited piecewise linear

reconstruction are also depicted in the figure. A uniform mesh containing 400 cells was used.

Figure 5.22: Numerical solutions of the one-dimensional blast wave interaction problem of

Woodward and Colella [166]. Predictions of flow density at t = 0.038s obtained using the

4th-order CENO finite-volume scheme are depicted and compared to solutions obtained using

a 4th-order ENO scheme and a 2nd-order TVD scheme with limited linear piecewise linear

reconstruction for a uniform mesh with 400 cells.
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The “exact solution” was generated with the 4th-order ENO algorithm on a mesh with 800

cells. It can be seen that the predictions of the CENO scheme are very similar to those of

the ENO method, and both yield significantly improved results as compared to the TVD

scheme for this very challenging problem involving strong nonlinear wave interactions.

5.6.2 Sod Shock-Tube Problem

Another classical test case considered herein is the Sod’s shock tube problem [167] on the

domain [−1, 1] with the following initial condition

[ρ, u, p] (x, 0) =

{
[1 0 1], x < 0[

1
8

0 1
10

]
, x > 0 .

The predicted density profile by the 4th-order CENO scheme with 100 and 400 cells,

respectively, at t = 0.5 s is shown in Fig. 5.23. In this numerical simulation the 4th-order

Runge-Kutta time-marching method and a CFL = 0.5 were used together with a CENO

spatial discretization based on the Roe numerical flux function, the Venkatakrishnan’s limiter

Figure 5.23: The numerical prediction of the 4th-order CENO scheme with 100 and 400 cells

is compared to the exact solution of the density variable for the Sod’s shock tube problem.

Several regions of interest are identified for reference: (1) - rarefaction head, (2) - rarefaction

tail, (3) - contact discontinuity, (4) - shockwave discontinuity.
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and the CENO cutoff value of Sc=1, 500. The results show that the CENO scheme is capable

of representing accurately the smooth rarefaction profile while providing a monotone and

accurate representation of the solution discontinuities on different mesh resolutions.

To assess the predictive capabilities of the CENO scheme relative to other approaches,

the CENO profiles in the regions defined in Fig. 5.23 are compared in Fig. 5.24 against

those of a TVD scheme and of an ENO method using characteristic variables. The results

demonstrate that CENO predictions are very similar to those of ENO and consistently more

accurate than those of the TVD scheme. Moreover, slightly better results are obtained with

CENO than with the ENO method near the rarefaction head and the contact discontinuity.

(a) Rarefaction head (1) (b) Rarefaction tail (2)

(c) Contact discontinuity (3) (d) Shockwave discontinuity (4)

Figure 5.24: Predicted density profiles in the regions defined in Fig. 5.23 obtained with a 4th-

order ENO, a 4th-order CENO and a 2nd-order TVD scheme on different mesh resolutions.
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5.6.3 Ringleb Flow

The application of the proposed high-order CENO finite-volume scheme to the solution of the

two-dimensional form of the Euler equations using body-fitted multi-block quadrilateral mesh

has also been considered herein. The accuracy of the high-order spatial discretization scheme

is demonstrated by first considering numerical predictions of Ringleb’s flow. Ringleb’s flow

involves isentropic, expanding, irrotational flow between two streamlines and exact solutions

for this smooth continuous flow field can be determined by analytical means [164, 168].

Therefore, this flow also represents a good test case to assess the influence of different sets of

reconstructed variables to the accuracy of the CENO scheme. In particular, the head-to-head

comparison of CENO schemes based on reconstruction of primitive and conserved variables,

respectively, has been performed herein by carrying out systematic grid convergence studies

and comparing the solution accuracies in the density variable for each approach.

As a first case, an entirely subsonic flow solution is considered for which the domain is

defined by streamlines corresponding to kmin = 0.4 and kmax = 1.0 and by the subsonic

inflow boundary corresponding to q = 0.3. In this case, inflow, outflow, and streamline

(a) 4th-order (k=3) CENO prediction (b) Density error norms

Figure 5.25: (a) Predicted Mach number distribution for subsonic Ringleb’s flow obtained

using the 4th-order CENO scheme; and (b) L1, L2, and L∞ error norms in the predicted

solution density for this flow obtained using the 3rd- and 4th-order versions of the CENO

schemes as a function of mesh density. The error norms for the 4th-order CENO scheme are

shown for both reconstruction of primitive variables (PV) and of conserved variables (CV).
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boundary conditions based on the exact solution are prescribed. The predicted Mach number

distribution for subsonic Ringleb’s flow obtained using the 4th-order CENO FV scheme on

a 40×40 body-fitted mesh is shown in Fig. 5.25(a). The L1, L2, and L∞ norms of the error

in the predicted solution density for 3rd- and 4th-order versions (k = 2 and k = 3) of the

CENO scheme with reconstruction of primitive variable (PV) obtained on a series of grids

ranging in size from 10×10 to 160×160 is given in Fig. 5.25(b) for this subsonic flow. As

the mesh is refined, the slopes of the L1- and L2-norms for the 3rd- and 4th-order schemes

approach -2.97, -3.02, -4.08, and -4.09, respectively, indicating that the expected theoretical

accuracy has been achieved in each case. Moreover, the same figure shows that the error

norms corresponding to the CENO variant based on reconstruction of conserved variables

(CV) are very comparable to those resulting from the CENO reconstruction of primitive

variables, the former being characterized by a slightly lower magnitude than the latter but

basically by the same order of accuracy.

A transonic variant of Ringleb’s flow defined by kmin = 0.5, kmax = 1.2, and q = 0.3

has also been examined here. In this case, reflection boundary conditions were applied

along the streamline boundaries by enforcing the inviscid (slip) condition, ~V · ~n=0, at all

Gauss integration points via the constrained least-squares reconstruction procedure outline

in Sect. 3.6.3. The predicted Mach number distribution for this flow obtained using the

4th-order CENO finite-volume scheme on a 80×80 body-fitted mesh is given in Fig. 5.26(a)

and the L1, L2, and L∞ norms of the error in predicted density and pressure obtained using

the 3rd- and 4th-order versions of the CENO scheme are shown in Fig. 5.26(b) and (c).

In this case, the slopes of the L1- and L2-norms shown in Fig. 5.26(b) for the 3rd- and 4th-

order CENO schemes based on reconstruction of primitive variables approach -3.06, -3.00,

-3.93 and -4.02, respectively, illustrating that the accuracy of the scheme can be maintained at

curved boundaries by using constrained least-squares reconstruction and accurate boundary

description. Similarly to the subsonic case, the error norms of the 4th-order CENO schemes

based on reconstruction of primitive and conserved variables, respectively, are compared for

this supersonic flow in Fig. 5.26(b). The results show that the convergence rates for the two

reconstruction methods based on primitive and conserved variables are again very similar

and both recover the expected convergence rate in the asymptotic regime. Additionally, it is

easily observed by inspecting Fig. 5.26(b) and (c) that the error norms in predicted solution

pressure are merely a translation of those obtained in predicted solution density, thereby
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confirming that the same order of accuracy is recovered for all primitive solution variables.

Moreover, our numerical experiments demonstrate that the error introduced by the mapping

of average conserved to average primitive variables as explained in Sect. 3.6 is relatively

small and does not affect noticeably the order of convergence for the scheme.

(a) 4th-order (k=3) CENO prediction

(b) Density error norms (c) Pressure error norms

Figure 5.26: (a) Predicted Mach number distribution for transonic Ringleb’s flow obtained

using 4th-order CENO scheme; and L1, L2, and L∞ error norms in the predicted solution

density (b) and pressure (c) for transonic Ringleb’s flow obtained using the 3rd- and 4th-

order CENO schemes as a function of mesh density. The error norms for the 4th-order

CENO scheme are shown for both reconstruction of primitive variables (PV) and of conserved

variables (CV).
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5.6.4 Subsonic Flow Past Circular Cylinder

The accuracy and performance of the proposed CENO schemes are now further examined

by considering subsonic flow past a circular cylinder with a free-stream Mach number of

M∞=0.38. The predicted Mach number distributions obtained using the 2nd- and 4th-order

CENO schemes are given in Fig. 5.27(a) and (b), respectively. It is quite noticeable that,

(a) 2nd-order (k=1) CENO (b) 4th-order (k=3) CENO

(c) L2 error norms

Figure 5.27: Predicted Mach number distributions for M=0.38 subsonic flow past a circular

cylinder obtained using (a) the 2nd-order CENO and (b) the 4th-order CENO on a 80×40

grid; (c) L2 norms of the error in entropy for the subsonic flow past a circular cylinder.
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for the same mesh resolution, the 4th-order CENO solution is significantly more accurate

than the 2nd-order CENO result. To quantify these findings, the L2 norms of the error in

the predicted entropy (the flow is homentropic and the entropy is constant) are determined

on a sequence of four structured O-grids ranging in size from 20×10 to 160×80 and shown

in Fig. 5.27(c). As the mesh is refined, the slopes of the L2-norms for the 3rd- and 4th-order

schemes approach -2.74 and -4.02, respectively.

