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Abstract
The transition boundary separating the regions of regular and Mach reflections for a planar shock moving in argon and
interacting with an inclined wedge in a shock tube is investigated using flow-field simulations produced by high-resolution
computational fluid dynamics (CFD). The transition boundary is determined numerically using a modern and reliable CFD
algorithm to solve Euler’s inviscid equations of unsteady motion in two spatial dimensions with argon treated as a polytropic
gas. This numerically computed transition boundary for inviscid flow, without a combined thermal and viscous boundary
layer on the wedge surface, is determined by post-processing many closely stationed flow-field simulations to accurately
determine the transition-boundary point when the Mach stem of the Mach-reflection pattern just disappears, and this pattern
then transcends into that of regular reflection. The new numerical transition boundary for argon is shown to agree well with
von Neumann’s closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.55,
but it deviates upward and above the closely spaced sonic and extreme-angle boundaries by almost 2◦ at larger shock Mach
numbers from 1.55 to 4.0. This upward trend of the numerical transition boundary for this sequel case with monatomic gases
like argon (γ = 5/3) and no boundary layer on the wedge surface (inviscid flow) is similar to the previous finding for the case
of diatomic gases and air (γ = 7/5). An alternative method used to determine one point on the transition boundary between
regular and Mach reflections, from a collection of Mach-reflection patterns with a constant-strength shock and different
far-field wedge angles, by linear and higher-order polynomial extrapolations to zero for triple-point trajectories versus wedge
angle, is compared to the present method of using near-field data that are close to and surround the new transition boundary.
Such extrapolation methods are shown to yield a different transition-boundary estimate that corresponds to the mechanical-
equilibrium boundary of von Neumann. Finally, the significance of the computed inviscid transition boundary between regular
and Mach reflections for monatomic and diatomic gases is explained relative to the case of viscous flow with a combined
thermal and viscous boundary layer on the wedge surface.

Keywords Shock-wave reflection · Mach reflection · Regular to Mach reflection transition boundary · Regular reflection
persistence

1 Introduction

The interaction of a planar shock wave of constant speed
and amplitude with an inclined wedge or ramp in a shock-
tube channel filled with a gas produces four basic shock-
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wave reflection configurations or patterns. These four pat-
terns called regular reflection (RR), single-Mach reflection
(SMR), transitional-Mach reflection (TMR), and double-
Mach reflection (DMR) are illustrated in Fig. 1 by numer-
ically generated flow-field images from computational fluid
dynamics (CFD) simulations of shock-wave interactions
with a ramp in argon. The SMR, TMR, and DMR patterns
each have a Mach-stem shock (Sm) extending from the con-
fluence point of the incident shock (Si) and reflected shock
(Sr) to the wedge surface, and they each feature a straight or
curved slip stream or shear layer emanating from the triple-
shock coalescence point toward the wedge surface, whereas
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Fig. 1 Flow-field images of regular- andMach-reflection patterns from interactions of moving planar shock waves with an inclined wedge in argon.
These images were computed numerically using the CFD algorithm mentioned in Sect. 2

theRRpattern has neither. The slope change and kinkmarked
by s and k in the RR, TMR, and DMR configurations are
the locations at which the initially straight reflected shock
becomes curved thereafter, and a second slightly curved slip
stream begins at location k only in the DMR pattern, whereas
the reflected shock in the SMR pattern is completely curved.
These s and k markers also denote the location at which the
head of the so-called corner wave, disturbance, or signal con-
tacts the reflected shock in the RR, TMR, and DMR patterns,
whereas this corner wave has overtaken the Mach stem and
triple point in the SMR configuration. In the case of TMR
and DMR, the corner wave also contacts the subsonic flow
field below the slip stream and has, therefore, also overtaken
the Mach stem and triple point. However, the resulting dis-
turbance from the altered flow behind theMach stem is likely
weak and has only slightly altered the flow on the upper side
of the slip stream and possibly the straight portion and angle
of the reflected shock.

The type of shock-reflection pattern that forms above the
compression wedge depends on the strength of the incident
shock (e.g., shock Mach number Mi), wedge angle (θw), and
characteristics of the gas (e.g., without or with molecular

vibration, dissociation, ionization, and chemical reactions).
This dependence on shock strength andwedge angle is shown
in Fig. 2 for the case of monatomic gases like argon, with the
specific heat ratio γ = 5/3, by showing the transition bound-
aries between the regions of RR, SMR, TMR, and DMR. An
important dual region of regular reflection (RR) and Mach
reflection (MR) occurs when Mi > 1.55, in which the MR
configurations are primarily TMR and DMR.

The three upper transition boundaries between regular
and Mach reflections shown in Fig. 2 are based on three dif-
ferent criteria called mechanical equilibrium, extreme angle
or detachment, and sonic flow. These analytical boundaries
originate from von Neumann [1]. The sonic and extreme-
angle boundaries are very close together, within half of a
degree. The two other boundaries that subdivide the MR
region into the regions of SMR, TMR, and DMR come from
the research of Ben-Dor and Glass [2,3]. More information
on Mach reflection is available in the books by Ben-Dor [4]
and Glass and Sislian [5]. Ben-Dor [4] and Colella and Hen-
derson [6] include another weak MR configuration named
von Neumann reflection (vNR), which should occur in the
left-hand side and bottom of the SMR region in Fig. 2, but
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Fig. 2 Regions of RR and MR
patterns separated by analytical
transition boundaries for
monatomic gases like argon
(γ = 5/3), including
experimental data for argon
from experiments with a
boundary layer on the wedge
surface

no boundary is available to map the vNR region therein.
Ben-Dor [4] and Semenov et al. [7] provide more extensive
classifications of Mach-reflection patterns, and Hornung [8]
discusses RR-to-MR transition-boundary origins and crite-
ria.

The three experimental data points shown in Fig. 2
stem from studies aimed specifically at finding transition-
boundary points between RR and MR in argon, and in these
shock-tube experiments a combined thermal and viscous
boundary layer occurs on thewedge surface. Data were taken
from a collection of shadowgraph, schlieren, or other pho-
tographs of Mach-reflection patterns on inclined wedges to
plot the wedge angles (θw) versus triple-point angles (χ ) (or
some equivalent data), to help locate the transition-boundary
point at which the angle χ (shown in Fig. 1b between the
triple-point trajectory andwedge surface) diminishes to zero,
at which the slip stream and Mach stem disappear.

The wedge angles θw for the first and second cases for a
shock Mach number Mi = 1.035 and Mi = 1.47 in Fig. 2
were obtained by Colella and Henderson [6], by using an
extrapolation of their data in their Figs. 4d and 3d, respec-
tively. This was done for the case of a symmetric wedge with
small effects from a wedge boundary layer, with a weighted
extrapolation to the triple-point angle χ → 0◦ to obtain the
two wedge angles θw ≈ 20◦ and 49◦. These extrapolations
were considered reasonable in the opinion of the present
authors because Mi = 1.035 and 1.47 are below the dual
RR-to-MR region where flow property changes across the
RR-to-MR transition boundary should be smooth, in contrast
to rapid or discontinuous changes across the transitionbound-
ary in the dual RR and MR region mentioned by Bleakney
and Taub [9] and Kawamura and Saito [10].

The wedge angle for the last case for Mi = 2.237 was
obtained by theHenderson et al. [11]. Thiswedge angle stems

from special shock-tube experiments done with a wedge
length of 0.17 m and for a wedge angle of 52◦. In one experi-
ment, the wave pattern remains RR all along the wedge (their
Fig. 13a), and in the second case the wave pattern starts as
RR at the beginning of the wedge and switches over to MR
just before the end of the wedge (their Fig. 13b). Hence, the
transition from RR to MR is assumed herein by the authors
to occur at θw = 52◦ for a wedge length of about 0.17 m.
Other researchers have also planned and conducted shock-
tube experiments to show that RR can change to MR along
a wedge. For example, see Kobayashi et al. [12], who used a
shock Mach number Mi = 1.20 and wedge angle θw ≈ 40◦,
so these data should define one point on the RR-to-MR tran-
sition boundary for a short 0.045-m-long wedge in air.

The experimental data from shock tubes presented in
Fig. 2 for argon are sparse, partly because most researchers
believed that the transition boundary between RR and MR
for unsteady flows (with a moving incident shock wave) is
located at or very close to von Neumann’s closely spaced
sonic and extreme-angle boundaries [4,8], so experiments
might have been considered unnecessary for verification.
However, one can imagine that a continuous experimental
transition boundary exists betweenRRandMR,which passes
through the three experimental data points shown in Fig. 2
and lies slightly below the extreme-angle boundary of von
Neumann by 2◦–3◦.

Similar experimental data for unsteady planar incident
shock-wave reflections from ramps in diatomic gases and
air, considered polytropic with γ = 7/5, are more numer-
ous, as illustrated in Fig. 3. Such experimental results yield a
more complete depiction of the transition boundary separat-
ing regular and Mach reflections. The black and black filled
experimental markers for air that lie below the extreme-angle
transition boundary [9,10,12–17], which were obtained in
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Fig. 3 Regions of RR and MR
patterns separated by analytical
transition boundaries for
diatomic gases and air
(γ = 7/5), including
experimental data for air with
and without a boundary layer on
the wedge surface

experiments with a combined thermal and viscous boundary
layer on the wedge surface, show clearly that the experimen-
tal transition boundary between regular andMach reflections
lies a few degrees below the closely spaced sonic and
extreme-angle boundaries.

