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A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-
dimensional (3D) cubed-sphere grids is described. The approach is based on a central 
essentially non-oscillatory (CENO) finite-volume method that was recently introduced for 
two-dimensional compressible flows and is extended to 3D geometries with structured 
hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, 
which are handled with high-order accuracy using trilinear geometry representations in 
the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur 
at the boundaries and corners of the six sectors of the cubed-sphere grid where the 
grid topology is unstructured, and these difficulties are handled naturally with high-
order accuracy by the multidimensional least-squares based 3D CENO reconstruction with 
overdetermined stencils. A rotation-based mechanism is introduced to automatically select 
appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are 
available and the grid topology changes, requiring stencils to be modified. Combining 
these building blocks results in a finite-volume discretization for conservation laws on 3D 
cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While 
solution-adaptivity is natural in the multi-block setting of our code, high-order accurate 
adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO 
scheme is an accurate and robust solution method for hyperbolic conservation laws on 
general hexahedral grids that is attractive because it is inherently multidimensional by 
employing a K -exact overdetermined reconstruction scheme, and it avoids the complexity 
of considering multiple non-central stencil configurations that characterizes traditional ENO 
schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary 
and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and 
robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency 
gains that can be potentially achieved using fourth-order schemes as compared to second-
order methods for the same error level. Applications on extended cubed-sphere grids 
incorporating a seventh root block that discretizes the interior of the inner sphere 
demonstrate the versatility of the spatial discretization method.
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1. Introduction

Over the past decade, cubed-sphere grids [1,2] (see Fig. 1) have rapidly gained popularity for simulations with spher-
ical geometry in a variety of application domains. They are often employed in the modeling of weather, climate, and the 
oceans [1–16], and have been used in space physics and astrophysics [17,18]. This paper presents a fourth-order accurate 
finite-volume scheme for conservation laws on three-dimensional (3D) cubed-sphere grids. It extends the central essentially 
non-oscillatory (CENO) finite-volume schemes that were presented in [19–24] for two-dimensional (2D) compressible flow 
simulation to 3D geometries with structured hexahedral grids, with particular emphasis on cubed-sphere mesh topologies. 
The resulting 3D CENO scheme on general hexahedral cells is used to formulate a finite-volume conservation law scheme 
on 3D cubed-sphere grids that is uniformly fourth-order accurate in all three grid directions and robust against spurious 
oscillations at shocks. Preliminary results of our approach to extend CENO to 3D hexahedral structured grids were reported 
in [25]. The CENO finite-volume method can also be applied to unstructured meshes, as is discussed for laminar viscous 
flows and turbulent reactive flows by Charest et al. in [26–29].

Our goal in this paper is to develop high-order finite-volume schemes on multi-block 3D cubed-sphere grids [30,31]. 
We employ a multi-block architecture where the six root blocks from Fig. 1 can be refined uniformly multiple times by 
recursively dividing each block into eight smaller blocks with the same number of cells as the original block [31]. Note 
that high-order accurate adaptive mesh refinement (AMR) on the cubed sphere is not pursued in this paper. The multi-
block scheme we use is based on previous work of Gao and Groth [32,33] for reacting flows, which enables unstructured 
root block connectivity. Groth and co-researchers [34–38,33,39] have developed block-based AMR finite-volume schemes 
for the solution of a range of physically complex flows on multi-block body-fitted meshes with second-order accuracy. 
The application of these methods has included laminar flames [36,39] and high-pressure soot prediction [40–42], turbu-
lent non-premixed flames [37,33,39] as well as turbulent multi-phase rocket core flows [35,43], micro-scale flows [44,38], 
and radiation transport [45]. Extensions of the multi-block methods for embedded boundaries not aligned with the mesh 
[46] and for use with an anisotropic refinement strategy [47,48] are also possible and have been developed. This adaptive 
multi-block approach was extended to cubed-sphere grids (with second-order accuracy) and magnetohydrodynamics (MHD) 
flow problems by Ivan, De Sterck and co-workers in [49,30,31,24]. Note that this manuscript focuses on describing the new 
3D CENO method on non-adaptive cubed-sphere grids and does not pursue adaptive refinement with efficient high-order 
accurate solution transfer operators, which is subject of ongoing work.

Hexahedral cubed-sphere grid cells are challenging for high-order accurate finite-volume discretizations because they 
have nonplanar cell interfaces. A first specific challenge in extending the 2D CENO method from [19–23] to 3D grids with 
general hexahedral cells is, thus, the high-order treatment of hexahedral cells with nonplanar cell faces. We address this 
challenge by employing a trilinear representation of the finite-volume cells that facilitates high-order accurate numerical in-
tegration in a transformed domain [50–52]. Preliminary results of this approach to extend CENO to 3D hexahedral structured 
grids were reported in [25].

With the high-order CENO formulation on general hexahedral cells in place, a second specific challenge in employing 
this scheme on 3D cubed-sphere grids is how to build consistent stencils for high-order discretization at degenerate block 
edges and corners, i.e., block edges and corners where the number of neighboring blocks is smaller than in a grid with 
Cartesian topology, and where fewer ghost cells are available. This challenge is addressed in a way that is general for a 
variety of stencils and block configurations by requiring consistency in a double sense: first, the number of cells dropped 
in the degenerate stencil needs to be as small as possible compared to the base stencil while maintaining the same stencil 
structure in terms of connectivity to neighboring cells; and second, degenerate stencils generated for ghost cells need to 
be identical to the degenerate stencils generated for the corresponding physical cells in neighboring blocks. It is important 
to formulate a general strategy that meets these requirements in the complex degenerate 3D topology with missing ghost 
cells. We present a general rotation mechanism to automatically build consistent high-order stencils at these degenerate 
locations on the cubed-sphere grid. The mechanism we propose is sufficiently general to also handle the case of a cubed-
sphere grid with an additional grid block filling the interior [53,54], where blocks may have corners where three degenerate 
edges meet. The resulting high-order CENO scheme extends the second-order cubed-sphere grid method from [30,31] to 
fourth-order accuracy. In fact, our approach is more general and the principle extends to orders of accuracy higher than 
four (by increasing the stencil size), but this paper focuses on a fourth-order accurate implementation.

Two-dimensional cubed-sphere grids can be obtained from a regular Cartesian grid that is defined on the six faces of a 
cube by projecting the cube faces onto a sphere, resulting in a surface grid for the sphere that is composed of six panels 
with quasi-uniform spacing and without polar singularities. A 3D cubed-sphere grid (see Fig. 1) is formed by stacking a 
sequence of concentric 2D cubed-sphere grids in the radial direction, resulting in a grid for the domain between the inner 
and outer concentric spheres that is composed of six structured sector blocks. Note that the mesh topology within these 
six blocks is Cartesian, but the connectivity between the six blocks (which form root blocks in our grid data structure) is 
unstructured (see Fig. 1). The radial edges of the six root blocks (the edges corresponding to the eight corners of the 2D 
cubed-sphere grid) are degenerate, in the sense that these edges have only three incident root blocks, whereas block edges 
in a structured, Cartesian topology have four incident blocks. Note that we will also consider the case of a cubed-sphere 
grid where the interior is filled by a seventh root block with Cartesian topology, which may, for example, model the interior 
of a planet. The cubed-sphere grids used in this paper are generated using the so-called cubic-gnomonic projection [1,2,4]. 
In particular, the angularly equidistant mapping described in [2] is used to generate the initial six blocks of the grids.
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Fig. 1. Three-dimensional cubed-sphere grid with six root blocks (corresponding to the six sectors of the grid) and depiction of inter-block connectivity. In 
our multi-block approach, the root blocks can be refined by recursively dividing each block into eight smaller blocks with the same number of cells as the 
original block. In panel (b), the block faces are denoted with the initials of the cardinal directions: North (N), East (E), South (S) and West (W). (Figures 
adapted from [31].)

Significant advances have been made for second-order and high-order discretizations on cubed-sphere grids in recent 
years [6,7,53,8–16]. Most of these works target 2D cubed-sphere grids with curvilinear coordinates, and only few address 
high-order discretizations on 3D cubed-sphere grids. An example of the latter is [9], which presents a 3D dynamical core 
on a cubed-sphere grid that achieves fourth-order accuracy in the horizontal direction and second-order in the vertical 
direction. To our knowledge, our method is the first to offer full fourth-order discretization accuracy on 3D cubed-sphere 
grids in all grid directions, and it does so uniformly using the same scheme in the three grid directions. Note that we use 
a standard orthogonal x, y, z (Cartesian) coordinate system in our conservation law discretization on domains between two 
concentric spheres, and for our purposes there is no need to define separate curvilinear coordinate systems on each of the 
cubed-sphere grid sectors as is usually done for layered models in atmospheric flow simulation.

Obtaining high-order accurate finite-volume discretizations on cubed-sphere grids is a challenge: grid lines have slope 
discontinuities at the interfaces between the six root blocks, and the connectivity is unstructured at the radial edges of the 
root blocks. This means that special reconstruction procedures are required for obtaining an order of accuracy higher than 
one when finite-volume schemes are employed that use the direction-by-direction approach that is standard for grids with 
Cartesian topology [1,2,55,53,6,18,56]. In contrast, the proposed CENO method is multidimensional (as opposed to direction-
by-direction) and uses a least-squares reconstruction mechanism with an overdetermined stencil. As a consequence, our 
approach can directly employ physical cells from adjacent sectors as ghost cells when required (so no complicating special 
reconstruction procedures are required at interfaces between the root blocks), and it can automatically handle varying sten-
cil size at the degenerate block edges. This means that uniform fourth-order accuracy is naturally obtained in all three grid 
directions and at all locations of the grid.