5.6.5 Supersonic Flow Past Circular Cylinder

To demonstrate the ability of the CENO schemes to handle robustly flows with both smooth

and non-smooth regions, the predicted Mach number distribution obtained on a 160×160

grid M = 1.5 flow past a circular cylinder is shown in Fig. 5.28(a). By reducing to limited

linear reconstruction near the shocks in the flow, a monotone solution is obtained using the

4th-order scheme. The regions of the flow in which the CENO scheme uses the unlimited

cubic and limited linear reconstruction procedures are shown in Fig. 5.28(b). As can be

easily observed by comparing the two figures, the regions in which the numerical procedure

(a) (b)

Figure 5.28: (a) Predicted Mach number distribution for M=1.5 flow past a circular cylinder

obtained using the 4th-order CENO scheme on a 160×160 grid; and (b) regions in which the

CENO scheme uses unlimited cubic and limited linear reconstruction for M = 1.5 flow past

a circular cylinder.
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uses the limited linear reconstruction correspond to the location of the bow shock and the

shocks occurring at the back of the cylinder.

5.7 Solution of the Euler Equations with AMR

5.7.1 Supersonic Flow Past Circular Cylinder

The application of the proposed high-order AMR CENO finite-volume scheme to the solution

of supersonic flow past a circular cylinder is again considered. In this case the free-stream

Mach number is M∞ = 2.1 and the capability of the high-order scheme is examined in

conjunction with AMR. The predicted pressure distributions obtained using the 4th-order

CENO scheme on a final mesh consisting of 2,150 blocks and 215,000 computational cells

is shown in Fig. 5.29(a). Corresponding to this solution, the regions of the flow in which

the CENO scheme uses the unlimited cubic and limited linear reconstruction are shown in

Fig. 5.29(b). The sequence of adaptively refined meshes leading to the final refined mesh

starting with an initial mesh that consists of 8 10×10 solution blocks is depicted in Fig. 5.30.

(a) (b)

Figure 5.29: (a) Predicted pressure distribution for M=2.1 flow past a circular cylinder ob-

tained using the 4th-order CENO scheme on the final refined AMR mesh; and (b) correspond-

ing regions in which the CENO scheme uses unlimited cubic and limited linear reconstruction

for M=2.1 flow past a circular cylinder.
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The results clearly show that the proposed AMR scheme in conjunction with the h-refinement

criteria based on the smoothness indicator of the hybrid CENO reconstruction technique is

capable of refining both under-resolved (in-accurate) and non-smooth regions of the solution

and will not unnecessarily refine resolved solution content. The bow shock and shocks arising

at the base of the cylinder are well identified by the smoothness indicator and well resolved

by the AMR procedure.

(a) Initial mesh (b) One level of refinement (c) Two levels of refinement

(d) Three levels of refinement (e) Four levels of refinement (f) Five levels of refinement

Figure 5.30: Sequence of adaptively refined AMR mesh for supersonic flow past a circular

cylinder: (a) initial mesh with 8 10×10 blocks; (b) first refined mesh with 32 10×10 blocks;

(c) second refined mesh with 110 10×10 blocks; (d) third refined mesh with 320 10×10 blocks;

(e) fourth refined mesh with 908 10×10 blocks; (f) final refined mesh with 2150 10×10 blocks

and refinement efficiency of η=0.737.
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5.7.2 Smooth Translation of Density Variation

Finally, in order to estimate the accuracy of the CENO algorithm in conjunction with the

AMR procedure, the linear advection of the density variation ρ(x) = 1− tanh2(x−xo) from

xo(10, 10) along a 30◦ direction is considered in a rectangular box. The Mach number of

the advecting flow is M = 0.7 and the final time of interest is t = 100 ms. Although this

problem can also be solved using only the advection equation described in Chapt. 2.1 and

does not require the full system of Euler equations, its presentation as an Euler simulation

is only for the purpose of exemplifying first different qualitative aspects of the AMR CENO

finite-volume algorithm and then to undergo this quantitative accuracy assessment.

The initial condition as well as the starting meshes are shown in Fig. 5.31(a). In

Fig. 5.31(b) it is shown the final solution and the meshes at the end of the advection.

The error norms based on the error measurements at the end of the advection are shown in

Fig. 5.32 for uniform and dynamically refined AMR Cartesian meshes.

The plot of the error norms of this problem shows that for targeted solution accuracies

less than 10−3, the number of computational cells required by the 4th-order CENO scheme

(a) Initial Cartesian and perturbed meshes (b) Final Cartesian and perturbed meshes

Figure 5.31: (a) Representation of initial density variation ρ(x) = 1 − tanh2(x − xo),

xo(10, 10), on the starting Cartesian and disturbed AMR meshes; (b) Final solution rep-

resentation on both Cartesian and perturbed AMR meshes at the end of the advection.
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Figure 5.32: L1, L2 and L∞ norms of the error at the end of the advection (see Fig. 5.31(b))

as a function of mesh density obtained using a 2nd-order limited scheme and the 4th-order

CENO method on both uniform and dynamically refined AMR Cartesian meshes.

applied in conjunction with AMR is about 10 to 20 times smaller in each coordinate direction

than what a limited 2nd-order scheme on uniform mesh would require. This would imply a

reduction in mesh requirements by a factor of 100-400 for two-dimensional problems and by

a factor of 1,000-8,000 in three dimensions, thus further demonstrating the great potential

of the high-order AMR approach. The plot also reveals the fact that if low solution error

is required, the high-order scheme on uniform mesh may require fewer computational cells

than a 2nd-order method used in conjunction with AMR, which confirms Jameson’s findings

[12] mentioned earlier in the motivation section of this thesis (see Sect. 1.1). Note that this

comparison has not taken into account the computational costs of the AMR and high-order

schemes as compared to their uniform mesh and low-order method counterparts. In partic-

ular, this was not attempted here due to inequities and inefficiencies in the time marching

schemes which may lead to unfair comparisons.
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5.8 Solution of the Navier-Stokes Equations on

Fixed Mesh

The verification test problems and analyzes considered so far have demonstrated the accuracy

and robustness of the proposed CENO approach for discretization of equations including both

hyperbolic and elliptic operators. Finally, the application of the proposed high-order CENO

FV algorithm to numerical simulation of flows governed by the full set of Navier-Stokes

equations described in Sect. 2.3 is considered herein to illustrate the predictive capabilities

of the high-order method for prediction of laminar viscous flows. Numerical simulations for

fixed mesh are presented in this section followed by AMR results in the next one.

5.8.1 Laminar Flat Plate

The accuracy of the proposed algorithm for prediction of viscous flows is investigated first

by considering the laminar flow over a flat plate at zero incidence. The free-stream Mach

number and Reynolds number, based on the length of the plate, L, are M∞ = 0.1 and

Re=10, 000, respectively. The domain considered for this problem is the rectangular box of

dimensions 4L×2L, where the first dimension is in the flow direction. An adiabatic viscous

wall boundary condition, which extends over the second half of the lower boundary, has

been used to simulate the presence of the flat plate. For the rest of the lower boundary a

symmetry plane BC has been used. Note that both of these BC types have been enforced

via the constrained reconstruction approach described in Sect. 3.6.3. The BC for the upper

boundary of the domain was set to extrapolate data from the interior but to enforce the

free-stream pressure. Subsonic inflow and outflow BCs have been used for the left and right

boundaries, respectively.

In Fig. 5.33 the solution obtained with the 4th-order CENO algorithm (k=3) described

above on a 160×160 Cartesian mesh stretched towards the plate is compared against the

Blasius analytical solution for the incompressible boundary layer equations. The predicted

boundary layer non-dimensional velocity profiles, u/U∞ and φ = v
√

Rex/U∞, are plotted

against the similarity variable, η = y
√
U∞/2νx, at Rex = U∞x/ν = 8, 000 in Fig. 5.33(a),

where ν is the kinematic viscosity. The number of computational cells in the boundary layer

at this sampling station, considering η=5 as the boundary layer edge, is 65. The predicted
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(a) (b)

Figure 5.33: (a) Variation of the non-dimensional velocity components at Rex = 8, 000; and

(b) Distribution of skin friction coefficient along the plate.

skin friction coefficient along the plate is given in Fig. 5.33(b). The total drag coefficient

estimated for the plate is CD =0.01349 which compares very well with the prediction based

on Blasius drag law, CD =0.01328. Note also that the same algorithm predicts CD =0.01351

on a mesh with half the resolution of that for which the solution is shown. It is evident that

the results are in very good agreement with the Blasius solution thereby providing support

for the validity of the spatial discretization procedure for laminar fluid flows.

5.8.2 Steady Laminar Subsonic Flow Past Circular Cylinder

The predictive capabilities of the proposed CENO scheme are further examined by consid-

ering the laminar subsonic flow past a circular cylinder with a free-stream Mach number

of M∞ = 0.1. Numerical simulations were carried out for two Reynolds numbers, Re = 30

and Re = 110, for which no three-dimensional effects are present [169]. For Re = 30, the

solution is a steady wake behind the cylinder as the one shown in Fig. 5.34. Details about

the unsteady flow corresponding to Re=110 are given in the next section.