The white filled experimental markers for diatomic gases
and air [14,18–21] that lie near and on the closely spaced
sonic and extreme-angle boundaries in Fig. 3 were obtained
in special shock-tube experiments without a thermal and vis-
cous boundary layer on the wedge surface, as explained in
the papers by the respective authors and summarized in Sect.
5 of the paper by Hryniewicki et al. [22]. These experimental
data illustrate that the closely spaced sonic and extreme-
angle boundaries are reasonably good transition boundaries
for incident shock Mach numbers Mi from 1.0 to 1.45, when
the flow along the wedge surface is inviscid (i.e., without a
boundary layer).

The set of numerically generated data for diatomic gases
and air in Fig. 3, represented by the string of 20 white filled
circles from Hryniewicki et al. [22], was generated by high-
resolution numerical flow-field simulations and advanced
post-processing techniques for the case of no thermal and
viscous boundary layer on the wedge surface. This set of data
for inviscid flow shows clearly that the transition boundary
between RR and MR is in good agreement with the closely
spaced sonic and extreme-angle boundaries of von Neumann
for 1 < Mi < 1.45. The white filled circles then trend above
these two closely spaced boundaries by as much as several
degrees for Mi > 1.45. This numerical transition bound-
ary for air, represented by the string of data, is supported by
all available experimental data for the case of no boundary

layer on the wedge surface. However, additional experimen-
tal data in the shock Mach number range of 2 < Mi < 4
would be useful in confirming or disproving this newly dis-
covered trend in the dual RR and MR region for inviscid
shock reflections.

It should be noted that four numerically generated results
for planar shock reflections from a straight wedge, with-
out a boundary layer on the wedge in a diatomic gas, were
computed by Alzamora Previtali et al. [23], and their results
are included in Fig. 3. Although the plotted results for the
three lower shock Mach numbers (Mi = 1.5, 2.0, and 2.5)
agree fairly well with the closely spaced sonic and extreme-
angle boundaries, the result for the higher Mach number
(Mi = 3.0) lies definitely above the sonic boundary, by about
15–18% of the way from the sonic boundary to the new
numerical transition boundary. This discovery of the exis-
tence of a Mach reflection occurring in the dual region above
the sonic boundary was noted and discussed by Alzamora
Previtali et al. [23], for the case of an inviscid flow of a
diatomic gas. Furthermore, they also mentioned that a sim-
ilar result for the case of argon is obtained in the paper by
Henderson et al. [24].

All sets of experimental and numerical data shown in
Fig. 3 for the case of diatomic gases and air illustrate the
importance of including or excluding the combined ther-
mal and viscous boundary layer on the wedge surface in
terms of shifting the transition boundary between regular
and Mach reflections. This shift is noticeable and signif-
icant and occurs from above to below the closely spaced
sonic and extreme-angle boundaries of vonNeumann, for the
respective inviscid- and viscous-flow cases, with the largest
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differences of about 4◦ for shockMach numbers correspond-
ing to those that define the dual RR and MR region.

One important objective of the present study is to extend
the earlier numerical research by Hryniewicki et al. [22] for
the case of diatomic gases and air (treated as a polytropic
gas with γ = 7/5) to that for argon (treated similarly with
γ = 5/3), to determine numerically the transition boundary
separating regular and Mach reflections for argon with no
boundary layer on the wedge surface. This is important in
order to determine whether the upward shift of the inviscid
transition boundary for diatomic gases and air occurs dif-
ferently or similarly for the case of monatomic gases. Note
that the effects of the specific heat ratio (γ ) are moderate on
the sonic, extreme-angle, mechanical-equilibrium, and other
boundaries, but readily observable by comparing the results
shown in Figs. 2 and 3. Most of the boundaries are shifted
downward with a decrease in the value of γ and the dual
RR and MR region becomes larger vertically because the
mechanical-equilibrium boundary shifts upward for decreas-
ing values of γ . The earlier investigation of diatomic gases
and air [22] is prerequisite reading, because this study of
monatomic gases is a sequel to the previous study.

The second objective of the present study is to illus-
trate that the method used in some previous investigations
(e.g., [6,11,13,24]) of extrapolating a set of triple-point
angles (χ ) versus the wedge angle (θw) forMR patterns, for a
given shock Mach number, to the location at which χ → 0◦
can yield an incorrect RR-to-MR transition-boundary point,
especially for incident shock Mach numbers corresponding
to the dual RR and MR region. For the dual region, inappro-
priate extrapolations can lie near themechanical-equilibrium
boundary of von Neumann, and this sometimes results in
the conjecture that the RR-to-MR transition boundary is the
mechanical-equilibrium boundary.

The third and final objective of the present study is to
clarify the significance of the single numerical transition
boundary betweenRR andMR for the special case of inviscid
flow when no boundary layer occurs on the wedge surface.
The significance of this computed inviscid transition bound-
ary is explained relative to the more relevant case of viscous
flow with a boundary layer on the wedge surface, which is
expected to feature multiple transition boundaries depend-
ing on the Reynolds number. This transition boundary for
the viscous case is demonstrated to be wedge-surface length
and roughness dependent.

2 Computational fluid dynamics solutions

The numerical solution of the partial differential equations
governing two-dimensional unsteady compressible gas flows
that are non-turbulent and inviscid is of interest herein for the
determination of the unsteady flow fields for planar incident

shock reflections froman inclinedwedgewithout a combined
thermal and viscous boundary layer. The partial differential
equations of Euler for the conservation of mass, momentum,
and energy [25] can be written in matrix form as

∂U
∂t

+ �∇· �F = 0, (1)

in which t denotes time and �F = (F,G) is the total solution
flux dyad. The three column vectors are

U = [
ρ, ρu, ρv, ρe

]T
, (2)

F = [
ρu, ρu2 + p, ρuv, u (ρe + p)

]T
, (3)

G = [
ρv, ρuv, ρv2 + p, v (ρe + p)

]T
, (4)

and they contain the conserved quantities (i.e., mass,
x-momentum, y-momentum, total energy) and correspond-
ing inviscid fluxes in the x- and y-coordinate directions. The
superscript T denotes the matrix transpose. The symbols p,
ρ, u, and v represent the gas pressure, density, and flowveloc-
ities in the x- and y-coordinate directions. The total energy
e = ε+ 1

2 (u
2+v2) is the sum of the internal and kinetic ener-

gies. For a perfect or polytropic gas (Chap. 1 of Courant and
Friedrichs [26]), the internal energy ε = cvT , the enthalpy
h = ε + p/ρ = cpT , and the equation of state p = ρRT ,
in which R and T denote the specific gas constant and gas
temperature. The specific gas constant for argon follows as
R = R/M = 208.132 J/kgK, in which the universal gas
constantR = 8, 314.472 kg/molK and themolecular weight
M = 39.948 kg/mol for argon. The specific heats at constant
pressure and constant volume follow as cp = γ R/(γ − 1)
and cv = R/(γ − 1). The specific heat ratio is given by
γ = cp/cv and taken as 5/3 for this study with monatomic
argon.

A parallel, anisotropic, block-based adaptive mesh refine-
ment (AMR) andfinite-volume schemeusing cells of regular-
and irregular-shaped quadrilaterals is applied to the pre-
ceding set of partial differential equations and used to
generate flow-field solutions by CFD for unsteady shock
reflections from an inclined ramp. This numerical algorithm
was developed over the past 13–15years by Groth et al.
[22,27–36] to solve challenging scientific and industrial
problems involving unsteady flows with shock waves, inter-
nal ballistics of rocket motors, and premixed and non-
premixed combustion flames. The stability and accuracy of
the CFD solution algorithm, including the anisotropic AMR
procedure [27,28,31,32], for producing high-resolution solu-
tions of moving incident shock reflections fromwedges were
established previously by Hryniewicki et al. [27]. The CFD
algorithm and solution details relevant directly to this paper
are also well summarized earlier by Hryniewicki et al. [22],
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Fig. 4 CFD domain, boundaries, and initial conditions for flow-field
simulations of shock reflections in argon using an inclined and rigid
wedge with an angle θw

and these are described in more detail in the PhD thesis by
Hryniewicki [37].

The computational domain, types of boundaries, and ini-
tial flow-field conditions ahead of the incident shock wave
between regions (1) and (2) are shown in Fig. 4. The flow
properties behind the incident shock front in region (2) are
obtained from the shock-jump conditions of Rankine and
Hugoniot [25]. The 1.2-m wedge-surface length allows the
incident shock (projected downward to the wedge surface)
to travel along the inclined wedge surface by 1 m for all
flow-field simulations with incident shock Mach numbers
from 1 to 4. The 1-m flow-field height and 1-m horizontal
pre-wedge distance ensure that the shock reflected from the
wedge does not contact the upper and left-hand boundaries
during all CFD flow-field simulations. The wedge-surface
length of 1.2 m was selected intentionally to be somewhat
longer than the wedges used previously in most shock-tube
experiments of shock reflections from straight wedges, for
which the viscous effects are expected to be important and
can influence the self-similar nature of RR andMR solutions.

The dynamic mesh adaptation from using the anisotropic
AMR procedure is demonstrated in Fig. 5. The initial mesh
at time zero consists of only two initial grid blocks depicted
in Fig. 5a, and each grid block consists of a set of 8-by-8
cells that are not displayed. The left grid block is a square
and exactly 1 m by 1 m as shown in Fig. 5a–d. The right
grid block is of quadrilateral shape, 1 m high on the left side,
1.2 cos(θw) m wide at the top, and squeezed into the space
above the wedge. The shock discontinuity in Fig. 5a is shown
by the vertical dashed line in the first block. Anisotropic
AMR is implemented to refine the grid blocks around the
shock discontinuity, before the numerical calculations begin,
giving the results shown in Fig. 5b. During the computations,
the shock reflection, flow field, and grid evolve, and the mesh
changes to track and define complicated flow-field features
(with large gradients in density and flow velocity), thereby
helping to accurately compute flow-field features on a refined

Fig. 5 Computational blocks at four stages of a TMR simulation in
argon (Mi = 4.0 and θw = 43.0◦): a solution initialization, b initial
anisotropic AMR application before CFD calculations begin, c early
interaction of the incident shock with the wedge, and d later interaction

grid. Grid meshes are illustrated at early and late times in
Fig. 5c and d, respectively, for a transitional-Mach reflection,
as shown previously in Fig. 1c.