More generally, the development of high-order accurate and robust discretizations for hyperbolic conservation laws, es-
pecially in 3D, also remains a challenging and active area of research. In recent years, significant advances have been made 
in proposing new discretization schemes of various types for 3D hyperbolic conservation laws, including finite difference 
methods (e.g., [57]), discontinuous Galerkin methods (e.g., [58–60]), finite-volume methods (e.g. [61–65]), and combinations 
of these approaches (e.g., [66]). Our 3D CENO method proposes a different approach on general hexahedral grids that com-
bines high-order accuracy with robustness at discontinuities, and it is attractive because it is inherently multidimensional 
by employing a K -exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-
central stencil configurations that characterizes traditional ENO schemes. Our approach is general and can be extended to 
unstructured grids as discussed by Charest et al. in [27–29] for laminar viscous flows and turbulent reactive flows. For 3D 
MHD flows, we extend the 2D fourth-order accurate CENO MHD solver from [24] to 3D, using the generalized Lagrange 
multiplier (GLM) approach from [67] to control errors in the divergence of the magnetic field for the high-order accurate 
simulation (as in [57,24]). While many space physics simulation codes were only second-order accurate initially [68–70,
31], there have been significant developments extending these approaches toward high-order accurate discretizations [57,
71–76], but these developments are often specific to structured grids, and our parallel 3D fourth-order MHD method fur-
ther extends these developments to general hexahedral grids and significantly advances the state-of-the-art of large-scale 
simulation frameworks for cubed-sphere grids.
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The remainder of this paper is structured as follows. Section 2 describes our fourth-order accurate finite-volume 
scheme for conservation laws on 3D cubed-sphere grids, using a high-order polynomial reconstruction approach with 
CENO monotonicity enforcement combined with trilinear representation of the cubed-sphere grid cells to obtain high-
order accurate flux calculations. The specific difficulty of generating consistent stencils near degenerate block edges is 
addressed using a general rotation mechanism. Section 3 describes extensive numerical tests demonstrating the accuracy 
and robustness of the fourth-order CENO method for Euler and MHD flows on Cartesian and cubed-sphere grids. Section 4
concludes.

2. Fourth-order CENO method for hyperbolic conservation laws on 3D cubed-sphere grids

2.1. Finite-volume formulation

We consider nonlinear conservation laws of the form

∂tU + �∇ · �F = S + Q, (1)

where U is the vector of conserved variables, �F is the flux dyad, and S and Q are numerical and physical source terms 
that may arise for certain equation sets and application problems. While our fourth-order cubed-sphere grid method is 
developed for general conservation laws, we consider in this paper the particular cases of the MHD and Euler equations. For 
MHD (with GLM approach to control divergence errors as in [67,24]) U is given by

U = [ρ, ρ �V , �B, ρe, ψ]T, (2)

where ρ is the gas density, �V = (V x, V y, V z) is the velocity, �B = (Bx, B y, Bz) is the magnetic field, ρe is the total energy 
density, and ψ is the generalized Lagrange multiplier employed to control errors in the divergence of the magnetic field. 
Here, the total energy is given by ρe = p/(γ − 1) + ρV 2/2 + B2/2, where V and B are the magnitudes of the velocity and 
magnetic field vectors, respectively, and γ is the ratio of specific heats. The flux dyad, �F, is given by

�F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ �V
ρ �V �V + (

p + �B·�B
2

)
I− �B �B

�V �B − �B �V + ψ I(
ρe + p + �B·�B

2

) �V − ( �V · �B)�B
c2

h
�B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where I is the 3 × 3 identity matrix. The numerical source term employed to control magnetic field divergence [67,24], S, 
is given by

S = [
0, �0, �0, 0, − c2

h

c2
p
ψ

]T
. (4)

The parameters ch and cp are chosen as in [24], following [67]. When �B and ψ are set to zero, the equations reduce to the 
Euler equations of gas dynamics.

We formulate the finite-volume method in terms of hexahedral cells in a 3D structured grid block with indices i jk. The 
semi-discretization for the temporal evolution of the cell average Ui jk in cell i jk is derived from

dUi jk

dt
= 1

V ijk

[
−
‹

∂Vi jk

�F · �n da +
˚

Vi jk

(S + Q)dv

]
, (5)

where V ijk is the volume of cell Vi jk , �n is the unit outward normal of the cell surface ∂Vi jk , and da and dv are surface and 
volume elements, respectively. Approximating the surface and volume integrals numerically we obtain

dUi jk

dt
= − 1

V ijk

6∑
f =1

Ng∑
m=1

(ω̃�Fnum · �n)i, j,k, f ,m + Si jk + Qi jk = Ri jk(U), (6)

where f is used to indicate the six interfaces of the hexahedral cell, and m indicates the Gauss quadrature points over each 
interface. Here, �Fnum is the numerical flux function, Si jk and Qi jk are cell-averaged source terms (obtained using Gaussian 
quadrature), and Ri jk denotes the residual vector in cell i jk, which depends on the set of cell averages U.
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Fig. 2. Examples of several central reconstruction stencils for a cell i jk ranging in size from 33 to 81 cells that can be used to determine the 20 polynomial 
coefficients of a cubic reconstruction (K = 3). The first-degree neighbors of the cell i jk are shown in green whereas dark red is used for the second-degree 
neighbors.

2.2. K -exact reconstruction and stencil choice

The 2D high-order CENO method of [19–24] achieves high-order accuracy by employing K -exact polynomial reconstruc-
tion [77] of the solution field in each cell using the cell average and the cell averages of neighboring cells in a reconstruction 
stencil. In our 3D extension, we compute a K -exact polynomial reconstruction for each solution variable in cell i jk of the 
form

uK
ijk(

�X) =
K∑

p1=0

K∑
p2=0

K∑
p3=0

(p1+p2+p3≤K )

(x − x̄i jk)
p1(y − ȳi jk)

p2(z − z̄i jk)
p3 D K

p1 p2 p3
, (7)

where K is the degree of the polynomial, �X = (x, y, z) is the coordinate vector, (x̄i jk, ȳi jk, ̄zi jk) are the coordinates of the 
centroid of cell i jk, and the D K

p1 p2 p3
are the polynomial coefficients that are determined such that uK

ijk(
�X) matches cell 

averages in the reconstruction stencil with high accuracy. There are

ND = (K + 1)(K + 2)(K + 3)

6
(8)

polynomial coefficients D K
p1 p2 p3

, and they can be computed such that a function uexact( �X) is represented with accuracy

uK
ijk(

�X) − uexact( �X) = O
(
�xK+1), (9)

while a polynomial with degree K can be reconstructed exactly [77]. In this paper, we use cubic reconstruction (K = 3) 
to obtain a fourth-order accurate numerical scheme. In this case, ND = 20. We choose the coefficients such that the cell 
average of the reconstruction exactly equals the cell average of variable u in cell i jk,

ūi jk = 1

V ijk

˚

Vi jk

uK
i jk(

�X)dv, (10)

and for all cells γ δζ in the reconstruction stencil of cell i jk we also desire that the cell averages of the reconstruction equal 
the cell averages ūγ δζ :

(
1

Vγ δζ

˚

Vγ δζ

uK
ijk(

�X)dv

)
− ūγ δζ = 0. (11)

As in [77,19–24], we use overdetermined reconstruction stencils, and impose Eq. (11) in the least-squares sense, while 
Eq. (10) is imposed exactly. Note that the use of overdetermined stencils is especially attractive in the case of cubed-sphere 
grids, where the grid topology is unstructured near root-block edges and smaller numbers of neighbor cells are available 
than in regular Cartesian topology. Our approach naturally allows for reconstruction stencils of reduced size, without reduc-
ing the order of accuracy. The reconstruction stencils we consider in this paper have 33, 57 and 81 cells, and are depicted in 
Fig. 2. We will compare these stencils in numerical tests which show that the 33-cell stencil is optimal for our fourth-order 
accurate simulations (see Section 3 below).
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Eq. (10) can be enforced analytically by replacing uK
ijk with Eq. (7) and expressing the first coefficient, D K

000, as a function 
of the other M =ND − 1 polynomial unknowns as

D K
000 = ūi jk −

K∑
p1=0

K∑
p2=0

K∑
p3=0

(1≤p1+p2+p3≤K )

D K
p1 p2 p3

(
xp1 yp2 zp3

)
i jk, (12)

where the geometric moment (xp1 yp2 zp3 )i jk of powers (p1, p2, p3) is given by

(
xp1 yp2 zp3

)
i jk = 1

V ijk

˚

Vi jk

(x − x̄i jk)
p1(y − ȳi jk)

p2(z − z̄i jk)
p3 dv. (13)

Substituting uK
ijk from Eq. (7) in Eq. (11) and using Eq. (12) for D K

000 the following overdetermined linear system for the 
M unknowns is obtained:

LD − B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1
L2
...

L J
...

LNn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Nn×M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D K
001

D K
002
...

D K
p1 p2 p3

...

