
Journal of Scientific Computing           (2023) 94:48 
https://doi.org/10.1007/s10915-022-02068-3

High-Order CENO Finite-Volume Scheme with Anisotropic
Adaptive Mesh Refinement: Efficient Inexact Newton Method
for Steady Three-Dimensional Flows

L. Freret1 · C. N. Ngigi1 · T. B. Nguyen2 · H. De Sterck3 · C. P. T. Groth1

Received: 4 March 2022 / Revised: 1 November 2022 / Accepted: 26 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is
combined with a parallel inexact Newton method for the solution of steady compressible
fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-
block body-fitted hexahedral meshes. The proposed steady flow solution method combines a
family of robust and accurate high-order central essentially non-oscillatory (CENO) spatial
discretization schemes with both a scalable and efficient Newton–Krylov–Schwarz (NKS)
algorithm and a block-based anisotropic AMR method. The CENO scheme is based on a
hybrid solution reconstruction procedure that provides high-order accuracy in smooth regions
(even for smooth extrema) and non-oscillatory transitions at discontinuities and makes use of
a high-order representation of the mesh and a high-order treatment of boundary conditions.
In the proposed Newton method, the resulting linear systems of equations are solved using
the generalized minimal residual (GMRES) algorithm preconditioned by a domain-based
additive Schwarz technique. The latter uses the domain decomposition provided by the block-
based AMR scheme leading to a fully parallel implicit approach with an efficient scalability
of the overall scheme. The anisotropic AMR method is based on a binary tree data structure
and permits local anisotropic refinement of the grid in preferred directions as directed by
appropriately specified physics-based refinement criteria. Numerical results are presented
for a range of inviscid and viscous steady problems and the computational performance of
the combined scheme is demonstrated and assessed.
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1 Introduction and Scope

1.1 Introduction

One highly successful approach for reducing the computational cost of computational fluid
dynamics (CFD) solutions is to make use of solution-directed mesh adaptation where the
underlying computational mesh automatically adapts according to the solution, adding mesh
resolution only where required. Methods based on adaptive mesh refinement (AMR) have
proved to be particularly effective for the solution of conservation equations on structured
Cartesian andbody-fittedmeshes andhavebeendeveloped for awide rangeof problems [1–8].
The non-uniform block-based AMR scheme of Freret and Groth [9] and Freret et al. [10] was
more recently proposed for the solution of inviscid and viscous flows, allowing anisotropic
refinement of the mesh with standard low-order (i.e., second-order accurate) finite-volume
schemes. This anisotropic block-based AMR approach is also well suited for use with high-
order spatial schemes [11, 12] and has been coupled for this purpose to the solution of the
ideal magnetohydrodynamics (MHD) equations using the high-order central essentially non-
oscillatory (CENO) finite-volume scheme of Ivan et al. [13, 14]. The latter overcomes many
of the traditional computational issues associated with essentially non-oscillatory (ENO) and
weightedENO(WENO) schemes [15, 16] by using a hybrid reconstruction approach based on
a fixed central stencil, the same for each solution variable. An unlimited high-order K -exact
reconstruction is then performed in the cells where the solution is well resolved while the
scheme reverts to a standard low-order piecewise limited linear approach for cells with under-
resolved or discontinuous solution content. Switching in the hybrid procedure is determined
by a smoothness indicator. The CENO high-order scheme has been successfully applied to
a broad range of flows on uniform Cartesian meshes including inviscid flows [13], viscous
flows [13, 17], large-eddy simulation (LES) of turbulent premixed flames [18], and MHD
problems [14, 19]. The efficiency of the CENO scheme has also been assessed on cubed-
sphere meshes [14, 20], in applications with high-order implicit time-marching schemes
[21], and has also been extended to unstructured meshes for laminar viscous flows [17]
and turbulent reactive flows [18]. For many applications, the high-order CENO scheme has
been shown to be more efficient than a second-order method in terms of execution time and
number of computational cells required to achieve a target discretization error [13, 17, 18].
Note that other ENO/WENO variants have also been proposed in the literature with the goal
of overcoming the computational bottlenecks of such schemes. Recent examples include the
so-called targeted ENO (TENO) and central-weighted ENO (CWENO) methods [22–26].

For steady flow problems, the inherent disparate temporal scales of the governing conser-
vation equations and the varying mesh spacing arising from the AMR strategy give rise to
the need for solving a coupled system of non-linear algebraic equations with a high degree
of numerical stiffness. One common approach for the efficient solution of non-linear alge-
braic equations is Newton’s method [27–34]. In this study, an inexact Newton method is
considered for the solution of the stiff non-linear equations arising from the high-order spa-
tial discretization of the partial differential equations. In this method, the non-linear system
is solved by applying a Newton linearization and using an iterative linear solver to solve
the resulting linear systems for each Newton iteration [28, 34]. The linear system arising
from the linearization is both large and sparse and is solved by a right-preconditioned gen-
eralized minimal residual (GMRES) method [35–38]. A domain-based additive Schwarz
preconditioning technique is used as the global preconditioner and incomplete lower-upper
factorization with fill is used as the local preconditioner to improve the convergence rate.
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The Schwarz preconditioner provides the advantage of using the same domain decomposition
procedure as used by the anisotropic block-based AMR scheme, making parallel implemen-
tation rather straightforward. The combination of the strengths of block-based AMR with an
implicit Newton–Krylov–Schwarz (NKS) time-stepping scheme to achieve a scalable paral-
lel framework has been considered previously for standard lower-order spatial discretization
methods of two-dimensional (2D) and three-dimensional (3D) steady and unsteady as well as
non-reactive and reactive flows [9, 10, 28, 34, 39]. The parallel NKS method is reconsidered
here for application in conjunction with the high-order CENO finite-volume scheme so as to
achieve efficient high-order predictions of 2D and 3D steady flows.

1.2 Scope

The aim of this study is then to combine the high-order CENO finite-volume scheme of
Ivan et al. [13, 14] and the anisotropic block-based AMR technique of Freret and Groth [9]
and Freret et al. [10] with an efficient and scalable inexact Newton method [28, 34, 39] for
computing steady-state solutions of theEuler andNavier–Stokes equations governing inviscid
and viscous compressible gaseous flows. Furthermore, as correct high-order treatment of
boundary conditions is a crucial element for developing accurate numerical schemes, an effort
has been made to develop a high-order geometry through the use of a tricubic representation
of the mesh elements as well as imposing high-order boundary conditions by constraining the
least-squares reconstruction in cells adjacent to the boundary. The benefits and computational
performance of this proposed combination are demonstrated by considering numerical results
for a range of representative flow problems.

The remainder of the paper is organized as follows. The high-order CENO finite-volume
scheme with high-order mesh and boundary conditions is described in Sect. 2. Description
of the anisotropic block-based AMR then follows in Sect. 3. The proposed inexact Newton’s
method for the solution of steady flow problems is then presented in Sect. 4. Qualitative and
quantitative comparisons are subsequently described in Sect. 5 to demonstrate the rapid con-
vergence properties and potential of the combined high-order AMR discretization procedure
with implicit NKS method for a range of flow problems.

2 High-Order Central ENO Finite-Volume Scheme

The proposed high-order AMR scheme is applied herein to the solution of Euler and Navier–
Stokes equations governing inviscid and viscous compressible three-dimensional flows of a
polytropic gas. For viscous applications considered herein, the flow Reynolds numbers are
restricted to ensure that the flows remain laminar. Applications to turbulent flows and any
associated additional modelling of any unresolved solution content are not considered herein.
The latter will be the subject of future follow-on studies.

2.1 Governing Equations

The conservation form of the governing equations for inviscid or viscous flows of a com-
pressible polytropic gas can be written as

∂U
∂t

+ �∇ · �F = ∂U
∂t

+ �∇ ·
(�FH − �FE

)
= 0, (2.1)
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where U is the vector of conserved solution variables and �F is the solution flux dyad. For a
three dimensional Cartesian coordinate system, U is given by

U = [ρ, ρu, ρv, ρw, ρe]T , (2.2)

where ρ is the gas density, u, v, w are the components of the velocity vector in the x , y,
z directions, e = p/(ρ(γ − 1)) + u2/2 is the specific total energy, p = ρRT is the gas
pressure, T is the gas temperature, R is the ideal gas constant, and γ is the ratio of specific
heats and h = e+ p/ρ is the specific enthalpy. The corresponding solution total flux dyad, �F,
is the sum of the inviscid or hyperbolic flux and the viscous or elliptic flux dyads, �FH and �FE,
respectively, and given by �F = �FH − �FE = [Fh −Fv,Gh −Gv,Gh −Gv] where Fh ,Gh ,Hh

are the inviscid or hyperbolic flux vectors associated with the x , y, z coordinate directions,
respectively, and Fe,Ge,He are the corresponding viscous flux vectors in the x , y, and z
coordinate directions, respectively. Definitions of the latter can be found in the textbooks by
Schlichting andGersten [40] or Hirsch [41]. In the case of inviscid flows,Fe = Ge = He = 0
and �F = �FH.

2.2 Finite-VolumeMethod and Semi-discrete Form

Asemi-discrete formof the integral formofEq. (2.1) results from the application of a standard
high-order finite-volume method applied for a hexahedral computational cell, (i, j, k), of a
three-dimensional grid. The resulting semi-discrete form is given by

dUi jk

dt
= − 1

Vi jk

6∑
f =1

NGface∑
m=1

(
ω̃(�FH − �FE) · �n

)
i, j,k, f ,m

= Ri jk(U), (2.3)

where here R(U) is the solution residual, NGface is the number of Gauss quadrature points
per face, and �n is the local normal of the face f at each of the NGface Gauss quadrature points.
The hexahedral cells are contained within logically Cartesian blocks that form a multi-block
body-fitted mesh with general unstructured connectivity between blocks as shown in Fig. 1.
In general, the total number of Gauss integration points, NGface, at which the numerical flux
is evaluated is dictated by the targeted rate of spatial solution accuracy of the discretization.
In this study, standard tensor-product quadrature with four Gauss quadrature points is used
for cell faces, NGface = 4, providing fourth-order accurate spatial accuracy. The latter is the
target accuracy for the high-order CENO finite-volume scheme considered here.

The numerical values of the hyperbolic fluxes, �FH · �n, at eachGaussian quadrature point on
each face of the cell (i, j, k) are determined from the solution of a Riemann problem. Given
the high-order reconstructed values of the solution vectors to the left and right of the cell
interface, Ul and Ur , an upwind numerical flux is evaluated by making use of the so-called
HLLE flux function [42, 43], which is based on an approximate solution to the Riemann
problem in the direction defined by the normal to the cell face. Note that a wide variety of
Riemann-solver based flux functions have been proposed and are described in the literature
(see, for example, [44–46]), providing varying degrees of accuracy and robustness. However,
unlike for low-order spatial discretization schemes, the relative importance of the choice of
flux function on solution accuracy is generally less important for high-order methods and
the HLLE flux function has been found to provide good performance in terms of reliability
and robustness for the high-order finite-volume applications of interest here [11–14, 19].
Numerical values for the elliptic fluxes �FE · �n = FE(Uc, �∇Uc, �n) are determined by using
the centrally-weighted approach proposed by Ivan and Groth [13] in terms of values of
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Fig. 1 a Three-dimensional hexahedral cell, (i,j,k), of multi-block body-fitted mesh showing face normals and
b example of a cubed-sphere mesh with one of the six root blocks removed for clarity

the cell interface solution, Uc, its gradient, �∇Uc, and the normal vector, �n. The values of
Ul , Ur , Uc are determined by performing K -exact CENO polynomial reconstruction [13]
as detailed in the next section. In particular, K -exact polynomial reconstruction is used to
reconstruct the solution, U, to (K + 1)-order of accuracy. Direct differentiation of this K -
exact reconstructed solution is then used to obtain a K -order accurate value of the solution
gradient �∇U. The resulting scheme for the Navier–Stokes equations is then overall K -order
accurate. An accuracy of order K + 1 is achieved for the Euler equations. Practically, for
the three-dimensional simulations of viscous flows examined in Sects. 5.6 and 5.7, just one
K -exact polynomial reconstruction is performed for each variable when evaluating both the
hyperbolic and elliptic fluxes. Details of the high-order CENO reconstruction procedure and
spatial discretization scheme now follow.

2.3 High-Order CENO Spatial Discretization Scheme

2.3.1 K -Exact Least-Square Reconstruction

The hybrid CENO finite-volume method for conservation laws originally proposed by Ivan
and Groth [13] is used to discretize the governing equations on a hexahedral computational
grid. The hybrid CENO procedure uses the multidimensional unlimited K -exact reconstruc-
tion of Barth [47] in smooth regions and reverts to a piecewise limited linear reconstruction
algorithm in regions deemed as non-smooth or under-resolved by a solution smoothness
indicator, S, thus providing monotone solutions near discontinuities.