The geometry considered in these numerical simulations is the domain between two con-

centric cylinders of which the inner cylinder has a diameter di =0.0001 and the outer cylin-
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der has been positioned at 40 inner diameters. Five uniform but stretched towards the

inner cylinder O-grid meshes were used during this study with the following resolutions:

M1 = 3, 200, M2 = 12, 800, M3 = 51, 200, M4 = 204, 800 and M5 = 3, 276, 800 computational

cells. The investigation of the steady laminar subsonic flow past circular cylinder has been

carried out with two numerical methods: a 4th-order (i.e. quartic reconstruction) CENO

scheme and a second-order method which uses a combination of piecewise linear least-squares

reconstruction and a diamond path reconstruction for the discretization of the hyperbolic

and elliptic operator, respectively, the details of which can be found in [98]. The imposed

boundary conditions for the inner cylinder were no slip and adiabatic wall, both being en-

forced for the CENO scheme with the constrained reconstruction algorithm described in

Sect. 3.6.3. The CENO predictions of the drag coefficients were compared against those

of the second-order scheme and against those calculated with the curve fits proposed by

Henderson [170] which are based on an thorough numerical investigation near the onset of

vortex shedding. Note that Henderson’s predictions were verified against experimental data

in the aforementioned paper.

The predicted Mach number distribution for laminar viscous flow around the cylinder at

Figure 5.34: Prediction of Mach number and streamlines for laminar flow over cylinder at

M∞=0.1 and Re=30 on a mesh with 51,200 cells.
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Re=30 obtained using the 4th-order (k=4) CENO finite-volume scheme on the body-fitted

mesh M3 is shown in Fig. 5.34. The drag coefficients computed based on the high-order

numerical solutions for this problem were CD = 1.7498 with M1, CD = 1.7512 with M2,

CD = 1.7522 with M3, CD = 1.7528 with M4, and CD = 1.7541 with M5, respectively. These

values are in good agreement with Henderson’s prediction of CD =1.737 and the experimental

data available in the literature [120, 171].

The drag coefficients predicted by both 4th- and 2nd-order schemes are plotted in Fig. 5.35.

An analysis of these results reveals several observations worth discussing. First, the predic-

tions of both high-order and second-order methods converge to the same drag coefficient

value as the mesh is refined, thus providing confidence in the validity of the two approaches.

At its minimum, the difference between the predictions of the two schemes becomes only 6.5

drag counts, which is obtained on the finest mesh as can be seen in Fig. 5.35(b). Secondly,

the error of the CENO predicted drag coefficient on mesh M1 relative to the best estimation

(i.e., the value obtained on mesh M5), is only 0.245% while the mesh resolution is 1,024

times lower. In contrast, the 2nd-order method exhibits a 1.966% relative error between its

drag coefficient predictions on the same meshes, which is about 8 times larger than that

(a) Predicted drag coefficients of both schemes (b) Detailed view of the values on the finest mesh

Figure 5.35: Comparison of drag coefficients predicted by the 4th-order CENO method and

the 2nd-order scheme described in the text for the laminar flow over cylinder at M∞ = 0.1

and Re=30. The x-axis represents the equivalent mesh spacing determined as ∆x= 1√
N

. A

zoom-in of the plot in (a) for the finest meshes is shown in (b).



5.8 SOLUTION OF THE NAVIER-STOKES EQUATIONS ON FIXED MESH 134

corresponding to the high-order CENO scheme. Furthermore, the data shows that in order

to obtain the same drag coefficient error as the CENO scheme on mesh M1 (i.e., 0.245%),

the 2nd-order method requires a computational grid that is about 132 times finer than M1.

It should be noted however, that no attempt has been made here to quantify the com-

putational savings generated by the high-order procedure as a result of a reduced mesh

resolution due to inefficiencies and inequities in the time-marching schemes which may lead

to unfair comparisons between the two spatial discretizations. As the number of spatial

residual evaluations required to converge to a steady-state solution greatly depends on the

employed time-marching strategy, a better alternative to assess the cost of the two numeri-

cal methods is to compare the computational cost of only one spatial residual evaluation for

each computational cell. Thus, time measurements on single and multiple (i.e. four) Intel

Xeon CPUs, X5460@3.16GHz, with shared memory have been carried out for both high- and

low-order schemes with the mesh M3 which contains 128 blocks. The measurements indicate

that the high-order CENO scheme requires about 0.0524± 0.0024 ms for one residual eval-

uation per each computational cell which is about 2.9 to 3.4 times more expensive than the

cost of the second-order counterpart. These numbers imply that the proposed high-order

CENO scheme has the potential to provide large computational savings when accurate drag

predictions are required but they will ultimately depend on how effective the time-marching

strategy is in eliminating the transient component of the high-order solution.

The parallel performance of the proposed high-order CENO algorithm has also been as-

sessed based on the steady laminar subsonic flow past circular cylinder by measuring/evaluating

the parallel speedup and parallel efficiency, which are defined as

Sp=
t1
tp

and Ep=
Sp
p
, (5.9)

respectively, where t1 and tp are the execution times required to solve the problem by a

single processor and by p processors, respectively. Herein, the parallel speedup, also known

as strong scaling, has been measured by considering a fixed problem size of 2,048 20×20

blocks and a fixed number of explicit time steps, and performing the simulation on an

increasing number of processors p, which had a maximum value of 1,024 in this study. Note

that a perfect speedup corresponds to the ideal situation in which the execution time of the

simulation on p computing cores is p times smaller than t1. In Fig. 5.36 the parallel speedup

and efficiency achieved by the CENO method as a function of the number of computing cores
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is plotted against the corresponding ideal variations of the parallel-performance parameters.

The results show that the 4th-order CENO method has good parallel scalability even for

computational blocks of relatively-small number (e.g., 400) of cells and manages to achieve

parallel efficiencies of 0.78 and 0.72 on 512 and 1,024 computing cores, respectively. The

drop incurred in parallel efficiency with increasing the processor count is an expected one

as not only additional inter-block parallel communication is required as more processors are

used but also the amount of computational work per computing core decreases significantly.

5.8.3 Unsteady Laminar Subsonic Flow Past Circular Cylinder

For Re = 110 vortex shedding occurs for laminar flow past a cylinder, as illustrated in

Fig. 5.37, and the unsteady flow around the cylinder is characterized by a periodic variation

of lift and drag coefficients, as shown in Fig. 5.38(a)–(b). The results show that the frequency

of the lift variation is double the frequency recorded for the drag, which agrees well with

Figure 5.36: The parallel speedup and efficiency achieved for the steady laminar flow past

cylinder by the 4th-order CENO algorithm as a function of the number of computing cores.
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Figure 5.37: Entropy prediction and streamlines for vortex shedding flow past circular cylin-

der at Re=110 obtained using the 4th-order (k=4) CENO scheme on mesh M3.

(a) Lift coefficient variation (b) Drag coefficient variation

Figure 5.38: Time dependent variation of the (a) lift and (b) drag coefficients for the vortex

shedding flow obtained using the 4th-order CENO scheme on M1, M2, M3 and M4 meshes.

The predictions on M3 and M4 basically overlaps. The mean drag on M4 is indicated in (b).

the observations reported in literature. Note also that a converged solution for both lift and

drag coefficient variations requires around 51,200 cells (i.e. M3), at which resolution there is

insignificant difference relative to the solution obtained on the finest mesh. The mean drag

coefficient determined based on the converged solution is CD =1.3480 which is again in good

agreement with Henderson’s result of CD =1.34.
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5.9 Solution of the Navier-Stokes Equations with AMR

5.9.1 Unsteady Laminar Subsonic Flow Past Circular Cylinder

To demonstrate the predictive capabilities of the CENO scheme in conjunction with the

block-based AMR algorithm for solutions of the Navier-Stokes equations governing laminar

viscous flows, the unsteady vortex shedding flow over the cylinder described in the previous

section is again considered. The outer cylinder or boundary of the computational domain

has been positioned in this case at 80 inner diameters di instead of the previously used value

of 40 in order to test the capabilities of the adaptive high-order CENO algorithm to resolve

accurately flow features occurring over a wide computational domain with a reduced number

of grid elements. An instance of the periodic steady-state solution obtained on the initial

O-grid mesh of 32 self-similar 8×8 solution blocks and 2,048 computational cells is shown

in Fig. 5.39 and the corresponding drag coefficient variation with respect to physical time is

depicted in the lower left corner of Fig. 5.40. As can be seen in Fig. 5.39 the flow features

near the cylinder and in the wake generated behind it are not adequately resolved on this

very coarse mesh even by the 4th-order (k = 4) scheme and consequently, the mean drag

coefficient is well under-predicted.

Automatic mesh adaptation directed by the proposed h-refinement criterion based on

the CENO smoothness indicator of the velocity components has been further applied to this

very coarse solution in the way described next to improve the representation of relevant

flow features and the prediction of the drag coefficient. The initial strategy employed up

to physical time t = 0.006225 was to incrementally improve the solution accuracy of the

unsteady flow by generating a sequence of AMR meshes on which periodic steady-state

solutions are obtained. The five meshes generated by the block-based refinement algorithm

in this simulation step consists of 80, 221, 536, 1,349 and 2,486 blocks 8×8 and 5,120, 14,144,

34,304, 86,336 and 159,104 cells. A selected plot of the instantaneous density contour lines

and the entropy field is shown for each mesh in Fig. 5.41(a)–(e). As can be clearly observed

from the solution plots, the regions of boundary layer detachment and the vortices in the

wake behind the cylinder are progressively better resolved as the multi-block grid gets refined

and the mesh resolution is increased especially near and behind the inner cylinder. The

drag coefficient variation following from the predicted solution on each of the five meshes is
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Figure 5.39: Snapshot of entropy field prediction and density contour lines for vortex shedding

flow past circular cylinder at Re = 110 obtained using the 4th-order (k= 4) CENO scheme

on the initial AMR mesh at the indicated physical time. The number of grid blocks is shown

in the top right corner and the block boundaries are depicted with dark green colour. The

bottom left figure is a zoom-in of the flow configuration near the interior cylinder.

depicted in Fig. 5.40, which also shows the mean CD value for the mesh with 221 (Detail

A), 536 (Detail B) and 2,486 blocks (Detail C).

