
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. A11, PAGES 25,053–25,078, NOVEMBER 1, 2000

Global three-dimensional MHD simulation of a space weather
event: CME formation, interplanetary propagation, and
interaction with the magnetosphere

Clinton P. T. Groth,1 Darren L. De Zeeuw, and Tamas I. Gombosi
Space Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences
University of Michigan, Ann Arbor

Kenneth G. Powell
W. M. Keck Foundation Laboratory for Computational Fluid Dynamics, Department of Aerospace
Enginnering
University of Michigan, Ann Arbor

Abstract. A parallel adaptive mesh refinement (AMR) finite-volume scheme
for predicting ideal MHD flows is used to simulate the initiation, structure,
and evolution of a coronal mass ejection (CME) and its interaction with the
magnetosphere-ionosphere system. The simulated CME is driven by a local
plasma density enhancement on the solar surface with the background initial state
of the corona and solar wind represented by a newly devised “steady state” solution.
The initial solution has been constructed to provide a reasonable description of the
time-averaged solar wind for conditions near solar minimum: (1) the computed
magnetic field near the Sun possesses high-latitude polar coronal holes, closed
magnetic field flux tubes at low latitudes, and a helmet streamer structure with
a neutral line and current sheet; (2) the Archimedean spiral topology of the
interplanetary magnetic field is reproduced; (3) the observed two-state nature of
the solar wind is also reproduced with the simulation yielding fast and slow solar
wind streams at high and low latitudes, respectively; and (4) the predicted solar
wind plasma properties at 1 AU are consistent with observations. Starting with
the generation of a CME at the Sun, the simulation follows the evolution of the
solar wind disturbance as it evolves into a magnetic cloud and travels through
interplanetary space and subsequently interacts with the terrestrial magnetosphere-
ionosphere system. The density-driven CME exhibits a two-step release process,
with the front of the CME rapidly accelerating following the disruption of the
near-Sun closed magnetic field line structure and then moving at a nearly constant
speed of ∼560 km/s through interplanetary space. The CME also produces a large
magnetic cloud (>100 RS across) characterized by a magnetic field that smoothly
rotates northward and then back again over a period of ∼2 days at 1 AU. The cloud
does not contain a sustained period with a strong southward component of the
magnetic field, and, as a consequence, the simulated CME is somewhat ineffective
in generating strong geo-magnetic activity at Earth. Nevertheless, the simulation
results illustrate the potential, as well as current limitations, of the MHD-based
space weather model for enhancing the understanding of coronal physics, solar
wind plasma processes, magnetospheric physics, and space weather phenomena.
Such models will provide the foundation for future, more comprehensive space
weather prediction tools.



1. Introduction

Space weather is of growing importance to the scien-
tific community and refers to conditions at a particular place
and time on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the perfor-
mance and reliability of spaceborne and ground-based tech-
nological systems and can affect human life or health. It
has been established that adverse conditions in the space
environment can cause disruption of satellite operations,
communications, navigation, and electric power distribu-
tion grids, thereby leading to broad socioeconomic losses
[Wright, 1997]. These influences on the geospace environ-
ment have prompted renewed efforts to enhance our under-
standing of space weather and develop effective tools for
space weather prediction.

Global computational models based on first principles de-
scriptions of the physics represent a very important compo-
nent of efforts to understand space plasma phenomena as-
sociated with space weather, including the large-scale solar
corona, the solar wind, the solar wind interaction with plan-
etary magnetospheres, and the initiation, structure, and evo-
lution of solar wind disturbances. Presently, and in the fore-
seeable future, numerical models based on the equations of
magnetohydrodynamics (MHD) are the only self-consistent
mathematical descriptions that can span the enormous dis-
tances associated with large-scale space weather phenom-
ena. Although providing only a relatively low-order approx-
imation to the actual behavior of plasmas (i.e., ideal MHD
models neglect kinetic effects, ignore resistivity and diffu-
sion, and treat ions and electrons as a single fluid), MHD
models have been used successfully to simulate many impor-
tant space plasma processes and provide a powerful means
for significantly advancing the understanding of such pro-
cesses.

Global MHD simulations have been used for a long time
to simulate the global magnetospheric configuration and to
investigate the response of the magnetosphere-ionosphere
system to changing solar wind conditions. The first global-
scale three-dimensional (3-D) MHD simulations of the so-
lar wind–magnetosphere system were published in the early
1980s [LeBoeuf et al., 1981; Wu et al., 1981; Brecht et al.,
1981, 1982]. Since then, MHD models have been used to
study a range of processes, including the global magnetic
field configuration, reconnection in the tail and at the dayside
magnetopause, the dependence of magnetospheric convec-
tion on the orientation of the interplanetary magnetic field
(IMF), and the self-excitation of auroral arcs [Ogino and
Walker, 1984; Lyon et al., 1986; Ogino, 1986; Fedder and
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Lyon, 1987; Watanabe and Sato, 1990; Kageyama et al.,
1992; Usadi et al., 1993; Fedder and Lyon, 1995; Fedder
et al., 1995a; Raeder et al., 1995; Tanaka, 1995; Janhunen,
1996; Janhunen and Koskinen, 1997; Raeder et al., 1997;
Gombosi et al., 1998, 2000; White et al., 1998; Song et al.,
1999]. A recent focus of MHD investigations is the study of
magnetospheric “events.” In these simulations the observed
upstream solar wind conditions to are used to “drive” the
magnetosphere-ionosphere system, and numerical predic-
tions are compared with ground based or satellite observa-
tions [Fedder et al., 1995b, 1998; Raeder et al., 1998]. In ad-
dition to studies of the terrestrial magnetosphere, there have
been several applications of MHD models to the study of
coronal and solar wind plasma flows. This includes work by
Steinolfson [1988, 1990, 1992, 1994], Linker et al. [1994],
Mikić and Linker [1994], Linker and Mikić [1995], Wang
et al. [1995], Suess et al. [1996], Wu and Guo [1997], Wang
et al. [1998], Guo and Wu [1998], Lionello et al. [1998],
Dryer [1998], Odstrčil and Pizzo [199a, 199b, 1999c], Kep-
pens and Goedbled [1999], and Suess et al. [1999].

In this paper, the application of a new parallel adaptive
mesh refinement (AMR) MHD model to the simulation of
a complete fully three-dimensional space weather event is
described. The simulation spans the initiation of the solar
wind disturbance at the solar surface to its interaction with
Earth’s magnetosphere-ionosphere system. Numerical re-
sults are presented for a coronal mass ejection (CME) driven
by local plasma density enhancement with an approximate
“steady state” representation of the background solar wind.
Coronal mass ejections, and the large magnetic clouds that
are often associated with these solar wind disturbances, form
a particularly important class of space weather event. These
are massive highly transient events involving the expulsion
of mass and magnetic field from the solar surface. Of the
order of 1012 kg of plasma may be expelled from the solar
surface during a typical CME event. More prevalent during
solar maximum, CMEs originate in closed magnetic field re-
gions of the corona and produce large-scale reconfiguration
of the coronal magnetic field, which, in turn, generates large
solar wind disturbances. Observations have established that
CME disturbances are one major source of major geomag-
netic storms at Earth. For example, during the solar maxi-
mum of 1978-1982 the majority of the most intense storms
were associated with high-speed CMEs [Tsurutani and Gon-
zalez, 1997]. The simulation results described herein will il-
lustrate the potential of the new MHD-based space weather
model for enhancing the understanding of coronal physics,
solar wind plasma processes, and space weather phenomena
and lay the foundation for the future development of more
comprehensive space weather prediction tools.

The organization of the paper is as follows. A brief out-
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line of the global 3-D MHD model is given in section 2.
This outline includes details of the MHD equations that are
solved and the parallel AMR scheme that is used to solve
them. The details of the numerical method are given in Ap-
pendix A. Numerical results for the simulation of the CME
space weather event are then described in sections 3 and 4.
The steady state solution representing the initial state of the
solar wind for conditions near solar minimum is presented
in section 3 and the results for the density-driven CME
are given in section 4. The CME results include discus-
sions of the initiation process, CME propagation, structure
of the magnetic cloud that forms, and CME plasma proper-
ties. In addition, the interaction of the CME with the coupled
magnetosphere-ionosphere system is also discussed in sec-
tion 4. A summary and some concluding remarks are given
in section 5.

2. Global 3-D MHD Model

As discussed in section 1, a new global 3-D MHD model
has been developed for the modeling of space weather
events. An outline of the basic model is provided here, and
further details are given in Appendix A.

In the global 3-D model, ideal MHD equations are used
to describe the dynamic behavior of the coronal, solar wind,
and magnetospheric plasma. These equations can be written
in the following nondimensional nonconservative form:

∂ρ̃

∂t̃
+

(
ũ · ∇̃

)
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(
∇̃ · ũ
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ũ +
1
ρ̃
∇̃p̃ =

1
ρ̃

(
j̃ × B̃

)

+ g̃ − Ω̃ ×
(
Ω̃ × r̃

)
− 2 Ω̃ × ũ , (2)
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∂B̃
∂t̃

− ∇̃ × ũ × B̃ = 0 , (4)

where, for ideal MHD, the current density j̃ is given by
j̃ = ∇̃ × B̃. This equation set contains five equations de-
scribing the transport of plasma mass, momentum, and ther-
mal energy as well as three equations describing the time
evolution of the magnetic field given by Faraday’s law. The
nondimensional variables ρ̃, ũ, p̃ and B̃ correspond to the
nondimensional plasma density, velocity, pressure, and mag-
netic field, respectively. They are related to their dimen-
sional counterparts by ρ̃ = ρ/ρ◦, ũ = u/a◦, p̃ = p/ρ◦a2

◦,

and B̃ = B/
√
µ◦ρ◦a2

◦, where ρ◦ and a◦ are the density
and ion-acoustic wave speed of a suitable reference solution
state and γ is the specific heat ratio of the plasma. In (2),
r̃ = r/�◦, Ω̃ = Ω◦(�◦/a◦), r is the position vector, Ω◦ is
the angular velocity of the Sun, �◦ is a reference length scale
(in the present set of simulations, �◦ is the solar radius), and
g̃ = −g̃ (r̃/r̃3), where g̃ is the nondimensional gravitational
force at the solar surface. The volumetric heating term, Q̃,
appearing on the right-hand side of (3) parametrizes the ef-
fects of coronal heating processes and heat and radiation
transfer effects (see section 3).

We note that for the solar wind flow calculations, the
MHD equations are solved in a rotating frame, which is con-
venient from a numerical perspective. Boundary conditions
at the solar surface for “quasi-steady” (nonperturbed) solar
wind are time-invariant, and a truly steady state solution for
the solar wind can be obtained in the rotating frame. The
additional source terms in the momentum equation represent
the effects of centripetal and Coriolis acceleration forces and
the solar gravitational force.

