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1 Introduction

In the last 20 years, numerical methods have become
an essential tool for the investigation of combusting
flows. The application of Computational Fluid Dynamics
(CFD) methods to reactive flows has yielded an
improved understanding of combustion processes.
Nevertheless, combustion involves a wide range of
complicated physical and chemical phenomena (flame
behaviour is dictated by a strong interaction between
the flow structure, chemical kinetics, and thermodynamic
properties of the reactants and products), each with their
own characteristic spatial and/or temporal scales. In
many cases, combusting flows exhibit large disparities in
these characteristic scales, mainly because combustion
is usually associated with turbulent flows. Due to more
manageable computational requirements and somewhat
greater ease in handling complex flow geometries,
most practical simulation algorithms are based on the
Reynolds- or Favre-averaged Navier-Stokes equations,
where the turbulent flow structure is entirely modelled
and not resolved. In spite of simplifications offered by
the time-averaging approach, the system of equations
governing combusting flows can be both large and
stiff and its solution can still place severe demands on
available computational resources.

Many approaches have been taken to reduce
the computational costs of simulating combusting
flows. One successful approach is to make use of
solution-directed mesh adaptation, such as the AMR
algorithms developed for aerospace applications (Berger,
1984; Berger and Colella, 1989; Quirk, 1991; Powell
et al., 1993; De Zeeuw and Powell, 1993; Quirk and
Hanebutte, 1993; Berger and Saltzman, 1994; Aftosmis
et al., 1998; Groth et al., 1999, 2000). Computational
grids that automatically adapt to the solution of
the governing equations are very effective in treating
problems with disparate length scales, providing the
required spatial resolution while minimising memory
and storage requirements. Recent progress in the
development and application of AMR algorithms
for low-Mach-number reacting flows and premixed
turbulent combustion is described by Day and Bell
(2000) and Bell et al. (2001, 2002b). Another approach
for coping with the computational cost of reacting
flow prediction is to apply a domain decomposition
procedure and solve the problem in a parallel fashion
using multiple processors. Large massively parallel
distributed-memory computers can provide many fold
increases in processing power and memory resources
beyond those of conventional single-processor computers
and would therefore provide an obvious avenue for
greatly reducing the time required to obtain numerical
solutions of combusting flows.

This work seeks to combine these two numerical
approaches, producing a parallel AMR method that
both reduces the overall problem size and the time
to calculate steady solutions for combusting flows
from the laminar to turbulent regimes. In particular,

a highly scalable parallel block-based AMR algorithm is
proposed for predicting a wide range of two-dimensional
non-premixed compressible combusting flows.

In the following sections, the mathematical modelling
of non-premixed combustion is presented for turbulent
flows and the parallel AMR algorithm is described in
details. Numerical verification of the proposed parallel
AMR scheme is then presented by considering the
numerical predictions for three classical non-reacting
flow problems and one reactive flow problem. Numerical
results are described and discussed for non-premixed
methane-air laminar and turbulent co-flow axisymmetric
diffusion flames. Finally, conclusions of this work are
given.

2 Mathematical modelling

The governing conservation equations describing the
behaviour of a thermally perfect compressible reactive
gaseous mixture are formulated for both laminar
and turbulent reactive flows. For laminar reactive
flows, Navier-Stokes equations are employed and the
formulation is rather standard and straightforward.
Herein, we will only present mathematical modelling for
turbulent combusting flows to keep this section brief.

2.1 Favre-averaged Navier-Stokes equations

A system of Favre-averaged Navier-Stokes equations
describing a thermally-perfect compressible turbulent
reactive mixture can be formulated as:

∂ρ
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∂t
(ρcn) + �∇ · (ρcn�u) = −�∇ · ( �Jn + �Jtn) + ρẇn, (4)

where equations (1)–(3) reflect the conservation of mass,
momentum, and energy for the reactive mixture, ρ
is the Reynolds-averaged mixture density, �u is the
Favre-averaged mean velocity of the mixture, p is the
Reynolds-averaged mixture pressure given by the ideal
gas law p =

∑N
n=1 ρcnRnT where N is the number of

species, Rn is the species gas constant, and T is the
mixture temperature. Here, e = |�u|2/2 +

∑N
n=1 cnhn −

p/ρ + k is the Favre-averaged total specific mixture
energy, k is the specific turbulent kinetic energy and Dk

is the coefficient for the diffusion of the turbulent energy,
��τ and ��λ are the fluid stress tensor and the turbulent
Reynolds stress tensor for the mixture, respectively, �q
and �qt are the laminar and turbulent heat flux vector,
respectively. Equation (4) describes the time evolution of
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the species mass fraction, where ẇn is the time-averaged
or mean rate of the change of the species mass fraction
produced by the chemical reactions. The molecular stress
is given by the general stress-strain relationship

��τ = 2µ

(
��S − 1

3
��I �∇ · �u

)
,

where µ is molecular viscosity, ��S is the strain rate tensor,

and ��I is the identity tensor. For species n, the molecular
and turbulent diffusive flux, �Jn and �Jtn, are modelled by

�Jln = −ρDn∇cn and �Jtn = −ρDtn∇cn.

The molecular and turbulent heat flux are modelled by

�q = −
(
κ∇T−

N∑
n=1

hn
�Jn

)
and �qt = −

(
κt∇T−

N∑
n=1

hn
�Jtn

)
,

where κ and κt are the laminar and turbulent thermal
conductivity of the mixture and Dn and Dtn are the
molecular and turbulent diffusivity of species n relative
to the major species, respectively. Given laminar and
turbulent Schmidt numbers, Sc and Sct, Dn and Dtn

are obtained using Dn = µ/ρSc and Dtn = µt/ρSct.
In addition, hn is the absolute (chemical and sensible)
internal enthalpy for species n.

2.2 Two-equation k-ω model

The two-equation k-ω model of Wilcox (1998) is used
here to model the unresolved turbulent flow quantities.
In this approach, the Boussinesq approximation is used

to relate the Reynolds stress tensor, ��λ, to the mean flow
strain-rate tensor using a turbulent eddy viscosity, µt,
��λ = 2µt(

��S − 1
3
��I �∇ · �u) − 2

3
��Iρk with µt =ρk/ω. Transport

equations are solved for turbulent kinetic energy, k, and
the specific dissipation rate, ω, given by

∂

∂t
(ρk) + �∇ · (ρk�u)

= ��λ : �∇�u + �∇ · [(µ + µtσ
∗)�∇k] − β∗ρkω, (5)

∂

∂t
(ρω) + �∇ · (ρω�u)

= α
ω

k
��λ : �∇�u + �∇ · [(µ + µtσ)�∇ω] − βρω2, (6)

where σ∗, β∗, α, σ, and β are closure coefficients for the
two-equation model and are given by Wilcox (2002).

2.3 Thermodynamic and transport properties

Thermodynamic relationships and transport coefficients
are required to close the systems of equations given
above for both laminar and turbulent combusting flows.
Thermodynamic and molecular transport properties of
each gaseous species are prescribed using the empirical
database compiled by Gordon and McBride (1994),
McBride and Gordon (1996), which provides curve

fits for the species enthalpy, hn; specific heat, cpn;
entropy; viscosity, µn; and thermal conductivity, κn, as
functions of temperature, T . The Gordon-McBride data
set contains curve fits for over 2000 substances, including
50 reference elements.