Following the application of the first AMR strategy, automatic mesh adaptation has been

further performed for this problem dynamically at regular intervals of physical time. After

an initial constant increase, the first of which being to 4,175 blocks, the AMR algorithm

generated and maintained a number of blocks in the range of 10,000 to 11,000 which corre-

sponds to 10-12 levels of refinement and mostly varied their location so as to “follow” the

unsteady flow features and shed vortices. This fact can be observed in Fig. 5.43 in which

three consecutive solution snapshots are depicted to illustrate the distribution of the AMR

blocks in the vicinity of the inner cylinder and the wake behind it. Notice that the domain

covered by our plots span over 60 inner cylinder radii and the wake behind the cylinder gets

well resolved even at large distances from the trailing edge. Notice also that the smooth-

ness indicator recognizes the regions where interesting flow features occur such as vortices,

boundary layers, flow detachment zones, and other areas characterized by sharp solution

variations, and the block-based AMR algorithm adequately resolves them so as to achieve



5.9 SOLUTION OF THE NAVIER-STOKES EQUATIONS WITH AMR 139

Figure 5.40: Variation of drag coefficient for unsteady vortex shedding flow past the cylinder

as a function of physical time determined by the predicted flow field solution obtained using

the 4th-order (k=4) CENO scheme in conjunction with the block-based AMR algorithm.

the specified level of smoothness. Nevertheless, the level of mesh resolution imposes severe re-

strictions on the allowable time step in the explicit time-marching scheme and consequently,

a tremendous computational effort is required to simulate the many vortex shedding periods

necessary to transport the convective flow features resolved near the cylinder into the far

wake. Our current dynamic simulation extends over almost one period and consequently, it

is anticipated that better representation of the far vortices would have been possible if more

shedding periods were achieved.

The CD curve presented in Fig. 5.40 exhibits convergence to a grid-independent variation

as the mesh is refined by the AMR algorithm and shows that the improvements generated

by the predictions on the dynamically refined meshes are minor. Our best prediction of the

mean drag coefficient and Strouhal number is CD = 1.3314 and St = 0.1696, respectively,

which agrees well with values from the literature. Thus, the Strouhal number based on

the relationship proposed by Roshko [172] to describe the best fit to experimental data is

St=0.1711. Furthermore, the predicted mean drag coefficient compares well with the value



5.9 SOLUTION OF THE NAVIER-STOKES EQUATIONS WITH AMR 140

(a) Predicted flow field on the mesh with 80 blocks and 5,120 cell

(b) Predicted flow field on the mesh with 221 blocks and 14,144 cell

(c) Predicted flow field on the mesh with 536 blocks and 34,304 cell
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(d) Predicted flow field on the mesh with 1,349 blocks and 86,336 cell

(e) Predicted flow field on the mesh with 2,486 blocks and 159,104 cell

Figure 5.41: Contour plots of the predicted entropy and density fields for unsteady vortex

shedding obtained on the first five AMR meshes at various time instances.

CD=1.34 reported in the computational study by Henderson [170]. Note that Sheard et al.

[173] have also reported detailed computations of the drag for the cylinder and have compared

their predictions against Henderson’s and the experimentally measured drag coefficients from

Wieselberger [171]. Thus, Fig. 5.42 shows the drag coefficients obtained for both the steady

(Re=30) and unsteady (Re=110) laminar flows past circular cylinder studied in this thesis,

plotted against the data from Sheard et al. [173]. The plot reveals that both predictions
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by CENO algorithm compare very well with the previously reported values. Moreover,

for Re = 110, it seems that CENO prediction is slightly more accurate with respected to

Wieselberger’s measurements than the curve fit value by Sheard et al. [173]. Without

overstating this result, as our study has been carried out for only one Reynolds number

and not for the wide range covered by the other authors, it is worth concluding that these

findings provide strong support for the validity of the present implementation and indicate

that the high-order CENO scheme in combination with the block-based AMR algorithm has

the potential to provide reliable predictions of viscous laminar flows over complex geometries

while significantly reducing the number of required computational elements.

Figure 5.42: Depiction of the steady and mean drag coefficients predicted by the 4th-order

CENO scheme for the flow past circular cylinder at Re = 30 and Re = 110 relative to previ-

ously reported values. The data obtained from Sheard et al. [173] includes, in addition to

their computational predictions, the experimental measurements of Wieselberger (1921) and

the two- and three-dimensional computations by Henderson (1995 and 1997, respectively).

Additionally, the transitional Reynolds numbers from steady to unsteady flow (i.e., Re≈47)

and from two- to three-dimensional flow (i.e., Re≈189) are indicated with vertical lines.
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(a) Predicted flow field on a mesh with 10,883 blocks and 696,512 cell

(b) Predicted flow field on the mesh with 10,787 blocks and 690,368 cell

(c) Predicted flow field on the mesh with 11,075 blocks and 708,800 cell

Figure 5.43: Predicted flow fields on a sequence of dynamically refined meshes.
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5.10 Computational Cost of High-Order Scheme

The final set of results considered herein as part of this thesis pertain to some estimates of

the computational cost of the proposed high-order CENO method. They also attempt to

shed some light on whether or not high-order schemes are capable of being less expensive

than their standard second-order counterparts. It should be clear that from the perspective

of performing practical calculations, the numerical properties of a high-order discretization

procedure become mostly relevant only insofar as they contribute to achieving the ultimate

goal of providing significant computational savings to a numerical simulation of a specified

accuracy. Although the computational cost associated with different discretization orders

can be influenced by many factors among which the talent and knowledge of the programmer

are equally important, it represents an important issue to be addressed.

Therefore, the periodic linear convection of density variation in a rectangular box is

considered herein to assess the computational cost of the 4th-order (k=3) CENO scheme with

a smoothness indicator cutoff of Sc=3, 500 versus that of a limited 2nd-order method which

uses the non-linear limiter proposed by Venkatakrishnan [147]. Although this numerical

study does not provide a complete picture of the computational cost incurred by the two

methods in general, it is still relevant for providing useful insight into the aforementioned

issue. Note that this assessment has been carried out with the two-dimensional Euler solver.

Since the computational work associated with each of the two schemes in general is definitely

problem dependent and also involves other parameters, such as the accuracy of boundary

conditions, the time-marching method or the grid topology, a full assessment and comparison

of the computational cost associated with each of the two methods would require a more

elaborate study than the present one. However, such an assessment has not been carried out

in this work as it is beyond the current work scope and it represents a significant effort in

its own right.

Figure 5.44(a) shows the exact representation of the selected density variation, which is

given by ρ(x, y) = 1.0 + 0.5 cos (π T(x)) sin (5 π T(x)), where T(x) represents a linear map-

ping of the domain [−100, 100] into the domain [−1, 1]. The other parameters in the initial

condition for this test case are vx = 40 m/s, vy = 0 m/s and p = 101.325 kPa. The pre-

dicted density solution obtained after one full convection period for this problem using the

4th-order CENO scheme on a Cartesian grid with 200×20 computational cells is shown in
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Fig. 5.44(b). A visual comparison between the two density variations shown in Fig. 5.44

reveals that the cubic interpolant used by the high-order k-exact reconstruction captures

all the inflection points of this smooth density variation very well and the solution is being

recognized everywhere as smooth by the CENO approach. The error norms as well as the

simulation CPU time and memory requirements corresponding to the limited 2nd-order and

the 4th-order CENO schemes are presented in Table 5.2. Additionally, the same type of

data pertaining to the unlimited 2nd-order variant is also shown in the table. Note that

the data included in the table has been obtained by using the same CFL = 0.5 number for

both second- and fourth-order Runge-Kutta methods used for the second- and fourth-order

(a) Exact solution

(b) 4th-order (k=3) CENO prediction

Figure 5.44: (a) Exact solution for the periodic linear advection of the density variation

ρ(x, y) = 1.0 + 0.5 cos (π T(x)) sin (5 π T(x)); and (b) Predicted density distribution for the

advection of density variation shown in (a) after one full period using the 4th-order CENO

scheme on a 200×20 Cartesian grid.
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spatial discretizations, respectively. Based on the data shown in the table it can be seen that

for the same mesh resolution the current 4th-order CENO scheme requires about 10 times

more computational work than the 2nd-order method and about 1.5 times more memory.

However, in order to obtain the same accuracy provided by the 4th-order CENO, a limited

2nd-order scheme would require about 20 times more computational cells (i.e., 80,000 instead

of 4,000) which, in turn, necessitate approximately 42 times more computational work than

the one of the high-order CENO. As a further benefit, this large saving in the number of

computational cells is translated into a decrease in the memory requirements by a factor of

about 6.5, which demonstrates the potential benefits of the high-order method. Furthermore,

the high-order CENO method still remains about 25 times faster than a 2nd-order variant

without any limiter applied, although it includes the extra computation associated with the

calculation of the smoothness indicator. Note also that these savings are actually for a one-

dimensional problem solved using the two-dimensional implementations of the two schemes.