The preceding set of equations are solved using a newly
developed parallel AMR scheme. Details of this algorithm
are provided in Appendix A.

3. “Steady State” Model of Solar Wind

In this section a steady state model of the solar wind
is developed that is representative of conditions near solar
minimum. Considerable effort was devoted to construct-
ing the steady state solution so as to provide a reasonable
description of the time-averaged solar wind: (1) the com-
puted three-dimensional solution for the magnetic field very
near the Sun possesses high-latitude polar coronal holes,
closed magnetic field flux tubes at low latitudes, and a hel-
met streamer structure with a neutral line and current sheet;
(2) the Archimedean spiral topology of the interplanetary
magnetic field is reproduced; (3) the observed two-stream
nature of the solar wind is also reproduced with the numer-
ical solution yielding fast and slow solar wind streams at
high and low latitudes, respectively; and (4) the predicted
latitudinal variation of solar wind plasma properties at 1 AU
is in agreement with observational data. This solution pro-
vides the initial conditions for the coronal and solar wind
plasma in the simulation of the CME space weather event
described in section 4. While the magnetic field configura-
tion is somewhat oversimplified, the initial solution repre-
sents a step toward developing more sophisticated models
for the solar wind.
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3.1. Physical Modeling

The corona is the outermost region of the solar atmo-
sphere and is composed almost entirely of high-temperature
(T > 106 K), low-density (np ≈ 1014 m−3, where np is
the proton number density), quasi-neutral proton-electron
plasma. The expansion of the coronal plasma to large he-
liocentric distances is what forms the solar wind and carries
the particles and fields out into interplanetary space at su-
personic speeds. In order to model the transient behavior
of the large-scale corona and solar wind and thereby gain
an improved understanding of transient solar wind distur-
bances and their impact on space weather, a MHD solution
representative of solar wind in the “steady state” is needed.
The modeling of disturbances is then formulated as an initial
value problem with initial conditions for the solar corona and
solar wind plasma specified by the background steady state
solution.

Observations have shown that the solar wind is in many
respects a two state phenomenon [Schwenn, 1990; Axford
and McKenzie, 1997; McComas et al., 1998]. The so-called
high-speed or fast solar wind is usually observed in the high
latitude regions of the heliosphere, while the so-called slow
solar wind is confined to relatively low latitudes. There is
general agreement that the fast solar wind originates from
polar coronal holes, and it is thought to be produced by addi-
tional but still poorly understood coronal heating processes
occurring above the transition region but close to the Sun
[Axford and McKenzie, 1996; Fisk et al., 1999b]. Typical
heights of the transition region above the base of the pho-
tosphere are between about 2500 and 3000 km. Near solar
minimum the magnetic field at the solar surface has a dipo-
lar nature, and the open field lines of the polar coronal holes
originate from a region on the surface above ∼70◦ latitude.
For the most part, closed field lines are confined to equato-
rial regions. At large heliocentric distances the topology of
the magnetic field resembles an Archimedean spiral, as first
predicted by Parker [1963]. The average single-fluid plasma
properties of the fast solar wind at 1 AU include (1) a high
flow velocity of about 750–880 km s−1 with small fluctua-
tions about the average velocity; (2) a particle flux of about
2 × 108 cm−2 s−1; (3) a radial component of the magnetic
field of ∼2.8 nT; and (4) a plasma temperature, T = Te+Tp,
of about 3× 105 K with Tp/Te ∼ 2. The fast wind achieves
its asymptotic flow speed at around 10–15 RS . The fast solar
wind is dominant during periods of low solar activity, and it
occupies the heliosphere above ∼30◦ heliolatitude.

The slow solar wind is confined to a narrow region
near the heliospheric current sheet [McComas et al., 1998;
Neugebauer et al., 1998]. This highly variable slow wind
is thought to be formed from two plasma sources. First,
material stored in closed magnetic field lines near the solar

equator can be released into interplanetary space in an inter-
mittent fashion through the opening of field lines by mag-
netic reconnection processes [Fisk et al., 1999a; Schwadron
et al., 1999]. A second potential source of the slow solar
wind is the overexpanded plasma from the edge of the po-
lar coronal holes. There is considerable uncertainty in the
relative contributions of these two sources to the slow solar
wind. Observational data of Ulysses indicate that the transi-
tions between the fast and slow solar winds were very sharp
and are confined to a few degrees in heliolatitude [McComas
et al., 1998]. The average single-fluid properties of the slow
solar wind at 1 AU are (1) a flow velocity of between 300
and 450 km s−1; (2) a particle flux of about 3 × 108 cm−2

s−1; and (3) a total plasma temperature of about 1.6 × 105

K.

With these features in mind, the “steady state” solar wind
from 1 RS to beyond 1 AU is simulated herein by assum-
ing that, at 1 RS (i.e., the top of the transition region or
the base of the solar corona), the lower solar corona is a
large, rigidly rotating reservoir of hot plasma with an em-
bedded magnetic multipole field. The angular velocity of
the reservoir is Ω◦ = 2π/T , with a rotation period T
of 26 days. The plasma temperature (the sum of the ion
and electron temperatures) of the reservoir is taken to be
Ts = Tp + Te = 2.85 × 106 K, and the plasma density
is assumed to be ns = np = 1.5 × 108 cm−3. The intrin-
sic solar magnetic field at the solar surface, B̃◦, is defined in
terms of a multipole expansion that includes terms up to the
octupole moment. It is taken to have the form

B̃◦k
= 3

M̃ir̃i

r4

r̃k

r̃
− M̃k

r̃3

+
5
2
Q̃ij r̃ir̃j

r̃6

r̃k

r̃
− Q̃ikr̃i

r̃5

+7
Õijlr̃ir̃j r̃l

r̃8

r̃k

r̃
− 3

Õijkr̃ir̃j

r̃7
, (5)

where M̃i is the dimensionless dipole moment vector and
Q̃ij and Õijk are the quadrupole and octupole moment ten-
sors, respectively. In the present model of the steady state
solar wind, Qij = 0, and the magnetic axis is tilted in the
(x, z) plane such that

M̃x = −b◦ sin θT M̃y = 0 M̃z = b◦ cos θT . (6)

The tilt angle of the magnetic field is taken to be θT = −15◦,
and b◦ and Õijk have values such that the solar magnetic
field is azimuthally symmetric about the tilted magnetic axis
and has a maximum field strength of 8.4 G at the magnetic
poles and a strength of 2.2 G at the solar magnetic equator.
The schematic diagram of Plate 1 illustrates the geometry of
the solar magnetic field with respect to the rotation axis. The
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Plate 1. Schematic diagram depicting the geometric charac-
teristics of the solar magnetic field and coronal hole models
used in the steady state solar wind solution.

solar equatorial plane is taken to be perpendicular to the axis
of rotation.

In the present model, volumetric energy input is needed
in order to mimic the effects of heat conduction and energy
dissipation above the transition region and reproduce a real-
istic solar wind. Thermal conduction, neglected in an ideal
MHD description, is very important in the vicinity of the Sun
and significantly impacts the acceleration of the solar wind
[cf. Steinolfson, 1994; Suess et al., 1996; Hu et al., 1997;
Moore et al., 1999]. Moreover, coronal heating processes
are not included self-consistently in the ideal MHD model.
Although there is a general agreement about the need for ad-
ditional coronal heating input [Axford and McKenzie, 1996;
Fisk et al., 1999b], the precise nature of the energy input
is still debated [Holzer et al., 1997]. Other effects such as
radiation losses can also be important and affect the acceler-
ation of the solar wind [Rosner et al., 1978]. Some headway
can be made without requiring the introduction of additional
sources by adopting a value for the specific heat ratio near
unity; however, a more realistic value for the specific heat ra-
tio (i.e., γ = 5/3) is needed if the effects of adiabatic cooling
at larger heliocentric distances are to be correctly modeled.

In order to overcome some of the limitations described
above, enable a value of γ = 5/3 to be used in the calcula-
tions, and reproduce many of the observed plasma properties
of the fast and slow solar wind streams, a volumetric heat-

ing function Q̃ has been introduced in (3). This function at-
tempts to mimic the combined effects of energy absorption
above the transition region, thermal conduction, and radia-
tive losses. As the physical understanding of coronal heating
processes remains limited, there is some freedom in choos-
ing this source function. A function that includes both lo-
cal energy deposition and losses is adopted herein. Further-
more, the heat source is taken to be latitude dependent, and
it decreases exponentially with radial distance from the Sun.
The latitudinal dependence of the heating function is chosen
such that outflows are produced from polar coronal holes for
0◦ ≤ θm ≤ 17.5◦, where θm is the heliocolatitude mea-
sured from the solar magnetic axis, no outflow and a closed
field-line structure are produced for 17.5◦ ≤ θm ≤ 90◦ (see
Plate 1), and a realistic solar wind is obtained at large helio-
centric distances, having both fast and slow streams. Specif-
ically, the volumetric heating function Q̃ is assumed to have
the form

Q̃ = ρ̃q̃◦ exp


−

(
r̃ − R̃◦

)2

σ2
◦




(
T̃◦ − γ

p̃

ρ̃

)
, (7)

where T̃◦ = 1.75 poleward from a critical colatitude θ◦(r̃)
and T̃◦ = 1 equatorward of θ◦(r̃). In addition, q̃◦ = 25,
R̃◦ = 1, and r̃ is the heliocentric radius. It can be seen
that the heating is proportional to (T◦ − T ), where T◦ is
a prespecified “target” temperature. The target temperature
is taken to be T◦ = 1.75TS inside the coronal hole and
T◦ = TS outside. As indicated in Plate 1, the coronal hole
boundary is taken to be located at θm = 17.5◦, and the func-
tions θ◦(r̃) and σ◦(r̃, θm) are defined so as to produce the
desired spatial distribution of coronal heating. They have
the following limits:

θ◦(r̃ = 1) = 17.5◦ θ◦(r̃ → ∞) = 90◦ , (8)

σ◦(r̃, θm = 0) = 9 σ◦(r̃, θm > θ◦) = 4.5 . (9)

This leads to a scale height for the volumetric heating that
slowly varies from ∼4.5 RS near the equator to about ∼9
RS at the poles. Note that the heating function has a sharp
gradient at the edge of the coronal hole; however, the finite
resolution of the computational grid (∼5◦ near the Sun in the
present calculations) limits the sharpness of this transition.
The volumetric heating function of (7)–(9) is clearly empir-
ical in nature and involves several parameters. The overrid-
ing criteria for specifying the values of these parameters has
been the desire to reproduce many of the observed global
plasma properties of the fast and slow solar wind streams at
1 AU.
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3.2. Computational Mesh

Using the parallel AMR scheme of Appendix A, a solu-
tion for the steady state background solar wind was obtained.
For this calculation the computational domain was a helio-
centric rectangular box defined in the rotating frame by −32
RS ≤ x ≤ 224 RS , −192 RS ≤ y ≤ 192 RS , −192 RS

≤ z ≤ 192 RS with the z axis aligned with the solar rota-
tional axis and the x and y axes lying in the plane of the solar
equator. The adapted computational grid consisted of 15,768
self-similar 4×4×4 blocks and 1,009,152 cells with eight re-
finement levels and a minimum cell size at the solar surface
of 1/16 RS . For the time-dependent calculation of the space
weather event to be described later, this same grid was used
to initiate the calculations. The grid was then dynamically
adapted to the varying local MHD solution according to the
refinement criteria of (A10) such that the number of cells in
the computational mesh varied from just under 800,000 to
well in excess of 2,000,000.