The molecular viscosity, µ, and thermal conductivity,
κ, of the reactive mixture are determined using the
mixture rules of Wilke (1950), Mason and Saxena
(1958), respectively. Turbulent contributions to thermal
conductivity and species diffusivity are modelled by
making an analogy between momentum and heat and
mass transfer and introducing the turbulent Prandtl and
Schmidt numbers, Prt and Sct, both of which are taken
to be constant (Prt = 0.9 and Sct = 1), and assuming
κt = µtcp/Prt and Dtn = µt/ρSct.

2.4 Reduced chemical kinetics

The combustion of methane is considered here.
Although several detailed chemical reaction mechanisms
are available for describing methane-air combustion
processes (Smith et al., GRI-Mech 3.0), for
computational simplicity, our attention shall be restricted
to reduced chemical kinetic schemes. Both one- and
two-step reduced chemical reaction mechanisms as
described by Westbrook and Dryer (1981) are used.

Empirically derived expressions for the reaction rates
in each case are used. The five species considered in the
one-step reaction mechanism are methane (CH4), oxygen
(O2), carbon dioxide (CO2), water (H2O), and nitrogen
(N2). Nitrogen is assumed to be inert. Carbon monoxide
(CO) species is also considered in the two-step reaction
mechanism. Further details and reaction rates for these
reduced mechanisms are given by Westbrook and Dryer
(1981).

2.5 Eddy Dissipation Model

The mean reaction rates, ω̇n, in equation (4) describe
the mean production and consumption of each of the
chemical species due to the chemical reactions and strong
interactions between turbulence and chemistry and are
estimated using the Eddy Dissipation Model (EDM) of
Magnussen and Hjertager (1976). This model assumes
that turbulence mixing limits the fuel burning and that
the fuel reaction rate is limited by the deficient species.
The individual species mean reaction rate is then taken
to be the minimum of the rates given by the finite-rate
chemical kinetics (i.e., the law of mass action and
Arrhenius reaction rates) and the EDM value. The latter
is related to the turbulence mixing time and is estimated
using the dissipation rate, ω.

2.6 Treatment of near-wall turbulence

Both low-Reynolds-number and wall-function
formulations of the k-ω model are used for the
treatment of near-wall turbulent flows, with a procedure
for automatically switching from one to the other,
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depending on mesh resolution. In the case of the
low-Reynolds-number formulation, it can be shown
that limy→0 ω = 6ν

βoy2 where y is the distance normal
from the wall. Rather than attempting to solve the
ω-equation directly, the preceding expression is used to
specify ω for all values of y+ ≤ 2.5, where y+ = uτy/ν,
u2

τ = τw/ρ, and τw is the wall shear stress. Provided
there are 3–5 computational cells inside y+ = 2.5,
this procedure reduces numerical stiffness, guarantees
numerical accuracy, and permits the k − ω model to be
solved directly in the near-wall region without resorting
to wall functions. In the case of the wall-function
formulation, the expressions k = u2

τ√
β∗

o

, ω = uτ√
β∗

o κy
, are

used to fully specify k and ω for y+ ≤ 30 − 250, where κ
is the von Kármán constant.

A procedure has also been developed to automatically
switch between these two approaches, depending on the
near-wall mesh resolution. In this procedure, the values
of k and ω are approximated by

k =
u2

τ√
β�

o

(
min(y+, 30)

30

)2

and ω = ωo

√
1 +

(
ωwall

ωo

)2

,

where ωo = 6ν
βoy2 and ωwall = uτ√

β∗κy
. This procedure has

been devised to prescribe k and ω for y+ lying between 2.5
and a cutoff value. where ωo and ωwall are the values in
the near-wall sub-layer and in the log layer, respectively.
The cutoff is taken to be in the range 30–50 for this
study. When y+ is close to the lower limit, 2.5, k and
ω approach zero and the asymptotic value, respectively.
When y+ approaches the cutoff value, the wall function
is recovered. This automatic near-wall treatment readily
accommodates situations during AMR where the mesh
resolution may not be sufficient for directly calculating
near-wall turbulence using the low-Reynolds-number
formulation.

3 Parallel AMR algorithm

3.1 Finite volume scheme

A finite volume scheme is proposed to solve the system of
partial-differential equations governing two-dimensional
axisymmetric laminar and turbulent compressible flows
for reactive thermally perfect gaseous mixtures using a
fully coupled finite-volume formulation on body-fitted
multi-block quadrilateral mesh. Applying the divergence
theorem to the differential form of the system of
governing equations in two-dimensional axisymmetric
coordinates, Equations (1)–(6), one arrives at the integral
form

d
dt

∫
A(t)

UdA +
∮

l(t)
�n · �Fdl =

∫
A(t)

(
− Sa

r
+ Sc + St

)
dA,

(7)

where U is the vector of conserved variables, �F the
flux dyad, defined as �F = (F − Fv,G − Gv), Sa the
source term associated with the axisymmetric geometry,
Sc and St the source terms due to finite rate chemistry
and turbulence modelling to be included for turbulent
flows, A the control area, l the closed contour of the
control volume, r is the radial distance, and �n is the unit
outward vector normal to the closed surface. For laminar
flows, U is given by

U = [ρ, ρvr, ρvz, ρe, ρc1, . . . , ρcN ]T , (8)

and ρk and ρω are included for turbulent flows. Note that
the last species N is chosen to be Nitrogen and used
to accommodate the numerical errors. In other words,
the concentration of Nitrogen is corrected by using
cN = 1.0 −

∑N−1
n=1 cn after solving the system.

This fully compressible formulation can
readily accommodate large density variations and
thermo-acoustic phenomena. Nevertheless, laminar
combusting flows are in general characterised by very
low Mach numbers (M < 0.2) and nearly incompressible
behaviour. Therefore, a local preconditioning technique
proposed by Weiss and Smith (1995) and Turkel
(1999) is used here to remove numerical stiffness and
maintain solution accuracy for low-Mach-number flows.
The preconditioned system of governing equations
is integrated over quadrilateral cells of a structured
multi-block quadrilateral mesh. The semi-discrete form
of this finite-volume formulation applied to cell (i, j) is
given by

Γ
dUi,j

dt
= − 1

Ai,j

∑
faces,k

�Fi,j,k ·�ni,j,k∆�i,j,k −
Sai,j

ri,j
+Sci,j ,

(9)

where Γ is the Weiss-Smith preconditioning matrix for
the conserved variable system, ri,j and Ai,j are the radial
distance and area of cell (i, j), and ∆� is the length of the
cell face.

The inviscid (hyperbolic) component of the numerical
flux at each cell face is evaluated using limited
linear reconstruction (Barth, 1993) and one of several
Riemann-solver based flux functions (Roe, 1981; Einfeldt,
1988; Linde, 2002). The viscous (elliptic) component
of the numerical flux is evaluated by employing a
diamond-path reconstruction procedure as described by
Coirier and Powell (1996).