The K th-order Taylor polynomial representing a K -exact reconstruction of a scalar solu-
tion quantity, Ui jk , within a cell (i, j, k) about the cell centroid, (xi jk, yi jk .zi jk), can be
expressed as:

UK
i jk(x, y, z) =

K∑
p1=0

K∑
p2=0

K∑
p3=0

p1+p2+p3≤K

(x − xi jk)
p1(y − yi jk)

p2(z − zi jk)
p3Dp1 p2 p3 . (2.4)

The coefficients, Dp1 p2 p3 , of the Taylor polynomial are the unknown derivatives (so-called
Taylor derivatives or coefficients) of the expansion and their number, N , for a target fourth-
order accuracy is equal to N = 20 for the Euler equations (K = 3 piecewise cubic
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reconstruction) and N = 35 for the Navier-Stokes equations (K = 4 piecewise quartic
reconstruction). The evaluation of Dp1 p2 p3 requires the least-squares solution of an over-
determined system of linear equations of the form

Ax − c = e, (2.5)

where the coefficient matrix,A, of the linear system depends only on the mesh geometry and
can be calculated a priori in a preprocessing step. The current average values of the conserved
solution within each cell, U, are contained in the vector c and the error in the reconstructed
solution in each control volume is represented by vector e which has its norm minimized in
a least-squares sense. The desired coefficients, Dp1 p2 p3 , are contained in the solution vector
x . Singular value decomposition (SVD) is used to solve the weighted least-squares problem
associated with the CENO reconstruction [13]. This approach permits the computation of
a pseudo-inverse matrix after which the solution of the least-squares problem is given by a
simple matrix–vector product. The use of a single fixed stencil, the same for all dependent
variables, allows the pseudo-inversematrix to be stored and re-used in the reconstruction of all
solution variables, thereby avoiding the repeated evaluation of the pseudo inverse. This was
found to reduce significantly the computational costs of performing the CENO reconstruction
without requiring substantial additional storage [13]. Additionally, it is noted that issues often
arise with high-order polynomial reconstruction related to conditioning and/or invertibility
that generally increase in severity with the order of the scheme and can be highly dependent
on mesh features such as cell size, aspect ratio, and topology. However, a combination of
inverse-distance weighting and column-scaling procedure is applied here to the least-squares
problem of Eq. (2.5) which significantly improves its conditioning, making the problem
virtually independent of mesh geometry, and thereby affording robust and reliable solutions
of the least-squares problem [13]. The resulting solutions of the over-determined system
provide the values of the Taylor derivatives, Dp1 p2 p3 , defining the unlimited high-order
reconstruction polynomials valid for regions of smooth solution content.

Themechanism used to switch between the preceding unlimited high-order representation
and a piecewise limited linear reconstruction of the solution relies on a solution smoothness
indicator, as described fully by Ivan et al. [13, 14]. The solution smoothness indicator is
evaluated as follows

S = α

max(1 − α, ε)

NSOS − ND

ND − 1
, (2.6)

where the smoothness parameter, α, is given by

α = 1 −

∑
γ

∑
δ

∑
ζ

(uKγ δζ (
�Xγ δζ ) − uKi jk( �Xγ δζ ))

2

∑
γ

∑
δ

∑
ζ

(uKγ δζ (
�Xγ δζ ) − ūi jk)

2
, (2.7)

and whereNSOS is an integer value representing the size of the stencil,ND is the number of
degrees of freedom in the K -exact polynomial reconstruction (i.e.,ND = 20 for the solution
of the Euler equations and ND = 35 for the solution of the Navier–Stokes equations), the
ranges of the indices (γ, δ, ξ) are taken to include either thewhole or a subset of the supporting
reconstruction stencil for cell (i, j, k), and the parameter, ε = 10−8, is introduced to avoid
division by zero. Based on the magnitude relative to a chosen cut-off value, SC , a value of S
larger than SC indicates a smooth representation of the solution while a value of S less than
SC indicates the presence of non-smooth or under-resolved solution content. In the case of
the latter, limited linear reconstruction is performed with K = 1 using the slope limiter of
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Venkatakrishnan [48]. For all of the simulations presented in Sect. 5 to follow, the smoothness
indicator cut-off value was SC = 1, 500.

It is noted that in the hybrid CENO reconstruction scheme outlined above, the unlimited
high-order reconstruction is performed in terms of the conserved solution variables, U, and
a primitive variable set, W = [ρ,u, p]T, is used where the scheme reverts to limited linear
reconstruction for the treatment of non-smooth solution content. In this way, tight control
is maintained on the monotonicity and positivity of key flow variables while preserving the
conservation properties and consistent high-order accuracy of the finite-volume scheme as
discussed byFreret et al. [12]. This procedure involving the change in reconstruction variables
also incurs virtually no additional computational overhead.

2.3.2 Reconstruction Stencil

Stencil selection can be a crucial aspect of ENO-type schemes [49]. In the CENO approach,
central high-order stencils are used exclusively which, for a fixed stencil size, are known to
be the most accurate stencils. In selecting the appropriate CENO stencil for a given solu-
tion accuracy, stencil symmetry and ensuring the over-determinedness of the least-squares
reconstruction problem of minimum size are the key considerations.

In order to arrive at an over-determined system of equations to solve for the unknown
Taylor derivatives associated with the solution reconstruction, a central stencil including the
first ring of 27 nearest neighbours and 6 additional next-to-nearest neighbours is used here in
the solution reconstruction of the Euler equations. This reconstruction stencil, S33, is defined
by

S33 = {
(i, j, k)|i, j, k ∈ {−1, 0, 1}} ∪ {

(l, 0, 0) ∪ (0, l, 0) ∪ (0, 0, l)|l ∈ {−2, 2}}, (2.8)

and, for a non-adapted body-fitted mesh, consists of 33 cells, ensuring an over-determined
stencil for the 20 unknown derivatives required in a K = 3 or cubic reconstruction of the solu-
tion for the Euler equations. The latter yields a fourth-order accurate spatial-discretization
of these hyperbolic equations. In the case of the Navier–Stokes equations, K = 4 quartic
reconstruction is required to achieve fourth-order accuracy and a central reconstruction sten-
cil, S57, consisting of the first ring plus 6 × 5 = 30 additional next-to-nearest or second-ring
cells is instead used. This stencil can be defined by

S57 ={
(i, j, k)|i, j, k ∈ {−1, 0, 1}}

∪ {
(l,m, n) ∪ (m, l, n) ∪ (m, n, l)||l| = 2,m, n ∈ {−1, 0, 1}, |m + n| ≤ 1

}
.
(2.9)

For a non-adapted body-fitted mesh, this stencil contains 57 cells and ensures an over-
determined system for the 35 unknown Taylor derivatives of the linear system of Eq. (2.5).
Figure2a and b depicts the reconstruction stencils for the cubic and quartic representation
of the solution, S33 and S57, respectively, in the case of a uniform Cartesian mesh. In the
case of a cubed-sphere grid, which contains corner and edge degeneracies in the mesh [14,
20], the 33-cell S33 stencil degenerates to 29-cell and the 57-cell S57 stencil degenerates
to a 51-cell stencil at the grid block edges, respectively, as shown in the cubic and quartic
reconstruction stencils of Fig. 2c and d. Nevertheless, both reconstruction stencils still ensure
an over-determined linear system for the Taylor derivatives of Eq. (2.5). Note that the recon-
struction defined here are valid for non-adapted or nominally uniform body-fitted mesh. In
the case of the anisotropic block-based AMR considered here, modified stencils must be
considered as described in Sect. 3 to follow.
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Fig. 2 Illustration of the nominally 33- and 57-cell stencils associatedwith a uniformCartesianmesh (a, b) and
a cubed-sphere mesh (c, d). The 33-cell stencils of (a) and (c) is used for fourth-order accurate inviscid flow
predictions while the 57-cell stencils (b) and (d) are used for fourth-order accurate solutions of the Navier–
Stokes equations. Purple coloured cells coloured are located in the first ring (nearest neighbours) and light
blue coloured cells are added from the second ring (next to nearest neighbours). Due to the edge degeneracy
of the cubed-sphere mesh, the 33-cell stencil of (c) contains only 29 cells and the 57-cell stencil of (d) has
only 51 cells (Color figure online)

For the limited linear reconstruction used in regions deemed to be non-smooth, a standard
central stencil of consisting of the 27 nearest neighbours is used, thus providing an over-
determined set of equations to solve for the three unknown first-order spatial derivatives
associated with the reconstruction. This linear reconstruction stencil, S27, is defined simply
by

S27 = {
(i, j, k)|i, j, k ∈ {−1, 0, 1}}. (2.10)

2.4 High-Order Representation of Geometry

Typical flow problems of interest in CFD may involve domains with curved boundaries con-
sisting of non-planar computational surfaces. In order to facilitate the accurate treatment of
such boundaries with high-order solution accuracy, a mapping or coordinate transformation
procedure is often used to map the geometrical properties of the computational cells in the
physical space to a regular Cartesian reference space. The mapping is done using shape func-
tions and mapping Jacobians [50]. Such approaches have been adopted in other high-order
finite-volume methods [32, 51, 52]. The mapping procedure allows accurate evaluation of
mesh quantities such as the positions of volumetric and face Gauss integration points and
more precise evaluation of geometrical properties such as cell volume, face areas, moments,
and the position of the cell centroid. It also facilitates more accurate enforcement of bound-
ary conditions and evaluation of numerical fluxes and source terms. The type of mapping
approach determines the order of accuracy of the geometry representation. To reduce the
effects of geometrical modelling errors, particular care must be taken to represent curved
boundaries using a transformation that provides an order of accuracy matching that of the
underlying finite-volume spatial discretization scheme. In the event that the numerical scheme
has an order of accuracy greater than that of the coordinate transformation, geometrical map-
ping errors can pollute numerical results and dominate the error, effectively reducing the
prediction accuracy.

The mapping approach adopted herein extends the approach presented by Ivan et al. [14]
in which a trilinear mapping was to represent the hexahedral elements of a body fitted mesh
and map them to a reference cubic cell of a regular Cartesian coordinate system. The latter
is appropriate for a second-order (i.e., linear) representation of the domain boundary. In the
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Fig. 3 Grid block 0 of the
cubed-sphere mesh of Fig. 1b
showing how the high-order
geometry representation is
enabled in boundary cells to
enable a 4th-order representation
of the geometry. The additional
nodes shown in blue are added to
the boundary cells to permit the
tricubic mapping (Color figure
online)

present study, an enhanced tricubic formulation is used to map the hexahedral elements to
a serendipity-type reference cube as described by Lapidus and Pinder [53] defined on the
three-dimensional domain [−1, 1] × [−1, 1] × [−1, 1] with nodal basis functions defined
at prescribed node positions within the reference element. The proposed tricubic mapping
procedure is capable of providing 4th-order accurate (i.e., cubic) representation of domain
boundaries, consistent with the desired accuracy of the spatial discretization scheme.

The original second-order trilinear mapping scheme adopted by Ivan et al. [14] made
use of shape functions defined only at the vertices of the reference element. Hence, eight
basis functions are used for the trilinear mapping approach, one defined at each vertex of the
reference cube. The expressions for the trilinear transformation and its associated coefficients
are re-summarized in Appendix “A.1 Trilinear Transformation”. In the case of the tricubic
mapping approach, two additional nodes are introduced along the edges of the serendipity-
type reference element [50]. This results in a total of 32 shape functions for the tricubic
mapping as summarized in Appendix “A.2 Tricubic Transformation”. The tricubic high-
order geometry representation comes at a non-negligible computational cost in terms of
memory/storage. In order to reduce the latter, the high-order representation can be enabled
only for cells adjacent to the domain boundary, which typically represent just a small fraction
of the total number of cells. An illustration of this hybrid approach (tricubic mapping for
high-order cells at the physical boundary and trilinear mapping for the remaining interior
cells) is depicted in Fig. 3 where the high-order nodes are shown for the grey coloured grid
block of a cubed-sphere grid shown in Fig. 1. The high-order nodes depicted in blue are used
only within cells adjacent to the boundary. A trilinear transformation is used for all other
cells. For such a coarse mesh, the high-order cells represents 25% of the total number of
cells and as the mesh is refined this percentage can decrease substantially. For example, in
the convergence study to be considered in Fig. 4, the high-order cells represent respectively
25%, 12.5%, 6.25%, 3.125% and finally just 1.5% of the total number of computational cells
on each successively refined mesh, respectively.