3.3. Boundary Conditions

In order to obtain the steady state solar wind solution,
boundary conditions are required at the inner boundary of
the solution domain, defined by the solar surface at r = 1
RS , and outer boundaries, defined by the outer edges of the
rectangular solution domain. The procedure for prescrib-
ing boundary conditions at the solar surface was made de-
pendent on local flow conditions. Plasma was permitted to
freely leave the reservoir, but no “backflow” was allowed.
In addition, the magnetic field was specified by the multi-
pole expansion for the intrinsic magnetic field at the inter-
face given by (5). In the rotating frame the following proce-
dure was adopted: for ũr > 0,

ρ̃ = 1 p̃ =
1
γ

∇̃ · (ρ̃ũ) = 0 B̃ = B̃◦ , (10)

and for ũr < 0,

∂ρ̃

∂r
= 0

∂p̃

∂r
= 0 ũ = 0 B̃ = B̃◦ , (11)

depending on whether the flow was toward or away from the
solar surface.

At the outer boundaries of the rectangular solution do-
main, the solar wind flow is essentially super-fast (and hence
super-Alfvénic). Simple zero-gradient (Neumann-type) or
constant extrapolation boundary conditions are therefore ap-
propriate and are used to specify the plasma properties at the
outer boundary.

It should be noted that the use of a Riemann solver in
the evaluation of the numerical flux function of the paral-
lel AMR scheme (refer to Appendix A) greatly simplifies

the implementation of numerical boundary schemes, for it is
always well posed. By using the Riemann solver, the bound-
ary schemes are generally well posed and consistent with the
propagation of solution characteristics. Physical correctness
and accuracy of the boundary schemes remain the only con-
cerns.

3.4. Time-Invariant Solar Wind Solution

The steady state solar wind was obtained by using the
parallel AMR scheme. Local time stepping was used to
speed up convergence of the numerical solution to the de-
sired steady state and steady state result was obtained af-
ter ∼180,000 iterations (local time steps). Plate 2 depicts a
three-dimensional representation of the predicted pre-event
steady state solar wind solution in the vicinity of the Sun.
The color shading represents computed values of the loga-
rithm of the magnitude of the magnetic field, log(B̃), for
the solution in the meridional and equatorial planes. The
solid lines are magnetic field lines: magenta denotes the
last closed field lines, red is open field lines expanding to
the interplanetary medium just above the heliospheric cur-
rent sheet, and, finally, white lines show open magnetic
field lines in the (y, z) plane. The narrow dark blue region
shown in Plate 2, which also coincides with regions of higher
mesh refinement, corresponds to the beginning of the he-
liospheric current sheet. The current sheet originates in the
region where the equatorial portion of the closed magnetic
field lines become highly stretched and then extends out-
ward throughout the rest of the solution domain. Because
of the combined effects of magnetic tilt and solar rotation,
the current sheet is tilted with respect to the rotation axis, is
deformed, and resembles a “ballerina skirt.”

Inspection of Plate 2 reveals that the solution within
r = 10 RS , which is dictated by a balance of pressure, mag-
netic, gravitational, and inertial forces, has some similari-
ties to the now classical solution obtained by Pneuman and
Kopp [1971]. There are regions of open and closed mag-
netic field lines, and this leads to the formation of a “hel-
met” streamer configuration, with a neutral line and current
sheet. (Note that whether a field line is open or closed is
not directly specified in the numerical solution. Depending
on the strength of the magnetic field at the solar surface, the
specified plasma properties at 1 RS , and additional volumet-
ric heating, field lines are either open or closed. Open field
lines are produced in the solution by the outflowing plasma
that drags the field lines out into interplanetary space.) How-
ever, unlike the Pneuman-Kopp model, the present solution
more correctly mimics the two-state nature of the solar wind.
Fast solar wind (∼800 km s−1) originating from polar coro-
nal holes is produced above 30◦ in heliolatitude, slow solar
wind (∼400 km s−1) is produced near the solar equator at
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Plate 2. Three-dimensional representation of the steady state solar wind solution. The color shading represents log(B) in
the (x, z) and (x, y) planes. The black lines are the computational mesh, and the colored solid lines are magnetic field lines:
magenta denotes the last closed field lines, red is open field lines expanding to the interplanetary medium just above the
heliospheric current sheet, and, finally, white lines show open magnetic field lines in the (y, z) plane.

lower latitudes, and reasonable values for the plasma prop-
erties and interplanetary magnetic field are obtained at 1 AU.

Adopting an expanded field of view, Plate 3 shows the
larger-scale structure of the predicted interplanetary mag-
netic field. Again, the color shading represents computed
values of the logarithm of the magnitude of the magnetic
field. The top panel shows a three-dimensional rendering of
the magnetic field lines in which the three different sets of
colored lines (magenta, white, and red) represent field lines
leaving the field of view at three different heights above the
solar equatorial plane. The bottom panel of Plate 3 shows
the projection of the red field lines from the top panel onto
the plane of heliographic equator. It is evident from Plate 3
that the simulated steady state solution for the solar wind
yields an interplanetary magnetic field with an Archimedean
or Parker-like spiral structure. In particular, the magnetic
field line projections of the bottom panel clearly depict the
spiral shape of the large-scale magnetic field. Nevertheless,
from the top panel it can be seen that, unlike Parker’s solu-
tion, the tilt of the solar magnetic axis results in spiral field
lines that connect to regions of very different heliolatitides.

The two-state nature of the computed solution is clearly

depicted in Plate 4. Shown is a polar diagram of the com-
puted solar wind speed at 1 AU as a function of heliolati-
tude. Flow speed profiles are given for the x = 0 (green
lines) and y = 0 (black lines) meridional planes. In both
cases, there is a transition from one solar wind regime to
another at midlatitudes. The width of the transition is to
some extent controlled by the thickness of the heliospheric
current sheet. The simulation results are quite consistent
with Ulysses observations [McComas et al., 1998], as can be
seen by comparison to the Ulysses Solar Wind Observations
Over the Poles of the Sun (SWOOPS) proton velocity data
also shown in Plate 4. (The Ulysses/SWOOPS data were
obtained from the European Space Agency (ESA) Archive
at http://helio.estec.esa.nl/ulysses/archive/). It is interesting
that because of the tilt of the magnetic axis, the simulated
meridional speed profiles are different in the two meridional
planes. Although at high latitudes (in the fast solar wind re-
gion) the two meridional profiles have practically identical
speeds, at lower latitudes the meridional profiles differ by as
much as 200 km s−1. When combined with solar rotation,
this difference might lead to rapid transitions from a “slow”
to “fast” solar wind at midlatitudes.
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Plate 3. Structure of the interplanetary magnetic field for the
steady state solar wind solution.

Further comparisons between the solar wind plasma
properties predicted by the MHD simulation and the obser-
vational data of the Ulysses/SWOOPS instrument [McCo-
mas et al., 1998] are given in Plates 5 and 6. The latitudinal
variation of the proton number density and temperature at 1
AU are shown in the two graphs. The black and green curves
again represent the simulation results in the x = 0 and y = 0
meridional planes, respectively. The Ulysses/SWOOPS ob-
servations are represented by the thick blue and red lines.
For the MHD calculations the proton temperature is ob-
tained from the plasma temperature by simply assuming that
Tp =T/2. The Ulysses/SWOOPS data, collected at various
heliocentric distances, have been normalized to 1 AU. The
comparisons shown in the two plates reveal a good overall
agreement between the observations and simulation results.
In particular, the simulated temperature profile approximates
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Plate 4. Polar plot of computed solar wind speed at 1
AU compared to Ulysses Solar Wind Observations Over the
Poles of the Sun (SWOOPS) observations of proton velocity
[McComas et al., 1998]. The black and green lines represent
simulation results in the x = 0 and y = 0 meridional planes,
respectively.
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Plate 5. Latitudinal variation of computed solar wind num-
ber density at 1 AU compared to Ulysses/SWOOPS obser-
vations of proton number density [McComas et al., 1998].
The black and green lines represent simulation results in the
x = 0 and y = 0 meridional planes, respectively.

the observations quite well. The calculated density seems
to be somewhat higher than the Ulysses/SWOOPS obser-
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Plate 6. Latitudinal variation of computed solar wind
proton temperature (Tp = T/2) at 1 AU compared to
Ulysses/SWOOPS observations of proton temperature [Mc-
Comas et al., 1998]. The black and green lines represent
simulation results in the x = 0 and y = 0 meridional planes,
respectively.

vations, but not unreasonably so. The agreement between
the simulation results and observations could be further im-
proved by performing some additional “fine tuning” of the
volumetric heating function and the specified plasma param-
eters at 1 RS , but this was deemed to be unnecessary for the
present study.

It was stated earlier that the slow solar wind is thought
to be an inherently transient phenomenon arising from
two sources: (1) the overexpanded plasma associated with
streamers near the edges of coronal holes and (2) plasma as-
sociated with closed magnetic field lines that become open
through reconnection [Fisk, 1996; Schwadron et al., 1999].
In the present MHD model the primary source of the slow
solar wind is the overexpanded plasma flow associated with
the streamers. This is because there is almost no mass flux
emerging from the closed field line regions on the solar sur-
face and most of the slow solar wind plasma flows out from
the solar surface along open field lines that originate close
to the open–closed field line boundary. However, it should
be noted that, for numerical stability, the procedure used in
the discretization of the MHD equations introduces numeri-
cal dissipation. Although our solution method is designed to
minimize the dissipation that is introduced, the finite numer-
ical resistivity results in the reconnection of the last closed
magnetic field lines at the top of the helmet-like structure.

This reconnection process continues along the heliospheric
current sheet. The reconnection process at the top of the hel-
met streamers acts as a secondary source of slow solar wind
near the magnetic equator, and, in this respect, numerical re-
sistivity is helpful in “mimicking” some of the real physical
processes taking place in the corona.