A square block with equal side lengths � and 8-by-8 inte-
rior cells features initial cell-side lengths of 2−3�, for the first
level of refinement. For nr levels of refinement, the smallest
cell-side lengths are reduced to δ = 2−nr−3�. For nr = 12,
this corresponds to the smallest cell side of δ = 30.5×10−6�,
and a refinement factor ofR = δ/� = 2nr+3 given by 32,768.
The number of refinement levels is specified at the beginning
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of each CFD flow-field simulation, and nr = 12 was used
most often in this study to generate flow-field simulations
with high resolutions.

The reflection of planar shock waves from inclined
wedges as predicted by Euler’s equations is considered
to be self-similar (theoretically). Therefore, the computed
shock-reflected flow fields and wave patterns (i.e., RR,
SMR, TMR, DMR) do not contain reference lengths. Hence,
two computed flow fields and corresponding wave pat-
terns for the case of a constant incident Mach number
and wedge angle should be computed to the same accu-
racy when using two wedge lengths of 1m and 2m when
the two uniform meshes contain N -by-N cells, respec-
tively, where N is the number of cells in each x- and
y-coordinate direction. In other words, separate computa-
tions of the same problem will yield flow-field solutions
with about the same accuracy when N is the same for the
1-m and 2-m wedge lengths, or when the refinement fac-
tors R = δ/� have about the same values. This information
should be important for others to consider when attempting
to reproduce the computational results reported later in this
paper.

3 Numerical transition boundary between
RR andMR based on near-field CFD data

3.1 Methodology and relevant results for argon

The extraction of the Mach-stem length (L) from each CFD
flow-field simulation of either regular or Mach reflection
is germane to the determination of whether the numeri-
cally computed pattern is RR (L = 0) or MR (L > 0).
Furthermore, the determination of the transition bound-
ary between RR and MR occurs when the Mach-stem
length just approaches zero, so the accurate determina-
tion of small Mach-stem lengths, not easily discernible in
magnified views of CFD flow-field images, is crucial. The
Mach-stem length employed in this research is based on
the Mach-stem offset length L ′ = Vmδt − Viδt/ cos(θw)

along the wedge, as shown in Fig. 6, in which Vi, Vm, δt ,
and θw denote the incident shock speed along the upper
boundary (Fig. 4), Mach-stem speed along the wedge sur-
face, time after the incident shock passes the wedge apex,
and wedge angle, respectively. The time dependence of
the dimensional length L ′ is removed by dividing it by
Viδt/cos(θw), to obtain the normalized Mach-stem length,

L = Vm
Vi

cos(θw) − 1, (5)

which is constant for a self-similar flow. The triple-point
trajectory angle χ (Fig. 6) is given correspondingly by

Fig. 6 Dimensional length L ′ of the forward displacement of the Mach
stem, for the case of a single-Mach reflection

tan(χ) = Vm cos(θw) − Vi
Vm sin(θw)

= 1

tan(θw)

L

1 + L
, (6)

in terms of either the shock speeds Vi and Vm or the nor-
malized length L . The accuracy of the computed values
of L depends on the accuracy of determining the val-
ues of Vi and Vm from CFD flow-field simulations. Note
that Vm = Vi/ cos(θw) theoretically for regular reflections,
and then L = 0 and χ = 0◦ by (5) and (6), whereas
Vm = Vi cos(χ)/ cos(θw + χ) theoretically for Mach reflec-
tions with straight Mach stems normal to the wedge surface,
and then L > 0 and χ > 0◦.

For monatomic gases like argon with γ = 5/3, as for
diatomic gases and air with γ = 7/5 by Hryniewicki
et al. [22], the determination of the numerical transition
boundary for the range 1 < Mi ≤ 4 of incident shock
Mach numbers is done at 20 locations along the extreme-
angle boundary of von Neumann [1]. The selected reference
points (RP) are shown graphically in Fig. 7 and tabulated
numerically in Table1.

At each reference point (M

i , sin(θ



w)) on the extreme-

angle boundary, a set of coordinate points (Mi, sin(θw)) is
specified for performing the CFD flow-field simulations,
and these CFD points are marked by the sign “×”, as illus-
trated at RP-6 and RP-15 in Fig. 7. A translated and rotated
(α, β)-coordinate system is chosen with the α abscissa per-
pendicular and β ordinate parallel to the extreme-angle
boundary so that the CFD flow-field simulations are chosen
along a line perpendicular to the extreme-angle boundary.
The CFD flow-field simulation points are calculated using

Mi = M

i + α cos

(
φ

w

) − β sin
(
φ

w

)
, (7)

sin (θw) = sin
(
θ

w

) + α sin
(
φ

w

) + β cos
(
φ

w

)
, (8)

φ

w = tan−1

(
d sin (θw)

dMi

∣∣
∣∣



)
− 90◦, (9)

with the parameter β = 0. The symbol φ

w denotes the

rotational angle of the (α, β)-axes, and d[sin(θw)] /dMi is
the slope of the extreme-angle boundary. The selected CFD
simulation points are concentrated in the vicinity of the

123



802 J. J. Gottlieb et al.

Fig. 7 Reference coordinates (M

i , sin(θ



w)) alongvonNeumann’s extreme-angle boundarybetweenRRandMR, and a superposed (α, β)-coordinate

system showing the locations of CFD flow-field simulations perpendicular to this boundary

Table 1 Reference coordinates along the extreme-angle transition
boundary for a monatomic gas (γ = 5/3)

RP M

i θ


w (◦) φ

w (◦)

1 1.001 5.1010 − 1.3040

2 1.006 12.2184 − 3.4760

3 1.018 20.1533 − 7.2071

4 1.041 28.0871 − 14.3370

5 1.089 36.3558 − 30.8163

6 1.182 43.4991 − 57.6984

7 1.305 47.7127 − 74.6128

8 1.435 49.9799 − 81.7594

9 1.572 51.3539 − 85.1728

10 1.715 52.2405 − 86.9823

11 1.855 52.8110 − 87.9754

12 2.0 53.2183 − 88.5968

13 2.25 53.6680 − 89.1901

14 2.5 53.9398 − 89.4949

15 2.75 54.1151 − 89.6662

16 3.0 54.2340 − 89.7690

17 3.25 54.3179 − 89.8342

18 3.5 54.3792 − 89.8773

19 3.75 54.4252 − 89.9068

20 4.0 54.4605 − 89.9276

numerical transition boundary by selecting values of the
parameter α such that the Mach-stem length (L) just dimin-
ishes to zero in a set of very closely spaced or stationed
Mach-reflection patterns.

The methodology of determining the incident shock and
Mach-stem speeds to determine L and χ from (5) and (6)
is long but well described in a previous work [22], so this
description is not repeated. However, the most relevant inci-
dent andMach-stem shock-front transitions, trajectories, and
speeds for the specific case ofmonatomic argon are presented
here for completeness.

Fig. 8 Continuous transitions of incident shock fronts in argon, con-
structed from curve fits to discrete CFD flow-field data, when the AMR
level nr = 12

The incident shock front is spread over about three to
twelve cells along the upper boundary (Fig. 4), as shown in
Fig. 8, fromCFDflow-field simulations at various time levels
in the computations. The selection of these shock-front cells
from a flow-field simulation, the curve fit to the data, and the
extraction of the shock-front center location zc at the cen-
ter pressure pc at each computational time (ti ) establishes
the shock-front trajectory with time, zi = zi (ti ), for each
CFD flow-field simulation [22]. Sample results for the inci-
dent shock front are shown in Fig. 8 for RP-1, 5, and 19, at
various values of the incident shockMach numberMi, wedge
angle θw, parameter α, and computational time t shown in
the figure. These results have been computed with an adap-
tive mesh refinement (AMR) level nr = 12, and they are
typical of all incident shock fronts in argon constructed from
CFD simulation data. The curve fit to the shock-front data
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Fig. 9 Incident shock-front trajectories for argon as chains ofn = 8946,
8376, and 8688 dots for RP-2, 8, and 17, respectively, when the AMR
level nr = 12

successfully captures the shock-front transition and provides
an accurate center value of the shock-front transition to track
the trajectory of the incident shock.

Three trajectories of the center of the incident shock
front along the upper boundary are shown in Fig. 9 for
RP-2, 8, and 17, with α values of 0.0018, − 0.0046, and
− 0.0167, respectively. Each incident shock-front trajec-
tory is plotted as a chain of numerous small dots. These
shock-front trajectories for argon are typical of those for
all reference points. A second-order polynomial given by

z = zi + â(t − ti )+ b̂(t2 − t2i ) is fitted to the incident shock-
front trajectories, for distances ranging from z = 0.1 m to
the end of the computations at about ze = 1m. The over-
head bar indicates an average (e.g., ti = 1

n

∑n
i=1 ti for n

data). The standard deviation of the incident shock trajecto-

ries, given by σz = {z(ti ) − zi }2
1/2

, was calculated. They
are approximately 4µm, which corresponds to determining
the shock-front trajectory locations to about 1/8 of the size
of the smallest cell sides of quadrilateral cells (for 12 levels
of AMR). The trajectories look and are almost linear (coef-
ficient b̂ ≈ 0 m/s2). The incident shock speed is given by
Vi = â+2 b̂ te, inwhich te is the timewhen the incident shock
(projected downward on thewedge surface) hasmoved about
1 m along the wedge surface. For the trajectory data shown
in Fig. 9 for RP-2, 8, and 17, the post-processing of the CFD
simulations yielded incident shock-front speeds of 322.3984,
458.8673, and 1039.737 m/s. These computed values differ
only slightly by 0.0019, 0.0016, and 0.0042% from the cor-
responding theoretical values from the Rankine–Hugoniot
equations for the incident shocks used to initialize the CFD
flow-field simulations.