2.4.1 Definition of High-Order Quadrature Nodes

The location of the high-order nodes is determined using a standard computational mapping
in terms of grid metrics [54, 55]. In particular, the mapping between the physical coordinates,
�x = (x, y, z), of the mesh and a corresponding uniformly spaced Cartesian computational
space, (ξ, η, ζ ), is approximated by the following third-order Taylor series expansion
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Fig. 4 Accuracy of 3D geometry representation showing a the relative computed error in the volume, |EV |,
and surfaces (inner and outer boundary), |ES |, of a cubed-sphere grid, D, using both the high-order tricubic
representation of the boundary cells with trilinear elsewhere and the trilinear representation for all cells; and
b the high-order reconstruction of the functional f (x, y, z) = x4 + y4 + z4 on the cubed-sphere grid, D,

showing the relative error in the integrated value of the function evaluated over the volume, |E f
V |, and over the

inner and outer surfaces, |E f
S |, for fourth-order (K = 3) CENO reconstruction again with high-order tricubic

representation of the boundary cells with trilinear elsewhere and the trilinear representation for all cells. In
both cases, NCells represents the equivalent number of cells for a one-dimensional domain

�x(ξ + �ξ, η + �η, ζ + �ζ)

= �x(ξ, η, ζ ) + ∂ �x
∂ξ

∣∣∣∣
ξ,η,ζ

�ξ + ∂ �x
∂η

∣∣∣∣
ξ,η,ζ

�η + ∂ �x
∂ζ

∣∣∣∣
ξ,η,ζ

�ζ

+ 1

2

(
∂2 �x
∂ξ2

∣∣∣∣
ξ,η,ζ

(�ξ)2 + 2
∂2 �x
∂ξ∂η

∣∣∣∣
ξ,η,ζ

(�ξ�η) + 2
∂2 �x
∂ξ∂ζ

∣∣∣∣
ξ,η,ζ

(�ξ�ζ)

+ ∂2 �x
∂η2

∣∣∣∣
ξ,η,ζ

(�η)2 + 2
∂2 �x
∂η∂ζ

∣∣∣∣
ξ,η,ζ

(�η�ζ) + ∂2 �x
∂ζ 2

∣∣∣∣
ξ,η,ζ

(�ζ)2
)

+ 1

6

(
∂3 �x
∂ξ3

∣∣∣∣
ξ,η,ζ

(�ξ)3 + 3
∂3 �x

∂ξ2∂η

∣∣∣∣
ξ,η,ζ

(�ξ)2�η + 3
∂3 �x

∂ξ2∂ζ

∣∣∣∣
ξ,η,ζ

(�ξ)2�ζ

+ ∂3 �x
∂η3

∣∣∣∣
ξ,η,ζ

(�η)3 + 3
∂3 �x

∂η2∂ζ

∣∣∣∣
ξ,η,ζ

(�η)2�ζ + 6
∂3 �x

∂ξ∂η∂ζ

∣∣∣∣
ξ,η,ζ

�ξ�η�ζ

+ ∂3 �x
∂ζ 3

∣∣∣∣
ξ,η,ζ

(�ζ)3
)

,

(2.11)

where the mapping has been expressed in terms of the grid metrics. The values of the latter
(i.e., the derivatives) are computed here using fourth-order central-difference approximations
within the interior of the grid blocks and third-order forward/backward differences at grid
block boundaries. The locations of the high-order nodes are then determined by combining
the Taylor series expansions associated with the two nearest vertices using an averaging
procedure.
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2.4.2 Volumetric and Surface Integration

To evaluate the volumetric integral,

I =
∫∫∫

Vi jk
g( �X) dV , (2.12)

the variables and integration domain are transformed to those of a reference unit cube by
making use of the mathematical transformation, �X = �X(p, q, r), and its transformation
Jacobian determinant, det J [13]. Thus, the volumetric integral,I, is evaluated in the canonical
space, (p, q, r), as

I =
∫∫∫

[−1,1]3
g( �X(p, q, r)) det J dpdqdr

≈
Nv∑
1

g( �Xm) ωm,

(2.13)

where Nv is the number of volumetric Gaussian quadrature points. Tensor-product curbature
is used here and, for fourth-order accuracy, Nv = 8 is used where the abscissa and weights
for each direction of the transformed domain on [−1, 1] are [−0.577, 0.577] and [1., 1.],
respectively.

High-order estimates of surface integrals are evaluated here in a similar fashion. To evalu-
ate a surface integral along a surface with a constant p-coordinate, the following expression
is used

Ap =
∫∫

Ap

g( �X)dA =
∫∫

[−1,1]2
g( �X(p, q, r)) det Jpdqdr

≈
Ng∑
m=1

g( �Xm) det Jpωm,

(2.14)

where Ng is the number of Gaussian quadrature points on the surface. Again, for fourth-
order accuracy, Ng = 4 is used where again the abscissa and weights for each direction
of the transformed domain on [−1, 1] are [−0.577, 0.577] and [1., 1.], respectively. Similar
expressions for integrals along surfacesAq andAs follow by cyclic permutation of Eq. (2.14).
Expressions for the Jacobians of the surface transformations are provided in Appendix “A.3
Transformation Jacobians”.

To assess the accuracy of the preceding high-order definitions of the 3D mesh geometry,
a domain, D, defined by a cubed-sphere mesh [14, 20] with an inner radius of Ri = 1 and
an outer radius of Ro = 3 is now considered. The volume of D and the total surface area
associated with the boundaries of D are compared to the exact known values of the volume
and surface. The relative errors in the computed values of the volume are here defined using

|EV | = 1

VT

∣∣∣∣∣∣
∑
i, j,k

∫∫∫

Vi jk
dV − VT

∣∣∣∣∣∣
, (2.15)

where VT = 104π/3 is the exact total volume of D and, similarly, the relative error for the
total boundary surface is determined using

|ES | = 1

AT

∣∣∣∣∣∣

⎛
⎝∑

i, j

∫∫

Ai j ,Ro

dA +
∑
i, j

∫∫

Ai j ,Ri
dA

⎞
⎠ − AT

∣∣∣∣∣∣
, (2.16)
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where AT = 4π + 36π = 40π is the sum of the exact outer and inner boundary surface
areas of D. Figure4a shows convergence of the error in the volume and surface area for D
for a sequence of meshes of increasing resolution. The initial mesh is made up of 6 blocks
with 8 × 8 × 8 cells and 3,072 total cells and the final mesh has 24,576 blocks and a total
of N = 12,582,912 computational cells. The expected theoretical asymptotic convergence
rates are clearly achieved for both trilinear and tricubic transformations as the mesh is refined
with the slopes for the estimated error approaching−1.99 for the trilinear mapping procedure
applied everywhere and −3.99 for the trilinear mapping approach applied at the boundary
cells as described above.

Reconstruction of a smooth function, f (x, y, z) = x4 + y4 + z4, are now also compared
to the exact solution on the same cubed-sphere domain, D. The norm of the numerical error
in the reconstructed solution over the domain is computed as follows:

|E f
V | = 1

VT

∣∣∣∣∣∣
∑
i, j,k

∫∫∫

Vi jk
f Ki, j,k( �X)dV −

∫∫∫

VT
f ( �X)dV

∣∣∣∣∣∣

1

VT

∣∣∣∣∣∣
∑
i, j,k

∫∫∫

Vi jk
f Ki, j,k( �X)dV − V f

T

∣∣∣∣∣∣
,

(2.17)

where the exact value of the function, f , integrated over the volume is V f
T = (26232π)/35

and f Ki, j,k( �X) is the numerical reconstruction from cell averages of function f within cell,

(i, j, k), with K th-order reconstruction accuracy. The norm of the numerical solution error
on the boundary of the domain, D, is estimated using

|E f
S | = 1

AT

∣∣∣∣∣∣
∑
i, j

(∫∫

Ai j ,Ri
f Ki, j ( �X)dA

)
+

∑
i, j

(∫∫

Ai j ,Ro

f Ki, j ( �X)dA

)
− A f

T

∣∣∣∣∣∣
, (2.18)

where the analytical integrated function f over the inner and outer surfaces, A f
T = (12π ×

36)/5 + (12π)/5. Figure4b shows the convergence of the reconstructed function obtained
using the fourth-order CENO method on the same series of meshes as examined in Fig. 4a.
The expected theoretical asymptotic convergence rate of the fourth-order accurate method is
achievedwith the tricubic transformation applied to the boundary cells for integration over the
volume (green solid lines) and over the surfaces (green dashed lines). Second-order accuracy
is obtained with the fourth-order CENO reconstruction when trilinear transformation is used
everywhere within D for both the volume integration (black solid lines) and the surface
integration (black dashed lines). The results of Fig. 4b exemplify the typical geometrical
representation errors that can pollute and reduce the accuracy of the predictions of high-
order spatial discretization methods. As the mesh for domain D is refined, the slopes of the
reconstruction error approach−3.99 and−5.4 for the tricubic approach for the reconstructed
function measured over the volume and surfaces, respectively, providing validation of the
proposed tricubic-based CENO reconstruction procedure applied to general hexahedral cells
with non-planar faces.

2.5 High-Order Treatment of Boundary Conditions

Treatment is also required for the high-order imposition of boundary data. One approach to
imposing boundary conditions is to make use of extra rows of cells, so-called ghost cells,
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which are added outside and beyond the geometric boundary of the computational domain.
Solution values are then imposed in the ghost cells in such a way that the reconstructed
solution approximates the solutions associated with the particular boundary condition. Such
a method has been used in the previous studies by Freret et al. [11, 12]; however, it presents
two distinct disadvantages. First, it requires that there are sufficient additional layers of ghost
cells in order to carry out the reconstruction and evaluation of the smoothness indicator in all
necessary cells. It also requires the accurate specification of the data within each ghost cell,
which is not always possible, depending on the boundary condition. An alternative approach
is to enforce the boundary data by constraining the CENO reconstruction in control volumes
adjacent to the boundary as previously described by Ollivier-Gooch and Van Altena [56]
and later by Ivan and Groth [13]. In the current study, constrained reconstruction procedure
is considered and this represents the extension of the approach of Ivan and Groth [13] for
two-dimensional domains to the three-dimensional case.

Constrained reconstruction involves the addition of equality constraints to the reconstruc-
tion procedure to ensure that the polynomial approximations of the CENO reconstruction
within the interior cells next to the boundary exactly satisfy the particular boundary condition
at theGauss quadrature integration points. By constraining the least-squares reconstruction in
the control volumes adjacent to the boundary, complex boundary conditions can be enforced
exactly by the reconstruction. In the current study, solid wall boundary conditions have been
implemented for reflecting (slip) boundaries with �V · �n = 0. In order to solve the system
of equations arising from the constrained least squares reconstruction (i.e., exact boundary
constraints plus reconstruction conditions), a linear equality-constrained least squares prob-
lem is solved. In other words, a least-squares solution is sought that minimizes ||Fx = y||2
such that Bx = d where B is a P × M matrix and d is a P-vector with P the number of
constraints.

For the �V · �n = 0 reflective boundary condition, the additional constraints that need
to be satisfied by the reconstruction coefficients for the x-, y- and z-velocity components,
(Dp1 p2 p3)u , (Dp1 p2 p3)v , and (Dp1 p2 p3)w , respectively, is

K∑
p1=0

K∑
p2=0

K∑
p3=0

p1+p2+p3≤K

�X p1
g �Y p2

g �Z p3
g

[
ngx (Dp1 p2 p3)u + ngy(Dp1 p2 p3)v + ngz (Dp1 p2 p3)w

] = 0,

(2.19)
where�X p1

g = (xg−xi jk)p1 ,�Y p2
g = (yg− yi jk)p2 and�Z p3

g = (zg−zi jk)p3 . The number
of constraints in this case is P = 7 which represents one constraint for each of the Ng = 4
Gauss quadrature points on the boundary face, ng , and the mean conservation constraint for
each component of the velocity. The second dimension of the matrix, B, is M = 3N with N
being the number of unknown Taylor derivatives. The M × M matrix, F, the M-component
vector, y, and the M-component solution vector, x, are defined as

F =
⎛
⎝

A 0 0
0 A 0
0 0 A

⎞
⎠ , y =

⎛
⎝

(c)u
(c)v
(c)w

⎞
⎠ , x =

⎛
⎝

(Dp1 p2 p3)u
(Dp1 p2 p3)v
(Dp1 p2 p3)w

⎞
⎠ , (2.20)

where A is defined in Eq. (2.5) and (c)u , (c)v and (c)w form the right-hand side vector c of
Eq (2.5) for the x-, y- and z-velocity components, respectively. Numerical assessment of the
constrained reconstruction associated with a high-order mesh representation is considered
in Sects. 5.1 and 5.2 for an inviscid subsonic flow past a cylinder and past a sphere, respec-
tively. Constrained reconstruction for other boundary conditions, including no-slip velocity
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Fig. 5 Three-dimensional binary tree and the corresponding grid blocks after several levels of anisotropic
refinement of the mesh

boundary conditions with �V = �0 can also be applied by following a similar procedure to that
outlined above.