Therefore, the computational effort spent by the 4th-order CENO scheme to compute ad-

ditional high-order derivatives related to the y-direction is not recovered as an increase in

the accuracy of the scheme. Consequently, it is expected that for a true two-dimensional

similar problem the computational savings offered by the high-order CENO would be even

more significant. More importantly to large-scale applications is that, based on the same

sort of rationale, it appears that three-dimensional simulations could tremendously benefit

from the computational savings that the CENO high-order methods would seem to offer.
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Table 5.2: Error norms, simulation CPU time and memory requirements associated with the

unlimited and limited 2nd-order, and the 4th-order CENO schemes obtained for the periodic

linear convection of the density variation shown in Fig. 5.44.

# Cells O(∆x2) O(∆x2) O(∆x4)

Unlimited Limited CENO

L1: 1.82×10−2 2.74×10−2 1.96×10−4

4,000 L2: 2.06×10−2 3.33×10−2 2.19×10−4

(200x20) L∞: 3.62×10−2 7.37×10−2 3.46×10−4

Time(h): 0:01:45 0:01:48 0:18:05
Mem(kB): 20,336 20,336 31,232

L1: 4.56×10−3 9.60×10−3 1.20×10−5

8,000 L2: 5.17×10−3 1.19×10−2 1.34×10−5

(400x20) L∞: 9.08×10−3 2.98×10−2 2.12×10−5

Time(h): 0:07:01 0:07:42 01:15:59
Mem(kB): 30,000 30,000 50,816

L1: 4.55×10−5 1.12×10−4 -
80,000 L2: 5.16×10−5 2.25×10−4 -

(4000x20) L∞: 9.07×10−5 1.33×10−3 -
Time(h): 12:00:58 12:27:14 -
Mem(kB): 203,680 203,680 -



Chapter 6

CONCLUSIONS AND

RECOMMENDATIONS

“I think and think for months, for years. Ninety-nine times the conclusion is

false. The hundredth time I am right.”

by Albert Einstein (1879 - 1955), German-born theoretical physicist

6.1 Summary and Conclusions

This thesis has presented and analyzed a new high-order finite-volume scheme with adaptive

mesh refinement for solving hyperbolic and elliptic systems of conservation laws on body-

fitted multi-block mesh. The proposed numerical procedure was applied to the advection-

diffusion equation and to the Euler and the Navier-Stokes system of PDEs governing inviscid

and laminar viscous flows of thermally and calorically perfect gases. A considerable amount

of attention has been given to the verification and validation of each component of the high-

order computational framework described in this dissertation. This has been accomplished by

comparing predicted solutions to a variety of available analytical results, previously reported

computations and experimental data. The ability of the scheme to accurately represent so-

lutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth

solution content (i.e., solutions with shocks and discontinuities) is demonstrated. The an-

alyzes and the results included herein confirm that the proposed numerical algorithm has

many of the desirable features of a large-scale simulation framework for inviscid and viscous

flows. Consequently, it can be concluded that the thesis objectives outlined in Sect. 1.2 have

been achieved and the current scheme has the potential to realize the overarching objective

of the research, that is to reduce the computational cost of LES of turbulent combusting

148
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flows although this shall remain a subject for future follow-on studies.

The original contributions of this thesis can be summarized as follows:

• Development and evaluation of a new high-order CENO approach.

The CENO scheme represents a hybrid approach which relies on a robust k-exact

reconstruction to provide the high-order accuracy and on a monotonicity preserving

reconstruction to avoid occurrence of O(1) numerical oscillations in regions of large

solution gradients and/or discontinuities. In particular, a limited piecewise linear in-

terpolant is used herein to preserve monotonicity which is equivalent to reducing the

order of the scheme in under-resolved solution regions. Although the global uniform

accuracy of the high-order procedure is lost for flows with non-smooth solution con-

tent, a key advantage of the proposed scheme is that the solution reconstruction can be

performed based only on a fixed central stencil, which in turn leads to many compu-

tational advantages. It allows the definition and use of a unique, symmetric, accurate

and non-singular reconstruction stencil (the same stencil for every variable), the effi-

cient extension of the algorithm to multiple dimensions and unstructured mesh, and, in

turn, the reduction of the computational costs of the high-order procedure. Moreover,

it has been shown that the challenges associated with boundary-condition prescription

and parallel implementation arising from the enlarged stencils can be dealt with in an

effective manner (see third contribution below). One possible downside of the current

numerical method is that it requires two reconstructions in regions flagged as under-

resolved, the second one being less expensive than the primary solution reconstruction.

Consequently, the CENO scheme presents computational advantages primarily for flows

mostly characterized by smooth and complex solution variations in which the increased

accuracy stemmed from the high-order interpolant can be efficiently exploited. Finally,

head-to-head comparisons between one-dimensional solutions obtained with the origi-

nal ENO scheme based on the selection of the smoothest stencil and with the proposed

CENO algorithm have demonstrated the similarities between the solution accuracy of

the two schemes and confirmed the validity of the CENO approach to confer the ENO

property to the numerical scheme.

• Formulation of smoothness indicator for directing AMR.

The cornerstone of the hybrid CENO approach is the solution smoothness indicator
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which determines the switching between the two solution reconstructions. This thesis

has directed a considerable body of research towards developing a reliable, simple and

flexible indicator. Although a heuristic formulation, the mathematical expression of

the smoothness indicator exploits basic polynomial characteristics with respect to the

degree of smoothness in the neighbourhood of smooth and non-smooth regions and

thus, it is able to identify high-order solution reconstructions prone to compromise the

positivity of the numerical model. Additionally, the many numerical analyzes carried

out in this work document extensively the properties of the smoothness indicator and

its behaviour with varying solution resolution.

• Development of high-order CENO scheme in conjunction with a parallel

block-based AMR algorithm.

A high-order finite-volume scheme with AMR has been proposed, verified and validated

for prediction of inviscid and viscous flows governed by the advection-diffusion, the Eu-

ler and the Navier-Stokes equations on body-fitted multi-block quadrilateral mesh. The

spatial discretization of the inviscid (hyperbolic) terms is based on the hybrid CENO

solution reconstruction procedure and the high-order viscous (elliptic) fluxes are com-

puted based on a k-order accurate average gradient derived from the same (k+1)-order

accurate reconstruction used in the discretization of the inviscid term. This work has

also proposed a unified computational framework for prescribing high-order boundary

conditions for all the aforementioned PDEs on body-fitted multi-block quadrilateral

mesh. Numerical studies with disparate solution length scales have indicated the high-

order procedure in combination with AMR is capable of reducing the number of re-

quired computational elements for a given solution accuracy by orders of magnitude as

compared to low-order counterparts. The usefulness of an h-refinement criterion based

on the smoothness indicator of the hybrid scheme has also been evaluated and shown

to provide a robust and reliable mesh adaptation algorithm that is capable of refining

both under-resolved (in-accurate) and non-smooth regions of the solution and will not

unnecessarily refine resolved solution content. Numerical experiments indicate that

this algorithm has a great potential to reduce the overall computational cost of large-

scale numerical simulations thereby reducing the grid resolution required to resolved

accurately solutions. For large systems and multi-dimensional problems, the proposed
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CENO scheme would seem to provide high-order accuracy at a lower computational

cost as compared to other similar approaches.

6.2 Recommendations for Future Research

“The important thing is not to stop questioning. Curiosity has its own reason

for existing.”

by Albert Einstein (1879 - 1955), German-born theoretical physicist

Although the high-order computational framework outlined in this dissertation provides

by itself an accurate tool for studying inviscid and laminar viscous flows and represents a

well documented methodology for extension to more complicated governing PDE sets, there

are a number of areas in which additional capability could be added and the performance of

the algorithm could be improved, which were deemed beyond the scope and time frame of

this thesis. A brief indication of several directions for future research is given below.

• Further investigation of the CENO approach.

The heuristic form of the smoothness indicator lies at the core of the CENO formu-

lation and its properties have been mostly determined numerically by extensive grid

convergence studies. A formal analytical analysis of the solution smoothness indicator

would provide mathematical proof and a complimentary validation of the properties

induced by numerical experiments. Additionally, more compact ways for detecting

non-smoothness are very desirable and few possibilities worth exploring have been

suggested in Sect. 3.6.2. Furthermore, the application testing of the CENO approach

should be extended to more complicated flows than the ones included herein. Within

the context of the compressible Navier-Stokes equations, the scheme should be explored

for a greater selection of more complex transonic and supersonic/hypersonic flow cases

as well as for turbulent flows described with RANS, LES or DNS techniques. Moreover,

the CENO method can be applied to other equation sets, such as those governing the

turbulent reacting and non-reacting flows.
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• Extension of the CENO approach to other discretizations.

The smoothness concepts employed in the definition of the CENO approach are gen-

erally valid and, as such, they could be applied to other spatial discretizations as well.

One avenue of future research is a feasibility study regarding the formulation of a

CENO approach for discontinuous Galerkin finite-element and/or residual distribution

methods and the resulting potential benefits.