3.2 Time marching method

For the time-invariant calculations performed as part
of this study, a multi-stage time-marching scheme is
used to solve the coupled set of non-linear ODEs,
that arise from the finite-volume spatial discretisation
procedure. The time-marching scheme is based on the
optimally-smoothing multi-stage time marching scheme
developed by van Leer et al. (1989). The general M
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stage optimally smoothing time-marching scheme for
integrating Equation (9) from the time level n to time
level n + 1 can be written as

m stage:




U0
i,j = Un

i,j

Um
i,j = U0

i,j − αm∆tn Ri,j(Um−1)

Un+1
i,j = UM

i,j

,

where m = 1 · · ·M , ∆tn = tn+1 − tn is the size of the
time step and αm are multi-stage coefficients. The
coefficients used here have been selected to optimise
the high-frequency damping for first- and second-order
upwind discretisations of the scalar advection equation
in multigrid applications (van Leer et al., 1989). They
are not optimised for diffusion problems or viscous
flows.

The source terms associated with finite-rate chemistry
and turbulence modelling are usually responsible for
much of the numerical stiffness in the resulting discretised
system of equations. The use of semi-implicit time
integration can be utilised to cope with the stiffness of
the system. This method treats source terms implicitly,
while treating the fluxes explicitly. Hence, this method
avoids solving the large block matrices associated
with the fully implicit scheme. A local linear system
of equations is then solved to obtain the solution
change using a dense matrix solver. In this case a LU
decomposition was used.

The inviscid Courant-Friedrichs-Lewy stability,
viscous von Neumann stability, and turbulent and
chemical time step constraints are imposed when selecting
the time step. Note that, for reacting flows, the inverse
of the maximum diagonal of the chemical source term
Jacobian is added to the time step calculation. The time
step, ∆tn, is then determined by

∆tn = min

(
CFL

∆l

|�u|+c
,
α

2
ρ∆l2

max(µ, µt)
,

(
β max

(
∂Sc

∂U

))−1
)

(10)

where ∆l is the cell-face length of a cell, c is the sound
speed, and µ and µt are molecular viscosity and turbulent
eddy viscosity, respectively, and where α and β are scaling
factors.

3.3 Preconditioned multigrid

Application of multigrid to the Favre-averaged
Navier-Stokes equations can result in convergence
rates that are far from optimal due to the stiff source
term associated with the turbulence models. Classic
multigrid remedies for these multigrid difficulties, such
as directional-coarsening, directional implicit smoother,
combining directional coarsening and smoothing, and
combining a point-implicit block-Jacobi preconditioner
and J-coarsening, etc., are well documented and the

effects are illustrated for some example problems by
Pierce and Giles (1996, 1997) and Mavriplis (1998).
Sheffer et al. (1998) employed the point-implicit
formulation of Bussing and Murman (1987, 1988) in
combination with an explicit time-stepping multigrid
solver for calculating high speed reactive flows. Gerlinger
and Brüggemann (1997) and Gerlinger et al. (1998, 2001)
investigated the q-ω model and proposed the techniques
of computing the production term and the divergence of
velocity field only on the finest mesh and restricted these
values to coarser meshes. For complicated geometries
and simple flow field initialisations, they initiated the
calculation with several fine mesh iterations before
restricting to coarser meshes. Refer Gao (2008) for details
on a literature review in terms of multigrid applications
to turbulent flows.

In this study, to remedy the multigrid difficulties in
stability and convergence due to the stiff turbulence
production terms and chemical source terms and the use
of highly stretched meshes, we employed a point-implicit
block-Jacobi preconditioner (matrix preconditioner) in
combination with the multigrid solver. The turbulence
quantities are restricted to the coarse mesh but not
updated so as to enhance the stability of the scheme
and avoid non-physical solutions. Note that we do
not believe that the point-Jacobi preconditioning will
provide a fully satisfactory solution to issues with
high-aspect-ratio meshes; however, our experiences show
that the preconditioning combined with modifications
to the restriction and prolongation operators partially
alleviates the problem.

3.3.1 Smoothing operator

The point-implicit block-Jacobi preconditioner used
herein is based on the form of the discrete residual
operator, R, and obtained by extracting the terms
corresponding to the centre cell in the stencil. The
application of the matrix preconditioner to the
multi-stage time-marching scheme is rewritten as

m stage:




U0
i,j = Un

i,j

Um
i,j = U0

i,j − ναm P−1
i,j Ri,j (Um−1)

Un+1
i,j = UM

i,j

where ν includes the time step and P−1
i,j is the inverse of

the matrix preconditioner for cell (i, j). The construction
of the matrix preconditioner is illustrated here using
the system of governing equations in a two-dimensional
axisymmetric system. Given the residual function for
cell (i, j), Ri,j , which can be written as

Ri,j =
dUi,j

dt
=

−1
Ai,j

Nf∑
k=1

�Fk ·�nk ∆lk −
Sai,j

r
+Sti,j +Sci,j ,

(11)
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the matrix preconditioner, Pi,j = ∂R
∂U

∣∣
i,j
, is a N × N

matrix and has the form

Pi,j =
∂Ri,j(U, ∇U)

∂Ui,j
=




∂R1

∂U1

∂R1

∂U2
. . .

∂R1

∂UN

∂R2

∂U1

∂R2

∂U2
. . .

∂R2

∂UN

...
...

. . .
...

∂RN

∂U1

∂RN

∂U2
. . .

∂RN

∂UN



.

(12)

Each term Pi,j consists of five components and they
result from the inviscid numerical flux Jacobian, Ci,
the viscous flux Jacobian, Cv , and the source Jacobians
due to axisymmetric coordinate system, Ca, the source
Jacobian due to turbulence, Ct, and the source Jacobian
due to chemistry, Cc. The evaluation of each of these
Jacobian matrices is discussed below.

The inviscid numerical flux Jacobian at each cell face
is evaluated by the solutions of a Riemann problem in a
rotated frame aligned with the normal to the cell face and
takes on the form of

Ci =
∂(�F · �n)
∂Ui,j

=
∂F
∂F∗

∂F∗

∂U∗
L/R

∂U∗
L/R

∂Ui,j
, (13)

where U∗
L/R and F∗ are the solution state and flux

in the rotated frame. The term ∂F∗

∂U∗
L/R

is evaluated for

both the Roe and HLLE flux functions. This inviscid
Jacobian evaluation is approximated by assuming that
the eigenvalues and eigenvectors (appearing in Roe and
HLLE flux functions) are constant and, when using
higher order scheme, the gradients of the primitive
variables are also assumed to be constant. Pierce
and Giles (1997) also suggested that using the matrix
precondition based on a first-order discretisation for
higher-order schemes is acceptable.

The viscous numerical flux Jacobian is formulated
depending on the method used to evaluate the viscous
flux. In this study, the viscous numerical flux Jacobian is
determined using a diamond-path procedure. The general
form for the viscous flux Jacobian is

Cv =
∂�Fv · �n
∂Ui,j

=
∂(nr Fv + nz Gv)

∂Ui,j
. (14)

In the source Jacobians, Cs, the three terms are lumped
together as

Cs = −
∂

(
Sai,j

r

)
∂Ui,j

+
∂Sti,j

∂Ui,j
+

∂Sci,j

∂Ui,j
. (15)

The preconditioner was tested using a finite-difference
method with a first order accurate approximation of the

residual Jacobian:

∂Ri,j(U, ∇U)
∂U

∣∣∣∣∣
i,j

≈ R(Ui,j + ε) − R(Ui,j)
ε

+ O(ε),

where ε = ηU with η = 10−6 ∼ 10−5. The verification has
been performed with varied solution fields and different
mesh stretching factors. The observed maximum relative
error was found to be about

σ =

∣∣∣∣∣∣
∂R

∂Ui,j
− R(Ui,j+ε)−R(Ui,j)

ε

∂R
∂Ui,j

∣∣∣∣∣∣ ≤ 2.0%. (16)

It is felt that this error is acceptable considering the
approximations used in the Jacobian evaluation and the
numerical error associated with the numerical scheme.