3 Anisotropic Block-Based Adaptive Mesh Refinement (AMR)

In block-based methods the computational domain is divided into grid blocks containing
groupings of cells. In the current anisotropic block-based approach, each grid block is taken
to have the same number of cells in order to more readily achieve an optimal load balancing.
Mesh adaptation is then accomplished by refining and coarsening of the grid blocks. Each
refinement produces new blocks, called “children” from a “parent” block and the children
can be refined further. This refinement process can be associated with a preferred direction
and can be reversed in regions that are deemed over-resolved and two, four or eight children
can coarsen or merge into a single parent block. In order to keep track of the connectivity
between blocks, a binary tree data structure is used. Figure5 depicts the resulting binary tree
after several refinements of an initial mesh consisting of a single block.

In the present work, heuristic or physics-based refinement criteria involving the gradients
of the solution are used to direct the mesh refinement. For anisotropic refinement of the
mesh, directionally dependent refinement criteria are proposed here based on the individual
components of the gradient vectors. Expressions for the directional refinement indicators,
rγ , rη, and rζ , are as follows:

rγ = 1

u

( �∇u · �γ̃
)

, rη = 1

u

( �∇u · �η̃
)

, rζ = 1

u

( �∇u · �ζ̃
)

, (3.1)

where �γ̃ , �η̃ and �ζ̃ are the vector differences between the midpoints of the faces in the
γ , η, and ζ logical coordinate directions of the body-fitted multi-block mesh, respectively.
In Eq. (3.1), the variable, u, here represents any solution quantity of interest. In the present
study, the flow density, u = ρ, Mach number, u = M, and the velocity field magnitude,
u = ||u||L2 , are considered for directing the mesh refinement in various flow problems.
Additionally, as the high-order CENO scheme provides a measure of solution smoothness,
an anisotropic refinement indicator based on the CENO smoothness indicator is also adopted
here, as originally proposed by Freret et al. [12]. For direction γ , the anisotropic refinement
indicator takes the form

rγ = exp
(−Sγ

)
, (3.2)
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Fig. 6 Example of a amulti-block anisotropic-refinedAMRmesh illustratingb the non-uniform representation
of the grid block where the red-coloured block is the interior block of interest for which the non-uniform
structure is represented and the blue-, green-, and orange-coloured blocks share a face, an edge and a block,
respectively, and together the cells of the latter makeup the ghost cells of the interior block in the non-uniform
representation (Color figure online)

with
Sγ = αγ

max(1 − αγ , ε)
, (3.3)

where

αγ = 1 −

∑
δ

∑
ζ

(uKγ δζ (
�Xγ δζ ) − uKi jk( �Xγ δζ ))

2

∑
δ

∑
ζ

(uKγ δζ (
�Xγ δζ ) − ūi jk)

2
. (3.4)

The smoothness based refinement measures, rη and rζ , for the η and ζ coordinate directions,
respectively, have similar forms. In the proposed AMR scheme, regions with large values of
rγ , rη, and rζ are refined preferentially in the appropriate coordinate directions and regions
with small measures of these values are flagged for mesh coarsening in the appropriate
coordinate direction.

The general anisotropic AMR framework of Freret and Groth [9] and Freret et al. [10] was
originally formulated for a limited second-order spatial discretization scheme and adopts a
non-uniform representation of the computational cells within each grid block. As discussed
by Freret et al. [10], the non-uniform block approach readily allows and is directly compatible
with the use of high-order spatial discretization methods. In particular, two primary benefits
provided by the non-uniform block treatment, among several others, is the elimination of the
need for the restriction and prolongation of high-order solution content in the ghost cells of the
grid blocks, which can be computationally expensive [11, 12]. Figure6a depicts amulti-block
anisotropic refinedAMRmesh obtained after several refinements, showing a block of interest
coloured in red and the neighbouring grid blocks. The blue-coloured blocks share a face with
the red-coloured block while the green- and orange-coloured blocks share an edge and a
corner, respectively, with the red block. The non-uniform block representation or treatment
is illustrated inFig. 6bwhere an explodedviewof the non-uniformgrid blockpermits a viewof
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Fig. 7 Illustration of the modified nominally 33-cell fourth-order inviscid flow reconstruction stencils for
a Cartesian cell, (i, j, k), located at block boundaries such that the stencils include the ghost cells from
neighbouring blocks with a neighbouring block having a coarser level of refinement, b neighbouring block
having a finer level of refinement, and c neighbouring block having both finer and coarser levels of refinement
in the tangential directions. The cells associated with the interior domain of the grid block are coloured yellow
and the ghost cells are coloured blue (Color figure online)

the interior grid block of interest in this case, again coloured in red. The ghost cells associated
with neighbouring blocks are also shown, which are at differing levels of refinement in the
various coordinate directions. The blue-, green-, and orange-coloured blocks share a face, an
edge and a block, respectively, with the red block. Together the cells of the blue, green, and
orange blocks makeup the ghost cells of the interior block in the non-uniform representation.
It can be seen that ghost cell blocks contain directly the cells of the neighbouring blocks, even
those at different levels of refinement as found at mesh resolution changes. This non-uniform
structure removes the need for the high-order restriction and prolongation of the solution to the
ghost cells; however, hanging nodes may now be present and the definition of the high-order
reconstruction stencil for the CENO scheme becomes more challenging with anisotropic
AMR. Freret et al. [10] have proposed an effective neighbour search algorithm in this case
and it is used here. Figure7 shows examples of the nominally 33-cell fourth-order inviscid
flow stencil defined by Eq. (2.8) for computational cells located next to a block boundary
with a mesh resolution change across the interface. The shaded cells of Fig. 6 represent such
boundary cells. Figure7a depicts the stencil for the boundary cell of a block having a finer
neighbouring block, Fig. 7b is illustrative of the stencil for a boundary cell associated with
a block having a coarser neighbouring block, and finally Fig. 7c shows the stencil for the
case in which the neighbour block is both coarser and finer in the two tangential directions.
Additionally, in the case of the nominally 57-cell fourth-order viscous flow stencil defined
by Eq. (2.9), Fig. 8a, b, and 7c depict the corresponding stencils for a similar boundary cells
of a block having finer and coarser neighbouring blocks, as well as a neighbour block that is
both coarser and finer in the two tangential directions, respectively. Note that the number of
cells associated with the stencils of the boundary cells now varies considerably, depending on
the mesh refinement, but in each case the system of equations for the reconstruction remains
over determined.

Finally following refinement and coarsening of the mesh, high-order accurate solution
transfer from the originally coarse to newly introduced fine cells are required to distribute
the solution among offspring cells with a consistent order of accuracy. To do this, the high-
order CENO reconstruction polynomials for all solution variables, u, within coarse cells are
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Fig. 8 Illustration of the modified nominally 57-cell fourth-order inviscid flow reconstruction stencils for
a Cartesian cell, (i, j, k), located at block boundaries such that the stencils include the ghost cells from
neighbouring blocks with a neighbouring block having a coarser level of refinement, b neighbouring block
having a finer level of refinement, and c neighbouring block having both finer and coarser levels of refinement
in the tangential directions. The cells associated with the interior domain of the grid block are coloured yellow
and the ghost cells are coloured blue (Color figure online)

integrated over the domains associated with each new fine cell having a volume, V f ine, such
that

ūfine = 1

Vfine

∫∫∫

Vfine
ukcoarse( �X)dV = 1

Vfine

Nv∑
m=1

ωm ukcoarse( �Xm), (3.5)

where ūfine is the new cell average solution quantity for the fine cell and the volume integral is
computed exactly for the reconstruction polynomial with an appropriate-order tensor-product
Gaussian quadrature volumetric integration technique (Nv = 8 quadrature points are used
for fourth-order spatial accuracy). Here,ωm and �Xm are the Gaussian weights and quadrature
points associated with the fine cell.

It should be noted that the combination of the high-order CENO finite-volume spatial
discretization scheme and reconstruction procedure adopted herein for the arbitrary hexa-
hedral mesh elements of anisotropically refined grids is an unsplit approach in which the
flux evaluation and reconstruction in each direction are explicitly coupled. The use of direc-
tional splitting and/or curvilinear coordinate mappings may simplify the implementation of
high-order methods for three-dimensional applications; however, the proposed unsplit proce-
dure, while possibly somewhat more computationally expensive, has been shown in previous
studies to provide important added reliability and robustness as well as more consistent accu-
racy for the complex mesh topologies of both highly anisotropically refined body-fitted and
degenerate cubed-sphere meshes [11, 12].

4 Inexact NewtonMethod

4.1 Non-linear Equations and Newton Update Scheme

The proposed Jacobian-free inexact Newton method adopted in this study follows the algo-
rithm developed and applied previously by Groth and co-workers [28, 34, 39]. The approach
is well adapted for computations on large multi-processor distributed-memory parallel clus-
ters. For steady-state problems, the semi-discrete form of the governing equations given by
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Eq. (2.3) above reduces to
dU
dt

= R(U) = 0. (4.1)

Given an initial estimate of the steady state solution, U0, the solution of the coupled system
of non-linear algebraic equations defined by Eq. (4.1) is then obtained here via Newton’s
method by iteratively solving a sequence of linear systems of equations for successively
improved kth estimates, Uk , satisfying

(
∂R

∂U

)k

�U
k = J(U

k
)�U

k = −R(U
k
), (4.2)

where J = ∂R/∂U is the residual Jacobian and �U
k = Uk+1 − Uk . The improved solution

at the kth Newton step iteration is subsequently obtained using

U
k+1 = U

k + �U
k
. (4.3)

TheNewton iterations are performeduntil a desired reduction of the residual norm is achieved,
that is

||R(U
k
)|| < ε ||R(U

0
)||, (4.4)

where here a tolerance, ε, in the range [10−10, 10−7] is used for steady inviscid and laminar
flows considered in this study.

4.2 Sparse Non-symmetric Linear Equations and Preconditioned GMRESMethod

As noted above, each step of Newton’s method requires the solution of a linear problem of
the form

Jx = b, (4.5)

where x = �U and b = −R(U). This linear system is large, sparse, and non-symmetric
and is solved herein using the GMRES iterative algorithm of Saad and co-workers [35–
38]. A combination of additive Schwarz global and incomplete lower-upper (ILU) local
preconditioning is used to both allow a parallel implementation of the Newton method and
to speed up the convergence of the GMRES algorithm. ILU preconditioning with a specified
level of fill, f , is used here and, for the problems of interest, ILU(2) with a fill level f = 2 is
found to work well for the high-order CENO scheme and steady flow problems considered
herein. As discussed by Dembo et al. [57], determining the exact solution of Eq. (4.5) is not
necessary for rapid convergence of Newton’s method and partial convergence of the linear
problem can prove to be computationally more efficient. A convergence tolerance of between
0.01 and 0.001 is used here for the iterative solution of t he linear problem in the resulting
inexact Newton method.

4.3 Globalization of NewtonMethod via Implicit-Euler Startup

In order to ensure that the proposed inexact Newton’s method is globally convergent for
the solution of the steady-state problems of interest here, a so-called switched-evolution-
relaxation (SER) startup strategy is used. As proposed by Mulder and Van Leer [58], based
on the implicit Euler time marching scheme, the SER approach provides a smooth switching
between time-integration of the governing equations and Newton’s method. The application
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of this startup procedure leads to the solution of a modified linear system of equations of the
form [

I
�τ k

+
(

∂R

∂U

)k
]

�U
k = −Rk, (4.6)

where I is the identity matrix and �τ k represents a so-called artificial or pseudo time-step.
As �τ k → ∞, Newton’s method of Eq. (4.2) is recovered. In the SER startup procedure,
the time-step �τ k varies. Starting from a relatively small and finite value, �τ k is gradually
increased and made very large as the desired steady solution is approached. As the time step
becomes large, quadratic convergence of Newton’s method is recovered. The time-step size
is determined by considering a combination of the inviscid Courant-Friedrichs-Lewy (CFL)
and viscous Neumann stability conditions for the discretized governing equations. The time
step, �τ k , for inexact Newton step, k, is then specified in terms of a time-step multiplier,
Ck
CFLN, using

�τ k ≤ Ck
CFLN min

(
�x

max(|u| + a)
,
�x2

ν

)
, (4.7)

where �x = V 1/3 is a measure of the grid size, a = √
γ RT is the sound speed, and ν is the

kinematic viscosity of the gas. The time-step multiplier for the kth iteration is then evaluated
in terms of the level of convergence using the relation

Ck
CFLN = C0

CFLN
||R(U

0
)||

||R(U
k
)||

, (4.8)

for which the value ofC0
rmCFLN is case dependent but selected here to be in the range [0.1, 1].