TheMach-stem shock front is also spread over about three
to twelve cells along the wedge surface (Fig. 4), as shown in
Fig. 10, from CFD flow-field simulations at various time lev-
els of the computations. Sample results for this shock front
are shown in Fig. 10 for RP-6, 11, and 14, for different val-
ues of Mi, θw, α, and t shown in the figure. These results are
typical of all Mach-stem shock fronts in argon constructed
from CFD simulation data. The curve fit to the shock-front

Fig. 10 Continuous transitions of reflected incident or Mach-stem
shock fronts in argon, constructed from curve fits from discrete CFD
flow-field data, when the AMR level nr = 12

data successfully captures theMach-stem shock-front transi-
tion and provides an accurate center value of the shock-front
transition to track the trajectory of the Mach stem. What is
considered here as the Mach-stem shock also includes either
the coalesced incident and reflected shocks at the wedge sur-
face for RR (with no Mach stem) or the obvious Mach-stem
shock for MR (with a Mach stem).

Three composite trajectories of the center of the incident
shock front along the lower horizontal pre-wedge bound-
ary, and then the center of either the combined incident and
reflected shock front for RR or theMach-stem shock front for
MR along the sloped wedge surface, are shown in Fig. 11 for
RP-3, 8, and 17, for various values of Mi, θw, and α. These
trajectories are kinked noticeably at the wedge apex location
(z = 0 m), because the speed of the incident shock wave
along the lower horizontal boundary before the wedge apex
is slower than that of the shock traveling along the wedge
surface. These shock-front trajectories for argon are typical
of those obtained for all reference points.

A second-degree polynomial, z = z(t), is fitted to the dis-
crete trajectory data for the combined incident and reflected
shocks (for RR from the wedge) or theMach-stem shock (for
MR), to determine the coefficients â and b̂, aswas done previ-
ously for the incident shock front. This curve fit is confined to
shock-front data in the distance range 0.5 m < z ≤ ze along
the wedge surface, where ze ≈ 1 m is the final shock-wave
location near the end of the wedge. The curve fit is not as
accurate as that for the incident shock because the standard
deviations were roughly three to five times higher at about
15 µm (for 12 levels of AMR). This corresponds to deter-
mining the Mach-stem shock-front locations to about one
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Fig. 11 Incident and Mach-stem shock-front trajectories for argon as
a chain of 9537, 8509, and 9228 dots for RP-3, 7, and 20, respectively,
when the AMR level nr = 12

half the size of the smallest cells within the computed flow
field with quadrilateral cells.

The speed of the shock front along the wedge surface,
Vm ≈ Vi/ cos(θw) for regular reflection (without a Mach
stem), or Vm ≈ Vi cos(χ)/ cos(θw + χ) for Mach reflec-
tion (with a Mach stem), is calculated by differentiating the
composite shock trajectory with respect to time. This shock
speed is given by Vm = â + 2 b̂ te, where te is the time at
the end of the flow-field simulation. These shock trajectories
are not always linear for the specific case of the dual RR and
MR region, so the full equation for Vm at the trajectory end
when ze ≈ 1 m is used to determine Vm and calculate L and
χ by (5) and (6). Note that the shock-front transitions and
speeds for incident and Mach-stem shocks in Figs. 8, 9, 10
and 11 for monatomic gases like argon are similar in shape
and linearity to those for diatomic gases and air [22], but the
results differ numerically.

Five plots of theMach-stem length L versus the parameter
α (perpendicular to the extreme-angle boundary of von Neu-
mann) are presented in Fig. 12 for RP-3, 7, 11, 15, and 18.
Each plot shows the post-processed data from many closely
spaced CFD flow-field simulations focused at and surround-
ing the numerical transition boundary (at which L → 0).
These near-field data that closely surround the numerical
transition boundary are then used to determine this transi-
tion boundary accurately. This is done by determining the
value of αc at which L of MR patterns just diminishes to
zero and the patterns then transcend into RR with L ≈ 0.

The lower limits of the L versus α data (Fig. 12), when
L → 0 for MR results, are wide and bumpy for RP-
1 to RP-8, which lie below the dual RR and MR region
(1 < Mi < 1.55), whereas the bottoms are sharper but still
bumpy for RP-9 to RP-20 associated with the dual RR and
MR region (Mi > 1.55), as depicted in the selected 5 of the
full 20 plots presented in Fig. 12. The start of larger bumpi-
ness in the RR region of white filled circles (moving from left
to right) bymeans of a few standard deviations from the aver-
age (L rr) is marked by the left-most vertical dashed line. The

Fig. 12 Normalized Mach-stem length L versus parameter α for RP-3,
7, 11, 15, and 18, for the case of argon when the AMR level nr = 12

beginning of large deviations in the MR region of black dots
(also moving from left to right) by a few standard deviations
from the average (Lmr) is marked by the right-most vertical
dashed line. These early and late indications of the transition
between RR andMR are considered as bracketing the transi-
tion point between RR and MR. These marked locations are
determined by using enlarged or magnified plots (factor of
ten), whereas the enlargements shown in Fig. 12 are smaller
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to make them fit into the diagrams. The transition value for
α between RR and MR is then taken as the average of these
early and late indicators, shown by the central vertical dashed
line, and labeled as αc. Although the transition boundary at
αc might appear to be known only approximately between
the early and late markers, because of the magnification of
and focus on the (L → 0) region of the plot, this deviation is
very small. The α variations on Mi and θw are typically less
than 0.2%.

The rapid or abrupt RR-to-MR transition behavior shown
in the plots in Fig. 12c–e in the dual RR and MR region is
not a new phenomenon. This behavior associated with the
dual region was noticed and explained in the late 1940s to
mid-1950s, based on the observations of and questions about
the experimental results reported by Smith [13], and based
on theory and experimental-data interpretations of Bleakney
and Taub [9] and Kawamura and Saito [10].

The numerical transition-boundary points between regu-
lar andMach reflections from the post-processing of all of the
CFD flow-field simulation data for the 20 reference points on
von Neumann’s extreme-angle transition boundary are sum-
marized in Table2. The values of the transition angle αc,
determined from the collection of near-field data with α val-
ues closely surrounding αc (Fig. 12), and the corresponding

Table 2 Numerical transition boundary between RR and MR for an
inclined wedge without a boundary layer in argon, based on near-field
CFD data

RP Reference points Numerical transition points

M

i θ


w (◦) αc Mi θw (◦)

1 1.001 5.1010 0.00022 1.00122 5.1007

2 1.006 12.2184 − 0.00060 1.00540 12.2206

3 1.018 20.1533 − 0.00063 1.01738 20.1581

4 1.041 28.0871 − 0.00020 1.04081 28.0903

5 1.089 36.3558 − 0.00050 1.08857 36.3741

6 1.182 43.4991 − 0.00110 1.18141 43.5726

7 1.305 47.7127 − 0.00130 1.30466 47.8195

8 1.435 49.9799 − 0.00080 1.43489 50.0505

9 1.572 51.3539 − 0.00080 1.57193 51.4271

10 1.715 52.2405 − 0.00270 1.71486 52.4935

11 1.855 52.8110 − 0.00410 1.85486 53.2012

12 2.0 53.2183 − 0.00670 1.99984 53.8641

13 2.25 53.6680 − 0.00945 2.24987 54.5920

14 2.5 53.9398 − 0.01160 2.49990 55.0847

15 2.75 54.1151 − 0.01300 2.74992 55.4060

16 3.0 54.2340 − 0.01460 2.99994 55.6911

17 3.25 54.3179 − 0.01510 3.24996 55.8291

18 3.5 54.3792 − 0.01610 3.49997 55.9950

19 3.75 54.4252 − 0.01625 3.74997 56.0583

20 4.0 54.4605 − 0.01640 3.99998 56.1106

incident shock Mach number Mi and wedge angle θw calcu-
lated using (7) and (8) are summarized as the new numerical
transition boundary for argon in columns 4–6.

From the authors’ present study with monatomic argon
and subsequent to their previous study with diatomic gases
and air [22], they have learned the following. In some cases
for the computational results connected to the dual RR and
MR region, the change from RR into MR along the wedge is
delayed in theCFDcomputations, occurring farther along the
wedge, because the smallest cells in the RR andMR patterns
moving along the wedge actually get smaller from the wedge
apex to the wedge end. This effect occurs because the sec-
ond initial quadrilateral block and its subsequent subdivided
quadrilateral blocks above the wedge are all tapered from
the wedge apex toward the wedge end (as depicted in Fig. 5).
Hence, the emergence of MR with extremely small Mach
stems at the RR-to-MR transition boundary is not necessar-
ily detected near the wedge apex in the computations, but the
emergence of MR is often detected farther along the wedge
when the smallest cells sizes in shock-wave patterns become
even smaller. Once the smallest Mach reflections emerge far-
ther along the wedge, evenwell past themiddle of the wedge,
they grow in size as the MR pattern moves along and toward
the wedge end (1m in the present computations), because the
speed and size of the Mach-stem configuration require addi-
tional propagation space (e.g., larger than 0.5 m) and time
to settle into a larger and possibly self-similar MR pattern.
This delayed emergence of the Mach stem along the wedge
means that the MR patterns with small Mach stems are not
self-similar, with triple-point trajectories that are curved and
do not start at the wedge apex, in contrast to what is expected
from solutions of Euler’s equations for inviscid flows. The
computations of small non-self-similar MR patterns are con-
sidered affected by the minimum size of the quadrilateral
cells and numerical viscosity in the authors’ computational
algorithm.