D K
K 00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M×1

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1(ū1 − ū I )

w2(ū2 − ū I )
...

w J (ū J − ū I )
...

w Nn (ūNn − ū I )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Nn×1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Nn×1

, (14)

where Nn is the number of neighbors in the reconstruction stencil. Here we have used the shorthand notation I to refer 
to cell i jk about which we do the reconstruction, and we have used indices 1, 2, . . . , J , . . . , Nn to refer to the other cells in 
the stencil of cell i jk. The w J are geometric weights for each control volume J which serve the purpose of improving the 
locality of the reconstruction, becoming especially important for stretched meshes with surface curvature [78]. We use

w J = 1

‖� �XI J ‖θ
, (15)

with � �XI J = (�xI J , �yI J , �zI J ) = �X J − �XI and θ = 1, 2. We use θ = 2 except where noted otherwise. Row L J of matrix L
for a neighboring cell J is given by

L J = (
w J

(
x̂0 y0z1

)
I J w J

(
x̂0 y0z2

)
I J . . . w J

(
̂xp1 yp2 zp3

)
I J . . . w J

(
x̂K y0z0

)
I J

)
. (16)

The matrix coefficients ( ̂xp1 yp2 zp3 )I J can be computed efficiently using only the (xp1 yp2 zp3 ) moments:

(
̂xp1 yp2 zp3

)
I J =

(
1

V J

˚

V J

(x − xI )
p1(y − yI )

p2(z − zI )
p3 dv

)
− (

xp1 yp2 zp3
)

I

=
p1∑

�=0

p2∑
q=0

p3∑
m=0

[
C�

p1
Cq

p2 Cm
p3

�x�
I J �yq

I J �zm
I J

(
x(p1−�) y(p2−q)z(p3−m)

)
J

] − (
xp1 yp2 zp3

)
I , (17)

where the binomial coefficients Cβ
α can be computed efficiently by recursion as

Cβ
α = α − β + 1

β
Cβ−1

α , C0
α = 1. (18)

See [20] for the equivalent expressions in 2D.
The solution of the overdetermined linear system equation (14) can be obtained via the normal equations, or, with better 

numerical stability, using QR factorization or by multiplication with the pseudo-inverse of L [79,20]. In each time step, the 
constrained least-squares reconstruction problem is solved for each cell and for each primitive variable. Matrix L depends 
completely on geometry and is the same for all least-squares problems in a given cell i jk and for all time steps, so its inverse 
can be precomputed and reused to provide computational speedup. Column scaling can be applied to improve conditioning 
of the system. (See [19,20,22] for details in the 2D case.)

A specific technical difficulty in extending the 2D high-order CENO finite-volume method to 3D grids composed of 
general hexahedral cells with nonplanar surfaces, namely, the high-order accurate computation of the surface and volume 
integrals that were introduced in this and the previous subsection, is discussed in Section 2.4.
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2.3. CENO monotonicity enforcement

In order to control spurious oscillations at discontinuities, we use the CENO monotonicity procedure that was introduced 
by Ivan and Groth [19,23] for the 2D Euler equations, and has since been extended to the Navier–Stokes equations [20–22]
and MHD [24] in 2D. The CENO procedure switches between an unlimited high-order accurate reconstruction (piecewise 
cubic in this paper, leading to a fourth-order accurate scheme) and a limited piecewise-linear reconstruction (second-order 
accurate), with the switching based on the smoothness indicator introduced in [19]. The smoothness indicator is computed 
in each cell for every reconstructed variable to determine whether the flow is locally smooth and well-resolved. For cells 
containing non-smooth or under-resolved solution content, the unlimited K -exact reconstruction is switched to limited 
piecewise linear reconstruction. It should be emphasized that local switching to lower order is only performed for those re-
constructed variables that are deemed non-smooth or under-resolved. Note that the CENO scheme is called central because 
both the high-order and the low-order stencils are central with respect to the cell. The method is called an ENO method 
because it satisfies the ENO property of [80], which allows the presence of small spurious oscillations that have a magni-
tude on the order of the truncation error, but it does not allow O (1) Gibbs-like oscillations at discontinuities. The fixed 
stencil used during the CENO reconstruction procedure avoids the complexity of considering multiple non-central stencil 
configurations that characterizes traditional ENO schemes.

Limiting for the second-order method is performed using the procedure developed by Park et al. [81] specifically for mul-
tiple dimensions in conjunction with the slope limiter function of [82]. The use of the multidimensional limiter formulation 
improved the representation of linear functions without unnecessary limiting or clipping of solution content. The limiting 
is applied at the corners of the hexahedral cells and not at the quadrature points for the faces. Apart from monotonicity, 
this limiting strategy offers significant computational advantages by reducing, at least by a factor of three, the number of 
reconstruction evaluations required for the calculation of the limiter.

Full details on the CENO smoothness indicator and switching mechanism are described in the 2D context in [19,23,
20–22], and here we briefly present the generalization of the relevant formulas to 3D. For every cell i jk and primitive 
solution variable we compute a variable S , the smoothness indicator, by

S = α cs

max(1 − α,ε)
, (19)

where α is given by

α = 1 −
∑

γ

∑
δ

∑
ζ (uK

γ δζ (
�Xγ δζ ) − uK

ijk(
�Xγ δζ ))

2

∑
γ

∑
δ

∑
ζ (uK

γ δζ (
�Xγ δζ ) − ūi jk)

2
, (20)

and cs is given by

cs = NSOS −ND

ND − 1
. (21)

Here, NSOS indicates the size of the stencil used for reconstruction, ND (number of degrees of freedom) denotes the number 
of unknown polynomial coefficients (e.g., 20 for K = 3), ε = 10−8 is introduced to avoid division by zero, and �Xγ δζ is the 
centroid of cell γ δζ in the stencil of cell i jk. (The stencil used for computing the smoothness indicator can be chosen 
smaller than the reconstruction stencil. In particular, we compute the smoothness indicator using a 27-cell stencil (with 26 
first-degree neighbors).)

The parameter α, with range −∞ < α ≤ 1, measures how accurately centroidal solution values of neighboring cells can 
be reproduced using the reconstruction for cell i jk: in smooth flow α is close to one, while at cells with a discontinuity 
or an under-resolved feature, α tends away from one. The smoothness indicator S has range −cs < S < cs/ε: for smooth 
variation S is large, and for non-smooth or under-resolved features S is small. We then choose a cut-off value, SC , and 
when S > SC the high-order reconstruction is used, while the limited low-order reconstruction is used otherwise. As in 
previous studies [22,24], values for SC are typically selected in the range of 1000 to 5000. For the simulations presented in 
this paper we choose SC = 1500, except where noted. The form of the smoothness indicator is inspired by the definition 
of multiple-correlation coefficients and least-squares goodness-of-fit testing; see [20] for a more detailed discussion with 
further motivation for the approach.

As discussed in [22], using standard Taylor approximation theory and assuming u is a continuous and differentiable 
function and the mesh is Cartesian with uniform spacing �x, it is rather straightforward to show that

uK
γ δζ (

�Xγ δζ ) − uK
ijk(

�Xγ δζ ) ≈ O
(
�xK+1). (22)

Similarly, it can be shown that

uK
γ δζ (

�Xγ δζ ) − ūi jk ≈ O(�x). (23)

This implies that

α ≈ 1 −O
(
�x2K )

, (24)
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Fig. 3. A general hexahedral cell in physical space having faces with nonplanar vertices (left) to which a reference unit cube (right) is mapped by defining 
a trilinear transformation �X(p, q, s). The position vectors for the hexahedral cell vertices, �X000, �X100, �X010, �X001, �X110, �X101, �X011 and �X111, are mapped 
one-to-one to the vertices of the reference cube, where the Cartesian coordinates in the unit cube, (p, q, s), take binary values. Additionally, the unit 
normals at four points located on the hexahedral face defined by constant coordinate p = 0 are shown.

for smooth resolved solution content. In this case, it is evident that α → 1 and S → ∞ as �x → 0 and this occurs at a rate 
that is significantly more rapid than the formal order of accuracy of the scheme. In this way, the asymptotic accuracy of the 
K -exact reconstruction is recovered as �x → 0. Conversely, for non-smooth solutions it is expected that

uK
γ δζ (

�Xγ δζ ) − uK
ijk(

�Xγ δζ ) ≈ O(1), uK
γ δζ (

�Xγ δζ ) − ūi jk ≈ O(1), (25)

and therefore α will generally not be close to one.
As explained in [24], it is beneficial for stability to detect nearly-uniform regions by considering

ξi jk =
√√√√√√

1

ND − 1

K∑
p1=0

K∑
p2=0

K∑
p3=0

(1≤p1+p2+p3≤K )

(
D K

p1 p2 p3

)2
ξV (p1, p2, p3), (26a)

ξV (p1, p2, p3) = (
V

2
3

i jk

)p1+p2+p3
, (26b)

which measures the variability of solution variable u in cell i jk. (It takes into account derivatives at the centroid of cell i jk.) 
When ξi jk is smaller than a threshold value (low variability), high-order reconstruction is always used, and only when ξi jk
is greater than the threshold the smoothness indicator is computed and the CENO switching mechanism is activated. In 
particular, the smoothness indicator for the solution variable u is evaluated in cell i jk when

ξi jk > εA + εR uijk, (27)

where εA and εR represent absolute and relative variability thresholds, chosen to be 10−5 for the simulations performed in 
this paper, except where noted otherwise. Notice that the ξV term provides an appropriate length scaling for each derivative 
based on the cell volume, and it has only K distinct values due to the common variation range for p1, p2 and p3. Moreover, 
using only the first order derivatives to measure the variability of solution variable u is less expensive and has been found to 
perform equally well in our numerical studies. This simplification is obtained in Eq. (26a) by taking ND = 4 and computing 
the summation terms with K = 1. This simplification is used in our numerical tests.