Additionally, as discussed in Sect. 5 to follow, “freezing” of the smoothness indicator is also
applied to aid in the convergence of theNewtonmethod for flow problemswith strong shocks.

5 Numerical Results for Inviscid and Viscous Flows

To demonstrate the capabilities of the high-order CENO finite-Volume with high-order
boundary and boundary condition treatment and anisotropic AMR schemes used in com-
bination with the efficient inexact Newton method, the application the proposed high-order
solution method is now considered for various three-dimensional inviscid and viscous flow
problems governed by the Euler and Navier-Stokes equations. In particular, the high-order
geometry representation and constrained reconstruction procedure are assessed for steady-
state inviscid subsonic flows past both a cylinder and sphere. Numerical results are then
presented for three inviscid supersonic steady-state flow cases: a radial outflow problem,
flow past a sphere, and flow over a bump in a channel. Two additional subsonic laminar
steady-state flow problems are also considered: flow past a circular cylinder and flow past
a NACA 0012 symmetric airfoil. Of the five flow problems considered, four involve curved
flow geometry for which the high-order geometry treatment of Sect. 2.4 was used. All of the
flow problems have been chosen to illustrate the potential benefits of proposed high-order
finite-volume scheme with AMR for significantly reducing the computational costs associ-
ated with solving steady 3D flows in a robust manner with both smooth and non-smooth
solution content. Unless specified, the HLLE flux function with the Venkatakrishnan limiter
were used together with the Newton–Krylov–Schwarz algorithm with a GMRES tolerance
of 0.001 and ILU(2) local preconditioning to achieve steady-state solutions in all of the sim-
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Fig. 9 Inviscid subsonic M∞ = 0.38 flow past a circular cylinder showing the predicted Mach number
distributions in the z = 0 plane of mesh M3 obtained using tricubic representation of the hexahedral boundary
elements with a high-order boundary treatment using ghost cells and b high-order constrained reconstruction
boundary treatment

ulations. The Newton iterations were stopped once the non-linear residual was reduced by
nine orders of magnitude with ε = 10−9 and a cut-off value of the smoothness indicator of
the CENO scheme used to switch between unlimited fourth-order reconstruction and limited
linear reconstruction was chosen to be SC = 1,500.

5.1 Inviscid Subsonic Flow Past a Circular Cylinder

The accuracy of the high-order geometry and high-order constrained reconstruction is first
examined by considering a steady, inviscid, subsonic flow past a circular cylinder with a
free-stream Mach number of M∞ = 0.38 where the free-stream flow is in the x-coordinate
direction. The radii of the inner and outer boundaries of the cylindrical domain are 1m and
100m, respectively. A reflection boundary conditionwas imposed at the inner circular surface
and specified or fixed flow boundary conditions corresponding to the free-stream conditions
were imposed on the outer boundary of the domain. The initial solutionwas assumed to be the
uniform free-stream conditions everywhere. A sequence of converged steady-flow solutions
were obtained on a series of four uniformly refined meshes with an initial mesh consisting
of B1 = 32 blocks with 6 × 20 × 8 cells per block and a total of M1 = 30,720 cells. As the
flow is 2D in nature, the successive uniformly-refined meshes were refined only in the x- and
y-coordinate directions, leading to finer meshes with B2 = 128, B3 = 512, and B4 = 2,048
blocks and M2 = 122,880, M3 = 491,520, and M4 = 1,966,080 computational cells,
respectively. The proposed inexact Newton method provided fully converged solutions of
the inviscid subsonic cylinder flow on each of the four grids.

Predicted Mach number distributions for the inviscid subsonic cylinder flow the obtained
using the tricubic representation of the hexahedral boundary elements are given in Fig. 9 for
mesh M3. In Fig. 9a, high-order constrained reconstruction is used in the imposition of the
boundary conditions at the cylinder boundary and, for the results of Fig. 9b, the ghost-cell
approach is used. It is quite noticeable that, for the same mesh resolution, the constrained
reconstruction provides a significantly more accurate result than the ghost-cell boundary
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Fig. 10 Inviscid subsonic M∞ = 0.38 flow past a circular cylinder obtained using the high-order geome-
try representation for boundary elements and constrained reconstruction for boundary-condition evaluation
showing the: a L2 norm of the error in the entropy difference, ||S− S∞||2, obtained with the CENO 4th-order
scheme (black colored curve) compared to a standard second-order scheme with piecewise linear reconstruc-
tion (red colored curve) as a function of mesh size; b convergence history of the inexact Newton method (red
colored curve) to the steady-state solution on the third mesh, M3, compared to that obtained using an explicit,
4th-order, Runge–Kutta, time-marching method (grey dashed line) as measured by the density residual as a
function of the equivalent number of residual evaluations; and c the relative parallel speed-up, sp , and parallel
efficiency, εp , as a function of the number of processors used in the calculation

treatment. In particular, the expected symmetry properties of the Mach number distribution
are accurately reproduced using the constrained boundary treatment whereas, for the ghost-
cell approach, there are noticeable asymmetries in the upstream and downstream solutions
with the downstream solution exhibiting predictions generally associated with excessive
numerical dissipation.

As the subsonic cylinder flow is a relatively low-speed inviscid flow that does not contain
any discontinuities, the entropy is constant throughout the domain and, therefore, the L2 norm
of difference between the local value of the entropy and its free-stream value, ||S − S∞||2,
is expected to be zero. This entropy difference was used to assess the accuracy of the high-
order predictions for this case. The convergence of ||S− S∞||2 as the computational mesh is
refined is given in Fig. 10a for the set of results in which constrained reconstruction was used
in the imposition of the boundary conditions on the cylinder surface. The error convergence
of the high-order scheme is also compared here to that of a standard second-order scheme
with piecewise linear reconstruction. It is evident that the K = 3 CENO finite-volume
scheme converges at its expected rate of four (black colored curve), thus providing validation
of the high-order geometry and constrained reconstruction boundary treatment within the
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CENO scheme. Additionally, the second-order method converges at its expected rate of two
(red colored curve). The results of Fig. 10a also highlight the computational benefit of the
high-order CENO scheme for this case. For the same solution accuracy, many more cells
are required by the standard second-order scheme. For example to reach an error of 10−2,
just 30,720 cells are required by the 4th-order CENO scheme whereas 491,520 cells are
required by the second-order method to achieve this same accuracy. Similar findings have
been demonstrated more extensively for the CENO scheme in other previous studies of both
inviscid and viscous flows [13, 17, 18].

The convergence history of the inexact Newton implicit method used in conjunction with
the K = 3 CENO finite-volume scheme to the desired steady-state solution of the inviscid
subsonic cylinder flow on the third mesh, M3, is depicted in Fig. 10b as measured by the den-
sity residual as a function of the equivalent number of residual evaluations. For comparison,
the convergence history obtained using the conditionally-stable, explicit, 4th-order, Runge–
Kutta, time-marching method in conjunction with the CENO 4th-order scheme is also shown
in the figure. Note that the equivalent number of residual evaluations is related directly to the
required computational time for the simulation via the processor time required to evaluate the
high-order solution residual,R(U), defined by Eq. (2.3) on the givenmesh and is a convenient
way to measure and compare the computational effort of various methods across different
high-performance computing architectures. The rapid convergence to steady state offered by
the Newton method is clearly evident and, compared to the explicit approach, the implicit
treatment offers significant computational savings. For the same level of convergence with a
tolerance of 10−5, just 900 equivalent residual evaluations, corresponding to approximately
1.9min of elapsed time using 512 processors, are required to obtain the steady state solution
using the inexact Newton method whereas about 90,000 residual evaluations are required
when using the explicit time-marching scheme. This represents a substantial reduction in
the computational effort by a factor of slightly more than 100. It should also be noted that
the proposed high-order CENO scheme combined with inexact Newton method and additive
Schwarz preconditioning exhibits relatively high parallel scalability across a large number
of processors as illustrated in Fig. 10c, where the relative parallel speed-up, sp , and parallel
efficiency, εp , as a function of the number of processors used for inviscid subsonic cylinder
flow problem on mesh M3 is given. The relative parallel speed-up, sp , and relative parallel
efficiency, εp , are defined by

sp = t1
tp

p, εp = sp
p

, (5.1)

where tp is the total processor time required to solve the problem using p processors and t1 is
the processor time required to solve the problem using a single processor. It can be observed
that the relative parallel speedup is nearly linear and the parallel efficiency generally remains
above 70–75% for the calculation up to 512 processors, which is rather good for a fully
implicit treatment. While it is felt that further investigation of the influences of the various
solution parameters is required to fully optimize the parallel performance of the algorithm
as a function of mesh size and number of processors, these results are very representative
of the capabilities of the proposed high-order solution methodology in terms of parallel
performance.

5.2 Inviscid Subsonic Flow Past a Sphere

The second validation flow problem considered here is that of steady, inviscid, subsonic flow
around a sphere. The flow geometry in this case is fully three dimensional. As for the previous
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Fig. 11 Inviscid subsonic M∞ = 0.38 flow past a sphere showing the predicted Mach number distributions
in the z = 0 symmetry plane obtained using tricubic representation of the hexahedral boundary elements with
high-order constrained reconstruction boundary treatment on a mesh M3 and b M4 containing 393,216 and
3,145,728 computational cells, respectively

subsonic cylinder flow case, the free-stream Mach number was taken to be M∞ = 0.38 with
the flow direction aligned with the x-coordinate direction. The radii of the inner and outer
boundaries of the spherical domain were similarly taken to be 1m and 100m, respectively.
A spherical computational domain was created using the cubed-sphere meshing procedure
of Ronchi et al. [59] and implemented here within the block-based AMR framework by
Ivan et al. [14, 20]. The spherical domain of the cubed-sphere mesh consists of six sectors
(or root blocks) connected with degenerate edges, forming an inner hollow sphere and an
outer spherical shell as depicted in Fig. 1b. Reflection and fixed boundary conditions were
imposed on the inner and outer surfaces of the spherical shell. For this case, the initial cubed-
sphere grid consisted of the six root blocks with 8× 8× 16 cells in each block for a total of
6,144 computational cells. The mesh lines were stretched towards the inner sphere. Predicted
solutions for the subsonic sphere were then obtained on a series of four uniformly-refined
meshes beginning with the initial mesh. The number of blocks and cells associated with each
of the four uniformly-refined meshes were B1 = 6, B2 = 48, B3 = 384, and B4 = 3,072
and M1 = 6,144, M2 = 49,152, M3 = 393,216, and M4 = 3,145,728 cells, respectively.

The predicted Mach number distributions obtained using the 4th-order CENO finite-
volume scheme with K = 3 reconstruction, tricubic representation of the hexahedral
boundary elements, and constrained reconstruction for boundary condition treatment are
given in Fig. 11a and b for meshes M3 and M4, respectively. While the presence of an arti-
ficial wake downstream of the sphere can be observed in the inviscid solutions, the wake
decreases in size as the mesh is refined and the predictions are also in good agreement, at
least qualitatively, with those of Hoshyari [60]. Furthermore, like the subsonic cylinder flow,
this spherical flow is also expected to be homentropic with S−S∞ = 0 and predicted relative
error norm of the entropy difference, ||S − S∞||2, is given in Fig. 12 as a function of mesh
density. The expected theoretical rate of convergence is again obtained, providing further
validation of the high-order geometry and constrained reconstruction boundary treatment
with the CENO scheme.
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Fig. 12 L2 norm of the error in
the entropy difference,
||S − S∞||2, versus mesh size for
inviscid subsonic M∞ = 0.38
flow past a sphere obtained using
the high-order geometry
representation for boundary
elements and constrained
reconstruction for
boundary-condition treatment

5.3 Inviscid Supersonic Radial Outflow

Steady, inviscid, supersonic, radial outflow on a 3D spherical domain is considered next with
an inflow boundary located at a radius of Ri = 1 m and the outflow boundary at a radius of
Ro = 4 m. In this case, air enters through the inner boundary of the spherical domain with
a supersonic velocity in a purely radial direction with magnitude, Vr , subsequently expands,
and exits supersonically through the outer boundary of the spherical domain. The inflow is
held fixed with a flow density of ρi = 10 kg/m3, a radial velocity of Vr ,i = 4.5 m/s, and
a pressure of pi = 26 Pa. A ratio of specific heats of γ = 1.4 is assumed. Note that the
flow remains supersonic through the domain and, at the outflow boundary, the gas exits at
supersonic speed. An analytical solution for the radial velocity, Vr (r), can be obtained for
this steady outflow problem (see Ivan et al. [20]). The solution is given implicitly by the
expression

C3 − 1

r2Vr

[(
C2 − V 2

r

) 1
γ−1

] = 0, (5.2)

where the constants C3 and C2 are given by

C3 = 1(
2γ

γ−1
pi
ρi

1
γ−1

)
R2
i Vr ,i

, C2 = 2γ

γ − 1

pi
ρi

+ V 2
r ,i , (5.3)

and depend on the inflow conditions. Other flow properties, such as density and pressure,
can be obtained assuming steady isentropic flow.