The computation of somewhat non-self-similar MR flow-
field patterns that have small Mach stems, by solving Euler’s
equations for unsteady inviscid flows of shock interactions
with a wedge, is not considered herein as detrimental to the
authors’ numerical determination of the RR-to-MR transi-
tion boundary.When computations produceMach reflections
with large Mach stems, the MR patterns are essentially self-
similar, and these MR patterns obviously occur in the MR
region, so they are also well below the RR-to-MR transition
boundary that the authors are seeking to determine. When
computations produce Mach reflections that have smaller
and smaller Mach stems, these MR patterns do not grow
initially in a self-similarmanner (because theMach-stem for-
mations were delayed and the triple-point trajectory does not
start at the wedge apex), but these results still lie in the MR
region, but they are clearly closer and closer to theRR-to-MR
transition boundary that is being sought. When subsequent
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Fig. 13 Mach-stem length L versus parameter α for RP-5 and argon,
when the AMR level nr = 10, 11, 12, and 13

computations start to produce regular shock reflections, these
reflections become essentially self-similar (and do not have
Mach stems). These results must now lie in the RR region,
so the RR-to-MR transition boundary must obviously have
been passed. Hence, the RR-to-MR transition boundarymust
occur when the emergence of small Mach stems in computed
wave patterns ceases from the MR patterns that are not self-
similar, and self-similar RR patterns then occur in the RR
region.

3.2 Study of mesh refinement on solution accuracy

The results of an investigation are reported herein for the
evaluation of the effects of mesh refinement on improving
the accuracy of CFD flow-field solutions and the subse-
quent post-processing determination of the new numerical
transition boundary for argon separating regular and Mach

Fig. 14 Mach-stem length L versus parameter α for RP-16 and argon,
when the AMR level nr = 10, 11, 12, and 13

reflections. The objective is to demonstrate that the mesh
was refined sufficiently well at 12 levels of anisotropic AMR
such that the new results for the numerical transition bound-
ary presented in Table2, which came from CFD flow-field
simulations, were well converged and grid independent so
that this new numerical transition boundary can be consid-
ered reasonably accurate.

Four plots of the normalized Mach-stem length L ver-
sus the parameter α for AMR levels nr = 10, 11, 12, and
13 are presented in Figs. 13 and 14 for reference points RP-
5 and 16, respectively. The results for RP-5 are typical of
all reference points for incident shock Mach numbers in the
range 1.0 < Mi < 1.55, for which the new numerical tran-
sition boundary agrees well with the closely spaced sonic
and extreme-angle boundaries of vonNeumann (Sect. 4). The
results for RP-16 are typical of all reference points for inci-
dent shockMach numbers in the range 1.55 < Mi < 4.0, for
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which the new numerical transition boundary trends above
the closely spaced sonic and extreme-angle boundaries in the
dual region of regular and Mach reflections (Sect. 4).

As the mesh is refined for AMR levels nr from 10 to 13
for reference points RP-5 and 16 in Figs. 13 and 14, typical
observations are given as follows: (1) the two averages L rr

and Lmr become more equal and converge toward the correct
value of zero (most noticeable for RP-5), (2) the vertical vari-
ations in the data for regular reflection (white filled circles)
diminish substantially (especially for RP-1 to 8), (3) the ver-
tical variations in the data for Mach reflection (black dots)
diminish more marginally, (4) the bottom transition region
between regular and Mach reflections becomes narrower for
RP-5 and sharper for RP-16, and (5) the early and late indi-
cators of the emergence of a Mach stem, denoted by the two
outer vertical dashed lines, contract for increasing levels of
AMR. However, the average of these early and late indica-
tions, given by the center dashed line labeled αc, shifts only
slightly leftward (away from the sonic and extreme-angle
boundaries), less and less as the value of αc converges to
a nearly constant value. Note that the accuracy of the post-
processed L versus α results is generally better for stronger
incident shocks (Mi > 1.55) within the dual region of regu-
lar andMach reflections than it is for weaker incident shocks
(1.0 < Mi < 1.55) before the dual region. For instance,
this is evident from a comparison of the transition profiles of
RP-16 with those of RP-5 for a given AMR level in Figs. 13
and 14.

The small changes in the transition values of αc with
increasing mesh refinement, as can be seen in Figs. 13 and 14
for reference points RP-5 and 16 with AMR levels nr = 10
to 13, are not significant in changing the numerically deter-
mined transition-boundary points (Mi, θw) presented earlier
in Table2. If the early and late vertical dashed line indicators
of the emergence of the Mach stem in the plots of L versus
α are considered as error bars on the transition value of αc,
then the results shown in Table2 for Mi and θw are accurate
in the worst cases to within ± 0.33% and ± 0.47%, for all
20 reference points selected along von Neumann’s extreme-
angle transition boundary. The resulting error bars would not
be noticeable if they were placed on the symbols used to plot
the incident shock Mach number Mi versus the wedge angle
θw for the numerically determined transition points (like data
shown in Figs. 2 and 3), because these error bars would each
be covered entirely by the white filled circle and black dot
markers.

Based on the preceding and other similar studies, the use
of 12 levels of AMR is considered sufficient to accurately
determine the new transition boundary separating regular
and Mach reflections in this research. This conclusion is
based on the present mesh refinement study on CFD solu-
tion accuracy, in conjunction with the preceding results for
determining the incident shock and Mach-stem speeds Vi

and Vm in Sect. 3.1 that illustrate the high accuracy of the
post-processingmethodology in the computations of the inci-
dent and Mach-stem shock speeds Vi and Vm used in the
calculations of the Mach-stem length L . At the mesh res-
olution of 12 levels of AMR, the predicted CFD flow-field
solutions and post-processed transition-boundary points are
considered essentially independent of the mesh densities
used in the CFD flow-field simulations.

4 Numerical transition boundary between
RR andMR based on far-field CFD data

Plots of the normalized Mach-stem length L versus the
parameter α (perpendicular to the extreme-angle boundary),
such as those presented previously in Fig. 12 for argon, are
replotted differently here by using the triple-point angle χ

versus α. Four plots of these alternate representations of
the data for determining the transition boundary between
regular and Mach reflections are presented in Fig. 15 for ref-
erence points RP-13, 15, 18, and 20, with reference incident

Fig. 15 Three possible transition boundaries between RR and MR in
argon given by the locations αea, αc, and αm or αme
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shock Mach numbers M

i = 2.25, 2.75, 3.5, and 4.0, respec-

tively. These plots for the variation in χ versus α correspond
to incident shock Mach numbers that lie within the range
1.55 < Mi < 4 for the dual RR and MR region (Fig. 2).

The post-processed data for χ versus α from CFD flow-
field simulations of regular and Mach reflections in argon
are subdivided into two groups in Fig. 15. The first group
of closely spaced near-field data, included as the collection
of black dots, was used previously in Sect. 3 to determine
the new numerical transition boundary between regular and
Mach reflections (without a boundary layer on the wedge
surface), yielding the values of αc given in Table2 for argon.
The location of αc occurs when the normalized length L and
the triple-point angle χ both just diminish to zero for the
transition from Mach to regular reflection. The location of
αc among these closely spaced near-field data is shown by a
vertical dashed line labeled αc in each plot in Fig. 15.

The location of the transition boundary between regu-
lar and Mach reflections from von Neumann [1], based on
the extreme-angle or detachment criterion, is also shown
in each plot as a vertical dashed line labeled αea. This
location occurs exactly at the point α = 0, which stems
from the definition of α that is centered on and runs per-
pendicular to the extreme-angle boundary. Based on the
data shown in Fig. 15 for the dual region of regular and
Mach reflection, von Neumann’s transition boundary is not
valid for inviscid flows (without a boundary layer on the
wedge), because the CFD flow-field simulations do not fea-
ture both L and χ equal to zero at the location αea in the dual
region. Nonetheless, the closely spaced sonic boundary (not
shown) and extreme-angle boundary in the dual region can
be considered as being relatively close to the new numer-
ical transition boundary, making these sonic and extreme-
angle boundary estimates rather respectable, considering
that they are based on relatively simple analytical predic-
tions using the assumption that the incident shock, reflected
shock, Mach stem, and slip stream are all linear or straight
lines.

The second group of post-processed data for χ versus α is
shown as a distributed set of white filled diamonds in Fig. 15.
This group of data is called far-field data, partly because
these data do not surround the transition-boundary location
αc between regular andMach reflections, partly because they
do not surround the nearby boundary location αea stemming
from von Neumann’s extreme-angle criterion, and partly
because the triple-point angles and Mach-stem lengths in
these Mach-reflection patterns are rather large and atypical
of those that should occur close to a RR-to-MR transition
boundary. The straight line in each plot in Fig. 15 is produced
by a least-squares curve fit to the far-field data only (datawith
diamond symbols). The extrapolation of the straight line of
χ versus α to χ = 0 yields the value of α labeled αm in each
plot in Fig. 15. The extrapolated values given by αm lie very

Table 3 Numerical transition boundary between RR and MR using
extrapolated far-field data for argon

RP Reference points Numerical transition points

M

i θ


w (◦) αm Mi θw (◦)

9 1.572 51.3539 0.00348 1.57229 51.0369

10 1.715 52.2405 − 0.00446 1.71477 52.6589

11 1.855 52.8110 − 0.01177 1.85458 53.9410

12 2.0 53.2183 − 0.01930 1.99953 55.1063

13 2.25 53.6680 − 0.03008 2.24958 56.6859

14 2.5 53.9398 − 0.03918 2.49966 57.9496

15 2.75 54.1151 − 0.04707 2.74973 59.0111

16 3.0 54.2340 − 0.05273 2.99979 59.7842

17 3.25 54.3179 − 0.05787 3.24983 60.4744

18 3.5 54.3792 − 0.06273 3.49987 61.1186

19 3.75 54.4252 − 0.06388 3.74990 61.3105

20 4.0 54.4605 − 0.06868 3.99991 61.9330

close to the mechanical-equilibrium boundary, which is also
shown using the symbol αme in the four diagrams in Fig. 15
for direct comparisons.