A summary of the fast and slow solar wind plasma prop-
erties at the solar surface and at 1 AU is given in Table 1. In
Table 1 β = 2p̃/B̃2 is the plasma beta. Overall, the steady
state global MHD solution of the solar wind developed in
this section provides a very reasonable description of the
inner heliosphere for conditions near solar minimum. By
using physically reasonable input parameters near the Sun
and incorporating a physically motivated volumetric heating
function, a solution out to 1 AU has been obtained that is
in good overall agreement with the average observed solar
wind features.

4. Simulation of a Space Weather Event

In this section the results of the numerical simulation of
a CME driven space weather event are given. This includes
a description of the CME initiation process and a presenta-
tion of the important features of the simulated event. The
propagation of the CME through interplanetary space lead-
ing to the formation of a magnetic cloud and the CME inter-
action with the terrestrial magnetosphere are also discussed.
The long-term overarching objective of this research is to de-
velop global space plasma models that can accurately track
the initiation of CMEs (and/or other space weather events)
at the solar surface, follow their propagation through inter-
planetary space, and subsequently predict their impact on the
magnetosphere. The results and modeling described herein
represent but a starting point for this endeavor.

4.1. Density-Driven CME Initiation Model

It was stated in section 1 that CMEs produce large-scale
reconfiguration of the coronal magnetic field and generate
large solar wind disturbances that appear to be the primary
cause of the major geomagnetic storms at Earth. Never-
theless, the physical mechanisms involved in the initiation
of CMEs are not well understood. Many scenarios have
been put forth for their release. Early on it was suggested
that thermally driven pressure pulses from solar flares drive
the release [Dryer et al., 1979], yet more recently it is felt
that it is the large-scale destabilization of the coronal mag-
netic field that initiates CMEs. Low [1990] and Hundhausen
[1999] have considered the release of CMEs as a two-step
process: first, there is a CME that opens up an initially
closed coronal magnetic field; this is followed by a flare re-
sulting from the reconnective closing of field lines trailing
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Table 1. Simulated Steady State Solar Wind Plasma Properties

Quantity Units 1 RS , θ = −15◦ 1 RS , θ = 75◦ 1 AU, θ = −15◦ 1 AU, θ = 75◦

np m−3 0.82 × 1014 1014 38 × 106 4.1 × 106

up km s−1 0 25 370 830
npup m−2 s−1 0 2.5 × 1018 14 × 1012 3.4 × 1012

B 2.2 G 8.4 G — 2 nT
β 0.1 0.007 — 2
VA km s−1 495 1885 — 22

the ejecta [Hirayama, 1974; Kopp and Pneuman, 1976; Low,
1994]. Another scenario put forth for the formation and re-
lease of CMEs involves the buildup of magnetic energy and
subsequent destabilization of the field due to the quasi-static
shearing of the footprints of closed magnetic field lines on
the solar surface [Low, 1977; Wu et al., 1983; Mikić et al.,
1988; Mikić and Linker, 1994]. This effect is likely to be a
trigger mechanism but is not, by itself, sufficient to explain
the CME phenomenon [Linker and Mikić, 1995; Low, 1996].
Finally, it has been suggested that the onset of CMEs may
be produced by the emergence of magnetic flux ropes that
gain energy as they are continually stressed and deformed
by chromospheric and photospheric motions [van Ballegooi-
jen and Martens, 1990]. Prior to eruption, the flux ropes
are confined by the large mass in the flux tubes, but when
confinement fails CMEs are initiated owing to the magnetic
buoyancy of the ropes [Low, 1981; Fisher and Poland, 1981;
Low et al., 1982; Illing and Hundhausen, 1986]. Recently,
numerical methods and global MHD models have begun to
play an important role in efforts to understand CME ini-
tiation processes, and numerical studies of both magnetic
shear and helical flux rope emergence initiation processes
have been carried out (see for example, the work by Mikić
and Linker [1994], Linker and Mikić [1995], Wu and Guo
[1997], and Guo and Wu [1998]).

After release, CMEs accelerate and become part of the
outward flow of the solar wind. They either are accelerated
by the solar wind so as to come into equilibrium with the
ambient wind or act as drivers moving faster than the back-
ground solar wind. Close to the Sun, the typical dimension
of a CME is less than a solar radius. As the CMEs propa-
gate outward from the corona, they expand dramatically and
may extend over tenths of an AU by the time Earth’s orbit is
reached. The topology of the magnetic field within the CME
evolves as it propagates outward into unique structures that
reflect the original field configuration from which the CME
was generated (i.e., it is expected that magnetic helicity is

preserved [Chen et al., 1997]). Moreover, many, if not all,
CMEs are associated with magnetic clouds, and the plasma
properties within these clouds, can differ substantially from
those of the ambient solar wind. Several recent numerical
studies of coronal flows and CME evolution through inter-
planetary space have been performed, as described in the
work by Steinolfson [1992, 1994], Linker et al. [1994], Mikić
and Linker [1994], Linker and Mikić [1995], Suess et al.
[1996], Wang et al. [1998], Wu and Guo [1997], Guo and
Wu [1998], Lionello et al. [1998], Dryer [1998], and Odstrčil
and Pizzo [1999a, 1999b, 1999c].

In the present study, a simplified model for the initiation
of the CME is adopted. Using the solution of the nominal
background solar wind described above as the initial state
of the solar wind, a CME was initiated by introducing a lo-
calized isothermal density (and consequently pressure) en-
hancement at the solar surface. Although somewhat over-
simplified, this model simulates what is thought to be a key
feature of CME initiation processes, that is, the mass loading
of the solar atmosphere. In the emerging flux rope model an
important aspect of the CME initiation process is the loading
of the solar atmosphere with additional plasma brought up
from the lower corona and supported by the emerging mag-
netic field. The subsequent slow draining of plasma from the
flux ropes is what destabilizes the magnetic field (owing to
magnetic buoyancy effects) and causes CME onset. As will
be shown, the density-driven model used herein simulates
the mass-loading process and leads to an enhanced plasma
density within the flux tubes of the closed field lines of the
solar magnetic field, prior to the release of the CME.

The isothermal density enhancement on the solar surface
was prescribed by locally increasing the values of the density
and pressure by a factor fCME:

fCME =




1 + fr exp
[
− (t−t1)

2

σ2
t

]
t < t1 ,

1 + fr t1 ≤ t ≤ t2 ,

1 + fr exp
[
− (t−t2)

2

σ2
t

]
t > t2 ,

(12)
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where

fr = 134 exp
[
− (r − rCME)2

σ2
r

]
(13)

and where we used t1 = 2 hours, t2 = 10 hours, σt = 1
hour, rCME = [0.9798RS, 0, 0.20RS]T and σr = 0.13 RS .
This function of location and time produced local increases
in the density and pressure by a factor of up to maximum of
135 in a small region on the solar surface ∼0.10 RS wide
just above the equator at a latitude of 11.5◦ (colatitude of
78.5◦). The density and pressure were gradually increased
over a 2-hour period to maximum of a 135:1 increase, this
increase was maintained for eight hours, and then the density
and pressure were returned to their original values over a
period of 2 hours.

4.2. Embedded Magnetosphere-Ionosphere Model

The terrestrial magnetosphere is a complex nonlinear sys-
tem. The solar wind plasma properties and direction of
the interplanetary magnetic field (IMF) exercise fundamen-
tal control over the large-scale configuration of the mag-
netosphere. The magnetospheric topology, in turn, con-
trols the entry of mass, momentum, energy, and magnetic
flux into the magnetosphere. The dynamic solar wind also
controls the level of geomagnetic activity in the near Earth
space environment and produces various transition layers,
the extended geomagnetic tail and plasma sheet, current sys-
tems, and auroral phenomena. In order to predict in a self-
consistent manner the dynamic response of the Earth’s mag-
netosphere to the changing solar wind conditions associated
with the simulated density-driven CME event, a complete
MHD model of the magnetosphere-ionosphere system has
been embedded within the CME space weather event model.
As in the heliosphere model, the magnetosphere-ionosphere
model employs the parallel AMR scheme of Appendix A to
solve the 3-D MHD equations and thereby predict the con-
figuration of the magnetosphere and properties of the mag-
netospheric plasma. Basic properties of the present mag-
netosphere model have been described by Gombosi et al.
[1998, 2000] and Song et al. [1999].

The main features of the embedded magnetosphere-
ionosphere model are as follows:

1. Earth’s intrinsic magnetic field is represented by a non-
tilted, nonrotating magnetic dipole field with an equatorial
surface field of 0.3 G and magnetic axis perpendicular to the
Sun-Earth direction.

2. Earth is assumed to be moving in a perfectly circular
orbit about the Sun with an orbital radius of 215.5RS and an
orbital period of 365.25 days. The orbital plane is inclined
at an angle of 7.25◦ to the solar equator with a node line
aligned with the x axis and the maximum and minimum ex-

cursions of the planet in z direction occurring in the y = 0
plane. Earth’s initial position at t = 0 in the numerical simu-
lation is taken to be re = [209.23RS, 43.94RS, 27.18RS]T

which corresponds to a heliospheric latitude of 7.24◦ (colat-
itude of 82.76◦). This initial position was selected to ensure
that the Earth was in the path of the simulated CME.

3. Magnetosphere-ionosphere coupling is accounted
for by using a height-integrated electrostatic ionosphere
model, which provides closure of the magnetospheric cur-
rent system at the ionospheric boundary. In particular,
Ohm’s law is applied to a thin spherical shell [Goodman,
1995; Amm, 1996]. An elliptic equation for the iono-
spheric electric potential is solved on this shell involving
height-integrated conductivities (conductances). The result-
ing ionospheric potential solution provides boundary condi-
tions for the plasma convection velocity in the MHD solu-
tion at the magnetosphere-ionosphere interface. The magne-
tospheric current and ionospheric electric field are mapped
along dipole field lines between the inner boundary of the
magnetosphere and the ionospheric surface, thereby provid-
ing coupling between the magnetosphere and ionosphere.

4. Inner boundary conditions for the magnetosphere are
imposed at 3 Re and the height-integrated ionosphere model
is solved at 1.017 Re. A simplified model for the iono-
spheric conductances was used. The Petersen, Hall, and
field-aligned conductances were taken to be constant with
values of 5, 0, and 5,000 S, respectively.

5. A solution for the magnetosphere was obtained on a
rectangular computational domain that is moving with the
orbiting Earth and defined by −384Re ≤ x ≤ 128Re,
−128Re ≤ y ≤ 128Re, −128Re ≤ z ≤ 128Re. The com-
putational mesh contained eight levels of refinement and was
composed of 2,004 self-similar blocks of 4× 4× 4 cells for
a total of 128,256 computational cells.