The initial 3D cubed-sphere mesh for the supersonic outflow problem consisted of 4
blocks in the radial direction and 1,536 blocks in each radial block shell for a total of B1 =
6,144 blocks each containing 8× 8× 8 computational cells. This initial 3D mesh contained
M1 = 3,145,728 hexahedral elements. After the steady numerical solution was obtained on
the initial mesh using the inexact Newton, a sequence of four anisotropic AMR procedures
were subsequently carried and the steady flow solution was again obtained via the inexact
Newton method on each of the refined meshes. The mesh refinement was based on the
gradient of the flow density. In this way, numerical predictions of the steady supersonic
outflow were obtain on five AMRmulti-block hexahedral meshes consisting of B1 = 6,144,
B2 = 7,680, B3 = 13,824, B4 = 23,040, and B5 = 36,864 grid blocks and containingM1 =
3,145,728, M2 = 3,932,160, M3 = 7,077,888, M4 = 11,796,480 and M5 = 18,874,368
computational cells. A useful measure of the efficiency of the block-based AMR scheme can
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Fig. 13 Steady, inviscid, supersonic, radial outflow showing a the convergence history of the inexact Newton
method to the steady-state solution as measured by the density residual as a function of the number of Newton
steps on the 5 anisotropic AMR meshes M1, M2, M3, M4, and M5 and b the L1, L2, L∞ norms of the error
in the flow density compared to the exact solution as a function of mesh size

be defined by a refinement efficiency parameter, ε�, given by

ε� = 1 − Ncells

Nuniform
, (5.4)

where Ncells is the actual number of cells in the anisotropic AMR mesh and Nuniform is the
total number of cells that would be present in a hypothetical uniform mesh having the same
resolution as the finest level of the AMR mesh. While not a direct measure of overall com-
putational efficiency, as it does not directly involve the solution error, refinement efficiency
is still a useful indicator of the AMR efficiency. The corresponding refinement efficiencies
for the sequence of five anisotropic AMR meshes, M1, M2, M3, M4, and M5 are as follows:
ε�,1 = 0.0000 ε�,2 = 0.8438, ε�,3 = 0.9648, ε�,4 = 0.9927, and ε�,5 = 0.9985.

The convergence history of the Newton method for the supersonic radial outflow problem
in terms of the density residual as a function of the number of Newton steps required on the
initial coarse mesh and the subsequent sequence of adaptively refined anisotropic meshes
is given in Fig. 13a. The results shown in the figure demonstrate the rapid convergence of
the solution to the steady state on each mesh and that the steady state solution was obtained
using less than 20 Newton steps on each mesh. The inexact Newton method is clearly very
effective in obtaining the converged steady solutions for this case in an efficient manner. The
corresponding predictions of the density distributions for the supersonic outflow obtained
using the initial mesh M1 and mesh M5 is shown in Fig. 14. The grid blocks are also shown
for each mesh. It is evident that anisotropic AMR procedure is able to efficiently refine the
3D mesh in only the radial direction for this purely radial outflow. Indeed, the anisotropic
AMR procedure is able to take advantage of the flow varying only in the radial direction
and provide convergence rates for the error in the density based on the exact solution that
are greater than the theoretical fourth-order accuracy of the underlying CENO finite-volume
scheme, as least for L1 and L2 norms of the solution error, as shown in Fig. 13b. The high
computational efficiency of the combined anisotropic AMR and high-order CENO schemes
is also reflected in the values of the refinement efficiency, ε�, reported above for each mesh.
As the mesh is adaptively refined, high values of refinement efficiency are achieved in excess
of 99% indicating the potential large reduction in mesh size relatively to a uniformly refined
approach with equivalent accuracy.
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Fig. 14 Steady, inviscid, supersonic, radial outflow showing the predicted density distributions on a the initial
mesh M1 and b the final anisotropic AMR mesh M5. The black lines represent edges of the grid blocks and
mesh M1 has B1 = 6,144 while mesh M5 has B5 = 36,864 blocks, with each block having 8× 8× 8 = 512
cells (Color figure online)

5.4 Inviscid Supersonic Flow Past a Sphere

Steady inviscid flow past a sphere is now again revisited; however, in this next case the free-
stream flow is taken to be supersonic. For the case of interest, the free-stream air enters the
far-field at a Mach number of M∞ = 2 with the flow direction in the positive x-coordinate
direction. The free-stream values of the pressure and density are p∞ = 101.325 kPa and
ρ∞ = 1.225 kg/m3 and γ = 1.4 is assumed. The flow geometry for this flow problem
consists of a sphere of radius 1m with a far-field boundary located at a radius of 5m. A
cubed-sphere mesh was again used to represent the domain; however, to restrict the problem
size, a cubed-sphere mesh with only 5 sectors, each block containing 16× 16× 16 cells was
used. Two initial uniform refinements were then applied leading to an initial mesh for the
problem having B1 = 320 grid blocks. Reflection boundary conditions were again imposed
on the surface of the inner sphere and, at the far-field boundary, the constant or fixed free-
stream values were imposed as inflow conditions and a simple linear extrapolation procedure
was adopted in the application of outflow boundary conditions for the supersonic air that
exits the domain.

The steady M∞ = 2 supersonic flow past the sphere leads to the formation of a bow
shock located upstream of the cylinder with a subsonic flow region following the shock
in the vicinity of the upstream stagnation point. The capabilities of the anisotropic AMR
scheme to accurate resolve the bow shockwas examined here by performing three consecutive
anisotropic AMR procedures once a steady solution was first obtained on the initial mesh
using the high-order CENO finite-volume scheme in combination with the proposed inexact
Newton method. After each level of mesh refinement, a converged solution was obtained on
each newly created mesh prior to performing the next refinement of the mesh. Figure15a
depicts the resulting predicted density distribution obtained using the combination of the
4th-order CENO finite-volume and Newton methods on the final anisotropic AMR mesh
composed of B4 = 1,008 grid blocks and M4 = 4,128,768 hexahedral cells. Additionally,
Fig. 15b shows the corresponding cells of mesh M4 shaded in blue in which the smoothness

123



Journal of Scientific Computing            (2023) 94:48 Page 27 of 40    48 

Fig. 15 Inviscid supersonic M∞ = 2 flow past a sphere showing a the predicted density distribution on the
final anisotropic AMR mesh containing B4 = 1,008 grid blocks and M4 = 4,128,768 cells and b regions
(shaded in blue) where the smoothness indicator has deemed the predicted solution for the density to be
non-smooth on the final final anisotropic AMR mesh M4 (Color figure online)

Fig. 16 Inviscid supersonic
M∞ = 2 flow past a sphere
showing convergence history of
the inexact Newton method to the
steady-state solution as measured
by the density residual as a
function of the number of Newton
steps on the 4 anisotropic AMR
meshes M1, M2, M3, and M4

indicator of the CENOmethod indicates non-smooth solution content and the reconstruction
scheme reverts to limited linear reconstruction. It is quite apparent that the anisotropic AMR
mesh for this case is well aligned with the bow shock near the stagnation point and the mesh
refinement occurs primarily across the shock. Furthermore, the solution smoothness indicator
is also clearly well designed to detect the presence of the shock and low-order reconstruction
was performed largely only in cells in the vicinity of the shock and these were found to
make up less than 30% of the total number of cells. After four anisotropic AMR procedures,
the mesh saving is 99% compared to an equivalent sequence of uniform refinements. Lastly.
the convergence of the solution to steady state showing the density residual as a function
of the number of Newton steps on all five meshes is depicted in Fig. 16. It is evident that,
even for this challenging non-linear problem with a bow shock, rapid convergence of the
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solution is obtained on each mesh following a slightly prolonged SER startup phase on the
initial mesh. On each successive mesh, the residual decreases by several orders of magnitude
before reaching a plateau. For this flow casewith strong shocks, the switching associatedwith
the highly non-linear smoothness indicator, whereby the solution content of some cells are
alternatively tagged as being smooth or non-smooth (andback and forth), leads to convergence
stall. At this point, fully converged solutions are then obtained by “freezing” the values of
the the smoothness indicator, which leads to the rapid convergence of the solutions as shown
in Fig. 16.

5.5 Inviscid Supersonic Flow Over a Bump in a Channel

The last inviscid flow problem consider herein involves a uniform supersonic flow of air at
standard atmospheric density ρ = 1.225 kg/m3 and pressure p = 101.325 kPa conditions
(γ = 1.4) with a Mach number of M = 1.4 that enters a 2D rectangular channel that
contains a sinusoidal bump along the lower surface of the channel. The length and height of
the channel are 5.5m and 2m, respectively, and the bump is located at a distance of 1m from
the inlet of the channel. The profile of the sinusoidal channel bump along the lower surface
is h(x) = 0.042 sin2(πx) for x ∈ [1, 2] m with the maximum height of the bump being
4.2cm. At the inlet to the channel, the the incoming supersonic flow properties are held fixed
whereas at the channel outlet, linear extrapolation boundary conditions are imposed for the
outgoing supersonic flow. Reflective boundary conditions are imposed along the upper and
lower boundaries of the channel, including the bump. Note that the presence of the sinusoidal
bump results in the formation of compression waves upstream of the bump that coalesce to
form a strong oblique shock. Similarly, a strong oblique shock also forms downstream of
the trailing edge of the bump. These shocks subsequently reflect from both the upper and
lower boundaries of the channel. The resulting set of complex non-linear wave interactions
presents a significant computational challenge to resolve both accurately and efficiently.

The initial mesh for the supersonic channel flow case was composed of 32 grid blocks
along the length of the channel and 16 blocks along its height for a total of B1 = 512 blocks
and each block contained 8 × 8 × 8 = 512 cells. The resulting initial mesh consisted of
M1 = 262,144 hexahedral cells. The high-order CENO finite-volume scheme and inexact
Newton method were used to obtain a steady-state solution on the initial mesh and then
six anisotropic AMR procedures were performed in which a converged steady solution was
obtained on each mesh. The gradient of density was used as the criteria for directing the
mesh refinement. The resulting seven successive anisotropic AMR meshes, including the
initial mesh, contained M1 = 262,144, M2 = 513,024, M3 = 879,104, M4 = 1,809,408,
M5 = 3,538,432, M6 = 6,959,616, and M7 = 13,643, 776 computational cells. The
corresponding refinement efficiencies for the sequence of seven anisotropic AMR meshes
are ε�,1 = 0.0000, ε�,2 = 0.7554, ε�,3 = 0.9476, ε�,4 = 0.9865, ε�,5 = 0.9967,
ε�,6 = 0.9992, and ε�,7 = 0.9998, respectively.

Figure 17a provides the predicted density distribution obtained for the supersonic bump
flow on the final mesh M7. The grid blocks of the anisotropic AMRmesh M7 are also shown
in the figure. Additionally, Fig. 17b shows the corresponding cells of mesh M7 shaded in
white in which the smoothness indicator is flagging non-smooth solution content and the
reconstruction scheme reverts to the lower-order reconstruction. From Fig.17, it is evident
that the anisotropic AMR procedure enriches the mesh for both the shocks emanating from
the leading edge as well as the trailing edge of the bump, as well as for the reflected shocks
emanating from the upper and lower channel boundaries. From the values of the refinement
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Fig. 17 Inviscid supersonic M = 1.4 flow over a bump showing a the predicted density distributions obtained
on the final anisotropicAMRmesh composed ofM7 = 13,643,776 computational cells (grid block boundaries
are represented by black lines) and b the regions (shaded in white) where the smoothness indicator has deemed
the predicted solution for the density to be non-smooth on the same final final mesh M7 (Color figure online)

Fig. 18 Inviscid supersonic
M = 1.4 flow over a bump
showing the convergence history
of the inexact Newton method to
the steady-state solution as
measured by the density residual
as a function of the number of
Newton steps on the seven
anisotropic AMR meshes M1,
M2, M3, M4, M5, M6, and M7

efficiency, ε�, for the seven AMR meshes given above, this enrichment of the mesh is intro-
duced only locally and such that the refinement efficiency rapidly exceeds 99% as the mesh is
refined, suggesting very efficient treatment of the discontinuous solution content compared
to a uniform mesh approach. It can also be seen that, as desired, the spatial discretization
procedure is fully high-order everywhere within the computational domain except for the
narrow regions surrounding the shocks. Finally, the convergence history for the simulations
showing the density residual as a function of the number of Newton steps for each of the
seven meshes is provided in Fig. 18. It can be observed that converged steady high-order
solutions are obtained quite efficiently on all seven meshes in less than 100–125 Newton
steps for this compressible channel flow with multiple shocks.