3.3.2 Restriction and prolongation operators

In particular, it was found that the multigrid convergence
was significantly affected by the prolongation operator.
A standard bi-linear interpolation was used initially to
transfer corrections from coarse to fine mesh; however,
the performance of the multigrid scheme suffered.
Convergence was hampered and, in some cases, the
procedure failed to converge. In this work, efforts
have been made to devise more effective prolongation
operators for meshes with large cell aspect ratios.

Figure 1 illustrates a stretched grid. Several
prolongation operators are investigated: simple
injection, Ui,j fine = Ui,j coarse; area weighted injection,
Ui,j fine = (Ai,j coarse/

∑
Ai,j fine) Ui,j coarse; a standard

bi-linear interpolation; and finally, a standard bi-linear
interpolation plus a linear interpolation, meaning that
interpolating the value for the coarse node (i, j) using
standard bi-linear first and then interpolating for the
fine cell (i, j) with values from both coarse node
(i, j) and coarse cell (i, j) with a linear interpolation.
The effectiveness of using these different prolongation
operators has been studied for a laminar non-reacting
flow problem using stretched computational grids. Based
on this study, it is suggested that a cell-aspect-ratio-based
sensor can be applied as a switch in the approach of the
prolongation operator. A cell-aspect-ratio-based sensor
was implemented in the multigrid algorithm as follows:
simple injection is used for cells with aspect ratio higher
than a cutoff value, and standard bi-linear interpolation
is then employed for cells with aspect ratios lower than
that cutoff value.

Note that the multigrid algorithm is applied directly
to each of the solution blocks without regard to the
level of refinement for the grid blocks associated with
each solution block, i.e., the grids are not necessarily on
the same refinement level due to the AMR procedure.
This block-based approach to the multigrid algorithm
can adversely affect its performance. This performance
degradation may be remedied by utilising additional
multigrid levels spanning across blocks to bring all
solution content to the same level of refinement, but this
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is not considered here. In addition, the system of
governing equations is solved on the coarsest grid level.
The communication for the multigrid is then carried
out on the coarsest grids between blocks. The number
of inter-block messages on the coarsest meshes is often
nearly the same as that on the fine meshes, thereby the
ratio of computation to communication may decrease
and the parallel performance would be adversely affected.

Figure 1 Illustration of different prolongation operators
on a stretched body-fitted quadrilateral mesh
(see online version for colours)

3.4 Block-based Adaptive Mesh Refinement

A flexible block-based hierarchical data structure has
been developed and is used in conjunction with the
finite-volume scheme described above to facilitate
automatic solution-directed mesh adaptation on
multi-block body-fitted quadrilateral mesh according
to physics-based refinement criteria. In a block-based
AMR strategy, mesh adaptation is accomplished by the
dividing and coarsening of appropriate solution blocks.
In general, each block also has an equal number of
cells. The basic data structure is then a tree, where any
block that requires refinement generates a number of
equal sized blocks when a resolution change of two
is assumed. The block-based AMR strategy results in
a rather light tree data structure for prescribing the
connectivity between blocks as compared to the tree
structure generally used for tracking cell connectivity in
the cell-based methods. In addition, the block-based data
structure naturally lends itself towards an efficient and
readily scalable parallel implementation. It amortises the
overhead of communication over entire blocks of cells,
instead of over single cells as in cell-based data structures.
However, generally larger numbers of refined cells can
be created (i.e., typically more than the corresponding
number of cells used in cell-based tree data structures)
thereby possibly increasing the amount of computational
work and storage space needed to solve a given problem.

Applications of the block-based approach on
Cartesian mesh are described, for example, by
Quirk and Hanebutte (1993), Berger and Saltzman

(1994), Gombosi et al. (1994), and MacNeice et al.
(2000). Following Groth et al. (1999, 2000) for
computational magnetohydrodynamics, a flexible
block-based hierarchical data structure to facilitate
automatic solution-directed mesh adaptation on
multiblock body-fitted (curvilinear) meshes for complex
flow geometries has been developed. While introducing
some added complications, the use of body-fitted meshes
permits more accurate solutions near boundaries, enables
the use of anisotropic grids with grid point clustering
and stretching, and allows for better resolution of thin
boundary and mixing layers. Note that, in this study,
the mesh refinement is constrained such that the grid
resolution changes by only a factor of two between
adjacent blocks and the minimum resolution is not less
than that of the initial mesh. Standard multigrid-type
restriction and prolongation operators are used to
evaluate the solution on all blocks created by the
coarsening and division processes, respectively.

We use a heuristic set of refinement criteria based
on our physical understanding of the flow properties
of interest (so-called physics-based refinement criteria).
For the non-reacting flows considered here, the following
measures are used ε1 ∝ |�∇ρ|, ε2 ∝ |�∇ · �u|, ε3 ∝ |�∇ ⊗ �u|,
in the decision to refine or coarsen a solution block.
These three quantities correspond to local measures of
the density gradient, compressibility, and vorticity of
the mean flow field and enable the detection of contact
surfaces, shocks, and shear layers. For combusting flows,
additional measures were identified for directing the mesh
adaption. The following four additional measures, ε4 ∝
|�∇k|, ε5 ∝ |�∇ω|, ε6 ∝ |�∇T |, ε7 ∝ |�∇cn| are used. The first
two measures correspond to gradients of the specific
turbulent kinetic energy and dissipation rate per unit
turbulent kinetic energy, respectively, and relate to the
structure of the turbulent field. The last two quantities
measure the gradients of mean temperature and mean
concentration for species n, respectively, and provide
reliable detection of flame fronts and combustion zones
for reactive flows.

3.5 Domain decomposition and parallel
implementation

Domain decomposition is carried out by farming the
solution blocks out to the separate processors, with
more than one block permitted on each processor.
For homogeneous architectures, an effective load
balancing is achieved by simply distributing the blocks
equally among the processors. For heterogeneous parallel
machines, a weighted distribution of the blocks can be
adopted to preferentially place more blocks on the faster
processors and less blocks on the slower processors.

Placing nearest-neighbour blocks on the same
processor can also help to reduce the overall
communication costs. A Morton ordering space-filling
curve (Aftosmis et al., 2004) is adopted to provide
nearest-neighbour ordering of the solution blocks in
the multi-block quadrilateral AMR meshes (Fig. 2),
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and improve the parallel performance of the solution
method.

Figure 2 Morton ordering space filling curve used to provide
nearest-neighbour ordering of blocks for more
efficient load balancing of blocks on multiple
processors. The thick black line represents the space
filling curve passing through each of the solution
blocks in the multi-block AMR mesh

The parallel implementation of the block-based AMR
scheme was developed using the C++ programming
language (Stroustrup, 2000) and Message Passing
Interface (MPI) (Gropp et al., 1999). Use of these
standards greatly enhances the portability of the
computer code. Inter-processor communication is mainly
associated with block interfaces and involves the
exchange of ghost-cell solution values and conservative
flux corrections at every stage of the multi-stage
time-integration procedure. Message passing of the
ghost-cell values and flux corrections is performed in
an asynchronous fashion with gathered wait states and
message consolidation.