2.4. High-order integration for hexahedral cells with nonplanar cell faces

A specific technical difficulty in obtaining high-order accuracy on 3D cubed-sphere grids is to properly handle the non-
planar cell faces of the cubed-sphere grid cells. We use a trilinear representation for the nonplanar cell faces which can be 
exploited to obtain sufficiently accurate volume and surface integrals [50–52], as we now briefly explain (see Fig. 3).

Given a hexahedral cell in physical space with vertices defined by position vectors �X000, �X100, �X010, �X001, �X110, �X101, 
�X011, �X111, a trilinear mapping from a reference unit cube can be defined as

�X(p,q, s) = �A + �B p + �Cq + �Ds + �E pq + �F ps + �Gqs + �H pqs, (28)

where, p, q, s are the coordinates in the reference domain, and �A = �X000, �B = �X100 − �A, �C = �X010 − �A, �D = �X001 − �A, 
�E = �X110 − �A − �B − �C , �F = �X101 − �A − �B − �D , �G = �X011 − �A − �C − �D , �H = �X111 − �A − �B − �C − �D − �E − �F − �G (see, e.g., [50]
for details). Note that the vertices of the hexahedral cell in physical space are obtained for (p, q, s) ∈ {0, 1} × {0, 1} × {0, 1}. 
Thus, �X000 = �X(0, 0, 0), �X100 = �X(1, 0, 0), �X010 = �X(0, 1, 0), �X001 = �X(0, 0, 1), �X110 = �X(1, 1, 0), �X101 = �X(1, 0, 1), �X011 =
�X(0, 1, 1), �X111 = �X(1, 1, 1), and the six trilinear surfaces are described by fixing one of p, q and s to 0 or 1. The tangent 
vectors to the coordinate lines are defined by
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∂ �X
∂ p

≡ �Xp(q, s) = �B + �Eq + �F s + �Hqs, (29a)

∂ �X
∂q

≡ �Xq(p, s) = �C + �E p + �Gs + �H ps, (29b)

∂ �X
∂s

≡ �Xs(p,q) = �D + �F p + �Gq + �H pq. (29c)

The determinants of the Jacobians for volume and surface integration are given by

det J(p,q, s) ≡
∣∣∣∣∂(x, y, z)

∂(p,q, s)

∣∣∣∣ = �Xp · ( �Xq × �Xs), (30a)

det Jp(q, s) ≡ ‖�Xq × �Xs‖
∣∣

p=ct, (30b)

det Jq(p, s) ≡ ‖�Xs × �Xp‖∣∣q=ct, (30c)

det Js(p,q) ≡ ‖�Xp × �Xq‖
∣∣
s=ct, (30d)

and the normal vectors to the coordinate planes by

�np(q, s) ≡ − �Xq × �Xs

det Jp

∣∣∣∣
p=ct

, (31a)

�nq(p, s) ≡ − �Xs × �Xp

det Jq

∣∣∣∣
q=ct

, (31b)

�ns(p,q) ≡ − �Xp × �Xq

det Js

∣∣∣∣
s=ct

. (31c)

2.4.1. Volumetric integrals
The volume of hexahedral cell I = i jk is defined by

V I =
˚

Vi jk

dv, (32)

where dv = dx dy dz is the volume element. The cell centroid is

�XI = 1

V I

˚

Vi jk

�g( �X)dv, (33)

where the vector-valued function �g( �X) = [x, y, z]T, which is the position vector in the physical space. Thus, the more gen-
eral procedure of evaluating a volumetric integral of a continuous smooth function, g( �X), over a control volume Vi jk is 
discussed here, which recovers the volume calculation for g( �X) = 1 and, for example, the x-coordinate of the cell centroid 
for g( �X) = x.

To evaluate the volumetric integral,

I =
˚

Vi jk

g( �X)dv, (34)

the variables and integration domain are changed to those of the reference unit cube by making use of the trilinear transfor-
mation, �X = �X(p, q, s), and its transformation Jacobian determinant, det J, [50]. Thus, the volumetric integral, I , is calculated 
in the canonical space (p, q, s) as

I =
1ˆ

0

1ˆ

0

1ˆ

0

g
( �X(p,q, s)

)
det J dp dq ds (35a)

�
Nv∑

m=1

g
( �X(pm,qm, sm)

)
(det J)mωm =

Nv∑
m=1

g( �Xm)ω̃m, (35b)

where Nv is the number of volumetric Gauss points (see Fig. 4). For our fourth-order accurate scheme, we use 27 Gauss 
points in the volume of the hexahedral cell, and 4 Gauss points on each cell face. All volumetric integrals are computed with 
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Fig. 4. Volumetric (green) and surface (red) Gauss quadrature points used in the evaluation of volumetric and surface integrals over a hexahedral control 
volume to achieve fourth-order accuracy. Note that there are 27 volumetric points, and 4 surface points for each hexahedral face. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of volumetric integrals used in the formulation of the CENO finite-volume scheme.

Symbol Description Definition Section

V I volume of control volume I Eq. (32) 2.4.1
�XI centroid of control volume I Eq. (33) 2.4.1
(xp1 yp2 zp3 )I geometric moment of powers (p1, p2, p3) of control volume I about its own centroid Eq. (13) 2.2
ū I mean value of u in control volume I Eq. (10) 2.2
(Q)I average source term in control volume I Eq. (5) 2.1, 3.3.1

Table 2
Surface integrals used in the formulation of the CENO finite-volume scheme.

Symbol Description Definition Section‚
∂VI

�F · �n da flux through the boundaries of control volume I Eq. (5) 2.1

a fifth-order Gaussian integration rule derived with three points in each canonical direction (i.e., a 3 × 3 × 3 product rule 
[52]) and Nv = 27 volumetric Gauss points. In this rule, the basic abscissae and weights generated for a [0, 1] domain [83]
are [0.5, 0.5 ±√

3/5] and [8/18, 5/18, 5/18], respectively. Note that the Gaussian abscissas �Xm and weights ω̃m = (det J)mωm

are needed for initial computation of volumetric integrals of various quantities (see Table 1) but need not be stored during 
the actual simulation, unless required for integration of time-dependent volumetric source terms. Table 1 summarizes the 
different volumetric integrals that need to be computed in the 3D CENO scheme.

2.4.2. Surface integrals
Surface integrals are evaluated in a similar fashion. For example, to evaluate a surface integral along a surface with 

constant p-coordinate, Ap , the following expression is used:

Ip =
¨

Ap

g( �X)da =
1ˆ

0

1ˆ

0

g
( �X(p,q, s)

)
det Jp dq ds (36a)

�
Ng∑

m=1

g
( �X(pm,qm, sm)

)
(det Jp)mωm =

Ng∑
m=1

g( �Xm) ω̃m, (36b)

and the expressions for integrals along surfaces Aq and As follow by cyclic permutation. Here, Ng is the number of Gauss 
points on the surfaces (see Fig. 4). The �Xm and ω̃m = (det Jp)m ωm are stored in our framework to increase the computational 
performance. Table 2 indicates that surface integrals are used to compute the fluxes through cell faces in the 3D CENO 
scheme.

2.5. Multi-block cubed-sphere mesh

As described in detail in [30,31], the cubed-sphere mesh is implemented using an MPI-parallel multi-block method with 
octree data structures, where the six root blocks can be refined recursively by dividing each block into eight smaller blocks 
with the same number of cells as the original block. Boundary conditions are imposed using ghost cells. All blocks have 
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Fig. 5. Example of a degenerate stencil with 33 cells for a reconstructed ghost cell touching a degenerate edge. The cells of the original 33-cell central 
stencil remaining active in the final stencil are colored dark brown. The cells colored in green are replacing the cells identified as “missing” in the original 
stencil, which are colored light brown/transparent. The final stencil has 30 cells, with three cells being “lost” due to the degeneracy of the grid block edge 
and the collapsing of the ghost cells in the corner opposite to the interior cells of the grid block. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the same number of cells, and load balancing is achieved by distributing the blocks over the processor cores as evenly as 
possible, where multiple blocks are normally allocated per core.

2.6. Rotation mechanism for generating consistent stencils near degenerate block edges

In a multi-block grid with regular Cartesian topology throughout the grid, four grid blocks are incident to any edge of 
a grid block. In the cubed-sphere grid of Fig. 1, however, the connectivity of the six root blocks is unstructured (i.e., the 
topology is non-Cartesian), and any grid block edge along one of the eight radial lines that go through the eight corners of 
the cubed-sphere grid have only three incident grid blocks (as depicted in a 2D projection in Fig. 5(c)). We call grid block 
edges along which the number of incident grid blocks is less than four degenerate edges. In our implementation, blocks 
along these edges have missing ghost cells in the opposite corner along the degenerate edge (see Figs. 5(a) and 5(b)) (we 
say that the ghost cells in the corner are collapsed or inactive, see also [31]). This means that the CENO reconstruction 
stencils we use (Fig. 2) need to be adjusted since the topology is different and not all cells used in the original stencils 
are available. In this section we propose a general rotation-based mechanism to automatically derive modified stencils near 
degenerate edges. The mechanism is sufficiently general that it can also be used to derive modified stencils for grid blocks 
that have three degenerate edges intersecting in a corner. This occurs, for example, when considering a cubed-sphere grid 
in which the interior of the inner sphere is filled by a seventh root block with Cartesian topology, see Fig. 6. This seventh 



168 L. Ivan et al. / Journal of Computational Physics 282 (2015) 157–182
Fig. 6. Nested spherical grid comprising one spherical root block filling the interior of a cubed-sphere grid with six root blocks.