Each value of αm and the corresponding incident shock
Mach number Mi provide a possible transition-boundary
point separating regular and Mach reflections for the dual
region (Mi > 1.55). These particular extrapolated transition-
boundary points have the correct results that χ = 0◦ and
L = 0. However, these extrapolations of far-field Mach-
reflection data pass over the new numerical transition bound-
ary, and also over most or all of the remaining dual region,
and lie on or close to the mechanical-equilibrium boundary.
Therefore, these extrapolated boundary points occur where
CFD flow-field simulations yield only flow-field solutions
corresponding to RR patterns, because α < αc. Hence, this
supposedlyRR-to-MR transition boundary cannot be correct,
because Mach reflections with Mach stems do not occur up
against one side of this boundary. Hence, the extrapolated
results of far-field data (χ versus α in Fig. 15) yield an incor-
rect and misleading RR-to-MR transition boundary.

These numerical transition-boundary points from post-
processing only CFD far-field data for reference points RP-9
to 20 to obtain the extrapolated values for αm are nonethe-
less collected in column 4 of Table3. The corresponding
incident shock Mach numbers Mi and wedge angles θw, cal-
culated using (7) and (8), are listed in columns 5 and 6. These
data facilitate the discussion and conclusions presented in
Sect. 5.2.

5 Final discussion and conclusions

The final discussion and main conclusions are organized into
the three subsections that follow, based on the stated three
primary objectives of this study.
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5.1 Transition boundary between RR andMR using
near-field data

The regions of and transition boundaries between regular
and Mach reflections (i.e., RR, SMR, TMR, and DMR) from
wedges in argon are presented in Fig. 16, in a plot of the
wedge angle θw versus the incident shock Mach number Mi.
The new numerical transition boundary between regular and
Mach reflections in argon, which was determined from CFD
field-flow simulations (inviscid flows) using near-field data,
for the case of no boundary layer on the wedge surface, is
defined by the string of 20 white filled circles. These data
were taken directly from Table2.

The numerical transition boundary between regular reflec-
tion and Mach reflection (SMR, TMR, and DMR) in argon
is in good agreement with the extreme-angle or detachment
boundary of vonNeumann [1] for lower incident shockMach
numbers in the range 1 < Mi < 1.55, corresponding to
those below the dual RR and MR region. This transition
boundary then deviates above the closely spaced sonic and
extreme-angle boundaries by about two degrees for larger
Mach numbers in the range Mi > 1.55, corresponding to
those of the dual RR and MR region. This upward trend at
larger incident shock Mach numbers is noticeable, increases
continuously without fluctuations, and is significant in that
it trends higher than the sonic and extreme-angle boundaries
of von Neumann by as much as two degrees. This behavior
is very similar in trend to that for the numerical transition
boundary for diatomic gases and air, as shown earlier in
Fig. 3. Hence, the behavior or trend (but not numerical val-
ues) is the same for diatomic and monatomic gases even
though the specific heat ratio changes from γ = 7/5 to 5/3,
respectively.

The behavior or trends for both monatomic and diatomic
gases, illustrating the effects of changing the specific heat
ratio γ from 5/3 to 7/5, are shown in Fig. 17. The additional
extreme-angle and mechanical-equilibrium boundaries for
the case of γ = 1.09 for sulfur hexafluoride (as a polytropic
gas) are included for comparison. All experimental data for
both argon and air shown previously in Figs. 2 and 3, respec-
tively, are included in Fig. 17 for completeness and interest.
Although the trends for different types of gases are simi-
lar, the corresponding transition boundaries and experimental
data differ significantly in location in the plot of wedge angle
versus incident shock Mach number.

Although the numerical transition boundaries between
regular andMach reflections for monatomic gases like argon
and diatomic gases and air are in good agreement with the
closely spaced sonic and extreme-angle boundaries for low
incident shock Mach numbers (1 < Mi < 1.55), the results
for the numerical transition boundary in this Mach number
range are not sufficiently accurate to provide a definitive
conclusion as to whether they agree better with the sonic
or extreme-angle boundary, because the sonic and extreme-
angle boundaries lie so close together and the numerical data
are not sufficiently accurate for this situation.

The three experimental data (black markers) shown in
Fig. 16 interpreted from the papers by Colella and Hender-
son [6] and Henderson et al. [11] for the case of moving
incident shock reflections from an inclined wedge with a
combined thermal and viscous boundary layer in argon, lie
below the extreme-angle or detachment boundary by about a
couple of degrees. These sparse data imply that, for the case
of viscous flow with a boundary layer on the wedge surface,
theRR-to-MR transition boundary lies below the newnumer-
ical boundary and von Neumann’s closely spaced sonic and
extreme-angle boundaries. This implication is much more

Fig. 16 Regions and transition
boundaries separating regular
and Mach reflections for an
inclined wedge in argon
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Fig. 17 Effects of varying the specific heat ratio (γ ) on the extreme-
angle, mechanical-equilibrium, and numerical transition boundaries for
monatomic gases like argon, diatomic gases and air, and sulfur hexaflu-
oride (SF6) with γ = 1.09

evident for the case of the reflection of moving shocks from
wedges in diatomic gases and air (as introduced earlier in
Fig. 3), because the experimental data are more plentiful and
thereby yield a more recognizable moderately wide-banded
experimental transition boundary.

The downward shifts by as much as three degrees from
the numerical transition boundaries in argon and air with-
out a boundary layer (inviscid) down to the experimental
data with a boundary layer (viscous), as shown in Figs. 16
and 3, respectively, illustrate the importance of the thermal-
conductivity and viscous-flow effects associated with the
boundary layer on the wedge surface. Regular reflections
with a boundary layer on the wedge surface persist down-
ward across the entire dual RR andMR region, including the
numerical transition boundary and closely spaced sonic and
extreme-angle boundaries, slightly into the Mach-reflection
region (SMR, TMR, and DMR). Alternately, Mach reflec-
tions without a boundary layer on the wedge surface persist
upward from the Mach reflection region into the dual RR
andMR region, across the closely spaced sonic and extreme-
angle boundaries, and terminate at the new numerical tran-
sition boundary inside the dual region. The current images
of CFD flow-field simulations without a boundary layer on
the wedge surface are always regular-reflection patterns for
the region between the numerical transition boundary and
the higher mechanical-equilibrium transition boundary of
von Neumann. This well illustrates that the mechanical-
equilibrium boundary is not appropriate to consider as the
transition boundary between RR and MR for the reflection
of a moving incident shock from a wedge. Most of these
conclusions were presented earlier in the experimental and
numerical paper by Henderson et al. [11], for shock reflec-
tions without and with a wedge with a boundary layer in

argon, but the MR-to-RR transition for the case of inviscid
flow was mentioned as occurring close to but slightly above
the extreme-angle or detachment transition boundary, which
would likely occur near the new numerical RR-to-MR tran-
sition boundary presented herein.

Good support for the new numerical transition boundary
for argon for the case of no boundary layer on the wedge
surface by means of shock-tube experiments in argon is not
available. However, the publication of the present results
might stimulate some researchers tomake experimentalmea-
surements, using one of the types of shock-tube facilities
reviewed in Sect. 5 of the paper by Hryniewicki et al. [22],
to either confirm or reject the numerical transition boundary
separating regular and Mach reflections.

Support for the new numerical transition boundary for
argon without a boundary layer on the wedge surface by
means of CFD studies from other researchers is also scarce.
The work of Henderson et al. [24] contains one result of
a CFD flow-field simulation that supports the authors’ new
numerical transition boundary for argon. This result is shown
graphically in their Figs. 16 and 18 for a CFD flow-field sim-
ulation done for a shock Mach number Mi = 2.327 and
wedge angle θw = 54.5◦ (taken from their figures). The
flow-field pattern that lies above the extreme-angle bound-
ary must be that of a Mach reflection, because it has a small
triple-point angle of 0.68◦ (also from their figures), which
corresponds to a normalized Mach-stem length L = 0.017
calculated by means of (5). The CFD flow-field calculations
for inviscid flows were mentioned as being completed by
Phillip Colella, at the end of their conclusions, as part of
some of his earlier studies, possibly from part of Colella and
Henderson’s research for their paper [6], although the data
were not reported therein.

The flow-field computation of Colella for Mi = 2.327
and θw = 54.5◦ in argon is shown as the white filled box in
Fig. 16, for the case of inviscid flow and no boundary layer
on the wedge surface. This Mach-reflection point lies 0.68◦
above the extreme-angle boundary, and it has a small Mach
stem, so the actual transition boundary between MR and
RR should lie above Colella’s result, which would obviously
be very close to the authors’ numerical transition boundary.
Consequently, this flow-field computation of Colella is con-
sidered here as providing some conclusive support for and
verification of the new numerical transition boundary.