4 Numerical verification

The parallel implementation has been carried out on a
parallel cluster of 4-way Hewlett-Packard ES40, ES45,
and Integrity rx4640 servers with a total of 244 Alpha and
Itanium 2 processors. A low-latency Myrinet network
and switch is used to interconnect the servers in the
cluster. All of the numerical results reported here were
obtained using this parallel cluster. Initial verification
of the proposed parallel AMR scheme is carried out

by considering the numerical predictions for three
classical non-reacting flow problems (a laminar Couette
flow, a laminar flat plate boundary layer flow and a
fully-developed turbulent pipe flow) and one reactive flow
problem (a premixed laminar flame). The solutions for
these problems are well established and can be used to
assess the validity and accuracy of the scheme. Herein,
we only present a laminar Couette flow, a fully-developed
turbulent pipe flow and a premixed laminar flame to keep
this section brief.

4.1 Laminar Couette flow

The computation of non-reacting laminar Couette flow
in a channel with a moving wall was considered in
order to demonstrate the accuracy of the viscous spatial
discretisation scheme. The case with an upper wall
velocity of 29.4 m/s and a favourable pressure gradient
of dp/dx = −3,177 Pa/m was investigated and compared
to the analytic solution. The predicted velocity profile
(not shown here) matches the exact analytic solution for
this incompressible isothermal flow. The L1-norm of the
error in axial component of velocity is shown in Figure 3
for both the uniform and adaptive grids. The slope of the
norm is 2.02, indicating that the finite-volume scheme is
indeed second-order accurate.

Figure 3 L1-norms of the solution error as a function of
mesh size for laminar Couette flow

4.2 Fully-developed turbulent pipe flow

A verification of the parallel AMR scheme for
non-reacting turbulent flows has been performed. The
numerical results of a non-reacting fully-developed
turbulent pipe flow with Re = 500,000 are compared
to the experimental data of Laufer (1954). Solutions
for both the wall function and low-Reynolds-number
formulations of the k-ω turbulence model are compared
to experimental mean axial velocity and turbulent kinetic
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energy profiles in Figures 4 and 5. Calculations with the
low-Reynolds-number formulation were performed using
80 cells in the radial direction with 3–4 of those cells lying
within the laminar sub-layer. The first cell off the wall was
located at y+ ≈ 0.6. The results using the wall functions
were obtained using 32 cells in the radial direction with
the first cell located at y+ ≈ 43. The agreement between
the experimental data and numerical results for this case
is generally quite good. As expected, it is evident that the
k-ω model is able to reproduce the characteristic features
of fully-developed pipe flow.

Figure 4 Comparison of predicted mean axial velocity with
experimental data for fully developed pipe flow,
Re = 500,000

Figure 5 Comparison of predicted turbulent kinetic energy
with experimental data for fully developed pipe
flow, Re = 500,000

4.3 Multigrid acceleration

Convergence acceleration provided by the preconditioned
multigrid algorithm was also examined for the fully

developed turbulent pipe flow problem. A mesh of size
1024 cells and having cell aspect ratios in the range of
10 × 105 to 2 × 105 and an off-wall spacing of 7.0 ×
10−7 m was used in this study. There were 32 cells in
the radial direction and an automatic wall boundary
treatment was employed. The influence of using different
multigrid levels and cycles on convergence features has
also been investigated.

Figures 6 and 7 compare the convergence rates
achieved for the turbulent pipe flow using the explicit
time-marching scheme with local time-stepping, the
multigrid algorithm with explicit smoother, and the
preconditioned multigrid approach. The convergence rate
is shown as a function of both the number of iterations
and the number of equivalent Right-Hand Side (RHS)
evaluations. Clearly, the preconditioned multigrid results
in a more efficient convergence rate than the others.
Notice from the figures that the preconditioned multigrid
algorithm exhibited a convergence stall after the residual
in the turbulent kinetic energy dropped to about 104.
It is believed that this effect is due to the nonlinear
nature of the slope limiters and their activation in smooth
regions of the flow field (Venkatakrishnan, 1993). This
convergence stall can be alleviated by freezing the limiter
after the residual has dropped to a predefined level;
however, this technique was not employed here.

Figure 6 Comparisons of convergence rates as a function of
multigrid cycles for 4-level V-cycle multigrid
between regular multigrid and preconditioned
multigrid with a 5-stage optimal smoothing scheme
for the fully-developed turbulent pipe flow
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Figure 7 Comparisons of convergence rates as a function of
the number of equivalent RHS evaluations for
4-level V-cycle multigrid between regular multigrid
and preconditioned multigrid with a 5-stage optimal
smoothing scheme for the fully-developed turbulent
pipe flow

Tables 1–3 summarise some convergence features for
the fully developed turbulent pipe flow problem. Note
that the maximum grid level for these cases was chosen
to be 3, allowing for relatively smaller-sized solution
blocks. Table 1 lists the numerical data from using
both the regular and the preconditioned multigrid and
the results for grid-level and multigrid-cycle effects are
presented in Tables 2 and 3. The termWork Unit (WU) is
defined as the time for one RHS evaluation on the finest
mesh.

Table 1 Matrix-preconditioner effects on convergence of the
4-level V-cycle multigrid for the fully-developed
turbulent pipe flow

Method CPU time [min] WUs Speedup

Multigrid 210.5 17542 1
Preconditioned multigrid 15 1250 14

Table 2 Grid-level effects on convergence of the V-cycle
preconditioned multigrid for the fully-developed
turbulent pipe flow

Method CPU time [min] WUs Speedup

Single-level 35.8 2983 1
2-level 10.9 908 3.3
3-level 9.69 807.5 3.7

Table 3 The V- and W-cycle effects on convergence of the
3-level preconditioned multigrid for the
fully-developed turbulent pipe flow

Method CPU time [min] WUs Speedup

W-cycle 38 3166.7 1
V-cycle 22 1833.3 1.72

Table 1 indicates that the preconditioned multigrid
with 5-stage optimal smoothing scheme produces a
14 times speedup over multigrid without a preconditioner
and is shown in Figure 8. For both cases, the L2
norms of the residual for turbulent kinetic energy drop
about six orders of magnitude. The data from Table 2
shows a speedup factor of four between the 3-level
multigrid and the single-level computation. This grid-
level influence on the convergence is shown in Figure 9.
The convergence rate of 2-level is the same as that of
a 3-level for this case, and both used the V-cycle. The
same convergence rates for both 2- and 3-level might be
due to the fact that the turbulence source terms were
not recalculated on the coarse meshes. Figure 10 shows
that the 3-level V- and W-cycle preconditioned multigrid
algorithms, using a 5-stage optimal smoothing scheme,
have nearly the same speedup in terms of multigrid
cycles, while Table 3 indicates the V-cycle uses about
half the computation time of the W-cycle. The reason
might be that the W-cycle is expensive in a parallel
algorithm when frequent coarse-level calculations lead to
poor processor utilisation. From these results, it appears
that a 3-level V-cycle preconditioned multigrid should
deliver an optimal speed up for computing turbulent
flows. For this reason, the 3-level V-cycle preconditioned
multigrid was employed in the numerical predictions of
the turbulent reactive and non-reactive flows that follow.