Fig. 7. Grid block with three degenerate edges. The green dots indicate the degenerate stencil obtained using the proposed rotation mechanism for a base 
stencil with 81 cells centred about the reconstruction cell (purple). All ghost cells lying in the non-colored blocks are collapsed. The resulting degenerate 
stencil has 66 cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

block may, for example, represent the interior of a lunar or planetary object, in which a magnetic diffusion equation may 
be solved when modeling interaction with the solar wind [84]. The grid inside the interior sphere is generated as in [54]. 
In this type of grid, grid blocks that contain one of the eight corners of the interior root block, have three degenerate edges 
emanating from that corner, see Figs. 6 and 7. (In fact, four degenerate block edges emanate from the corner (including one 
in the radial direction).) We will apply the proposed rotation mechanism about each of the three degenerate edges to obtain 
modified stencils in three-way degenerate blocks in a systematic way.

The rotation mechanism we propose functions as follows. We explain the mechanism for the case depicted in Fig. 5, 
where we want to use the 33-cell base reconstruction stencil of Fig. 2 for computing the reconstruction in a ghost cell of a 
grid block that lies next to the corner of the block. The grid block is one-way degenerate with the degenerate edge in the z
direction (indicated by the dash-dotted line ‘Edge of Collapsed Corner’ in Fig. 5(a)). Since the corner ghost cells are missing 
(light brown/transparent cells), the stencil needs to be adjusted. Consider, for simplicity, the central xy plane of the stencil. 
By folding the two remaining layers of active ghost cells toward each other (as in Fig. 5(c)), it can be seen that the two green 
cells now become distance-two neighbors of the pink cell (where the reconstruction is computed), and can be included 
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in the modified stencil (since distance-two cells are included in the original stencil). More generally, the non-Cartesian 
topology makes the collapsed (inactive) ghost cells unavailable to the stencil, but equivalent cells (in terms of distance) in 
the remaining ghost cell layers are available to complete the stencil. A general mechanism that works for all stencils of 
Fig. 2 can be formulated in terms of a rotation mechanism: in Figs. 5(b) and 5(d), we rotate the collapsed ghost cells that 
were part of the original stencil (light brown) by 90 degrees about the degenerate edge away from the reconstruction cell 
(pink). A rotated cell may land on a cell that does not form part of the existing stencil cells, in which case those new cells 
(the green cells in Figs. 5(b) and 5(c)) are added to the modified stencil. In case a rotated cell lands on an existing stencil 
cell (e.g., the brown cell next to the two green cells), no new cell is added to the stencil. The same mechanism is applied 
to the stencil planes above and below the central plane in Fig. 5, resulting in two more green cells added to the modified 
stencil. As a result, the 33-cell stencil, which was missing seven collapsed ghost cells, is modified by including four new 
rotated collapsed ghost cells, resulting in a final 30-cell stencil. This rotation mechanism provides modified stencils that 
are consistent with the original stencils from Fig. 2 in a double sense: first, the number of cells dropped in the degenerate 
stencil is minimized by incorporating new cells taking into account the new neighbor configuration and distances in the 
non-Cartesian topology; and second, degenerate stencils generated for ghost cells are identical to the degenerate stencils 
generated for the corresponding physical cells in neighboring blocks (which is required for consistency of flux calculation, 
which we rely on for conservation in the implementation of our finite-volume methods).

In terms of implementation, we obtain the coordinates of rotated collapsed ghost cells by the following matrix rotation 
mechanism. For simplicity, we formulate the equations in the 2D setting corresponding to Fig. 5(d). We choose the origin of 
the i j coordinate system for the block in the center of the lower left cell of Fig. 5(d) (which is located in the collapsed ghost 
cell region). Since there are four layers of ghost cells for the block depicted in the figure, the rotation axis (the degenerate 
block edge) is located at coordinate �I0 = (3 + 1/2, 3 + 1/2). Let �I be the coordinate of a collapsed ghost cell that is rotated 
towards the active ghost cell layer about the degenerate block edge (e.g., �I = (2, 3) for the brown cell in Fig. 5(d)), and let 
�I R be the coordinate of its image under the rotation (�I R = (4, 2) for the green cell). The cell coordinate after rotation, �I R , is 
obtained by

�I R = �I0 +R(�I − �I0), (37)

where the rotation matrix for the case of Fig. 5(d) is given by

R =
[

0 −1
1 0

]
. (38)

For three-way degenerate blocks (see Fig. 7), the collapsed ghost cells are rotated about each of the three degenerate edges 
to identify cells that can be added to the modified stencil. Note that the 27-cell stencil we use for our second-order scheme 
is also reduced at degenerate edges, and we use the same rotation mechanism to determine the degenerate stencil. On the 
other hand, the 27-cell stencil cannot be used for cubic reconstruction (fourth-order scheme), since distance-two neighbors
need to be added at least in the directions of the grid lines to have a well-posed reconstruction problem.

We emphasize the value of a systematic automatic procedure for determining these degenerate stencils. While in princi-
ple these special stencils could be hand-derived and hard-coded, this would be a formidable task and would be error-prone 
due to the multitude of cases that occur for the different stencils of Fig. 2 and for the many different geometrical configu-
rations of degenerate blocks in 3D space and their ghost cells and physical cells located at different positions in the block. 
Hard-coding these special cases would also lead to unmanageable additional complexity of the block-parallel 3D computer 
code. For this reason, our automatic procedure to select appropriate smaller stencils using a general rotation-based mecha-
nism is an important ingredient of our approach. Furthermore, the mechanism is attractive because it is sufficiently flexible 
to handle three-way degenerate blocks that occur, for example, when a seventh root block is incorporated into the cubed-
sphere grid to discretize the interior of the inner sphere of the grid.

2.7. Time integration

We use standard explicit second-order and fourth-order Runge–Kutta time integration methods for the second-order and 
fourth-order accurate spatial discretizations to be compared in our time-dependent numerical test problems (see [24,20]
and references therein). For steady-state simulations, we use a five-stage optimally smoothing method regardless of the 
solution accuracy.

3. Numerical results

To validate the proposed 3D CENO method, we perform extensive numerical tests, including CENO reconstruction tests of 
known functions, 3D simulation problems on rectangular box domains, and problems on cubed-sphere grids in various con-
figurations (with five, six and seven root blocks). We include Euler and MHD problems to evaluate fourth-order accurate grid 
convergence and robustness of the high-order method at shocks. We also compare the efficiency of the fourth-order method 
compared to a second-order method [24]. Except when noted otherwise, we employ the local Lax–Friedrichs numerical flux 
function in all tests, as in [24]. We compare fourth-order CENO with the second-order limited method described in [31]. We 
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use the 33-cell stencil from Fig. 2(a) for high-order results, except where noted. For the second-order comparison tests we 
use a standard 27-cell stencil. Large parallel simulation runs were performed on the GPC system at SciNet, which consists 
of 3780 Intel Xeon E5540 (2.53 GHz) nodes with 16 GB RAM per node and a total of 30,240 cores. The cluster is connected 
with a high-speed InfiniBand switched fabric communications link.

In grid convergence studies based on an exact solution, the L1, L2, and L∞ norms of the numerical solution error are 
computed as follows:

L1 = |E|1 = 1

V T

∑
i, j,k

˚

Vi jk

∣∣uK
ijk(

�X) − f ( �X)
∣∣ dv, (39)

L2 = |E|2 =
√√√√ 1

V T

∑
i, j,k

˚

Vi jk

[
uK

ijk(
�X) − f ( �X)

]2
dv, (40)

L∞ = |E|∞ = max
i, j,k

(
1

V ijk

˚

Vi jk

∣∣uK
ijk(

�X) − f ( �X)
∣∣ dv

)
, (41)

where V T is the total volume of the computational domain, f ( �X) is the exact solution evaluated at point �X , and the 
summation is taken over all the grid cells.

3.1. Three-dimensional CENO reconstructions

We describe three examples of smooth function reconstructions to demonstrate the accuracy of the CENO reconstruction 
that lies at the core of the proposed high-order finite-volume scheme. These reconstruction tests proceed by first computing 
highly accurate cell averages for a given function, then using these cell averages to compute high-order polynomial recon-
structions in the cells, and finally computing the error between the original function and the polynomial reconstruction by 
high-accuracy numerical integration over each cell. The order of convergence of this error as grids are refined measures the 
order of accuracy of the CENO reconstruction, which determines the theoretical order of accuracy of the numerical simula-
tion method. The discrete initial data in these cases is generated by accurately integrating the exact solution over cells to 
obtain the required cell averages using the integration procedure outlined in Section 2.4 in combination with an adaptive 
approach [85,20], and this adaptive approach is also used to compute the error with high accuracy.

3.1.1. Problem 1: Reconstruction of a smooth function in a box with distorted grid
To assess the accuracy of the 3D high-order CENO procedure on meshes containing hexahedral cells with nonplanar faces, 

reconstructions of the smooth function f (x, y, z) = (cos(π(y + 1)) − cos(π z))e−π(x+1) are compared to the exact solution 
on distorted meshes for a rectangular box domain. The meshes are distorted in such a way that cell faces are nonplanar. The 
computational domain is the rectangular box defined by 0 < x < 1 and −1 < y, z < 1. Fig. 8(a) illustrates how the interior 
nodal points have been perturbed randomly, and depicts the high-order solution reconstruction obtained on a structured 
3D mesh with eight blocks of 4 × 8 × 8 cells and 2048 total computational cells.