5.6 Subsonic Laminar Flow Past a Circular Cylinder

The application of the high-order CENO finite-volume scheme combined with anisotropic
AMR and inexact Newton schemes to steady subsonic laminar flow past a circular cylinder is
also examined here. The free-stream Mach and Reynolds numbers for this laminar flow are
M∞ = 0.1 and Re = 30. In this case, the flow-field domain consists of the region between
two concentric cylinders where the inner and outer cylinder diameters are Di = 0.0001 m
and Fo = 0.004 m, respectively. The length of the extruded domain in the third direction was
selected to be � = 0.0001 m. Fixed values for the free-stream flow properties were imposed
on the outer cylindrical boundary of the domain and the imposed boundary conditions for
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Fig. 19 Laminar subsonic flow past a circular cylinder with free-stream Mach number of M∞ = 0.1 and
Reynolds number of Re = 30 showing the predicted distribution of the flow Mach number obtained using
the 4th-order CENO scheme on mesh M5 with 518,144 cells. A close-up view of the solution is also given
depicting the streamlines in the trailing edge region downstream of the cylinder

the inner cylinder were standard no slip boundary conditions for an adiabatic wall. A body-
fitted O-type grid with non-uniform spacing and clustering of the grid lines toward the
inner cylinder was used for the initial mesh. This initial mesh consisted of B1 = 70 grid
blocks and M1 = 71, 680 computational cells. Four successive anisotropic AMR procedures
were then applied to the converged solution of the CENO finite-volume scheme and inexact
Newton method obtained on this initial O-type mesh. The five AMR grids in the refinement
sequence consisted of M1 = 71,680, M2 = 79,872, M3 = 112,640, M4 = 227,328,
M5 = 518,144 computational cells, respectively. On each mesh, converged steady-state
solution was obtained using the 4th-order CENO finite-volume scheme with K = 4 quartic
reconstruction.

The predicted Mach number distribution for the steady subsonic laminar flow past the
cylinder obtained using the 4th-order CENO finite-volume scheme on body-fitted mesh M5
is given in Fig. 19. Only the inner cylinder is shown in the figure. The re-circulating flow
regions behind the cylinder following separation can be clearly identified by the streamlines
depicted in Fig. 19. Furthermore, as indicated in Fig. 20a, the predicted drag coefficients,CD ,
obtained on the sequence of five computational meshes by the high-order solution method
were CD = 1.707 for mesh M1, CD = 1.733 for mesh M2, CD = 1.743 for mesh M3,
CD = 1.749 for mesh M4, and CD = 1.752 for mesh M5. The predicted drag coefficient can
be seen to converging as the mesh is refined and predicted value of CD is in good agreement
with the curve fits of Henderson [61], which yield a value of CD = 1.737 for this case. The
convergence history of the inexact Newton method to the steady-state solution as measured
by the density residual as a function of the number of Newton steps on the 5 anisotropic
AMR meshes is given in Fig. 20b. It can be seen that the Newton method remains effective
for viscous laminar flows, providing the converged steady solution in less than 50 Newton
steps even on the finest grid.

123



Journal of Scientific Computing            (2023) 94:48 Page 31 of 40    48 

Fig. 20 Laminar subsonic flow past a circular cylinder with free-stream Mach number of M∞ = 0.1 and
Reynolds number of Re = 30 showing a the predicted drag coefficients, CD , obtained using the 4th-order
CENO scheme as a function of the mesh density, �x = N−1/3, on the 5 anisotropic AMR meshes M1, M2,
M3, M4 and M5 and b the convergence history of the inexact Newton method to the steady-state solution as
measured by the density residual as a function of the number of Newton steps on the 5 meshes

Fig. 21 Laminar subsonic flow
past a circular cylinder with
free-stream Mach number of
M∞ = 0.1 and Reynolds number
of Re = 30 showing the
convergence history of the
inexact Newton method (red
colored curve) to the steady-state
solution on the third mesh, M3,
compared to that obtained using
an explicit, 4th-order,
Runge–Kutta, time-marching
method (grey dashed line) as
measured by the density residual
as a function of the equivalent
number of residual evaluations
(Color figure online)

A comparison of the convergence history obtained using the proposed inexact Newton
method to that of the 4th-order, explicit, time-marching scheme is also given in Fig.21 for
this subsonic laminar flow case. The convergence to steady state as measured by the density
residual as a function of the equivalent number of residual evaluations for the third mesh, M3,
is shown. It can be seen that only about 105 equivalent residual evaluations, corresponding
to approximately 2.6min of elapsed time using 78 processors, are required by the Newton
method to reach a convergence tolerance of 5(10)−7 while more than 30,000 residual eval-
uations are needed to reach this same convergence level using the explicit time-marching
scheme. As for the inviscid flow cases, the inexact Newton method provides substantial
computational savings when obtaining steady solutions with the high-order CENO scheme.
A rapidly converged, steady, high-order solution of the subsonic laminar cylinder flow on
grid M3 is obtained in using the implicit Newton method with a reduction in computational
time by a factor of more than 285 compared to that required by the explicit time-marching
scheme. Furthermore, the parallel performance of the proposed Newton method with CENO
finite-volume scheme is also high for this viscous flow case with a parallel efficiency similar
to that demonstrated for the inviscid subsonic cylinder flow case.

123



   48 Page 32 of 40 Journal of Scientific Computing            (2023) 94:48 

Fig. 22 Laminar subsonic flow past a NACA 0012 symmetric airfoil at zero angle of attack with free-stream
Mach number of M∞ = 0.5 and Reynolds number of Re = 5,000 showing a the final anisotropic AMRmesh
with B4 = 144 blocks and M4 = 294,912 computational cells (thicker blue lines represent the grid block
boundaries) and b the predicted flow Mach number distribution obtained with the 4th-order CENO scheme
on the final anisotropic AMR mesh M4 (Color figure online)

5.7 Subsonic Laminar Flow Past a NACA 0012 Symmetric Airfoil

A second laminar flow problem is also considered here. In this last test case, steady, subsonic,
laminar flow past a NACA 0012 symmetric airfoil at zero angle of attack is examined. The
free-stream Mach and Reynolds numbers for this laminar flow are M∞ = 0.5 and Re =
5, 000, respectively. This subsonic airfoil flow has been examined in previous studies [13,
62] and it has been well established that flow separation occurs near the trailing edge of
the airfoil resulting in the formation of small re-circulation bubbles on the upper and lower
surfaces of the airfoil.

The initial computational mesh for the airfoil computations was a C-type grid. The outer
boundary of the domain was positioned at about 24 chord lengths from the airfoil surface and
the length of the domain in the perpendicular direction of the airfoil was one chord length.
Fixed free-stream flow conditions were imposed at the outer boundary and no slip, adiabatic
wall, boundary conditions were imposed on the airfoil surface. The initial grid consisted of
128 cells along the upper and lower surface of the airfoil (64 cells for each side), 64 cells in
the direction normal to the surface and just 8 cells in the direction normal to 2D plane of the
airfoil. The cells of the initial grid were grouped into B1 = 64 grid blocks, each consisting
of 16×16×8 cells, for a total of M1 = 131, 072 cells. The grid lines in the direction normal
to the airfoil were clustered such that cell aspect ratios near the airfoil surface was around
five.

After obtaining a steady solution on mesh M1 using the CENO finite-volume scheme,
a sequence of three higher-resolution meshes for the airfoil were generated by applying
the anisotropic AMR procedure to arriving at three meshes having B2 = 74, B3 = 88, and
B4 = 144 grid blocks andM2 = 151,152,M3 = 180,224, andM4 = 294,912 computational
cells, respectively. Converged steady solutions were obtained using the proposed 4th-order
CENO finite-volume scheme with quartic reconstruction in combination with the inexact
Newton method. Figure22a depicts the final anisotropic AMR grid with M4 = 294,912
cells, showing the grid structure in the vicinity of the airfoil. The trailing edge recirculation
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Fig. 23 Laminar subsonic flow past a NACA 0012 symmetric airfoil at zero angle of attack with free-stream
Mach number of M∞ = 0.5 and Reynolds number of Re = 5, 000 showing a the predicted pressure drag,
CD,p , viscous drag, CD, f and total drag, CD , coefficients obtained using the 4th-order CENO scheme
in combination with the anisotropic AMR and inexact Newton methods as a function of the mesh density
(�x = N−1/3) on meshes M1, M2, M3, and M4 and b the convergence history of the inexact Newton method
to the steady-state solution as measured by the density residual as a function of the number of Newton steps
on the 4 meshes

bubbles are also shown. Figure22b provides the corresponding predicted spatial distribution
of the flow Mach number obtained on the final mesh M4. The convergence of the predicted
coefficients of pressure drag, CD,p , viscous drag, CD, f , and total drag, CD , as a function of
the mesh resolution are given in Fig. 23a for each of the four grids. All of these quantities
appear to be converging as the mesh is refined and the value of the total drag coefficient,
CD , predicted by the 4th-order CENO scheme on mesh M4 is approximately 0.055541,
which compares well with the value reported in similar previous studies [13, 62]. Lastly, the
solution history of the Newton method on each of the four meshes is shown in Fig. 23b and
rapid solution convergence was obtained in 25, 28, 36 and 60 Newton iterations in each case,
respectively.

6 Conclusions

A fourth-order CENO finite-volume method combined with an efficient anisotropic block-
based AMR scheme and an inexact Newton method has been proposed and described for
significantly reducing the computational costs associated with the solution of steady flows
governed by the Euler and Navier–Stokes equations on 3D, multi-block, body-fitted, hex-
ahedral meshes. High-order representation of the mesh geometry has been introduced in
combination with high-order constrained reconstruction for the imposition of boundary data,
thus enabling the overall proposed solution method to account accurately for 3D and curved
flow geometries. The proposed fourth-order AMR finite-volume scheme is readily appli-
cable to cubed-sphere meshes and numerical results have been presented and compared to
analytical solutions for several benchmark problems. For these cases, the formal accuracy of
the high-order CENO method has been established and the high-order scheme was shown
to outperform standard second-order methods in terms of mesh size for a given solution
accuracy. Furthermore, rapid, high parallel scalability, and efficient convergence of the New-
ton method for steady problems has been demonstrated relative to more commonly applied
explicit time-marching methods, along with the ability of the anisotropic AMR technique to
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provide efficient local refinement of multi-block grids, for both smooth steady flow problems
as well as steady flows with strong shocks. In terms of AMR performance, high values of
refinement efficiency were achieved for a number of cases. Future research will consider
the application of the proposed methodology to fully turbulent flows in conjunction with
appropriate modelling for unresolved turbulence.
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Appendix A. Appendix

A.1 Trilinear Transformation

The trilinear transformation is defined by

−→
X (p, q, r) = T1 + T2 p + T3q + T4r + T5 pq + T6 pr + T7qr + T8 pqr , (A.1)

where p, q and r are the Cartesian coordinates in the canonical space of the reference cube.
The transformation vector coefficients for the trilinear transformation are defined by T1, T2,
T3, T4, T5, T6, T7 and T8 which are in turn given by

T1 = 1/8 (N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8),

T2 = 1/8 (N2 − N1 − N3 − N4 + N5 + N6 − N7 + N8),

T3 = 1/8 (N3 − N2 − N1 − N4 + N5 − N6 + N7 + N8),

T4 = 1/8 (N4 − N2 − N3 − N1 − N5 + N6 + N7 + N8),

T5 = 1/8 (N1 − N2 − N3 + N4 + N5 − N6 − N7 + N8),

T6 = 1/8 (N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8),

T7 = 1/8 (N1 + N2 − N3 − N4 − N5 − N6 + N7 + N8),

T8 = 1/8 (N2 − N1 + N3 + N4 − N5 − N6 − N7 + N8),

where N1, N2, N3, N4, N5, N6, N7 and N8 are the vertices of the hexahedron as depicted in
Fig. 24a. The tangent vectors to the coordinate lines are defined by

∂
−→
X (p, q, r)

∂ p
≡ −→

X p(q, r) = T2 + T5q + T6r + T8qr ,

∂
−→
X (p, q, r)

∂q
≡ −→

X q(p, r) = T3 + T5 p + T7r + T8 pr ,

∂
−→
X (p, q, r)

∂r
≡ −→

X r (p, q) = T4 + T6 p + T7q + T8 pq.
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Fig. 24 a Second-order accurate trilinear representation of generic curved geometry. The black nodes at the
vertices represent the second-order accurate basis functions. b Fourth-order accurate tricubic representation
of generic curved geometry. The blue nodes denote the extra nodes (Color figure online)