4.4 Premixed laminar flame

Verification of the proposed parallel AMR scheme
for reactive flows is carried out by considering the
numerical predictions of planar one-dimensional
premixed methane-air laminar flames for a range of
equivalence ratios and comparing the predictions to
those obtained using the CHEMKIN program PREMIX.
The six-species, two-step, reduced kinetic scheme for
the oxidation of methane described above is used.
CHEMKIN is a commercial software tool available
from Reaction Design for solving complex chemical
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kinetics problems and PREMIX is a utility that can be
used for predicting one-dimensional premixed flames.
A detailed 17-species, 58-reaction kinetic scheme is used
in the PREMIX calculations to represent the oxidation
of methane. These comparisons provide a check of the
algorithms ability to predict two key features of laminar
flames: the flame temperature and laminar flame speed.

Figure 8 Comparisons of the convergence rates between the
preconditioned multigrid and regular multigrid both
using 3-level V-cycle with a 5-stage optimal
smoothing scheme for the fully-developed turbulent
pipe flow

For the premixed flame predictions, a fixed (non-adapted)
one-dimensional mesh with 400 non-uniformly space
computational cells is used. The steady state or
time-invariant structure of the flame is then obtained by
starting with uniform fresh and burnt gas solution states
at atmospheric and the adiabatic flame temperatures,
respectively, and iterating until a steady-state solution
is achieved with a stationary flame structure. The
upstream and downstream boundary velocity and
pressure are adjusted such that the mass flux is constant
throughout the domain.

The numerical results for the premixed laminar flame
are summarised in Figures 11 and 12 and Table 4.

Figure 9 Comparisons between the grid-level effects on
convergence of the preconditioned V-cycle multigrid
with a 5-stage optimal smoothing scheme for the
fully-developed turbulent pipe flow

Figure 10 Comparisons between the V- and W-cycle
preconditioned multigrid convergence rates of a
3-level preconditioned multigrid with 5-stage
optimal smoothing scheme for the fully-developed
pipe flow
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The table gives predictions of both the equilibrium
temperature of the products, T , and the laminar
flame velocity, sL, as a function of the equivalence
ratio (φ = 0.6, 0.8, 1.0, and 1.2). These figures depict
the predicted flame structure for φ = 1 and show
variation of the velocity, temperature, and mass fraction
through the flame. The predicted laminar flame speed
is sL = 40.6 cm/s in this case and the temperature
of the products (flame temperature) is T = 2256. The
overall agreement between the two sets of results is very
good, especially considering that the six-species two-step
chemical kinetics scheme used by the parallel solver
is greatly simplified in comparison to the 17-species,
58-reaction scheme used in the CHEMKIN calculations.
This provides strong support for the validity of the
proposed reactive flow solver.

Figure 11 Velocity and temperature distributions of steady
one-dimensional premixed methane-air flame
structure for φ = 1

Figure 12 Species mass fraction distributions of steady
one-dimensional premixed methane-air flame
structure for φ = 1

It should be noted that the flow Mach numbers for the
premixed laminar flames are very small (M ≈ 0.001 −
0.003) and the low-Mach-number preconditioning is

absolutely necessary for these cases in order to get
accurate predictions of the flame structure with the
proposed compressible finite-volume formulation.

Table 4 Comparison of the predictions of the parallel AMR
algorithm using the two-step methane reduced
mechanism to those of the CHEMKIN PREMIX
program with detailed chemistry for various
equivalence ratios. Predictions of both the
equilibrium temperature of the products, T , and the
laminar flame velocity, sL, are shown for φ = 0.6,
0.8, 1.0, and 1.2

Equivalence ratio, φ
Solution
method 0.6 0.8 1.0 1.2

T (K) PREMIX 1656 1993 2234 2143
Current 1650 1995 2256 2221

sL (cm/s) PREMIX 12.15 29.1 41.0 38.6
Current 13.3 29.4 40.6 38.5

5 Results and discussions

The parallel AMR method is applied to solutions of
axisymmetric co-flow methane-air laminar and turbulent
diffusion flames. The six-species, two-step, reduced
kinetic scheme for the oxidation of methane is again
used for the laminar diffusion flame calculations and
the five-species, one-step, reduced kinetic scheme for the
oxidation of methane is used for turbulent diffusion flame
calculations.

5.1 Non-premixed laminar diffusion flame

The computational domain is rectangular in shape with
dimensions of 10 cm by 5 cm. The axis of symmetry
is aligned with the left boundary of the domain and
the right far-field boundary is taken to be a free-slip
boundary along which inviscid reflection boundary data
is specified. The top or outlet of the flow domain is
open to a stagnant reservoir at atmospheric pressure and
temperature and Neumann-type boundary conditions are
applied to all properties except pressure which is held
constant. The bottom or inlet is subdivided into four
regions (a innermost region of the fuel inlet, a small gap
associated with the annular wall separating the fuel and
oxidiser, a region of co-flowing oxidiser, and a far-field
boundary along which free-slip boundary conditions are
applied). Additional details concerning the setup for
this diffusion flame can be found in the papers by
Mohammed et al. (1998) and Day and Bell (2000). The
solution domain is initialised with a uniform solution
state corresponding to quiescent air at 298 K, except
for a thin region across the fuel and oxidiser inlets,
which is taken to be air at 1500 K so as to ignite the
flame. Note that the Mach and Reynolds number based
on the fixed diluted methane flow in the fuel inlet are
M = 0.0016 and Re = 169.
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Figure 13 shows the computed isotherms and flame
structure obtained using a sequence of adaptively refined
grids starting from the initial mesh (96 solution blocks
with 3072 cells) and proceeding to the final mesh after five
levels of refinement (396 blocks with 12,672 cells). The
sequence of adaptively refined grids, showing both the
solution blocks and computational cells, is also shown in
Figure 14. The effect of the finer resolution can be clearly
seen, as the flame structure becomes much sharpened
and more resolved. Finally, Figure 15 shows the mass
fractions of the combustion products.

Figure 13 Solution of methane-air axisymmetric laminar
diffusion flame showing the computed isotherms
and flame structure obtained for a 396 block mesh
with 12,672 cells and five levels of refinement.
The sequence of adaptively refined grids, showing
both the solution blocks and computational cells,
is also shown in the figure

A comparison of the results of Figures 13–15 with those
given in the previous studies by Mohammed et al. (1998)
and Day and Bell (2000) reveals, that in spite of the
inherent simplifications used in the two-step reaction
mechanism, the predicted flame structure agrees very well
with the previous work. The ‘wishbone’ structure of the
high-temperature region is present and the computed
lift-off and flame heights are 0.05 cm and 3.3 cm,
respectively, with a maximum centre-line temperature of
2080 K. All of these values agree reasonably well with
the previously published results. The predicted value of
the carbon monoxide, CO, mass fraction concentration
at z = 3 cm along the centre-line is cCO = 0.026 and,
considering the limitations of the reduced chemistry
mechanism being used, is in reasonable agreement with
those of Mohammed et al. (1998), who report a mass
fraction of cCO = 0.03 at the same location.