The physical mechanism or reasons for the upward shift in
the authors’ numerical transition boundary, above von Neu-
mann’s closely spaced sonic and extreme-angle transition
boundaries,within the dual regionof regular andMach reflec-
tions, are not yet completely understood for both cases of
monatomic gases like argon and diatomic gases and air. This
upward shift inside the dual region is not believed to stem
fromnumerical or flowdisturbances, or frommodeling errors
in the CFD computations. The string of 20white filled circles
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Table 4 Regular and Mach
reflections when 1 < Mi < 1.55
(below the dual RR and MR
region)

θw range Without boundary layer With boundary layer

0◦ < θw < [θ iexp ≈ θea ≈ θn ≈ θs] MRa

[θ iexp ≈ θea ≈ θn ≈ θs] < θw < 90◦ RR

0◦ < θw < θvexp MRa

θvexp < θw < θea RR

θea < θw < θs RR

θs < θw < θn RR

θn < θw < 90◦ RR

aMR is either SMR or vNR

Table 5 Regular and Mach
reflections when Mi > 1.55
(within the dual RR and MR
region)

θw range Without boundary layer With boundary layer

0◦ < θw < θvexp MRa MRa

θvexp < θw < θea MRa RR

θea < θw < θs MRa RR

θs < θw < θn ≈ θ iexp MRa RR

θn ≈ θ iexp < θw < θme RR RR

θme < θw < 90◦ RR RR

aMR is either SMR, TMR, or DMR

is neither erratic nor jerky in behavior. Instead, they occur
in a uniform and systematic manner, as shown in Fig. 16.
The numerical transition boundary is generated by high-
resolution CFD flow-field simulations, which fully account
for the shock-reflection process from the inclined wedge.
The effects of the entire corner wave are included fully in
these computations, as are those of the curved reflected shock
when the corner wave overtakes the incident shock in RR
and the triple point in MR. Consequently, it should not be
expected that the new numerical transition boundary will
agree well with the sonic and extreme-angle boundaries for
both small and large Mach numbers. Von Neumann’s two
transition boundaries, based on his sonic and extreme-angle
criteria, originate from fairly simple analytical considera-
tions in which the incident, reflected and Mach-stem shocks,
and the slip stream are all assumed planar or straight. More-
over, von Neumann’s analytical derivations ignore the entire
corner wave for the extreme-angle boundary and take the
speed of this wave into account only for the sonic transition
boundary [22]. The reasons for the unexpected shift in the
numerical transition boundary upward into the dual RR and
MR region are currently being investigated.

As a recap, the occurrences of regular and/or Mach reflec-
tion in various ranges of the wedge angle θw, for inviscid
argon flows without a boundary layer and thermal and vis-
cous flows with a boundary layer on the ramp surface, are
summarized in Tables4 and 5. These tables pertain to inci-
dent shock Mach numbers in the range 1 < Mi < 1.55 prior
to the dual RR and MR region, and for Mi > 1.55 within the

dual region. In these tables, the symbols θea, θs, θn, and θme

denote the respective wedge angles for the extreme-angle,
sonic, new numerical, andmechanical-equilibrium transition
boundaries. Also, θ iexp and θvexp denote the transition bound-
ary from the string of experimental results without and with a
combined thermal and viscous boundary layer on the wedge,
corresponding to inviscid and viscous flows, respectively.

5.2 Transition boundary between RR andMR using
far-field data

A possible alternate transition boundary between regular and
Mach reflections from inclined wedges without a boundary
layer in argon for the dual RR and MR region (Mi > 1.55)
is produced in Sect. 4 and collected in Table3. These tabu-
lateddatawere obtained fromMach-reflection configurations
with relatively large Mach stems and triple-point angles, and
the alternative transition boundary was determined by lin-
ear extrapolation of these far-field data for χ versus α to
χ = 0◦, to obtain the transition-boundary value of αm,
from which the corresponding values of Mi and θw were
obtained. These extrapolated results are shown in Fig. 16 as
the twelve white filled diamonds. The locations of the plot-
ted data are surprising in that they lie on or very close to
the mechanical-equilibrium boundary of von Neumann [1].
These extrapolated locations provide a powerful suggestion
that the mechanical-equilibrium boundary is the transition
boundary between RR and MR, especially if one is unsure
where the transition boundary lies, and more so if one also
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Fig. 18 Quadratic polynomial extrapolations of argon data by Hender-
son et al. [24] to determine the transition-boundary wedge angle θw at
Mi = 2.327 between RR and MR from a wedge, without and with a
boundary layer on the wedge surface

does not know that the RR-to-MR transition occurs as a rapid
or an abrupt change in shock-front properties for the dual RR
and MR region.

The mechanical-equilibrium boundary, however, is not
a valid transition boundary for the change from regular to
Mach reflection in the dual region, as mentioned previously
in Sect. 4. The extrapolation of far-field data simply over-
shoots the new numerical boundary at which the transition
from RR to MR occurs as a very rapid or abrupt change in
the flow properties (including χ ). This was first discovered in
1949 by Bleakney and Taub [9], concerning the experimen-
tal data of Smith [13], and studied further and confirmed in
1956 by a different but complementary study of Kawamura
and Saito [10].

One example of extrapolating far-field MR data and con-
cluding incorrectly that the RR-to-MR transition boundary is
the mechanical-equilibrium boundary was done by Hender-
son et al. [24], for the case of shock reflections from a wedge
without and with a boundary layer on the wedge surface in
argon. Their results (in Fig. 18) are included in the authors’
revised Fig. 18 herein to facilitate the discussion. The sym-
bols χ and ψ denote the usual and self-similar triple-point
angles for numerical experiments using theEuler andNavier–
Stokes equations for inviscid and viscous flows, respectively,
with ψ being corrected for parallax error associated with
viscous flows. The extreme-angle, sonic, and mechanical-
equilibrium boundaries of von Neumann are included at the
wedge angles given by θ iea = 53.776◦, θ is = 53.924◦, and
θ ime = 57.021◦, respectively, whereas θ in = 54.744◦ is the
numerical transition boundary of the present authors, and all
correspond to inviscid flows without a boundary layer on the
wedge surface. The symbol θv = θvw = 52◦ is the transition
boundary betweenRR andMR for a 0.17-m-longwedgewith
a boundary layer on the wedge surface, which is shown in
Figs. 2 and 16. The origin of this transition-boundary wedge

angle of θv = 52◦ from Henderson et al. [11] is explained
in Sect. 1. Colella’s flow-field simulation at χ = 0.68◦ and
θw = 54.5◦, mentioned earlier and plotted in Fig. 16, is now
also shown in Fig. 18, beyond the extreme-angle boundary
(θ iea) and just before or below but very close to the authors’
numerical transition boundary (θ in).

The conjectures made by Henderson et al. [24], based on
their quadratic extrapolations of far-field data, that the tran-
sition boundary separating RR and MR for both inviscid
and viscous flows is the mechanical-equilibrium boundary
were incorrect and misleading. However, such conjectures
were not continued in the subsequent paper by Henderson
et al. [11].

5.3 Significance of computed transition boundary
between RR andMR for inviscid flow reflections

Consider regular reflection from an inclined wedge with a
boundary layer on the wedge surface, as sketched in Fig. 19.
The size of the regular-reflection pattern is characterized by
a simple overall length denoted by the distance z, but the
size of the boundary layer characterized by its length and
thickness is more complicated, because the boundary layer
consists of two separate parts. One part is produced by the
incident and reflected shocks joined together at the wedge
surface and moving together along this surface. This shock-
induced boundary-layer flow extends from its front at the
joined shocks backward down the wedge toward the apex by
a length denoted as zsi. If a single-Mach-reflection pattern
is used to illustrate this first type of boundary layer, then it
will extend backward from theMach-stem shock to the point
at which the slip stream touches the wedge surface, because
all of the pre-Mach-stem gas engulfed by the Mach stem
during its motion along the wedge resides within the moving
triangular region consisting of the Mach stem, slip stream,
and wedge surface.

Fig. 19 Regular reflection with a boundary layer on the wedge sur-
face, the boundary-layer temperature and flow-velocity variations, and
the length of the reflection pattern in terms of the two boundary-layer
lengths
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The other part of the boundary layer on the wedge sur-
face in Fig. 19 is produced differently by the flow behind the
reflected shock near the central plane. Although the oncom-
ing incident shock induces an initial flow toward the wedge,
this flow also passes through the reflected shock that moves
leftward and is slowed in its movement rightward. This right-
ward moving slowed flow near the centerline impacts the
front of thewedge, and it thenmoves along thewedge surface
as part of the corner wave, producing this second boundary
layer of length denoted by zcw. The front of this boundary
layer is at or near the wedge apex, which is detached from
the apex because of the flow stagnation point at the apex.
This flow stagnation can be observed in each CFD flow-field
velocity image ofRR, SMR,TMR, andDMRshown inFig. 1.
The combined length of these two boundary layers, each fac-
ing the opposite direction and abutting somewhere along the
wedge surface (between the incident shock and wedge apex),
is the overall wave-pattern length z. Hence, z = zsi + zcw.

Becker [38] provided a detailed treatment of shock-
induced boundary layers, and Hornung and Taylor [39] and
Hornung [40] have applied Becker’s work to determine the
effects of the shock-induced boundary layer on both the tran-
sition boundary from RR to MR and the Mach-stem height.
From Becker and Hornung’s papers, the displacement thick-
ness δ∗ of the shock-induced boundary layer on the wedge
can be expressed as

δ∗ = −F
[
M, γ,Pr, Tw/To

]
x

[
�v

x

]1/2
(10)

for laminar flow. The function F is evaluated from local flow
conditions just outside and near the front of the boundary
layer, in terms of the flow Mach number M , specific heat
ratio γ , Prandtl number Pr, and ratio of the wall temperature
Tw to the stagnation-flow temperature To. The viscous length
�v = μ/(ρV ) is also evaluated from local conditions and
depends on the dynamic viscosity μ, gas density ρ, and flow
speed V along the wedge. The distance x is measured from
the front of the boundary layer along the wedge surface, that
is backward down thewedge for the shock-induced boundary
layer, and forward up the wedge for the other boundary layer
induced by the flowup thewedge (as part of the cornerwave).