• Exploration of other approaches to preserve monotonicity of the high-order

procedure.

The current CENO formulation uses a limited linear reconstruction as a mean to enforce

solution monotonicity in those regions flagged as non-smooth. In addition to requiring

an extra low-order reconstruction, this procedure has the disadvantage of being non-

differentiable and consequently it may raise convergence issues for some steady-state

solutions. However, a more efficient and differentiable method may be formulated

by employing/developing a different way in which the monotonicity is conferred to the

scheme. One possibility to avoiding the limited linear reconstruction would be to apply

a differentiable limiter to the high-order reconstruction as described in the recent work

by Michalak and Ollivier-Gooch [32].

• Application of CENO discretization in conjunction with effective time in-

tegration algorithms.

The current CENO framework uses standard explicit time-marching schemes which

have not been optimized for the high-order method. Several ways to improve the

efficiency of the time integration procedure is to consider the use of h-p-multigrid [174]

and implicit algorithms [31, 175]. Additionally, the convergence of non-linear iterative

methods for discontinuous solution problems could be enhanced by adding dissipation

terms to the numerical flux functions of the non-smooth elements as done in [156].

• Further improvement of the multi-block communication and the algorithm

parallelization.

Sufficient layers of ghost cells have been used in this work as a way to share information

among the grid blocks and to allow the execution of a completely independent high-

order solution procedure on each block. This approach is definitely easier to program
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than other methods but may not be the most efficient one for the implementation of

the high-order CENO. In particular, as several steps of the solution procedure such

as the computation of the smoothness indicator require only few pieces of information

with respect to the solution variation in the adjacent cells it may be more efficient to

exchange only this reduced data set among the neighbour blocks than to duplicate in-

formation and carry out high-order reconstructions in overlapping ghost cells. However,

it is noted that the complexity of such an implementation would increase considerably,

especially for a framework using adaptive mesh refinement, and its efficiency may be

very dependent on the particular size of the blocks.

• Extension to 3D problems and to hybrid structured/unstructured meshes.

It is definitely worth exploring the computational benefits of an adaptive CENO algo-

rithm for three-dimensional problems and for unstructured meshes. A starting point

in this direction is represented by the extension of CENO method to three-dimensional

fixed Cartesian multi-block mesh carried out in [176].

• Development of h-p-adaptation.

The adaptive high-order algorithm in this work was based solely on an h-refinement

procedure while maintaining the same polynomial order throughout the computational

domain. This strategy is very effective in improving the local accuracy especially

near solution discontinuities, but may not efficiently use the degrees of freedom of

the numerical scheme. One extreme example of inefficiency is the representation with

high-order polynomials of regions of “flat” solution variation. Adding an h-p-adaptive

capability at the block level should allow for better degree of freedom management and

optimization in the adaptation process. In smooth flow regions, refinement could be

mostly done with p and near discontinuities with h, a technique which typically allows

for exponential convergence rates.

Considering this brief summary of open research directions for only one of the existing

high-order schemes, it should already give an impression of how much is left to be explored

in this field. On the bright side, it is noted that the last decade has seen an increased

interest in developing high-order methods following the recognition of the potential benefits

these procedures can provide to complex flow simulations especially. It is speculated that
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the mathematical apparatus of many high-order schemes will soon achieve maturity and

that it is becoming more imperative to perform the head-to-head comparison of the existing

formulations and to clearly recognize the trade-offs in each case. Although most likely future

algorithms will find more elegant solutions to the current issues of high-order methods, it is

anticipated they will inevitably face their own challenges because, as Charles Kettering said:

“There will always be a Frontier where there is an open mind and a willing hand.”
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[57] Cśık, A., Ricchiuto, M., and Deconinck, H., “A Conservative Formulation of the Mul-

tidimensional Upwind Residual Distribution Schemes for General Nonlinear Conserva-

tion Laws,” Journal of Computational Physics , Vol. 179, 2002, pp. 286–312.

[58] Abgrall, R. and Roe, P. L., “High Order Fluctuation Schemes on Triangular Mesh,”

Journal of Computational Physics , Vol. 19, No. 1–3, 2003, pp. 3–36.

[59] Abgrall, R., “Essentially non-oscillatory residual distribution schemes for hyperbolic

problems,” Journal of Computational Physics , Vol. 214, 2006, pp. 773–808.

[60] Guzik, S. and Groth, C. P. T., “Comparison of Solution Accuracy of Multidimen-

sional Residual Distribution and Godunov-Type Finite-Volume Methods,” Interna-

tional Journal of Computational Fluid Dynamics , Vol. 22, No. 1, 2008, pp. 61–68.

[61] Guzik, S., Accurate Residual-Distribution Schemes for Accelerated Parallel Architec-

tures , Ph.D. thesis, University of Toronto Institute for Aerospace Studies, February

2010.



REFERENCES 161

[62] Dias, S. C. and Zingg, D. W., “A High-Order Parallel Newton-Krylov flow solver for

the Euler Equations,” Paper 2009-3657, AIAA, June 2009.

[63] Nordström, J. and Carpenter, M. H., “Boundary and interface conditions for high-order

finite-difference methods applied to the Euler and Navier-Stokes equations,” Journal

of Computational Physics , Vol. 148, No. 2, 1999, pp. 621–645.

[64] Coirier, W. J., An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and

Navier-Stokes Equations , Ph.D. thesis, University of Michigan, 1994.

[65] Delanaye, M., Aftomis, M. J., Berger, M. J., Liu, Y., and Pulliam, T. H., “Automatic

Hybrid-Cartesian Grid Generation for High-Reynolds Number Flows Around Complex

Geometries,” Paper 99-0777, AIAA, January 1999.

[66] Sun, Y., Wang, Z. J., and Liu, Y., “Spectral (finite) volume method for conservation

laws on unstructured grids VI: extension to viscous flow,” Journal of Computational

Physics , Vol. 215, No. 1, 2006, pp. 41–58.

[67] May, G. and Jameson, A., “High-Order Accurate Methods for High-Speed Flow,”

Paper 2005-5251, AIAA, 2005.

[68] May, G. and Jameson, A., “A Spectral Difference Method for the Euler and Navier-

Stokes Equations on Unstructured Meshes,” Paper 2006-304, AIAA, January 2006.

[69] Gao, H. and Wang, Z. J., “A High-Order Lifting Collocation Penalty Formulation for

the Navier-Stokes Equations on 2-D Mixed Grids,” Paper 2009–3784, AIAA, 2009.

[70] Haga, T., Gao, H., and Wang, Z. J., “A High-Order Unifying Discontinuous Formula-

tion for 3D Mixed Grids,” Paper 2010-540, AIAA, January 2010.

[71] Barad, M. and Colella, P., “A fourth-order accurate local refinement method for Pois-

son’s equation,” Journal of Computational Physics , Vol. 209, 2005, pp. 1–18.

[72] Ollivier-Gooch, C. F. and Van Altena, M., “A High-order Accurate Unstructured

Mesh Finite-Volume Scheme for the Advection-Diffusion Equation,” Journal of Com-

putational Physics , Vol. 181, No. 2, 2002, pp. 729–752.



REFERENCES 162

[73] van Leer, B., Lo, M., and van Raalte, M., “A discontinuous Galerkin method for

diffusion based on recovery,” Paper 2007-4083, AIAA, June 2007.

[74] van Raalte, M. and van Leer, B., “Bilinear Forms for the Recovery-Based Discontinuous

Galerkin Method for Diffusion,” Communications in Computational Physics , Vol. 5,

No. 2–4, 2009, pp. 683–693.

[75] Oliver, T. A. and Darmofal, D. L., “An Unsteady Adaptation Algorithm for Discon-

tinuous Galerkin Discretizations of the RANS Equations,” Paper 2007-3940, AIAA,

June 2007.

[76] De Rango, S. and Zingg, D., “Higher-order spatial discretization for turbulent aerody-

namic computations,” AIAAJ , Vol. 39, 2001, pp. 1296–1304.
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Appendix A

GEOMETRIC PROPERTIES OF

QUADRILATERAL ELEMENTS AND

INTEGRATION OF FUNCTIONS

OVER SUCH DOMAINS

A key element for obtaining the desired high-order accuracy with the proposed CENO finite-

volume algorithm is the calculation of geometric properties of quadrilateral mesh elements

with an order of accuracy that is consistent with that of the scheme. Since many of the

required properties are in fact defined as integrals of geometric functions (e.g. element cen-

troid, area, geometric moments about the centroid etc.), the capability to perform accurate

integration over convex quadrilateral domains becomes critical to the overall accuracy of the

numerical procedure. Additionally, the integration algorithms employed for these calcula-

tions should be as efficient as possible. Although the efficiency condition may seem obviously

necessary in a computational framework, that may not be the case with computation of ge-

ometric properties since many of these quantities (e.g. centroid, cell area etc.) are so often

used in the solution procedure that it is usually more efficient to have them computed and

stored as part of a pre-processing step. Consequently, for numerical computations requiring

only fixed meshes any incurred inefficiencies in the geometry calculation can have a reduced

impact to the overall performance of the numerical procedure, although they can significantly

affect the computational cost of the pre-processing step. However, in the context of unsteady

mesh adaptation these inefficiencies could become an important part of the overall cost of

the numerical algorithm and thus, it is highly desirable to be avoided. Therefore, special
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attention has been paid in this work to the efficiency with which the geometric properties

of both straight- and curved-edge quadrilaterals are computed in all stages of the numerical

scheme. Moreover, the capability to integrate accurately arbitrary functions over quadri-

lateral finite-volumes represents an important and desirable feature for procedures such as

solution initialization with analytic functions and/or accuracy estimation. Thus, the numer-

ical procedures employed for computing the necessary integrals must be accurate, robust

and efficient, and it is highly desirable to offer flexibility in the integrand specification.