5.2 Non-premixed turbulent diffusion flame

The International Workshops on Measurement and
Computation of Turbulent Non-Premixed Flames (TNF)
has established an internet library of well-documented
experimental database for turbulent non-premixed

flames that are appropriate for combustion model
verification and validation. The Sydney bluff-body
burner configuration shown in Figure 16 that forms part
of this experimental database has data available for both
non-reacting and reacting cases. The bluff-body has a
diameter of Db = 50 mm and is located in a co-axial flow
of air. Various gases can be injected through an orifice of
diameter 3.6 mm at the base of the cylindrical bluff body.
The bluff-body stabilised flames have a recirculation
zone close to the base of the bluff body. This burner
configuration produces a relatively extensive and complex
turbulent field and causes intense mixing between the
reactants and combustion products. The stabilisation
mechanisms resemble those of industrial combustors and
yet the boundary conditions for the bluff-body flames
are simple and well-defined, making them well suited for
investigating in great detail the capabilities of models for
turbulent non-premixed diffusion flames.

Figure 14 Predicted laminar diffusion flame temperature (K)
comparison for three different levels of mesh
refinement

Figure 15 Predicted mass fractions of products CO2, H2O,
and CO for laminar diffusion flames

5.2.1 Bluff-body burner non-reacting flows

In the cold non-reacting bluff-body burner flow case,
air is injected through the orifice at the base of the
cylindrical bluff body with a temperature of 300 K
and a bulk velocity of 61 m/s. The bulk velocity and
temperature of the co-flowing air are 20 m/s and 300 K,
respectively. The Reynolds and Mach numbers based on
the high-speed jet are Re = 193,000 and Ma = 0.18.
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Figure 16 Schematic of the Sydney bluff-body burner
showing the fuel jet, co-flow, and bluff-body
geometry

We have examined predicted solutions on a sequence of
refined meshes to establish the grid-convergence of the
solution. The flow field predictions have been computed
on a sequence of adaptively refined grids, 5 16 × 16 cell
blocks and 1280 cells, 14 16 × 16 cell blocks and 3584
cells, 26 16 × 16 cell blocks and 6656 cells, and 53 16 × 16
cell blocks and 13,568 cells. The mesh resolution was such
that the typical size of the computational cells nearest the
wall was in the range 0.2 < y+ < 1. It is apparent that the
majority of the solution parameters do not change as the
mesh is refined from 6656 cells to 13,568 cells, as shown
in Figures 20–23. The numerical solutions can be said to
be virtually grid independent.

Figure 17 Predicted flow velocity and streamlines for
non-reacting flow field of bluff-body burner

Figure 17 shows the predicted mean velocity and
streamlines and reveal the formation of a double-
vortex structure in the re-circulation zone which
are important in controlling fuel/oxidiser mixing.

The calculations indicate that the re-circulation zone
extends to x/Db ≈ 0.8. This is slightly less than the
experimentally observed value of x/Db ≈ 1.0. The
agreement between the predictions and experiment is
further confirmed by a comparison of the predicted
radial profiles of the mean axial velocity component
at x/Db = 0.6 and x/Db = 1.0 downstream from the
base of the bluff-body to the measured data as shown
in Figures 18 and 19, and by a comparison of
the predicted axial (centre-line) profile of the mean
axial velocity component to experimental results as
depicted in Figure 20. The predicted Root Mean Square
(RMS) fluctuations of the velocity components and
specific Reynolds stress (u′v′) are also compared to the
experimental data in Figures 21–23. It can be seen that
there are under- and/or over-predicted regions (r/Rb <
0.2). These regions encompass the inner vortex and the
vicinity of the outer vortex of a double-vortex structure
in the re-circulation zone. Re-circulation zones with
complex turbulent structures are quite sensitive to the
turbulence modelling and a variety of RANS simulations
have addressed this sensitivity to the turbulence model
and/or combustion models (Dally et al., 1998; Xu and
Pope, 2000; Merci et al., 2001; Liu et al., 2005). The
overall agreement between the numerical solution and the
experimental data for these turbulence quantities is quite
reasonable and is comparable to other results reported in
the literature (Dally et al., 1998; Turpin and Troyes, 2000;
Merci et al., 2001).

Figure 18 Comparison of predicted and measured axial
velocity component at x/Db = 0.6 downstream
from the base of the bluff-body for non-reacting
bluff-body burner with air jet

Figure 19 Comparison of predicted and measured axial
velocity component at x/Db = 1.0 downstream
from the base of the bluff-body for non-reacting
bluff-body burner with air jet



90 X. Gao, S. Northrup and C.P.T. Groth

Figure 20 Comparison of predicted and measured on-axis
axial profiles of the mean axial velocity component
downstream from the base of the bluff-body for
non-reacting bluff-body burner with air jet

Figure 21 Comparison of predicted and measured

√
u′2 at

x/Db = 0.6 downstream from the base of the
bluff-body for non-reacting bluff-body burner
with air jet

Figure 22 Comparison of predicted and measured
√

v′2 at
x/Db = 0.6 downstream from the base of the
bluff-body for non-reacting bluff-body burner
with air jet

Figure 23 Comparison of predicted and measured u′v′ at
x/Db = 0.6 downstream from the base of the
bluff-body for non-reacting bluff-body burner
with air jet

For the ethylene jet case, ethylene (C2H4) is injected
at the base of the bluff-body with a velocity of 50 m/s

and a temperature of 300 K. In this case, the Reynolds
and Mach numbers based on the ethylene flow are
Re = 145,000 and Ma = 0.11. Numerical results for the
ethylene fuel jet are depicted in Figure 24, where the
predicted mass fraction of C2H4 obtained using a mesh
consisting of 479 6 × 6 cell blocks and 17,244 cells, with
five levels of refinement, is compared to measured C2H4
concentrations. The mesh resolution was also such that
the typical size of the computational cells nearest the
wall was in the range 0.2 < y+ < 1. The predictions
of the mixing field (Fig. 24) also appear to be quite
reasonable when compared to the experimental data.
Detailed comparisons of the predicted on-axis axial and
radial distributions at x/Db = 1.0 of the mean C2H4
mass fraction to measured values given in Figures 25
and 26 also indicate that the fuel and oxidiser mixing
process is quite well reproduced.

Figure 24 Predicted mean C2H4 mass fraction for
non-reacting flow field of bluff-body burner

Figure 25 Predicted axial profile of the mean C2H4 mass
fraction for non-reacting flow field of bluff-body
burner

Figure 26 Predicted radial profile of the mean C2H4 mass
fraction at x/Db = 1.0 for non-reacting flow field
of bluff-body burner
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5.2.2 Bluff-body burner reacting flow

For the reacting case, methane (CH4) is injected through
the orifice at the base of the cylindrical bluff body
with a temperature of 300 K. The bulk velocities of the
co-flowing air and methane fuel are 25 m/s and 108 m/s,
respectively. The Reynolds and Mach numbers of the
methane jet are Re = 315,000 and Ma = 0.24.

Computations were carried out on a sequence of
adaptively refined grids, 7 16 × 16 cell blocks and 1792
cells, 28 16 × 16 cell blocks and 7168 cells, 70 16 × 16 cell
blocks and 17,920 cells, 97 16 × 16 cell blocks and 24,832
cells, and 112 16 × 16 cell blocks and 31,744 cells to
assess the grid independence of the predictions. As in the
non-reacting cases, the mesh resolution was such that the
typical size of the computational cells nearest the wall was
in the range 0.2 < y+ < 1. The results of the refinement
study are shown in Figures 27–30, and the majority of the
solution parameters, such as, axial velocity, temperature,
and major species CO2, do not change as the mesh
is refined from 24,832 cells to 31,744 cells. The grid
convergence solution is achieved.