A.2 Tricubic Transformation

The tricubic transformation is defined by

−→
X (p, q, r) = T1 + T2 p + T3q + T4r + T5 p2 + T6q2 + T7r2 + T8 p3

+T9q3 + T10r3 + T11pq + T12pr + T13qr + T14p2q
+T15pq2 + T16p2r + T17q2r + T18pr2 + T19qr2 + T20p3q
+T21pq3 + T22p3r + T23q3r + T24pr3 + T25qr3 + T26p2qr
+T27p2qr + T28pq2r + T29pqr2 + T30p3qr + T31pq3r + T32pqr3,

(A.2)
and the corresponding tangent vectors to the coordinate lines are defined by

∂
−→
X (p, q, r)

∂ p
≡ −→

X p(q, r) = T2 + 2T5 p + 3T8 p2 + T11q + T12r + 2T14pq + T15q2 + 2T16pr

+T18r2 + 3T20p2q + T21q3 + 3T22p2r + T24r3 + 2T26pqr

+2T27pqr + T28q2r + T29qr2 + 3T30p2qr + T31q3r + T32qr3,

∂
−→
X (p, q, r)

∂q
≡ −→

X q (p, r) = T3 + 2T6q + 3T9q2 + T11p + T13r + T14p2 + 2T15pq + 2T17qr

+T19r2 + T20p3 + 3T21pq2 + 3T23q2r + T25r3 + T26p2r

+T27p2r + 2T28pqr + T29pr2 + T30p3r + 3T31pq2r + T32pr3,

∂
−→
X (p, q, r)

∂r
≡ −→

X r (p, q) = T4 + 2T7r + 3T10r2 + T12p + T13q + T16p2 + T17q2 + 2T18pr

+2T19qr + T22p3 + T23q3 + 3T24pr2 + 3T25qr2 + T26p2q

+T27p2q + T28pq2 + 2T29pqr + T30p3q + T31pq3 + 3T32pqr2.
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The transformation vector coefficients is this case are given by

T1 = 1/64 (9N9 − 19N2 − 19N3 − 19N4 − 19N5 − 19N6 − 19N7 − 19N8
−19N1 + 9N10 + 9N11 + 9N12 + 9N13 + 9N14 + 9N15 + 9N16
+9N17 + 9N18 + 9N19 + 9N20 + 9N21 + 9N22 + 9N23 + 9N24
+9N25 + 9N26 + 9N27 + 9N28 + 9N29 + 9N30 + 9N31 + 9N32)

T2 = 1/64 (19N1 − 19N2 + 19N3 + 19N4 − 19N5 − 19N6 + 19N7 − 19N8
−27N9 + 27N10 + 9N11 + 9N12 + 27N13 − 27N14 − 9N15 − 9N16
−9N17 + 9N18 + 9N19 − 9N20 − 9N21 + 9N22 + 9N23 − 9N24
−27N25 + 27N26 + 9N27 + 9N28 + 27N29 − 27N30 − 9N31 − 9N32)

T3 = 1/64 (19N1 + 19N2 − 19N3 + 19N4 − 19N5 + 19N6 − 19N7 − 19N8
−9N9 − 9N10 − 27N11 + 27N12 + 9N13 + 9N14 + 27N15 − 27N16
−9N17 − 9N18 + 9N19 + 9N20 − 9N21 − 9N22 + 9N23 + 9N24
−9N25 − 9N26 − 27N27 + 27N28 + 9N29 + 9N30 + 27N31 − 27N32)

T4 = 1/64 (9N1 + 9N2 + 9N3 + 9N4 + 9N5 + 9N6 + 9N7 + 9N8
−9N9 − 9N10 − 9N13 − 9N14 − 9N25 − 9N26 − 9N29 − 9N30)

T5 = 1/64 (19N1 + 19N2 + 19N3 − 19N4 + 19N5 − 19N6 − 19N7 − 19N8
−9N9 − 9N10 − 9N11 − 9N12 − 9N13 − 9N14 − 9N15 − 9N16
−27N17 − 27N18 − 27N19 − 27N20 + 27N21 + 27N22 + 27N23 + 27N24
+9N25 + 9N26 + 9N27 + 9N28 + 9N29 + 9N30 + 9N31 + 9N32)

T6 = 1/64 (9N1 + 9N2 + 9N3 + 9N4 + 9N5 + 9N6 + 9N7 + 9N8
−9N11 − 9N12 − 9N15 − 9N16 − 9N27 − 9N28 − 9N31 − 9N32)

T7 = 1/64 (9N1 + 9N2 + 9N3 + 9N4 + 9N5 + 9N6 + 9N7 + 9N8
−9N17 − 9N18 − 9N19 − 9N20 − 9N21 − 9N22 − 9N23 − 9N24)

T8 = 1/64 (9N2 − 9N1 − 9N3 − 9N4 + 9N5 + 9N6 − 9N7 + 9N8
+27N9 − 27N10 − 27N13 + 27N14 + 27N25 − 27N26 − 27N29 + 27N30)

T9 = 1/64 (9N3 − 9N2 − 9N1 − 9N4 + 9N5 − 9N6 + 9N7 + 9N8
+27N11 − 27N12 − 27N15 + 27N16 + 27N27 − 27N28 − 27N31 + 27N32)

T10 = 1/64 (9N4 − 9N2 − 9N3 − 9N1 − 9N5 + 9N6 + 9N7 + 9N8
+27N17 + 27N18 + 27N19 + 27N20 − 27N21 − 27N22 − 27N23 − 27N24)

T11 = 1/64 (19N2 − 19N1 + 19N3 − 19N4 − 19N5 + 19N6 + 19N7 − 19N8
+27N9 − 27N10 − 27N11 + 27N12 + 27N13 − 27N14 − 27N15 + 27N16
+9N17 − 9N18 + 9N19 − 9N20 + 9N21 − 9N22 + 9N23 − 9N24
+27N25 − 27N26 − 27N27 + 27N28 + 27N29 − 27N30 − 27N31 + 27N32)

T12 = 1/64 (19N2 − 19N1 − 19N3 + 19N4 + 19N5 − 19N6 + 19N7 − 19N8
+27N9 − 27N10 − 9N11 − 9N12 − 27N13 + 27N14 + 9N15 + 9N16
+27N17 − 27N18 − 27N19 + 27N20 − 27N21 + 27N22 + 27N23 − 27N24
−27N25 + 27N26 + 9N27 + 9N28 + 27N29 − 27N30 − 9N31 − 9N32)

T13 = 1/64 (19N3 − 19N2 − 19N1 + 19N4 + 19N5 + 19N6 − 19N7 − 19N8
+9N9 + 9N10 + 27N11 − 27N12 − 9N13 − 9N14 − 27N15 + 27N16
+27N17 + 27N18 − 27N19 − 27N20 − 27N21 − 27N22 + 27N23 + 27N24
−9N25 − 9N26 − 27N27 + 27N28 + 9N29 + 9N30 + 27N31 − 27N32)
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T14 = 1/64 (9N3 − 9N2 − 9N1 − 9N4 + 9N5 − 9N6 + 9N7 + 9N8
+9N9 + 9N10 − 9N13 − 9N14 + 9N25 + 9N26 − 9N29 − 9N30)

T15 = 1/64 (9N2 − 9N1 − 9N3 − 9N4 + 9N5 + 9N6 − 9N7 + 9N8
−9N11 − 9N12 + 9N15 + 9N16 − 9N27 − 9N28 + 9N31 + 9N32)

T16 = 1/64 (9N4 − 9N2 − 9N3 − 9N1 − 9N5 + 9N6 + 9N7 + 9N8
+9N9 + 9N10 + 9N13 + 9N14 − 9N25 − 9N26 − 9N29 − 9N30)

T17 = 1/64 (9N4 − 9N2 − 9N3 − 9N1 − 9N5 + 9N6 + 9N7 + 9N8
+9N11 + 9N12 + 9N15 + 9N16 − 9N27 − 9N28 − 9N31 − 9N32)

T18 = 1/64 (9N2 − 9N1 − 9N3 − 9N4 + 9N5 + 9N6 − 9N7 + 9N8
+9N17 − 9N18 − 9N19 + 9N20 + 9N21 − 9N22 − 9N23 + 9N24)

T19 = 1/64 (9N3 − 9N2 − 9N1 − 9N4 + 9N5 − 9N6 + 9N7 + 9N8
+9N17 + 9N18 − 9N19 − 9N20 + 9N21 + 9N22 − 9N23 − 9N24)

T20 = 1/64 (9N1 − 9N2 − 9N3 + 9N4 + 9N5 − 9N6 − 9N7 + 9N8
−27N9 + 27N10 − 27N13 + 27N14 − 27N25 + 27N26 − 27N29 + 27N30)

T21 = 1/64 (9N1 − 9N2 − 9N3 + 9N4 + 9N5 − 9N6 − 9N7 + 9N8
+27N11 − 27N12 + 27N15 − 27N16 + 27N27 − 27N28 + 27N31 − 27N32)

T22 = 1/64 (9N1 − 9N2 + 9N3 − 9N4 − 9N5 + 9N6 − 9N7 + 9N8
−27N9 + 27N10 + 27N13 − 27N14 + 27N25 − 27N26 − 27N29 + 27N30)

T23 = 1/64 (9N1 + 9N2 − 9N3 − 9N4 − 9N5 − 9N6 + 9N7 + 9N8
−27N11 + 27N12 + 27N15 − 27N16 + 27N27 − 27N28 − 27N31 + 27N32)

T24 = 1/64 (9N1 − 9N2 + 9N3 − 9N4 − 9N5 + 9N6 − 9N7 + 9N8
−27N17 + 27N18 + 27N19 − 27N20 + 27N21 − 27N22 − 27N23 + 27N24)

T25 = 1/64 (9N1 + 9N2 − 9N3 − 9N4 − 9N5 − 9N6 + 9N7 + 9N8
−27N17 − 27N18 + 27N19 + 27N20 + 27N21 + 27N22 − 27N23 − 27N24)

T26 = 1/64 (19N1 − 19N2 − 19N3 − 19N4 + 19N5 + 19N6 + 19N7 − 19N8
−27N9 + 27N10 + 27N11 − 27N12 − 27N13 + 27N14 + 27N15 − 27N16
−27N17 + 27N18 − 27N19 + 27N20 + 27N21 − 27N22 + 27N23 − 27N24
+27N25 − 27N26 − 27N27 + 27N28 + 27N29 − 27N30 − 27N31 + 27N32)

T27 = 1/64 (9N1 + 9N2 − 9N3 − 9N4 − 9N5 − 9N6 + 9N7 + 9N8
−9N9 − 9N10 + 9N13 + 9N14 + 9N25 + 9N26 − 9N29 − 9N30)

T28 = 1/64 (9N1 − 9N2 + 9N3 − 9N4 − 9N5 + 9N6 − 9N7 + 9N8
+9N11 + 9N12 − 9N15 − 9N16 − 9N27 − 9N28 + 9N31 + 9N32)

T29 = 1/64 (9N1 − 9N2 − 9N3 + 9N4 + 9N5 − 9N6 − 9N7 + 9N8
−9N17 + 9N18 − 9N19 + 9N20 − 9N21 + 9N22 − 9N23 + 9N24)

T30 = 1/64 (9N2 − 9N1 + 9N3 + 9N4 − 9N5 − 9N6 − 9N7 + 9N8
+27N9 − 27N10 + 27N13 − 27N14 − 27N25 + 27N26 − 27N29 + 27N30)
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T31 = 1/64 (9N2 − 9N1 + 9N3 + 9N4 − 9N5 − 9N6 − 9N7 + 9N8
−27N11 + 27N12 − 27N15 + 27N16 + 27N27 − 27N28 + 27N31 − 27N32)

T32 = 1/64 (9N2 − 9N1 + 9N3 + 9N4 − 9N5 − 9N6 − 9N7 + 9N8
+27N17 − 27N18 + 27N19 − 27N20 − 27N21 + 27N22 − 27N23 + 27N24).

Here N1–N8 are the vertices of the hexahedron and N9–N32 are the high-order nodes as
depicted in Fig. 24b.

A.3 Transformation Jacobians

The determinants of the Jacobians for volume and surface integration are given by

det J(p, q, r) =
∣∣∣∣
∂(x, y, z)

∂(p, q, r)

∣∣∣∣ = −→
X p · (

−→
X q × −→

X r ),

det Jp(q, r) = ||−→X q × −→
X r ||p=ct ,

det Jq(p, r) = ||−→X p × −→
X r ||q=ct ,

det Jr (p, q) = ||−→X p × −→
X q ||r=ct .

(A.3)
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