Fig. 8(b) shows grid convergence reconstruction studies with the fourth-order CENO method on a series of meshes. 
We use SC = 1500 for the smoothness indicator cut-off value. The initial mesh has one block with 8 × 16 × 16 cells and 
2048 total cells and the final mesh has 4096 blocks and N = 8,388,608 total computational cells. The expected theoretical 
asymptotic convergence rate of the fourth-order accurate method is achieved in all error norms. As the mesh is refined, the 
slopes of the L1-, L2-, and L∞-error norms approach −4.087, −4.075 and −3.836, respectively, thereby providing validation 
for the proposed trilinear-based CENO reconstruction procedure to general hexahedral cells with nonplanar faces.

3.1.2. Problem 2: Reconstruction of a modulated exponential on the cubed sphere
To demonstrate the spatial accuracy of the high-order hybrid CENO scheme on 3D cubed-sphere grids, we consider 

the solution reconstruction of f (x, y, z) = (1 − R + R2)ex+y+z on the computational domain defined by two concentric 
spheres with inner and outer radius Ri = 1 and Ro = 3, where R denotes the radius. As depicted in Fig. 9(a), this function 
exhibits a large smooth variation spanning several orders of magnitude that is oriented along the line connecting two 
diametrically-opposed cubed-sphere corners, where the function maximum and minimum occur. Therefore, this is a good 
test case for studying how the locally-reduced reconstruction stencil employed by the high-order reconstruction approach 
handles solution extrema occurring at the sector corners of the cubed sphere (where the stencil size is reduced). In Fig. 9(b), 
we compare error norms of the fourth-order CENO reconstruction with a second-order limited K -exact procedure (K = 1) 
which is based on a linear reconstruction with a stencil of 26 first-degree neighbors. The computational meshes used in this 
grid convergence study range in size from 3072 to 100,663,296 cells, using from six to 3072 solution blocks.

The error norms obtained for the two reconstruction procedures show that both schemes achieve the theoretical conver-
gence accuracy in the asymptotic limit. Moreover, it can be observed by inspecting the convergence plot of the fourth-order 
reconstruction that the CENO procedure with a cut-off value of 1500 is able to handle the exponential solution variation 
both accurately and robustly: on the first mesh containing only 8 × 8 × 8 cells per grid sector, the function is under-resolved 
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Fig. 8. Problem 1: (a) Solution reconstruction obtained using the fourth-order CENO scheme on a distorted mesh with 8 blocks of size 4 × 8 × 8 and 
2048 cells; and (b) L1-, L2-, and L∞-error norms for the fourth-order (K = 3) CENO scheme versus the equivalent number of grid nodes in one direction. 
Fourth-order accurate convergence is obtained for all three error norms.

Fig. 9. Problem 2: (a) Solution reconstruction of f (x, y, z) = (1 − R + R2)ex+y+z on a cubed-sphere grid with 384 8 ×8 ×8 blocks and 196,608 cells obtained 
with the fourth-order (K = 3) CENO method; and (b) L1-, L2-, and L∞-error norms for a second-order (K = 1) limited reconstruction and a fourth-order 
(K = 3) CENO approach.

and the high-order CENO procedure avoids creating oscillatory reconstructions by switching to monotonic piecewise linear 
approximations with larger errors but maintaining monotonicity, whereas on more refined meshes the K -exact reconstruc-
tion is retained everywhere and the reconstruction procedure achieves its theoretical accuracy. Thus, the L1, L2, and L∞
norms of the solution error in the asymptotic limit are −2.068, −2.121 and −2.101 for the second-order reconstruction 
method and −4.034, −4.055 and −4.081 for the fourth-order CENO reconstruction. The improved accuracy exhibited by the 
high-order algorithm translates into significant savings in terms of number of computational cells for a targeted solution 
error. For example, even to achieve a modest L1 = 10−3 solution error, the second-order method requires about 100,663,296 
cells, which is more than 500 times the mesh requirements of the high-order method at 196,608 cells, and this factor 
increases as the error level decreases.

3.1.3. Problem 3: Reconstruction of a spherically symmetric function on the cubed sphere
The distribution of errors on cubed-sphere grids is not expected to be uniform at any given radius, for several reasons: 

grid lines have kinks at the boundaries of the six cubed-sphere grid sectors, cells are smaller and more deformed near sector 
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Fig. 10. Problem 3: Error norms of cubic reconstruction at R = 2.6 for f (R) = R−2.5.

boundaries and corners, and the grid topology is unstructured (with varying stencil size) at the sector corners. It is therefore 
of interest to investigate the error distribution in reconstructions obtained by the proposed fourth-order CENO procedure. 
In the previous two test problems we have established that fourth-order convergence is obtained overall (including near 
sector corners where CENO stencil sizes are reduced), but it is also desirable that the magnitude of the error for any grid 
resolution is not excessively larger near sector boundaries and corners than in other grid regions, which we investigate in 
this section. We do this for the function f (R) = R−2.5, which is spherically symmetric, such that any non-uniformity in the 
reconstruction error can only be attributed to non-symmetric variations in the grid and to the differences in the selection 
of the reconstruction stencil at sector corners of the cubed-sphere grid. We reconstruct the function f (R) = R−2.5 on a 
spherical shell with inner and outer radii Ri = 2 and Ro = 3.5. The cubed-sphere grid used consists of six 16 × 16 × 16
blocks and the error distribution is plotted in Fig. 10 on a sphere of radius R = 2.6 in the interior of the domain to avoid 
effects from the boundary condition implementation. Note that local L1 and L2 errors are plotted according to Eqs. (39)
and (40), where the integrals are taken over one cell and are normalized by the cell volume. We find a fairly symmetric 
error distribution, indicating that the least-squares based K -exact reconstruction succeeds in providing almost uniform 
accuracy, including in irregular cells near sector boundaries and corners.
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It is interesting to note in Fig. 10(a) that, on the gnomonic cubed-sphere grid we use, the error is actually the smallest 
near the sector boundaries (away from the corners), and this is likely due to the smaller size of the cells there (and the 
slope discontinuities in the grid lines are small at those locations). The cells near the centre of the sectors are somewhat 
larger and the error is somewhat larger there. Not unexpectedly the error is largest near the sector corners, where grid lines 
have significant slope discontinuities and cells are deformed, and reconstruction stencils have reduced size. Nevertheless, 
the overall difference in error is within a factor of about two.

Comparing stencils with 33, 57 and 81 cells, it is interesting to note that the smaller stencil (33 cells) features a max-
imum L1 error that is about 50% smaller than for the larger stencils. This may seem counter-intuitive at first, but can be 
explained by observing that we use each stencil with a fourth-order accurate reconstruction, so the accuracy of the numer-
ical results depends on the accuracy of the polynomial coefficients that are obtained by the least-squares fitting process. 
Fig. 10 indicates that polynomial reconstruction is more accurate for the smaller-size stencils, which can be expected since 
they use information that is more local to the cell for which the reconstruction is computed, whereas the larger stencils 
also use more distant information. We conclude that the size-33 stencil is the best choice when using fourth-order recon-
struction, while larger stencils may be used when polynomials of degree higher than four are used for reconstruction (in 
which case 33 cells do not provide enough conditions to constrain the polynomial coefficients).

3.2. Three-dimensional flow problems in a rectangular box

We now demonstrate the performance of the fourth-order CENO scheme on two standard test problems for MHD flows 
in rectangular boxes.

3.2.1. Problem 4: Magnetostatic MHD problem
We consider the 3D magnetohydrostatic test case proposed by Warburton and Karniadakis [59]. In this problem the fluid 

is static (i.e., has zero velocity) and the magnetic field is irrotational. The domain of the problem is the rectangular box 
defined by 0 < x < 1 and −1 < y, z < 1. The 3D analytical solution is given by

ρ = 1,

�V = �0,

Bx = (
cos

(
π(y + 1)

) − cos(π z)
)

f (x),

B y = cos(π z) f (y) + sin
(
π(y + 1)

)
f (x),

Bz = sin(π z)
(

f (y) − f (x)
)
,

p = 5(γ − 1),

ψ = 0, (42)

where f (u) = e−π(u+1) and γ = 5/3. Following [59], this test has been performed as an initial value problem with the exact 
solution used to provide the initial condition and the values for the Dirichlet boundary conditions for all domain boundaries. 
Numerical simulations for this problem have been performed with the fourth-order CENO scheme on a series of Cartesian 
meshes ranging in size from 4 × 8 × 8 = 256 to 128 × 256 × 256 = 8,388,608 cells, until the solution reached the steady 
state. We use the local Lax–Friedrichs (LF) flux function.

Fig. 11(a) shows the magnitude of the magnetic field vector obtained using the fourth-order (K = 3) CENO-GLM scheme 
on a Cartesian mesh with one 8 × 16 × 16 block. The L1, L2, and L∞ norms of the error in the x-component of the magnetic 
field, Bx , are given in Fig. 11(b). We use SC = 1500 for the smoothness indicator cut-off value for the CENO results, and also 
include error plots for K -exact reconstruction without switching to the limited second-order scheme. Error measurements in 
the other components of the magnetic field, B y and Bz , behave similarly. The results of the convergence study in Fig. 11(b) 
clearly show that the fourth-order theoretical accuracy is achieved by the numerical scheme in all error norms in the 
asymptotic limit, thereby demonstrating the high-order accuracy of the proposed CENO-GLM formulation for ideal MHD 
simulations.