Figure 27 Predicted mean axial velocity along the centreline
of the bluff-body for reacting bluff-body burner

Figure 28 Predicted mean axial velocity at x/Db = 1.92
downstream from the base of the bluff-body for
reacting bluff-body burner

Figure 29 Predicted mass fraction of CO2 at x/Db = 1.92
downstream from the base of the bluff-body for
reacting bluff-body burner

Figure 30 Predicted mass temperature at x/Db = 1.92
downstream from the base of the bluff-body for
reacting bluff-body burner

Figure 31 shows the predicted distributions of mean
temperature and mean mass fraction of CO2 for
this turbulent non-premixed flame. The predicted
flame structure is generally in agreement with the
experimentally observed structure. The flame is quite
elongated and three zones can be identified: the
re-circulation, neck, and jet-like propagation zones.
A vortex structure is formed in the re-circulation zone
and acts to stabilise the flame. The maximum flame
temperature is about 2180 K. The predicted mean
temperature, 1350 K, and mass fraction of CO2, 0.1,
at location of (x/Db = 1.92, r/Rb = 0.4) are compared
to the measured values of the flame temperature,
1120 K, and carbon dioxide concentration, 0.07. The
temperature and hence carbon dioxide concentration are
somewhat over-predicted. However, the agreement with
the experimental values is reasonable considering the
limitations of the simplified reduced chemical kinetics
scheme and turbulence/chemistry interaction model used
herein, as well as the fact that radiation transport is not
taken into account in the simulation.

Figure 31 Predicted mean temperature and CO2 mass
fraction for reacting flow field of bluff-body burner

5.3 Multigrid acceleration

The numerical solutions for both the cold and
hot cases of the two-dimensional axisymmetric
bluff-body burner flows were obtained using the
preconditioned multigrid technique. The 3-level V-cycle
preconditioned multigrid with a 3-stage optimally
smoothing scheme was employed. A prolongation
operator, based on a cell-aspect-ratio sensor as
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discussed above, was also applied. For those cells
with aspect ratios greater than a value of 1000,
a simple injection was used. Standard bi-linear
interpolation was employed for cells with aspect
ratios smaller than this value. The CFL number
was 0.2.

Both the multigrid and preconditioned multigrid
algorithms speed up the convergence rates to the
steady-state solutions quite significantly for both
cases as compared to the convergence rate achieved
using the semi-implicit time-marching method alone
(i.e., smoother alone without the multigrid procedure).
The preconditioned multigrid seems to have a more
positive effect for the reacting case than for the
non-reacting problem. Although the convergence rate
slows after the residual has been reduced by 4–5 orders
of magnitude, and this slow down may be associated with
limitations of the proposed multigrid method when AMR
is used, overall it is felt that satisfactory convergence
rates have been achieved. The preconditioned multigrid
provides a speedup of about two in terms of CPU time
over regular multigrid for both cases.

5.4 Parallel performance

Parallel speedup (strong scaling), parallel scale-up
(weak scaling), and parallel efficiency are often used
to measure/evaluate the parallel performance of a
parallel algorithm. The parallel speedup, Sp, is defined
as Sp = t1/tp, the parallel scale-up, Sφ, defined as
Sφ = t1/tp p, and the parallel efficiency, Ep is defined as
Ep = Sp/p, where t1 is the time required to solve the
problem by a single processor, and tp is the time required
to solve the problem by p processors. While both the
parallel speedup and the parallel scale-up are important
to consider, the parallel speedup is probably more
relevant for engineering problems of practical interest.
High efficiency for strong scaling is generally harder
to achieve than for the weak scaling problem. Herein,
the parallel speedup and efficiency of the proposed
parallel solution-adaptive algorithm applied to three flow
problems (a laminar diffusion flame, a turbulent pipe
flow, and a turbulent diffusion flame) have been assessed.

For the laminar diffusion flame problem, Figure 32
shows that the parallel speed-up of the block-based
AMR scheme is linear and is 90% efficient for up to
32 processors using the larger (10 × 10) solution blocks.
For the smaller (8 × 8) blocks, the efficiency drops
slightly down to 80% efficient. Figure 33 shows that the
parallel speedup of the block-based AMR scheme for
the turbulent pipe flow problem is nearly linear and is
at least 90% efficient for up to 32 processors using the
larger (10 × 10) solution blocks. For the smaller (8 × 8)
blocks, the efficiency drops slightly down to 87% efficient.
The rather high level of performance should generally
be expected for the two-dimensional algorithm with the
explicit time marching scheme.

The parallel performance of the proposed algorithm is
further assessed for a fixed-size turbulent diffusion flame

problem using up to 64 processors. An added difference
of this parallel performance assessment from the previous
ones is the use of 3-level V-cycle preconditioned multigrid
technique in the computations. It can be observed in
Figure 34 that the proposed scheme provides a nearly
linear speedup and is about 76% efficient for up to
64 processors using the larger 24 × 24 cell solution
blocks. For the smaller 16 × 16 cell solution blocks,
the parallel efficiency drops to 68%. Compared to the
estimation shown in Figure 33, the parallel efficiency is
somewhat reduced. The performance is affected by the
coarse grid calculations of the multigrid algorithm. As
mentioned earlier, the number of inter-block messages on
the coarse meshes is often nearly the same as that on the
fine meshes, thereby decreasing the ratio of computation
to communication and adversely affecting the parallel
performance.

Figure 32 Scaled parallel speed-up and parallel efficiency
for a fixed-size laminar diffusion flame problem
using up to 32 processors

Figure 33 Parallel speedup (strong scaling), Sp and the
parallel efficiency, Ep, for a fixed size problem
using up to 32 processors (see online version
for colours)
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Figure 34 Parallel speedup (strong scaling) and efficiency for
computation of a two-dimensional turbulent
diffusion flame problem with 3-level V-cycle
preconditioned multigrid using up to 64 processors

6 Conclusions

A highly scalable parallel AMR scheme has been
described for non-premixed combusting flows. The
combination of a block-based AMR strategy and
parallel implementation has resulted in a powerful
computational tool, as demonstrated by the numerical
results for both laminar and turbulent non-premixed
flames. The predicted flame structure of an axisymmetric
co-flow methane-air laminar diffusion flame, including
the computed lift-off, flame heights and the maximum
centre-line temperature, agrees reasonably well with the
previously published results. A quantitative evaluation of
the parallel AMR algorithm has also been carried out
for a complex turbulent combusting flow in a bluff-body
burner having a relatively complex physical geometry.
For complex turbulent combusting flows, dealing with
the near-wall turbulence is challenging within an
AMR procedure. This study proposed a somewhat
novel automatic and smooth switching procedure for
computing wall turbulence that is well suited to the AMR
scheme considered here. In order to provide enhanced
convergence for steady-state problems, a preconditioned
(matrix preconditioner) multigrid strategy has been
proposed and developed for two-dimensional turbulent
combustion calculations. It is thought to be one of
the first applications of a parallel AMR scheme with
multigrid to turbulent-combusting flow calculations in
the literature, and significantly improved convergence
was achieved by devising a cell-aspect-ratio-based
prolongation operator for treating highly stretched
meshes. This numerical study demonstrates the validity
and potential of the parallel AMR approach for
predicting fine-scale features of complex turbulent
non-premixed flames.
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