To address the aforementioned requirements, this research has considered the derivation

of a collection of analytical results for situations in which they could be determined and the

development of several numerical integration techniques, the selection of which is based on

the function to be integrated and on the shape of the definition domain. Since the methods

used for straight- and curved-edge quadrilaterals are not identical in general, the techniques

used in each case are presented separately in the reminder of this section.

Straight-edge quadrilaterals

A general numerical procedure can be developed for integrating arbitrary functions over these

types of domain by employing a bilinear transformation [177] which maps the quadrilateral

domain into a unit square. Thus, the integral I of the arbitrary function f(x, y) over the

quadrilateral domain D can be expressed as an integration over the image domain D′ as

I =

∫∫
D

f(x, y) dx dy =

∫∫
D′

f(x(p, q), y(p, q))J dp dq , (A.1)

where J is the Jacobian of the bilinear transformation, J=
∣∣∣D(g,h)
D(p,q)

∣∣∣, and the functions g and

h must exist and map the two spaces as follows: x = g(p, q) and y = h(p, q). Note that

the transformation Jacobian can be written as a linear function in p and q as J(p, q) =

J0 + J1p + J2p, where J0, J1 and J2 are completely defined by the coordinates (x, y) of the

quadrilateral vertices and the coordinates p and q are chosen to vary in the interval [0, 1]. To

perform the integration in the image domain, the adaptive Lobatto quadrature algorithm of

degree 19 proposed by Gander and Gautschi [178] is used in each Cartesian space direction.

Note that this adaptive integration algorithm has been already included and recommended

for usage in the recent volume of Numerical Recipes [131]. Hence, based on this algorithm,

the accurate integration of all arbitrary functions considered in this work was possible to be
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performed with a reduced computational cost.

However, there are several geometric quantities required as part of the solution procedure

that are defined as surface integrals of polynomials and thus, more efficient expressions than

the general integration procedure outlined above can be used for their computation. For

example, the centroid and area of the quadrilateral element is computed very efficiently with

the algorithm for arbitrary polygonal shapes described in [179]. Furthermore, the calculation

of geometric moments (xp1yp2)I defined by Eq. (3.22) have been computed here based on

analytical expressions derived for all powers (p1, p2) of interest in this work as function of

the coordinates of the quadrilateral vertices. The derivation of the analytical expressions

is based on the same bilinear transformation approach outline above to which symbolic

integration with the Maple package [180] has been applied. As an illustration, the analytical

expression for the cubic geometric moment of powers (2, 1) is shown in Table A.1, where the

coefficients a0, a1, a2, a3, b0, b1, b2, b3, J0, J1 and J2 are all calculated with the coordinates

of the quadrilateral vertices as defined by the aforementioned bilinear transformation. The

rest of the moments have similar expressions, the complexity of which decreases for lower

powers and increases for higher ones, respectively. For that reason, analytical expressions

for moments of relatively high orders can become more expensive to be evaluated than

directly applying a numerical integration procedure, in which case the latter would be more

appropriate for the computation of those geometric moments. Nevertheless, a more efficient

implementation can be obtained with analytical expressions for not so high orders, such

as the ones targeted in this work, by caching the constant coefficients that appear in the

expressions and re-use them for a range of powers.

Other ways in which exact integration of the moments defined by Eq. (3.22) can be ob-

tained have also been presented in the literature. A first possibility is to use Gauss’ theorem

to convert the surface integrals to contour integrals and then use Gaussian quadrature of

appropriate order along the boundary of the control volume. A second choice is to split

the integral over a quadrilateral cell into two integrals over triangular domains, and apply a

closed form for the integration of polynomial expressions over the domain of these elementary

shapes (i.e. triangles). Liu and Vinokur [181] used a coordinate free formulation and derived

closed expressions in terms of the position vectors of vertices for integrals of polynomial prod-

ucts up to the fifth order. Their relations are unified for all the three fundamental shapes

(i.e. straight-line segment, triangle and tetrahedron), and thus, their procedure can be ap-
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Table A.1: Analytical expression for computing the geometric moment of powers (2, 1),(
x2y1

)
I
, function of the coordinates of the quadrilateral vertices.(

x2y1
)
I

=

[
360

(
J0 a0

2b2 +J0 a0
2b1 +a0

2b0 J1 +J1 a0 a1 b1 +a0
2b0 J2 +J1 a0 a2 b0 +

+J2 a0 a1 b0 +J0 a0 a2 b1 +J0 a0 a1 b2 +J0 b0 a0 a3 +J0 b0 a2 a1 +J2 a0 a2 b2

)
+

+60
(

J0 a3
2b2 +J2 a3

2b0 +J1 a2
2b3 +J1 a3

2b0 +J0 a3
2b1 +J2 a1

2b3

)
+

+80
(

J0 a3
2b0 +J2 a1

2b2 +J1 a2
2b1

)
+180

(
a2

2b2 J0 +J2 a0
2b1 +J0 a0

2b3 +

+a1
2b1 J0 +J1 a0

2b2 +J1 a1
2b0 +J2 a2

2b0 +J1 a0 a1 b3 +J1 b1 a0 a3 +

+J1 b1 a2 a1 +J1 a1 a3 b0 +J0 a1 a3 b1 +J2 a0 a2 b3 +J2 b2 a0 a3 +J2 b2 a2 a1 +

+J2 a2 a3 b0 +J0 a2 a3 b2

)
+120

(
J1 a2

2b0 +J2 a1
2b0 +J0 a2

2b1 +J1 a0
2b3 +

+J0 a1
2b2 +J2 a0

2b3 +J1 b3 a0 a3 +J1 b3 a2 a1 +J1 a2 a3 b1 +J1 a1 a3 b2 +

+J2 a1 a3 b1 +J0 a1 a3 b3 +J1 a2 a3 b2 +J2 b3 a0 a3 +J2 b3 a2 a1 +J2 a2 a3 b1 +

+J2 a1 a3 b2 +J0 a2 a3 b3

)
+240

(
J0 a1

2b0 +J2 a0
2b2 +J1 a0

2b1 +J0 a2
2b0 +

+J1 a0 a1 b2 +J1 b0 a0 a3 +J1 b0 a2 a1 +J2 a0 a1 b1 +J0 a0 a1 b3 +J0 b1 a0 a3 +

+J0 b1 a2 a1 +J0 a1 a3 b0 +J1 a0 a2 b2 +J2 a0 a2 b1 +J2 a0 a1 b2 +J2 b0 a0 a3 +

+J2 b0 a2 a1 +J0 a0 a2 b3 +J0 b2 a0 a3 +J0 b2 a2 a1 +J0 a2 a3 b0

)
+

+72
(

J2 a2
2b3 +J1 a1

2b3

)
+36

(
a3

2b3 J1 +a3
2b3 J2

)
+48

(
J2 a3

2b2 +J1 a3
2b1

)
+

+144
(

a2
2b2 J2 +a1

2b1 J1 +J1 a1 a3 b1 +J2 a2 a3 b2

)
+45

(
J1 a3

2b2 +J2 a3
2b1 +

+a3
2b3 J0

)
+90

(
a1

2b1 J2 +J2 a2
2b1 +J0 a2

2b3 +J1 a2 a3 b3 +a2
2b2 J1 +

+J1 a1
2b2 +J0 a1

2b3 +J2 a1 a3 b3

)
+720

(
a0

2b0 J0 +J0 a0 a2 b0 +J0 a0 a1 b0

)
+

+96
(

J1 a1 a3 b3 +J2 a2 a3 b3

)
+160

(
J1 a0 a2 b3 +J1 b2 a0 a3 +J1 b2 a2 a1 +

+J1 a2 a3 b0 +J2 a0 a1 b3 +J2 b1 a0 a3 +J2 b1 a2 a1 +J2 a1 a3 b0 +J0 b3 a0 a3 +

+J0 b3 a2 a1 +J0 a2 a3 b1 +J0 a1 a3 b2

)
+480

(
J1 a0 a1 b0 +J0 a0 a1 b1 +

+J2 a0 a2 b0 +J0 a0 a2 b2

)] 1

720AI
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plied regardless of the dimensionality of the problem (i.e. one-, two- or three-dimensions).

As previously described, this research uses analytical results obtained for polynomials up

to fourth order for convex quadrilaterals with straight edges, which have been considered

more efficient than the other techniques. However, the Gauss’ theorem approach represents

an important technique heavily employed for integration over quadrilaterals which have at

least one of the faces curved. Equally important is the analytical integration of polynomials

along a straight-line segment which represents a basic ingredient in curvilinear integration

over arbitrary geometric splines.