The shock-induced boundary-layer thickness δ∗
si at the

location x = zsi, possibly halfway back down the wedge
surface toward the apex, can be rewritten as

δ∗
si

z
= −F

[
zsi
z

]1/2[
�v

z

]1/2
= −F

[
zsi
z

]1/2
Re−1/2

z , (11)

for the case of laminar flow. The Reynolds number is
defined as Rez = z/�v = ρV z/μ, based on the over-
all shock-reflection length z. The function F and viscous
length �v should be reasonably constant for a particular

regular-reflection pattern for a constant incident shock Mach
number, as the pattern grows in size with time during the
expanding shock-reflection process from thewedge. Further-
more, the length ratio zsi/z should be reasonably constant
in the expanding shock-reflection pattern with time. There-
fore, the boundary-layer length ratio δ∗

si/z will diminish with

(�v/z)1/2 or Re−1/2
z as z increases with increasing time, as

the shock-reflection pattern expands in size. This illustrates
clearly that the reflected shock pattern grows more quickly
with time than the thickness of the shock-induced bound-
ary layer, and this growth difference is incorporated in the
Reynolds number Rez , which is based by selection on the
shock-reflection pattern length z.

The Reynolds number is approximately zero when the
shock-reflection pattern just emerges or forms at the wedge
apex, so the boundary-layer thickness is relatively large
compared to the shock-reflection pattern, and the effects of
the combined thermal and viscous boundary layer on the
reflection process will be dominant. As the shock-refection
pattern grows, the Reynolds number will increase, and the
boundary-layer thickness will become a smaller part of the
shock-reflection pattern, and the boundary-layer effects on
the shock-reflection process will thereby diminish. As the
Reynolds number increases toward infinity as the shock-
reflection pattern grows unboundedly, the boundary-layer
effects on the reflected shock-reflection process will also
diminish unboundedly and become insignificant.

Note that for the case of a turbulent boundary layer the vis-
cous length ratio and Reynolds number would decay more
slowly as (�v/z)1/5 and Re−1/5

z , respectively. Hence, the
effects of the turbulent boundary layer on the reflected shock
process would diminish more slowly with time and take
somewhat longer to become insignificant. These conclusions
for the RR wave pattern should also carry over to the other
more complicated wave patterns of SMR, TMR, and DMR.

The implications of these boundary-layer effects on shock
reflections from wedges alter previous thinking of the transi-
tion boundary between regular to Mach reflections for both
viscous and inviscid flows. Consider the case of an incident
shock, with a Mach number Mi = 2.327, reflecting from an
inclined ramp of angle θw = 52◦, which was a test case for
numerical and experimental studies of Henderson et al. [11].
The incident shock encounters the wedge apex, diffracts, and
starts to move along the wedge. The thermal and viscous
effects of the shock-induced boundary layer are initially very
large, because Rez ≈ 0. The reflected shock pattern is forced
to start as a regular reflection, because of the strongboundary-
layer effects, which results in a spatial separation between
the corner wave and the co-joined incident and reflected
shocks at the wedge surface. As the incident shock moves
forward, the shock-reflection flow field expands with time,
and the shock-induced boundary-layer effects on the shock-
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reflection process subside somewhat, because Rez increases.
The corner wave is not held back or retarded as much, so
the spatial separation between the corner wave and co-joined
leading shocks decreases. Eventually, as the reflected shock
system expands further with time, the boundary-layer effects
diminish further, because Rez increases further so that the
corner signal finally overtakes the co-joined incident and
reflected shocks, and aMach-reflection pattern then emerges
and expandswith time.As theMach reflection pattern contin-
ues to grow, the boundary-layer effects continue to diminish,
and they eventually become negligible as Rez → ∞.

The preceding explanation of a regular reflection tran-
sitioning into a Mach reflection at some distance along
the wedge surface is consistent with the experimental and
numerical experiments reported in Henderson et al. [24] and
Henderson et al. [11] for argon, and Kobayashi et al. [12] for
air. For the case of argon, the process gives one transition-
boundary point labeled θv = 52◦ in Fig. 18 for a wedge that
is 0.17 m long, and for air the corresponding transition points
are included in Fig. 3. Note that the explanation given here
for the transition fromRR toMRdoes not require a definition
of precursor regular reflection (PRR) and a description of the
corner wave as being unstable or metastable by Henderson
et al. [11] to help explain their “unexpected” corner-wave
motion on overtaking the leading shocks. Furthermore, the
hidden assumption in the previous study is removed that the
effects of the boundary layer on the shock-reflection flow
field are constant with time and independent of the size of
the shock-reflection pattern.

Now, consider the case of the same-strength incident
shock (Mi = 2.327) reflecting from a wedge in which the
wedge angle is increased from 52◦ to 53◦. One might sur-
mise that the starting regular-reflection pattern might persist
all along the wedge to its very end at 0.17 m, because the
boundary-layer effects dominate and the corner wave can-
not overtake the leading shocks and form a Mach reflection
pattern before the end of the 0.17-m-long wedge is encoun-
tered. However, if the wedge length is increased, then the
effects of the boundary layer on the shock-reflection flow
field will diminish further with time, and a Mach reflection
will then emerge for this longer wedge. This thought pro-
cess implies that the transition boundary between RR and
MR has shifted to 53◦ for this longer wedge. One can con-
tinue this thought process of increasing the wedge angle,
for a constant incident shock Mach number, and conclude
that the RR-to-MR transition boundary shifts once again to
the larger wedge angle for a longer wedge. However, once
the process of increasing the wedge angle approaches the
present authors’ numerical transition boundary, denoted by
θ in in Fig. 18, the wedge lengths should approach infinity for
the shock-induced boundary-layer effects to become negli-
gible, such that a Mach-reflection pattern could eventually
emerge at the end of an infinitely long ramp. This is pre-

cisely when the transition boundary for inviscid flowwithout
a boundary layer is approached, which corresponds to the
case when Rez → ∞.

This discussion above leads to some important conclu-
sions. Firstly, the transition boundary that separates regular
and Mach reflections for a moving incident shock of con-
stant strength and interacting with a wedge with a boundary
layer (from a smooth or rough surface) will be affected by
the wedge length. In other words, the RR-to-MR transition
boundary is wedge length and surface roughness dependent.
For the case of the shock-tube reflection experiments from
wedges in air, the fairly closely banded experimental data
shown in Fig. 3 are typically for wedge lengths ranging from
0.05 to 0.15m and for wedges that are relatively smooth (pol-
ished). For the effects of moderate to strong wedge-surface
roughnesses that result in a widely spaced experimental data
in plots of wedge angle versus shock strength, see Ben-
Dor [4] and Reichenbach [41]. One should be able to produce
additional experimental data for additional RR-to-MR reflec-
tion boundaries between the currently available experimental
data and the new numerical boundary by simultaneously
slightly increasing the wedge angle and lengthening the
wedge for a set of fixed incident shock Mach numbers.

Secondly, the upward limit of the transition boundary
between RR and MR for viscous flows in gases (diatomic,
monatomic, and others) should become that for an infinite
wedge length at the present authors’ transition boundary
(or some other not yet determined numerical transition
boundary). As a consequence, the authors have intentionally
focused their attention and efforts to date on determining
accurately the transition boundary between RR and MR for
wedges without a boundary layer in diatomic andmonatomic
gases (i.e., the limiting self-similar viscous solutions for very
long times for a long wedge with Rez → ∞), because of
the importance of this limiting transition boundary for both
inviscid and viscous flows.

Although the significance of the computed inviscid tran-
sition boundary between RR and MR was established herein
using a variation in well-known and elegant scaling princi-
ples for the boundary-layer influence on the shock-reflection
pattern and resulting transition boundary, the results of this
analysis were recognized previously in a somewhat dif-
ferent but parallel context. The effects of both real gases
and the combined viscous and thermal boundary layer
were well known to shift the transition boundary between
RR and MR downwards below the extreme-angle bound-
ary of von Neumann. For example, see the work for
straight wedges by Hornung and Taylor [39] on the effects
of the boundary layer; Lee and Glass [42], Shirouzu and
Glass [43], and Glass’ student Wheeler [44] on equilibrium-
air and boundary-layer effects; and also Ben-Dor [4] who
includes his and other researchers work of this type in his
books.
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For the case of a shock interacting with a cylinder, see
the book by Ben-Dor [4] for a collection and discussion
of relevant data; and the paper by Kleine et al. [45] for
the effects of the boundary layer and pre-shock-reflection
pressure on the Mach-stem trajectory and height. Kleine
et al. [45] were able to clearly show and conclude that
the viscous effects on the Mach-stem height diminished
as the cylinder diameter and pre-shock pressure increased
their Reynolds number, such that the Mach-stem trajecto-
ries converged to the Mach-stem trajectory for the case
of inviscid flow. These numerical and experimental stud-
ies have identified the shift of the transition boundary
and Mach-stem trajectory and height by changes in the
Reynolds number, which is somewhat parallel and equiv-
alent to the present authors’ more comprehensive descrip-
tion of multiple transition boundaries for the case of
viscous flows, meaning that the transition boundary for vis-
cous flows is wedge length and wedge-surface roughness
dependent.
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