3.2.2. Problem 5: 3D rotated MHD Shu–Osher problem
To demonstrate the overall robustness and advantages of our fourth-order scheme in regions of rapid smooth variation 

near a discontinuity, we consider a 3D rotated version of the shock tube problem which was proposed by Shu and Osher 
[86], and extended to MHD in [24]. As depicted in Fig. 12(a), a sinusoidal density perturbation is added downstream of a 
purely advecting superfast shock wave (with γ = 5/3). The interaction of the shock wave with the sinusoidal part of the 
density field gives rise to fast oscillations and complex flow features downstream of the shock. The Shu–Osher shock tube 
problem provides an excellent testbed to highlight the benefits of the improved accuracy of high-order numerical schemes, 
while at the same time the presence of the shock puts the robustness and stability of the schemes to test.
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Fig. 11. Problem 4: (a) Fourth-order (K = 3) CENO-GLM results for the magnetic field magnitude on a Cartesian grid with 2048 cells; and (b) L1, L2, and 
L∞ norms of the error in the x-component of the magnetic field, Bx , as a function of mesh resolution.

Fig. 12. Problem 5: (a) Initial density profile in the MHD Shu–Osher problem, rotated with ϕ = 45◦ in the xy plane and β = 35.2644◦ in the xz plane; and 
(b) comparison of the density solution at t = 0.6906. As can be observed from the figure, the fourth-order method produces results that are much closer 
to the non-rotated reference result in the highly oscillatory region, illustrating the benefits of high-order accuracy.

The unperturbed initial conditions (in terms of vector field components along and perpendicular to the x1 direction of 
the unrotated shock tube problem) are given in [24]:

(ρ, v⊥, v‖, vz, B⊥, B‖, Bz, p,ψ) =
{

(1,0,0,0,1,1,0,1,0) for x1 < 4,

(3.5,5.8846,1.1198,0,1,3.6359,0,42.0267,0) for x1 > 4,
(43)

and a sinusoidal density perturbation is added to the downstream part of the density field:

ρl = 1 + 0.2 sin(5x1), ρr = 3.5. (44)

The one-dimensional shock tube problem (along the x1-axis) is rotated to the (1, 1, 1) diagonal direction in the x, y, z
coordinate system, resulting in angles of ϕ = 45◦ in the xy plane and β = 35.2644◦ in the xz plane. The comparison of the 
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density profiles between the fourth-order and second-order methods is shown in Fig. 12(b), where 400 cells are used in 
the x direction with a box length of 15. The grid size is the same in all three spatial directions. We use SC = 180 for the 
smoothness indicator cut-off value (because that produces a result with low diffusion), use the local Lax-Friedrichs (LF) flux 
function, and choose εA = εR = 2 × 10−5. It is clear that, for the same number of points, the fourth-order CENO method 
captures the small-scale flow features much better than the second-order method. At the same time, the high-order CENO 
approach is stable at the shock and does not produce spurious oscillations.

3.3. Three-dimensional flow problems on cubed-sphere grids

We finally describe extensive test results for three model problems on cubed-sphere grids, demonstrating high-order 
accuracy on the cubed-sphere grid with nonplanar cell surfaces including uniform fourth-order convergence at sector bound-
aries and corners of the cubed-sphere grid. We consider cubed-sphere grids with five, six and seven root blocks, and discuss 
performance gains obtained with the high-order method as compared to a second-order scheme.

3.3.1. Problem 6: MHD manufactured solution
To assess the accuracy of the high-order CENO finite-volume scheme on cubed-sphere grids, we present grid convergence 

studies for a 3D steady-state axi-symmetric solution of a MHD plasma on a spherical shell domain flowing outward at 
superfast speeds. This problem was proposed in [31] and represents an adequate 3D test case for solution accuracy on the 
cubed sphere because the 3D cubed-sphere grid is not axi-symmetric. In this test problem, the exact solution is specified 
using the primitive variables as

W(x, y, z) = [
R− 5

2 , x√
R
,

y√
R
, z√

R
+ κ R

5
2 , x

R3 ,
y

R3 , z
R3 + κ, R− 5

2
]T

. (45)

This is an exact solution of ideal MHD if a source term is added to the equations given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0,

1
2 xR− 5

2 (R−1 − 5R−2 − κz),

1
2 yR− 5

2 (R−1 − 5R−2 − κz),

1
2 zR− 5

2 (R−1 − 5R−2 − κz) + 5
2 R− 1

2 κ(1 + κ Rz) + κ R− 1
2 ,

�0,

1
2 R−2 + κz(3.5R−1 + 2κz) + (κ R)2

2 (7 + 5κ Rz)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

As suggested in [31], the perturbation parameter is taken as κ = 0.017 such that the solution has significant latitudinal 
variation yet the flow remains supersonic in the whole domain. Note that in this flow the magnetic field is irrotational and 
aligned everywhere with the velocity. The computational domain used for this convergence study is defined by inner and 
outer spheres of radius Ri = 2 and Ro = 3.5, respectively. To achieve high-order accuracy for this problem, it is necessary to 
provide a high-order approximation to the average source term, (Q)i jk , in the numerical residual (Eq. (6)) by integrating the 
analytical expression of the source term (Eq. (46)) with high-order accuracy.

Moreover, high-order boundary conditions must be imposed, which we achieved by specifying both the inflow and 
outflow boundary conditions using high-order accurate integration of the exact solution in ghost cells to determine the 
ghost cell averages. These ghost cell averages are used to reconstruct the solution in the ghost cells, and the reconstructed 
values at the domain boundaries are used together with an interior solution state to solve a local Riemann problem at 
domain boundaries, in the same way as at interior cell boundaries. We use SC = 1500 for the smoothness indicator cut-off 
value, use the local Lax–Friedrichs (LF) flux function, and use γ = 7/5.

Fig. 13 depicts the error norms in density as a function of grid size. It can be seen that uniform fourth-order convergence 
is obtained with the fourth-order scheme on the cubed-sphere, including near sector corners and boundaries, despite the 
grid irregularities and reduced stencil sizes there. This validates our approach to obtain high-order accuracy using overde-
termined K -exact polynomial reconstruction, trilinear representations of nonplanar cell surfaces, and a rotation mechanism 
to build consistent stencils near sector boundaries and corners. Fig. 13(a) shows that our fourth-order method (with stencil 
size 33) converges with order four for all error norms, and, when compared with the second-order scheme of [30,31], much 
higher accuracy is obtained for a given number of grid cells (as much as four orders of magnitude lower). The number 
of computational cells required to achieve a target discretization error is up to 500 smaller for the fourth-order method. 
These results were obtained on a series of grids ranging in size from six 8 × 8 × 10 initial blocks to 3072 32 × 32 × 40
cubed-sphere blocks, which corresponds to 3840 and 125,829,120 total cells, respectively, using up to 1536 CPU cores. As 
the mesh is refined, the slopes of the L1, L2, and L∞ norms approach in the asymptotic limit −2.06, −2.10 and −2.05, 
respectively, for the second-order scheme, and −4.04, −4.05 and −4.019 for the fourth-order (K = 3) scheme. Fig. 13(b) 
compares error norms using base stencils with 33, 57 and 81 cells. As expected, all three choices lead to convergence with 
fourth-order accuracy. Consistent with what we observed in Fig. 10, the larger stencils lead to somewhat larger errors.
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Fig. 13. Problem 6: Comparisons of L1, L2, and L∞ error norms in solution density for the MHD manufactured solution problem, for the fourth-order CENO 
method and a limited second-order scheme, and for various stencil sizes.

Fig. 14. Problem 7: Computational domain, discretized with a cubed-sphere mesh consisting of five root blocks.

3.3.2. Problem 7: Euler bow shock
Robustness of the fourth-order CENO method in the presence of 3D discontinuous flow features is next demonstrated 

using a 3D Euler bow shock flow around a sphere. We are mainly interested in testing robustness at the bow shock, so we 
simulate only the domain in front of the sphere by considering a cubed-sphere grid with five root blocks as indicated in 
Fig. 14, which illustrates the versatility of our multi-block cubed-sphere approach. The inflow conditions for the bow shock 
are ρ = 1, p = 1.49492, and vx = 2, for a Mach number of approximately 2.825. The simulation domain is defined by two 
concentric spheres with inner and outer radius Ri = 1 and Ro = 8, and the four back panels of the ‘missing sector’ are tilted 
at 15◦ relative to the Cartesian yz plane. We use SC = 1500 for the smoothness indicator cut-off value, use the HLLE flux 
function, and choose γ = 7/5, θ = 1 (see Eq. (15)) and εA = εR = 10−6. A cubed-sphere grid is used with 320 16 × 16 × 32
self-similar solution blocks with a total of 2,621,440 computational cells, using 320 CPU cores. Fig. 15 shows Mach number 
plots indicating that the fourth-order CENO scheme succeeds in producing flow solutions that preserve monotonicity at 
shocks on cubed-sphere grids with general hexahedral elements. Statistics collected at the end of the simulation revealed 
that about 7% of all cells contain non-smooth data in all solution variables (i.e., requiring limited linear reconstruction for 
all flow unknowns). An additional 4% of all cells used linear reconstruction for at least one but not all solution variables. 
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Fig. 15. Problem 7: Hydrodynamic bow shock over a sphere. (a) Three-dimensional representation of the Mach number distribution in the xy plane (the 
green dots mark the solution at cell centroids along the stagnation line passing through the tip of the sphere); and (b) planar representation of the Mach 
number distribution in the xy plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Thus, the limited linear reconstruction procedure was applied in just 11% of the cells in the computational domain. This 
includes cells at the 3D shock surface, and cells in the vicinity of the 3D curved domain boundary.