Coupling of the heliosphere and magnetosphere is re-
quired in order to achieve a self-consistent solution. In the
present calculations the heliosphere simulation, including
the modeling of the solar wind and CME, was coupled to the
embedded magnetosphere using a one-way coupling proce-
dure. In particular, changes in the solar wind plasma prop-
erties and IMF upstream boundary of the embedded mag-
netosphere were calculated at each time step by using the
interpolated solution from the heliosphere simulation (these
changes were due to both the rotation of the tilted solar
magnetic field and the passage of the density-driven CME).
The magnetosphere solution was not fed back into the he-
liosphere calculation. By using the fully three-dimensional
heliospheric model to drive the embedded magnetospheric
model, a self-consistent solution of the space weather event
was achieved. The physical justifications for the use of
one-way coupling are twofold: (1) the scale of the mag-
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netosphere solution domain is very small compared to the
scale of the heliospheric solution domain, and (2) the solar
wind flow is superfast (and hence both supersonic and super-
Alfvénic) at Earth. For these reasons, the solar wind inter-
action with Earth does not impact the upstream heliospheric
solution and has negligible impact on the global solar wind
solution.

4.3. Density-Driven CME Solution

Numerical results for the CME driven by the local plasma
density enhancement now follow. The length of the entire
CME computation was 120 hours of simulated time starting
with the pre-event steady state solar wind solution and initi-
ation of the CME at t = 0. The average size of the time steps
used in the heliospheric calculation was ∼3 s, and 150,000
time steps were required to reach t = 120 hours. The cal-
culation required slightly more than 20,000 processor hours
and ran about ∼3 faster than real time on a 512-processor
Cray T3E-600 located at NASA Goddard Space Flight Cen-
ter.

The embedded magnetosphere model was “turned on” at
t = 70 hours, just after the leading edge of the interplane-
tary transient reached Earth orbit, and was continued for a
total of 27 hours until t = 97 hours. As the ratio of the solar
and terrestrial radii is large (RS/Re ≈ 110) and the strength
of the terrestrial magnetic field is large compared to the pre-
vailing IMF, the time step for the magnetospheric calculation
was much smaller than that used in the heliospheric calcula-
tion (≈0.13 s), and the magnetospheric calculation required
∼760,000 time steps and 14,000 processor hours on a Cray
T3E-600 computer. Using 512 nodes, the total “wall-clock”
time for the simulation was about equal to the total simulated
time of 27 hours. The resolution of the heliospheric compu-
tational grid at Earth was between 10 and 40 RS; therefore
the time resolution of any solar wind feature at Earth in the
heliospheric simulation was a few hours.

A three-dimensional representation of the computed
magnetic field configuration 9 hours after the initiation of
the CME is shown in Plate 7. The color shading represents
computed values of the logarithm of the magnitude of the
magnetic field, log(B), for the solution in the meridional and
equatorial planes. The solid white lines are open magnetic
field lines, and the magenta lines represent closed field lines
with both ends connected to the Sun. The solution shown
in Plate 7 can be compared to the pre-event state of the so-
lar corona depicted in Plate 2. At t = 9 hours the density
enhancement at the solar surface used to initiate the CME
is already in the declining phase; nevertheless, the density
maximum at the solar surface is still more than 100 times
higher than the original background density.

Plates 8 and 9 show snapshots of the numerical solution

of the CME in the near solar region (r < 32 RS) at t = 1,
4.5, 9, and 13.5 hours. Plates 10 and 11 show a similar
set of solution snapshots on a larger scale (r < 124 RS)
at t = 6, 12, 24, and 36 hours. The color shading used in
Plates 8–11 represents the plasma mass flux normalized to 1
AU, while the white solid lines are magnetic “streamlines”
drawn in two planes: the y = 0 meridian and the z = 0
equatorial plane. The magnetic streamlines are generated
by using the two-components of the magnetic field in the
plane of interest, and the third component of the magnetic
field (perpendicular to the plane) is neglected. The stream-
line topology does therefore not fully characterize the mag-
netic field line topology, and one must be careful with in-
terpretations. In general, the magnetic field will possess a
nonzero component normal to the plane, and the fully three-
dimensional field lines will therefore pass through (into and
out of) the viewing plane. The primary advantage of using
magnetic streamlines is that they are relatively easy to vi-
sualize. Cross-sectional patterns like those in Plates 8–11
are typically characterized by critical points, i.e., points at
which the component of the magnetic field in the plane is
zero. These critical points may be classified as stable or un-
stable nodes, saddles, centers, or stable or unstable spirals.
While it is easy to misinterpret such critical points, as the
normal component has been ignored, they do correspond to
certain physical situations of interest. For example, a node
in Plates 8–11 corresponds to the turning of the the magnetic
fields lines from a three-dimensional orientation to one that
is perpendicular to the viewing plane.

Plates 8–11 reveal much about the time history of the
formation of the CME and its evolution as it propagates
through the inner heliosphere. It can be seen that the den-
sity enhancement first leads to the “filling” of the closed
magnetic flux tubes with additional plasma and subsequent
expansion of the closed field line region. The plasma β in
the enhancement region becomes quite large, and the closed
field lines became stretched as they are “carried” outward
by the plasma. After a period of time the closed field lines
are unable to contain the additional plasma, and the den-
sity disturbance disrupts the closed magnetic configuration.
The resulting CME then moves more rapidly through the in-
ner corona and propagates outward into interplanetary space,
dragging out closed field lines with it and disrupting the he-
liospheric current sheet as it moves. The disruption of the
Parker spiral is also clearly evident in Plate 11. As the
CME in this simulation is purely driven by a density en-
hancement, the emerging magnetic field is largely poloidal
(having only radial and latitudinal components) without any
significant helicity (twist). This is a clear limitation of the
present calculation, as the helicity of the emerging magnetic
flux is thought to be an important aspect of CMEs. The mag-
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Plate 7. Three-dimensional configuration of magnetic field lines 9 hours after the initiation of the CME. The color shading
represents log(B) in the (x, z) and (x, y) planes. The black lines are the computational mesh, white lines are open magnetic
field lines, and magenta lines represent magnetic field lines with both ends connected to the Sun.

netic helicity H of a magnetic field configuration is defined
in terms of the volume integral H =

∫
A · BdV , where A is

the magnetic vector potential and B = ∇×A. The helicity is
a measure of the structural complexity of the magnetic field,
and it is expected that the magnetic helicity is conserved in
flux ropes that emerge and leave the Sun. The boundary con-
ditions used to produce the density enhancement and trigger
the CME at the solar surface do not impose any helicity in
the magnetic field emerging from the solar surface, and so
the helicity of the CME magnetic field is negligible.

A magnetic cavity propagates behind the front of the sim-
ulated disturbance, which moves at velocities nearing 560
km s−1. The magnetic cavity is indicated by the decrease
in the magnetic field strength behind the leading edge of
the outward moving disturbance in Plate 7. A plot of the
position of the leading edge of the CME in the plane of
the current sheet as a function of time is given in Figure 1
and it clearly illustrates the two-step release process and two
nearly constant speeds at which the CME moves during the
first 24 hours following onset.

Somewhere between 17 and 19 hours into the simulation,
the density and pressure enhancements at the solar surface
have completely diminished and the CME field lines begin
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Figure 1. Position of the leading edge of the density-driven
CME in the plane of the current sheet as a function of time.

disconnecting from the solar surface resulting in the refor-
mation of the current sheet near the Sun. The solution at
t = 24 hours in the bottom right panel of Plate 11 clearly
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Plate 8. Close-up view of CME evolution in the y = 0 meridional plane at (a) t = 1 hour, (b) t = 4.5 hours, (c) t = 9 hours,
and (d) t = 13.5 hours. Solid white lines are magnetic “streamlines” drawn in the y = 0 plane.

depicts this reformation process. Another interesting fea-
ture of this simulated space weather event is revealed by the
results of Plates 10 and 11, that is, the anisotropic nature
of the CME expansion process. As the CME expands in
the latitudinal directions, it interacts with higher-speed solar
wind and thereby becomes more elongated when viewed in
the meridional plane. Refer to Plate 10. Furthermore, the
solutions at t = 12, 24, and 36 hours indicate that as the
CME expands, it remains more concentrated in the latitudi-
nal direction near the disrupted heliospheric current sheet,
while spreading much more broadly in the equatorial plane.
In fact, it would seem that the circumferential extent of the
CME is nearly 360◦ at t = 24 hours, whereas the extent of
the CME in the meridional plane is only about 75◦–85◦ in
latitude.

4.4. Interaction With the Magnetosphere

The dynamic response of the magnetosphere to the
changing solar wind conditions produced by the density-
driven CME was also computed as part of the space weather

event simulation. Plate 12 shows the time evolution of the
simulated solar wind parameters as would be observed by
a monitoring spacecraft located just upstream of the sub-
solar terrestrial bow shock. The thin solid lines shown in
the graphs represent the variations in the solar wind plasma
properties without the CME (these variations are due solely
to the solar rotation and spiral nature of the solar wind),
while the thick solid lines represent the variations of the free
streaming solar wind during the passage of the CME. The
coordinate system used in the magnetosphere model is geo-
centric and moving with the orbiting Earth. A Geocentric
Solar Magnetospheric (GSM) coordinate system is adopted
with the x axis pointing toward the Sun, the z axis pointing
North (perpendicular to the Sun-Earth direction and aligned
with the magnetic axis of Earth), and the y axis completing
this right-handed coordinate system. When the CME is ini-
tiated, Earth is approaching the heliospheric current sheet,
and, without the CME, the Bz component of the magnetic
field would change sign and remain quite small (<1 nT).

Inspection of Plate 12 reveals several interesting features
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Plate 9. Close-up view of CME evolution in the equatorial plane at (a) t = 1 hour, (b) t = 4.5 hours, (c) t = 9 hours, and (d)
t = 13.5 hours. Solid white lines are magnetic “streamlines” drawn in the z = 0 plane.

of the solar wind variation produced by the density-driven
CME. First of all, the first signatures of the CME can be
seen in the magnetic field components at a time somewhere
around 54 hours after initiation. The driving mass of the
CME (analogous to a piston) arrives after that, around 72
hours after onset. This arrival is indicated by the rapid in-
crease in the solar wind number density starting at t = 72
hours. The By component of the IMF remains rather steady
during the entire event, with its value changing by <∼0.5
nT. The Bx and Bz components of the IMF exhibit some-
what greater changes and indicate that the magnetic field un-
dergoes a significant rotation around the y axis. This, in ef-
fect, is the signature of the passage of CME-related magnetic
cloud and flux rope. Observations indicate that magnetic
clouds are characterized by magnetic fields that smoothly
rotate from either north-to-south or south-to-north over a pe-
riod of ∼1 day at 1 AU [Burlaga et al., 1990]. During the
simulated CME event the magnitude of the IMF increases
from ∼2 nT to ∼4 nT.