The computation of other geometric properties required by the solution procedure, such as

the lengths of the edges and the normal unit vectors at the Gauss-quadrature point locations,

is carried out with relationships that are widely available in many textbooks about analytical

geometry.

Curved-edge quadrilaterals

Undoubtedly, computation of geometric properties and integration of arbitrary functions

over curved-edge quadrilaterals is far more complicated than on straight-edge counterpart

domains. Moreover, general available techniques such as Monte-Carlo integration may be

either converging too slowly or require too many function evaluations to be always used. As

anticipated in the previous section, a more efficient mean than Monte-Carlo integration ap-

proach [131] for computing integrals of functions for which one dependency can be integrated

analytically is to use Green-Gauss’ theorem for converting surface integrals to contour inte-

grals, which represents a two-dimensional special case of the more general Stokes’ theorem.

The reader is reminded that the curved geometric boundaries of the quadrilateral element

are segments of the block boundary splines, for which a representation (e.g., Lagrange-type

interpolation) of an appropriate order to that of the interior scheme is considered to be

known. Consequently, the path S along which contour integration would be required is

precisely known everywhere between the end vertices.

To illustrate how the integral over the surface of the quadrilateral element, AI , is con-

verted to integration along the element contour, ∂AI , the computation of the geometric
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moment defined by Eq. (3.22) is considered next. Thus, the moment (xp1yp2)I is obtained as

(xp1yp2)I =
1

AI

∫∫
AI

(x− x̄i,j)p1 (y − ȳi,j)p2 dx dy (A.2)

=
1

(p1 + 1)AI

∮
∂AI

(x− x̄i,j)p1+1 (y − ȳi,j)p2 dy (A.3)

=
1

(p1 + 1)AI

Nf∑
l=1

∮
Sl

(x− x̄i,j)p1+1 (y − ȳi,j)p2 dy , (A.4)

in which a curvilinear integral must be computing along each face Sl of the quadrilateral.

As mentioned earlier, a maximum of two curved faces can occur in a given control volume.

Two approaches have been considered in this work for computing the curvilinear inte-

grals with respect to the y-Cartesian coordinate along curved paths in Eq. (A.4). The first

technique is to divide the path Sl into a series of straight-line segments which recover the

“true” curvilinear geometry with an accuracy consistent with the order of the numerical

scheme. Thus, the integral with respect to y is computed as the sum of the integrals for

each segment. For polynomial functions each piecewise integral can be obtained analytically.

Needless to say that this is the method used for computing integrals along the straight edges

of the quadrilateral. A direct application of the integration technique described above is

illustrated herein with the calculation of the element area, which can be expressed as

A=

∮
∂A

x dy =

Nf∑
l=1

∮
Sl

x dy=

Nf∑
l=1

Ns∑
n=0

(∫ y2

y1

x dy

)
n,l

=

Nf∑
l=1

Ns∑
n=0

(
∆y

[
x1 +

1

2
∆x

])
n,l

, (A.5)

where Ns is the number of straight-line segments that make up the contour Sl and (x1, y1) and

(x2, y2) are the Cartesian coordinates defining the vertices of each line segment. Although

this approach is capable of providing accurate results which obviously depend on the number

of segments, Ns, it is quite expensive to be used for computing all geometric properties

requiring integration (e.g. area, centroid and geometric moments up to the polynomial

order) and therefore, an alternative approach has also been developed in this work.

By using Gauss quadrature integration of appropriate order along those integration paths

Sl that are curved, a more efficient algorithm to compute the curvilinear integrals in Eq. (A.4)

can be obtained. Thus, considering that the functions x=x(s) and y=y(s) exist and provide

the Cartesian coordinates of the points along the curved path Sl, which in turn is part of the
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integration contour ∂AI , the curvilinear integral in Eq. (A.4) is calculated with Gaussian

quadratures as follows

I=

∮
Sl

(x(s)− x̄i,j)p1+1 (y(s)− ȳi,j)p2
dy(s)

ds
ds=

∮
Sl

F (s) ds = Ll

NG∑
m=1

(ω F )m , (A.6)

where the function F (s)=(x(s)− x̄i,j)p1+1 (y(s)− ȳi,j)p2 dy(s)
ds

is evaluated at each of the NG-

Gauss quadrature points. In Eq. (A.6) ω is the quadrature weighting coefficient, Ll is the

total arc length and the locations of the Gauss integration points are computed by taking the

corresponding abscissas along the arc length of the integration path. For functions other than

polynomials, the monomial expression in F (s) is replaced accordingly. The derivative of the

y-coordinate with respect to the path length at each integration point can be obtained either

numerically by finite-differences or analytically by differentiating the expression y=y(s) if it

is known explicitly. Note that the same technique can also be applied to compute the normal

unit vector at the flux calculation quadrature points, which gives ~n(s)=
(
dy(s)
ds
,−dx(s)

ds

)
.

The number of Gauss integration points used to compute the curvilinear integrals vary

with the order of the numerical scheme. For cubic and quartic reconstructions the approach

considered herein is to use a five-point integration rule which provides exact results for

polynomials up to nine order. Note that determining the location of the integration points

is typically an expensive operation and therefore, it is more efficient to store them after

their calculation. Note also that the order of the monomial to be integrated along the

contour is one order higher than the one which originally needs to be integrated over the

surface, and therefore, higher-order quadrature rules are required. Moreover, any errors in

determining the coordinates of the centroid in Eq. (A.4) tend to amplify the errors in the

monomial integration, especially for higher orders, and that can deteriorate significantly the

accuracy of the high-order moments. Consequently, the preferred approach in the current

work is to compute the cell area and centroid with the first technique outlined above (i.e.,

summation of integrals on straight-line segments) and the geometric moments with the Gauss

quadrature integration algorithm previously mentioned. Another advantage of having the

Gauss quadrature points readily available is that computation of functionals such as lift and

drag forces over curved shaped bodies can be carried out very efficiently. Thus, a good

balance between accuracy and computational efficiency can be obtained.



Appendix B

CALCULATION OF GEOMETRIC

MOMENTS

As shown in Chapt. 3, two types of geometric moments arise in the computation of the k-exact

reconstruction and they can be categorized based on the relationship between the integration

domain and the centroid with respect to which the moment is taken. Thus, the geometric

moments defined by Eq. (3.22) are local to each control volume because the centroid is part

of the integration domain. In contrast, the geometric moments given by Eq. (3.23) describe a

relationship between neighbouring cells because the integration is performed on one element

and the centroid belongs to a different cell. We shall see shortly that the latter geometric

moments can be derived using knowledge about the local ones and the distance between the

centroids of the two control volumes.

Since the geometric moments depend only on the mesh geometry, in theory they could

all be computed as part of a pre-processing step and stored for later re-use, requiring only

to be updated when mesh refinements occur. However, it turns out that their number is

quite large (e.g. for k=3 in two-dimensions there are 250 geometric moments for each cell of

the domain) and therefore, more judgement is required before committing memory storage

to these parameters, especially for large simulation problems. Note that these geometric

moments represent the “building blocks” for the entries in the LHS matrix of the least-

squares linear system given by Eq. (3.19). Consequently, instead of storing these moments if

the memory storage is available, a more efficient alternative is to store directly the pseudo-

inverse, A−1, of the LHS term, as described in Sect. 3.6.1. On the contrary, when not

sufficient memory is available, it should be obvious that recalculating all geometric moments

for each cell reconstruction at each time step would make the high-order reconstruction

approach discouragingly expensive. Besides, even the computation of the pseudo-inverse
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matrix in the pre-processing step could become an expensive operation.

To address these issues, a solution is to store only part of the geometric moments whereas

the others to be computed by geometric translations, as previously mentioned. Therefore,

the local control volume moments given by Eq. (3.22) could be computed and stored for each

cell and the moments requiring integration over the domain of a neighbour cell are obtained

based on Eq. (3.23) as follows:(
x̃p1yp2

)
IJ

=
1

AJ

∫∫
AJ

[(x− xγ,δ) + (xγ,δ − xi,j)]p1 [(y − yγ,δ) + (yγ,δ − yi,j)]p2dx dy − (xp1yp2)I

=

p2∑
l=0

p1∑
q=0

[
Cq
p1
C l
p2

(xγ,δ − xi,j)q(yγ,δ − yi,j)l
(
xp1−qyp2−l

)
J

]
− (xp1yp2)I

=

p2∑
l=0

p1∑
q=0

[
Cq
p1
C l
p2

∆xqIJ ∆ylIJ

(
xp1−qyp2−l

)
J

]
− (xp1yp2)I , (B.1)

where the binomial coefficients Cβ
α can be computed efficiently by recursion as

Cβ
α =

α− β + 1

β
Cβ−1
α ; C0

α = 1 , (B.2)

and the x- and y-distance between the centroids of the two neighbour cells, ~XI(xi,j, yi,j) and

~XJ(xγ,δ, yγ,δ), are denoted by ∆xIJ and ∆yIJ , respectively. In this approach, the memory

requirements for the aforementioned cubic reconstruction are reduced to only 10 moments

that need to be stored in each cell of the domain. Additionally, some reasonable extra

computational cost is incurred due to geometric translations.

Finally, the reader is reminded that a complete presentation of the methods considered in

this work for computing the surface integral present in the definition of the local geometric

moments, (xp1yp2)I , is provided in Appendix A.
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