3.3.3. Problem 8: MHD iso-density vortex: assessment of computational performance
As our final test problem, we discuss the 3D iso-density MHD vortex advection problem from [57]. This is a smooth 

time-dependent 3D test problem with an exact solution, consisting of a magnetized vortex structure in force equilibrium 
that is advected by a uniform flow field.

The stationary 3D iso-density MHD vortex flow from [57] is given by

ρ = 1,

�V = (−y, x,0) κ exp
(
q
(
1 − R2)),

�B = (−y, x,0) μexp
(
q
(
1 − R2)),

p = 1 + 1

4q

(
μ2(1 − 2q

(
R2 − z2)) − κ2ρ

)
exp

(
q
(
1 − R2)),

where μ = κ = 1/(2π), and q = 1. This solution is translated with a background velocity that equals (1, 1, 2).
We first simulate this flow problem on a periodic Cartesian box with x, y, and z varying between [−5, 5]. Initially the 

vortex centre is positioned at (0, 0, 0) and the simulation runs until time t = 10. We use SC = 1500 for the smoothness 
indicator cut-off value, use the HLLE flux function, and use γ = 5/3. Fig. 16(a) depicts the flow solution on the Cartesian 
grid, and Fig. 16(b) demonstrates fourth-order convergence. The initial grid consists of 64 blocks with 8 × 8 × 8 cells, corre-
sponding to a total of 32,768 cells. The largest high-order simulation used 512 blocks with 8 × 8 × 8 cells, corresponding to 
a total of 16,777,216 cells, while the largest low-order simulation used 4096 blocks with 64 × 64 × 64 cells corresponding 
to 1,073,741,824 cells, on 4096 CPU cores. Fig. 16(b) also illustrates the computational gains that can be made by using 
a fourth-order accurate numerical method as compared to a second-order method: for the L1 error level indicated in the 
figure by the horizontal line, the second-order method requires 1,073,741,824 computational cells, while the fourth-order 
method would require 1,507,188 cells (estimated from the graph). (The fourth-order result nearest to the intersection of 
the fourth-order convergence curve and the horizontal line required 2,097,152 cells.) In terms of the total execution time, 
the second-order method requires a total execution time (in core hours) that is greater by a factor of about 700 than the 
fourth-order method to achieve the same error. This is confirmed in Fig. 16(c): in a plot of error versus total compute time, 
the fourth-order curves drop much faster than the second-order curves. The cross-over points between the second-order 
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Fig. 16. Problem 8: Iso-density vortex problem solved on a Cartesian grid in a periodic box.

and fourth-order curves occur early, and, beyond the cross-over points, decreasing target error levels correspond to increas-
ingly higher efficiency of the fourth-order method compared to the second-order method. In other words, the fourth-order 
method starts to be more efficient than second-order already for modest target errors, and becomes more efficient by very 
large factors (easily more than three orders of magnitude in this test) as the required accuracy increases. While in general 
efficiency gains will depend on the problem and the problem size, this example clearly demonstrates the potential efficiency 
gains that can be offered by our high-order discretization scheme.

We have assessed the computational cost of the main steps of the high-order algorithm based on two test cases, the 
hydrodynamic bow shock flow and the convection of the iso-density magnetized vortex, both on the cubed-sphere grid. 
This analysis showed that the high-order explicit CENO scheme spends about 94% of the total CPU time in computing 
the high-order spatial residual; the remaining 6% is spent on the solution update and other operations like exchanging 
ghost cells and synchronizing the global time step. For computing the high-order spatial residual, about 69% of the total 
time is dedicated to performing the high-order CENO solution reconstruction. The remaining 25% consists of polynomial 
evaluations at the interfaces, evaluation of the Riemann fluxes there, and geometry evaluation. The high-order CENO solution 
reconstruction procedure (69% of the total time) consists in performing the least-squares reconstruction (44% of the total 
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Fig. 17. Problem 8: Iso-density vortex problem solved on a cubed-sphere grid with an additional seventh root block filling the interior sphere.

simulation cost), and the computation and analysis of smoothness indicators and the enforcement of solution monotonicity 
in cells deemed as non-smooth (25% of the total simulation cost). The matrix-vector multiplications in the least-squares 
reconstruction represent about 36% of the total simulation cost. It has also been determined that forming the reconstruction 
stencil amounts to less than 1% of the total simulation cost. Note, however, that these values can vary depending on the 
particular flow problem under study.

As a final demonstration of the capabilities of our fourth-order CENO method on the cubed-sphere grid, we report on a 
simulation of 3D iso-density MHD vortex advection on a cubed-sphere grid with an additional root block filling the interior 
of the inner sphere (as in Fig. 6(b)). The radius of the outer and inner spheres are R = 9 and R = 1, respectively, and the 
inner sphere is filled by a seventh root block with Cartesian topology. In this problem the 3D vortex is initially located 
outside the inner sphere (centred at (−2, −2.5, −3)), and is then translated with velocity (1, 1, 2) over the cubed-sphere 
grid, passing through the inner sphere. The simulation is performed until t = 3, when the centre of the vortex is located 
at (1, 0.5, 3). Fig. 17(a) shows the flow solution on the cubed-sphere grid at t = 1.57812, when the vortex passes through 
a corner of the seventh root block. The initial grid consists of 7 blocks with 16 × 16 × 16 cells, corresponding to a total 
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of 28,672 cells The final grid uses 3584 blocks of 32 × 32 × 32 cells corresponding to a total of 117,440,512 cells on 
1792 CPU cores. Fig. 17(b) demonstrates that this simulation achieves fourth-order accuracy for a time-dependent flow 
on the cubed-sphere grid, and as such confirms the validity of our approaches for achieving high-order accuracy on grids 
with nonplanar cell surfaces and using a rotation mechanism to determine degenerate stencils at block boundaries and 
corners with unstructured grid topology. Fig. 17(c) confirms for the cubed-sphere grid the potential efficiency gains of the 
fourth-order method that were observed in Fig. 16(c) for a Cartesian grid. The large performance gains of the fourth-order 
method compared to the second-order scheme indicate that our approach of trilinear geometry representations and general 
rotation-based stencil modification mechanisms at cubed-sphere grid sector edges results in an efficient high-order method 
on the cubed-sphere grid, providing high-order accuracy as demonstrated in Fig. 17(b).

4. Conclusions

We have presented a new fourth-order accurate finite-volume scheme for conservation laws on 3D cubed-sphere grids. 
Our approach is based on the CENO finite-volume method for compressible fluid flows that was introduced for 2D gas 
dynamics and MHD in [19–24]. In this paper we have extended the CENO approach to 3D on general hexahedral grids, 
with particular attention to handling hexahedral cells with nonplanar surfaces using a trilinear surface representation. The 
K -exact multidimensional polynomial reconstruction used in CENO employs overdetermined stencils with a constrained 
least-squares solution procedure, and as such is ideally suited to handle with high-order accuracy the unstructured grid 
topology that occurs at boundaries and corners of the six root blocks of the cubed sphere, where stencil sizes vary and grid 
lines have slope discontinuities. However, an automatic procedure is required to select appropriate smaller stencils at those 
degenerate block boundaries, and we have proposed a general rotation-based mechanism to achieve this goal. Note that our 
approach facilitates high-order CENO simulations on other complex multi-block geometries that may require unstructured 
block connectivity, e.g., complex cylindrical domains for internal flow simulation.

There has been extensive work in recent years on high-order accurate discretizations for cubed-sphere grids, in particular 
in the context of high-order methods for flows on 2D spherical surfaces with curvilinear coordinates that are normally 
combined with separate discretizations in the vertical direction for applications in weather and climate simulation [6–16]. 
However, we describe the first 3D cubed-sphere grid finite volume discretization for conservation laws that is uniformly 
high-order accurate in all three grid directions. Our approach also stands out for its flexibility in allowing additional root 
blocks in the grid, for example, to mesh the interior of the inner sphere with an additional root block. More generally, we 
have successfully extended the CENO methodology to 3D conservation law flows on general hexahedral grids, demonstrating 
the accuracy, robustness and versatility of the high-order CENO approach in 3D. In terms of MHD flows, we extend the 2D 
GLM-based fourth-order MHD solver from [24] to 3D flows on complex cubed-sphere grid domains. In extensive numerical 
tests we have demonstrated fourth-order convergence of the 3D CENO method and robustness against spurious oscillations 
at 3D shocks. We have shown that high-order simulations can be much more efficient than second-order methods for the 
same error level, in terms of the number of computational cells and the execution time.

Future work will include efficient high-order accurate interpolation and restriction for dynamic solution-adaptive re-
finement and coarsening using the 3D CENO method, and the study of efficient linear and nonlinear solvers for implicit 
time integration using our high-order discretizations. Applications of the 3D CENO method on cubed-sphere grids to space 
physics problems are currently being pursued. For example, the interaction of the solar wind with magnetic anomalies at 
the surfaces of the Moon and Mars is a problem of interest.
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