The plasma temperature (T = Te+Tp) of the background
steady state solar wind is about 2 × 105 K. During the pas-
sage of the CME (beginning at around 55 hours) the plasma

temperature decreases rather significantly to values below
1.5 × 105 K. The solar wind velocity remains nearly radial
during the entire event with the speed gradually decreasing
from ∼550 km/s to ∼450 km s−1. The undisturbed solar
wind density is fairly high prior to the CME event (∼35
cm−3), but it decreases to a more typical value of ∼18 cm−3

before the arrival of the CME driving mass at t = 72 hours.
At the peak of the simulated event the density increases to
∼45 cm−3. The solar wind dynamic pressure (not shown
in Plate 12) doubles from its pre-CME value of 2.25 nP (at
t = 72 hours) to 4.6 nP at the peak of the event.

Plate 13 depicts the changes in global 3-D configuration
of the magnetosphere produced by the passage of the CME.
Plate 13 shows the magnetospheric solution at two instances
in time: t = 70.5 hours and 94.5 hours. The color shad-
ing represents the electric current density, j̃ = ∇̃ × B̃, in
the terrestrial equatorial plane, and the solid lines represent
the last closed magnetic field lines. The field lines on the
dayside of the magnetosphere (magnetopause) are shown in
green, and the field lines closing in the tail are shown in red.
The magnetopause or Chapman-Ferraro current system near
the subsolar magnetopause and the cross tail current system
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Plate 10. Full view of CME evolution in the y = 0 meridional plane at (a) t = 6 hours, (b) t = 12 hours, (c) t = 24 hours,
and (d) t = 36 hours. Solid white lines are magnetic “streamlines” drawn in the y = 0 plane.

on the nightside of the magnetosphere are clearly evident in
both solution snapshots.

It is well established that the configuration of the mag-
netosphere is primarily controlled by the Bz component of
the IMF. For Bz < 0, observations (confirmed by numer-
ical simulations) indicate that the magnetosphere exhibits
an open configuration with significant dayside reconnection
and open magnetic field lines connected to large regions near
the magnetic poles. For strong northward IMF conditions
(Bz > 5 nT) the magnetosphere becomes practically closed
with magnetic reconnection limited to small regions near the
cusps. For “intermediate” values of Bz (0 < Bz < 5 nT),
numerical simulations performed by the authors indicate that
the global magnetospheric configuration is “partially closed”
(or “partially open”). In this case, the magnetosphere can be
characterized by significant dayside reconnection and large
open cusps, by a narrow near-Earth neutral line near the
center of the magnetotail (the length of this reconnection
line decreases with increasing Bz), and by long, stretched
magnetospheric wings connected to the dawnside and dusk-
side of the ionosphere. These wings are formed by highly
stretched, closed magnetic field lines and represent the tran-

sition from magnetopause reconnection to tail reconnection
(P. Song et al., manuscript in preparation, 2000).

An inspection of Plate 13 reveals that the magnetospheric
solutions at t = 70.5 hours and 94.5 hours both correspond
to the intermediate configuration described above. Further-
more, no significant geomagnetic activity is generated by
the interplanetary transient. In the simulated CME event,
Bz remains northward for the entire computation, varying
between about 0 and 3 nT. The magnetosphere therefore
never establishes a configuration that corresponds to either
the pure “south” (open) or “north” (closed) configurations
but instead exhibits the characteristics of the partially open
intermediate configuration for the entire simulation. Further-
more, as the IMF does not switch from northward to south-
ward directions during the simulation (or vice versa), the
magnetosphere does not dynamically change from closed to
open configurations. A strong southward turning of the IMF
is known to trigger substorm activity and result in the forma-
tion and release of a plasmoid in the tail of magnetosphere.
Furthermore, observations have shown that the energy in-
put to the magnetosphere from any solar wind disturbance
depends directly on the strength and duration of southward
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Plate 11. Full view of CME evolution in the equatorial plane at (a) t = 6 hours, (b) t = 12 hours, (c) t = 24 hours, and (d)
t = 36 hours. Solid white lines are magnetic “streamlines” drawn in the z = 0 plane.

IMF [Russell et al., 1974; Gonzalez et al., 1996] and that
major magnetic storms are well correlated with strong south-
ward IMF [Farrugia et al., 1997]. As a result, the simulated
CME does not produce “dramatic” changes in the computed
magnetosphere and would not be classified as a very geoef-
fective space weather event. Note that an interesting feature
of the partially open magnetospheric configurations shown
in Plate 13 is the clockwise “twist” of the magnetospheres
perpendicular to the solar wind direction. This twist, which
is particularly visible in the wings, is due to the presence of
a nonzero By component in the IMF.

It is felt that the lack of a strong northward to south-
ward turning of the IMF and the lack of a strong south-
ward IMF for any significant period of time are the primary
reasons that the simulated CME event produces a relatively
“mild” magnetospheric response. The mild response is also
partially due to the fact that grid resolution for the solar
wind solution is limited at Earth and any solution discon-
tinuities or large solution gradients associated with the CME
are somewhat “smeared.” It is also believed that the IMF

signature of the simulated CME is a direct consequence of
the fact that no emerging magnetic flux was included in the
CME initiation process. This is an important limitation of
the present model that will be rectified in follow-up stud-
ies. Even though the CME did not result in significant ge-
omagnetic activity, the magnetosphere does undergo some
important changes during the course of the simulated event.
The magnetosphere becomes more compressed because of
the passage of the CME. As the solar wind dynamic pressure
increases and more than doubles, the bow shock and dayside
magnetopause move inward and the magnetospheric cur-
rent densities significantly increase. In addition, the magne-
tosphere becomes narrower and magnetospheric wings be-
come longer. The length of the wings increases from about
60 Re to 90 Re. Compare the two solutions at t = 70.5
hours and 94.5 hours shown in Plate 13. In general, the en-
ergy and magnetic flux stored in the magnetosphere can be
seen to increase substantially.

Further evidence of the changes in the magnetosphere and
ionosphere system produced by the density-driven CME is
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Plate 12. Predicted solar wind plasma parameters at Earth.
Thin solid lines represent the steady state solar wind solution
without the CME, and thick solid lines represent the solution
at Earth when the CME is introduced.

given Plate 14, which provides polar plots of the ionospheric
convection patterns and potential distributions in the iono-
sphere of the northern hemisphere at t = 70.5 and 97.3
hours. The color shading represents the calculated height-
integrated ionospheric potential, and the solid white lines
represent the predicted convection patterns. Comparison of
the two solutions reveals the changes undergone by iono-
sphere during the CME event. Both solutions exhibit the
classic two-cell convection pattern typical of southward-type
IMF conditions, and the convection patterns are “twisted”
due to the presence of a nonzero By component in the IMF.
The most important change in the ionosphere is the doubling
of the cross-cap potential drop from 30 kV at t = 70.5 hours
to 60 kV over the 27-hour period of the computation.

X
Y

Z
Jy [µA/m2]

0.005
0.004
0.003
0.002
0.001
0

t = 70.5 hrs

25 Re

50 Re

-75 Re

-50 Re

-25 Re

X
Y

Z
Jy [µA/m2]

0.005
0.004
0.003
0.002
0.001
0

t= 94.5 hrs

25 Re

50 Re

-75 Re

-50 Re

-25 Re

Plate 13. Response of the magnetosphere to the CME. The
predicted magnetospheric solution is shown at (top) t =
70.5 hours and (bottom) t = 94.5 hours. The red and green
solid lines represent the last closed magnetic field lines, and
the color shading represents current density, j = ∇ × B, in
the terrestrial equatorial plane.

5. Summary and Concluding Remarks

The feasibility of using a parallel AMR scheme that
solves the three-dimensional ideal MHD equations to study
space weather events and their impact on Earth has been
investigated. A newly developed global 3-D MHD model
has been used to simulate the initiation, structure, and evo-
lution of a density-driven CME propagating from the solar
surface out to distances beyond 1 AU. The subsequent in-
teraction of this solar wind disturbance with the terrestrial
magnetosphere has also been predicted. As part of this work,
a steady state solution for solar wind has also been devel-
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Plate 14. Polar plots of the ionospheric convection (solid
white lines) and potential distribution (color shading) in the
ionosphere of the northern hemisphere at (top) t = 70.5
hours and (bottom) t = 97.3 hours.

oped and presented that is in good overall agreement with
the average observed solar wind features. Although it was
predicted that the simulated CME event would not lead to
significant geomagnetic activity at Earth, the numerical re-
sults represent the first simulation of a complete fully three-
dimensional space weather event and demonstrate the po-
tential of the parallel MHD model for enhancing the under-
standing of transient solar wind disturbances, space weather
phenomena, and hence the coupling that exists between the
Sun and Earth systems.

Future research will involve more detailed investigations
using more physically realistic mathematical descriptions of
the plasma dynamic behavior, solar magnetic field configu-
rations, and initiation mechanisms for CMEs. In particular,

the inclusion of an emerging magnetic flux in the CME initi-
ation process is expected to increase the magnetic signature
of the CME at Earth orbit and thus lead to a much more geo-
effective event. It is our intention to carry such a simulation
in the near future.

Appendix A: Parallel AMR Scheme for MHD

A parallel AMR finite-volume scheme is used to solve the
MHD equations outlined in section 2. This solution tech-
nique has been formulated to capitalize on recent develop-
ments in three areas of scientific computing. They are (1) ad-
vances in upwind finite-volume methods for hyperbolic con-
servation laws; (2) significant advances in solution-adaptive
techniques; and (3) advances in parallel computer design. A
reliable, relatively efficient, and scalable method for solv-
ing the MHD equations has resulted. Although aspects of
the solution algorithm are described elsewhere [Powell et al.,
1999; Groth et al., 1999], the first detailed description of the
algorithm for simulating space weather events, including the
parallel implementation, is provided in this appendix for the
sake of completeness.

A1. Symmetrizable Form of MHD Equations

The hyperbolic system of partial differential equations
(PDEs) given by (1)–(4) can be re-expressed in weak con-
servation (divergence) form as

∂Ũ
∂t̃

+
(
∇̃ · F̃

)T

= S̃ + Q̃ , (A1)

where the solution and source-like vectors Ũ and S̃ are given
by

Ũ =




ρ̃
ρ̃ũ
B̃
Ẽ


 S̃ = −




0
B̃
ũ

ũ · B̃


 ∇̃ · B̃ , (A2)

F̃ is a flux tensor having the form

F̃ =




ρ̃ũ

ρ̃ũũ +
(
p̃+

1
2
B̃2

)
I − B̃B̃

ũB̃ − B̃ũ

ũ
(
Ẽ + p̃+ 1

2 B̃
2
)
−

(
B̃ · ũ

)
B̃




T

, (A3)

and the total plasma energy Ẽ is given by

Ẽ =
1
2
ρ̃ũ2 +

p̃

γ − 1
+

1
2
B̃2 . (A4)
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In this formulation the vector S̃ contains terms arising in the
MHD equations that cannot be expressed in divergence form
(this issue will be discussed below), and the column vector
Q̃ contains source terms associated with solar gravitational
and rotational effects as well as the effects of coronal heating
processes and heat and radiation transfer effects. The vector
Q̃ is given by

Q̃=




0

ρ̃
[
g̃ − Ω̃ ×

(
Ω̃ × r̃

)]
− 2ρ̃Ω̃ × ũ

0

ρ̃ũ ·
[
g̃ − Ω̃ ×

(
Ω̃ × r̃

)]
+ ρ̃q̃

(
T̃◦ − γ

p̃

ρ̃

)



. (A5)

The form of the MHD equations given by (A1)–(A5) is
somewhat nonstandard. The terms of column vector S̃ are
proportional to ∇ · B̃ and arise solely from expressing Fara-
day’s law in divergence form. It is more usual to make use
of the solenoidal condition, ∇ · B̃ = 0, to further simplify
(A1). The solenoidal condition amounts to an initial con-
dition for the MHD equations and, physically, implies that
there are no magnetic monopoles. However, imposing this
constraint in finite-volume-based numerical solutions of the
MHD equations has proven to be very challenging [Brack-
bill and Barnes, 1980]. Mathematically, dropping the source
terms of S̃ changes the mathematical properties of the MHD
equations. Godunov [1961, 1972] has shown that (A1) with
the additional constraint is not symmetrizable. The equa-
tions possess a degenerate eigensystem, having only seven
identifiable characteristic fields and, furthermore, are not
formally Galilean invariant. Godunov [1961, 1972] found
that the MHD equations can only be rendered symmetriz-
able by retaining the terms contained in S̃. Equation (A1)
with the source terms of S̃ has eight characteristic fields, sat-
isfies an additional transport equation or balance law (in ad-
dition to the original eight equations) for the plasma entropy,
and is Galilean invariant. Moreover, this form of the MHD
equations allows the derivation of an eight-wave approxi-
mate Roe-type Riemann solver that can be used in the con-
struction of an upwind finite-volume scheme [Powell, 1994;
Powell et al., 1999].

The approach taken here, as first advocated by Powell
[1994], is to solve the governing PDEs in their symmetriz-
able form. This permits the construction of a finite-volume
scheme, based on approximate Riemann solvers, that tightly
couples the fluid-dynamics and magnetic field equations and
thereby correctly represents the propagation speeds of solu-
tion disturbances. Although the solenoidal condition is not
enforced to machine accuracy, it can be shown that it is sat-
isfied to the level of the truncation error of the solver with-
out requiring the use of projection schemes and/or staggered

mesh arrangements [Tóth and Odstrčil, 1996; Powell et al.,
1999]. Furthermore, Tóth and Odstrčil [1996] have found
that the addition of the terms proportional to ∇ · B̃ improves
results for multidimensional MHD calculations with several
methods and, in fact, reduces errors in the computed parallel
magnetic force.

Careful numerical testing of the ∇ · B̃ error was carried
out by Powell et al. [1999]. It was shown that the quan-
tity h∇ · B, where h is the local mesh spacing, decreases
with increased grid resolution. Since the quantity h∇ · B
is the quantity that actually enters in the update equations,
the overall numerical error of the scheme, even directly in
the vicinity of shocks, decreases with increasing resolution.
In smooth flow regions, ∇ · B itself decreases with increas-
ing resolution and so in these regions the numerical error
decreases even more rapidly with increased mesh resolu-
tion. The truncation-error-level values of ∇ · B that occur
in shocks do not affect the magnetic topology of the flows or
the overall second-order nature of the numerical scheme. It
was also shown that errors in all primitive quantities, includ-
ing magnetic field, decreased with the square of the mesh
size in smooth regions and linearly with the mesh size in
discontinuous regions.

A2. Finite-Volume Scheme

In the present work, an explicit higher-order Godunov-
type method is used to solve (A1). In this finite-volume ap-
proach the governing equations are integrated over a compu-
tational cell i, yielding

dŨi

dt̃
= − 1

Vi

∑
faces

F̃ · nA− S̃i

Vi

∑
faces

B̃ · nA+ Q̃i , (A6)

where Vi is the volume of cell i, A is the surface area of
the faces forming the computational cell, n is the unit vector
normal to the cell faces, Ũi is the cell-averaged conserved
solution vector, and S̃i is given by

S̃i = −




0
B̃i

ũi

ũi · B̃i


 . (A7)

The numerical face fluxes, F̃ · n, are defined in terms of the
left and right interface solution states, UL and UR, as follows

F̃ · n = F (UL,UR,n) , (A8)

where UL and UR are determined using piece-wise linear
solution reconstruction applied to each computational cell.
The least squares limited linear reconstruction procedure de-
veloped by Barth [1993] is used here. Given the left and
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right interface states, the flux function F is then evaluated
by using an approximate Riemann solver. In the present
work, the Roe-type linearized Riemann solver for MHD put
forward by Powell [1994] and Linde’s [1998] flux function
have both been implemented and may be used. We note that
the use of limited linear reconstruction and approximate Rie-
mann solvers leads to a scheme that is robust, minimizes nu-
merical discretization errors, and provides accurate resolu-
tion of discontinuities and shocks. Further details of this spa-
tial discretization procedure and the approximate Riemann
solvers used here are given elsewhere [Powell, 1994; Powell
et al., 1995, 1999; Linde, 1998].

For steady state calculations a time-marching method-of-
lines approach is adopted, and the system of ordinary dif-
ferential equations resulting from the application of the spa-
tial discretization procedure defined above is integrated in
time using the optimally smoothing multistage schemes de-
veloped by van Leer et al. [1989]. The general M stage
scheme for integrating (A6) from time level n to time level
n+ 1 can be written as

Ũ
(0)

i = Ũ
n

i

Ũ
(m)

i = Ũ
(0)

i + βm∆t̃nR
(

Ũ
(m−1)

i

)
m = 1 . . .M (A9)

Ũ
(n+1)

i = Ũ
(M)

i

where the residual R is equal to the right-hand side of (A6)
and ∆t̃n = t̃n+1 − t̃n is the size of the time step. The multi-
stage coefficients βm and associated timestep constraints are
given by van Leer et al. [1989]. One advantage of this inte-
gration procedure is its low storage requirement. Local time
stepping is used to enhance the convergence of the scheme
to the steady state solution. For time-accurate calculations a
simple two-stage second-order Runge-Kutta time integration
procedure is used to solve (A6).

A3. Block-Based AMR on Cartesian Grids

Adaptive mesh refinement techniques that automatically
adapt the computational grid to the solution of the govern-
ing PDEs can be very effective in treating problems with
disparate length scales. Methods of this type avoid under-
resolving the solution in regions deemed of interest (e.g.,
high-gradient regions) and, conversely, avoid overresolving
the solution in other less interesting regions (low-gradient
regions), thereby saving orders of magnitude in computing
resources for many problems. For typical solar wind flows,
length scales can range from tens of kilometers in the near
Earth region to the Earth-Sun distance (1.5 × 1011 m), and
timescales can range from a few seconds near the Sun to the
expansion time of the solar wind from the Sun to the Earth
(∼105 s). The use of AMR is extremely beneficial and al-
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Figure A1. Cartesian computational cell used in parallel
block-based AMR scheme.

most a virtual necessity for solving problems with such dis-
parate spatial and temporal scales.

Borrowing from previous work by Berger and cowork-
ers [Berger, 1982, 1984; Berger and Colella, 1989; Berger
and LeVeque, 1989; Berger and Saltzman, 1994], Quirk
[Quirk, 1991; Quirk and Hanebutte, 1993], and De Zeeuw
and Powell [1993] and keeping in mind the desire for high
performance on massively parallel computer architectures,
a relatively simple yet effective block-based AMR tech-
nique has been developed and is used in conjunction with
the finite-volume scheme described above. The method has
some similarities with the block-based approaches described
by Quirk and Hanebutte [1993] and Berger and Saltzman
[1994]. Here the governing equations are integrated to ob-
tain volume-averaged solution quantities within rectangular
Cartesian computational cells. A representative cell is de-
picted in the schematic diagram of Figure A1. The compu-
tational cells are embedded in regular structured blocks of
equal sized cells. The blocks are geometrically self-similar
with dimensions �̃x × �̃y × �̃z and consist of Nx ×Ny ×Nz

cells, where �̃x, �̃y , and �̃z are the nondimensional lengths
of the sides of the rectangular blocks and Nx, Ny , and Nz

are even, but not necessarily all equal, integers. Typically,
blocks consisting of anywhere between 4 × 4 × 4 = 64 and
12 × 12 × 12 = 1728 cells are used (see Figure A2). So-
lution data associated with each block are stored in standard
indexed array data structures. It is therefore straightforward
to obtain solution information from neighboring cells within
a block.

Computational grids are then composed of many self-
similar blocks. Although each block within a grid has the
same data storage requirements, blocks may be of differ-
ent sizes in terms of the volume of physical space that they
occupy. Starting with an initial mesh consisting of blocks
of equal size (i.e., equal resolution), adaption is accom-
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Figure A2. (left) Self-similar blocks used in parallel block-
based AMR scheme. (right) Self-similar blocks illustrat-
ing the double layer of ghost cells for both coarse and fine
blocks.

plished by the dividing and coarsening of appropriate solu-
tion blocks. In regions requiring increased cell resolution, a
“parent” block is refined by dividing itself into eight “chil-
dren” or “offspring.” Each of the eight octants of a parent
block becomes a new block having the same number of cells
as the parent and thereby doubling the cell resolution in the
region of interest. Conversely, in regions that are deemed
overresolved, the refinement process is reversed, and eight
children are coarsened and coalesced into a single parent
block. In this way, the cell resolution is reduced by a factor
of 2. Standard multigrid-type restriction and prolongation
operators are used to evaluate the solution on all blocks cre-
ated by the coarsening and division processes, respectively.

Two neighboring blocks, one of which has been refined
and one of which has not, are shown in Figure A2. Any of
the blocks shown in Figure A2 can in turn be refined, and
so on, leading to successively finer blocks. In the present
method, mesh refinement is constrained such that the cell
resolution changes by only a factor of 2 between adjacent
blocks and such that the minimum resolution is not less than
that of the initial mesh.

In order that the update scheme for a given iteration or
time step can be applied directly to all blocks in an indepen-
dent manner, some additional solution information is shared
between adjacent blocks having common interfaces. This
information is stored in an additional two layers of overlap-
ping “ghost” cells associated with each block as shown in
Figure A2. At interfaces between blocks of equal resolution,
these ghost cells are simply assigned the solution values as-
sociated with the appropriate interior cells of the adjacent
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Multiple Roots
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Grid Blocks
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D B

Figure A3. Solution blocks of a computational mesh with
three refinement levels originating from two initial blocks
and the associated hierarchical multiroot octree data struc-
ture. Interconnects to neighbors are not shown.

blocks. At resolution changes, restriction and prolongation
operators, similar to those used in block coarsening and divi-
sion, are employed to evaluate the ghost cell solution values.
After each stage of the multistage time-stepping algorithm,
ghost cell values are reevaluated to reflect the updated solu-
tion values of neighboring blocks. With the AMR approach,
additional interblock communication is also required at in-
terfaces with resolution changes to strictly enforce the flux
conservation properties of the finite-volume scheme [Berger,
1982, 1984; Berger and Colella, 1989]. In particular, the in-
terface fluxes computed on more refined blocks are used to
correct the interface fluxes computed on coarser neighboring
blocks so as to ensure that the fluxes are conserved across
block interfaces.

A hierarchical tree-like data structure with multiple
“roots,” multiple “trees,” and additional interconnects be-
tween the “leaves” of the trees is used to keep track of mesh
refinement and the connectivity between solution blocks.
This interconnected “forest” data structure is depicted in
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Figure A3. The blocks of the initial mesh are the roots of the
forest, which are stored in an indexed array data structure.
Associated with each root is a separate “octree” data struc-
ture that contains all of the blocks making up the leaves of
the tree which were created from the original parent blocks
during mesh refinement. Each grid block corresponds to a
node of the tree. Traversal of the multitree structure by re-
cursively visiting the parents and children of solution blocks
can be used to determine block connectivity. However, in
order to reduce overhead associated with accessing solu-
tion information from adjacent blocks, the neighbors of each
block are computed and stored directly, providing intercon-
nects between blocks in the hierarchical data structure that
are neighbors in physical space.

One of the advantages of the preceding hierarchical data
structure is that it is relatively easy to carry out local mesh
refinement at anytime during a calculation. If, at some point
in a computation, a particular region of the flow is deemed
to be sufficiently interesting, better resolution of that region
can be attained by refining the solution blocks in that region,
without affecting the grid structure in other regions of the
flow. Reducing the grid resolution in a region is equally easy.
There is no need for completely remeshing the entire grid
and recalculating block connectivity every time a mesh re-
finement is performed. Although other approaches are pos-
sible, for this study the coarsening and division of blocks
are directed using multiple physics-based refinement criteria
[Paillère et al., 1992; Powell et al., 1993, 1999]. In partic-
ular, decisions as to when to refine or coarsen blocks are
made based on comparisons of the maximum values of var-
ious local flow quantities determined in each block to spec-
ified refinement threshold values. Three flow quantities or
refinement criteria, εk, are used herein. They have the forms

ε1 ∝
∣∣∣∇̃ · ũ

∣∣∣ ε2 ∝
∣∣∣∇̃ × ũ

∣∣∣ ε3 ∝
∣∣∣∇̃ × B̃

∣∣∣ . (A10)

These quantities represent local measures of the compress-
ibility and vorticity of the plasma as well as the electric cur-
rent density. They have proven to be quite effective in de-
tecting solution features such as shocks, velocity shears, and
current systems in the plasma flow and directing the mesh
adaption to more accurately resolve such features. Note that
the refinement thresholds are dynamically adjusted so as to
exercise some control over the total numbers of blocks, and
hence cells, used in a calculation.

An example illustrating the adaptation of the block-based
Cartesian mesh to an evolving solution is shown in Fig-
ure A4, which shows the grid at four different instances in
time for an unsteady calculation and depicts both the solu-
tion blocks (thick lines) and computational cells (thin lines)
of the evolving grid. As noted above, each level of refine-
ment in the grid introduces cells that are smaller by a fac-

tor 2 in each dimension from those one level higher in the
grid. Typically, calculations may have 10-15 levels of re-
finement; some calculations may have more than 20 levels
of refinement. In the case of 20 levels of refinement, the
finest cells on the mesh are more than one million times (220)
smaller in each dimension than the coarsest cells. The block-
based AMR approach described above has many similarities
to the cell-based method proposed by De Zeeuw and Pow-
ell [1993]. Although the block-based approach is somewhat
less flexible and incurs some inefficiencies in solution reso-
lution as compared to a cell-based approach, the block-based
method offers many advantages over a cell-based technique
when parallel implementations of the algorithms are con-
sidered and performance issues are taken into account. As
will be discussed below, the block adaptation readily en-
ables domain decomposition and effective load balancing
and leads to low communication overhead between solution
cells within the same block.

A4. Parallel Implementation

The current and future generations of massively parallel
distributed-memory computers offer the potential of large
increases in processing power and memory resources be-
yond those of single-processor machines. Capitalizing on
the promise of these resources is, however, not always easily
achieved. In many instances, solution algorithm speedup is
achieved for small numbers of processors (1–32 processors);
however, with added processors, not only does the method
fail to scale as expected, but the performance of the algo-
rithm may actually diminish with an increase in the number
of processors.

The block-based AMR finite-volume scheme for MHD
described in the preceding subsections has been designed
with a view to achieving very high performance on mas-
sively parallel architectures. In particular, there are several
important design features of the method that have enabled
high parallel performance. They are as follows:

1. For problems involving the numerical solution of
PDEs, domain decomposition (i.e., the partitioning of the
problem by dividing the computational domain into subdo-
mains and farming the subdomains off onto separate proces-
sors) is a natural and practical approach to parallelization.
The hierarchical block-based data structure and self-similar
nature of the solution blocks make domain decomposition
of the problem almost trivial and readily enable good load
balancing, a crucial element for truly scalable computing.
Furthermore, the local nature of the mesh refinement pro-
cess means that mesh adaptation can be performed routinely
without remapping all of the subdomains to the processors,
which would significantly increase interprocessor communi-
cation and reduce computational performance.
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Figure A4. Evolution of a computational mesh illustrating grid adaptation in response to changes in the numerical solution.
Cross sectional cuts through a 3-D grid are shown for a solar wind calculation at four different instances in time. The
computational cells are not shown for the smaller blocks.

2. Domain decomposition is accomplished by merely
farming the solution blocks out to the separate processors,
with more than one block permitted on each processor. A
simple stack is used to keep track of available (open) pro-
cessors during refinement and coarsening of the mesh. For
homogeneous architectures with multiple processors all of
equal speed, an effective load balancing is achieved by ex-
ploiting the self-similar nature of the solution blocks and
simply distributing the blocks equally amongst the proces-
sors. In doing so, all blocks are treated equally, and, cur-
rently, no use is made of the hierarchical data structure or
grid partitioning techniques to preferentially place neighbor-
ing blocks on the same processors. With 10 blocks per pro-
cessor the load imbalance attained by this simple block dis-
tribution procedure is <10% and with 100 blocks per node,

the load imbalance becomes <1%. For heterogeneous paral-
lel machines, such as a network of workstations, a weighted
distribution of the blocks can be adopted to preferentially
place more blocks on the faster processors and less blocks
on the slower processors.

3. The underlying upwind finite-volume solution algo-
rithm, with explicit time stepping, has a very compact stencil
and is therefore highly local in nature. This results in lower
interprocessor communication requirements. For the block-
based grid structure, update of the solution within the subdo-
mains on each processor can proceed almost independently
and communication is limited to block interfaces and mainly
involves the exchange of ghost-cell solution values and con-
servative flux corrections. The compact stencil and block
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data structure also result in high data locality and there-
fore permit the more efficient use of processor memory and
cache.

4. The self-similar nature of the solution blocks also
means that serial performance enhancements apply to all
blocks and that fine grain parallelization of the algorithm is
possible. In fact, the parallel implementation is such that
even much of the grid adaptation can be performed in paral-
lel.

A parallel implementation of the block-based AMR
finite-volume scheme has been developed using the FOR-
TRAN 90 programming language and the message passing
interface library (MPI). Use of these standards greatly en-
hances the portability of the computer code and has enabled
very good serial and parallel performance. Interprocessor
communication is mainly restricted to block interfaces and
primarily involves the exchange of ghost-cell solution val-
ues and conservative flux corrections. This communication
of interface solution information is required at every stage of
the multistage solution update procedure. Message passing
of the ghost-cell values and flux corrections is performed in
an asynchronous fashion with gathered wait states and mes-
sage consolidation and, as such, typically amounts to only
<3-5% of the processor time in most cases.

Implementation of the algorithm has been carried out on
SGI and Linux workstations, SGI shared-memory Origin
200 and Origin 2000 machines, a Cray T3D, both Cray T3E-
600 and T3E-1200 parallel computers, several IBM SP2 ma-
chines, and a few Beowulf clusters. The parallel perfor-
mance and scalability of the method for several of these ar-
chitectures are shown in Figures A5 and A6.

Performance results for both Cray T3E-600 and T3E-
1200 parallel computers are depicted in Figure A5, which
shows two curves for each of these machines: in the first,
the performance measured in terms of the number of float-
ing point operations performed per second is shown for a
problem that has a fixed number of blocks per processor (the
scale-up problem with 16 blocks per processor); in the sec-
ond, the performance is shown for a problem that has a fixed
size of 2,024 blocks (the speed-up problem). Of the two,
the second case is more challenging. This is because as the
speed-up problem is distributed across more and more pro-
cessors, the ratio of communication overhead to computing
cost increases. The benefits of the bottom-up design of the
parallel solver is clearly demonstrated by the results shown
in Figures A5 and A6. For both scale-up and speed-up
problems the parallel performance of the block-based AMR
scheme is linear and nearly 100% efficient for up to 1,024
processors on both the Cray T3E-600 and T3E-1200. Fur-
thermore, 342 GFlops has been attained on the Cray T3E-
1200 for the scale-up problem using 1,490 processors.
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Figure A5. Parallel performance of the block-based AMR
scheme for MHD on the Cray T3E-600 and T3E-1200 com-
puters for both scale-up and speed-up problems.
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Figure A6. Parallel performance of the block-based AMR
scheme for a variety of parallel architectures. The dashed
line indicates ideal scale-up performance based on single
node performance, and solid lines indicate actual perfor-
mance achieved on each of the machines for a scale-up prob-
lem with 8 blocks per processor.

In Figure A6, the parallel performance obtained on sev-
eral other architectures is shown and compared to the Cray
performance for another scale-up problem with 8 blocks
per processor. Although there is generally a higher latency
associated with message passing for these other machines,
this second set of performance results demonstrates that the
block-based algorithm method is portable to a wide range
of machines and that reasonable scalability can be achieved,
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even for higher-latency architectures such as a Beowulf clus-
ter.
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