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A high-order, central, essentially non-oscillatory (CENO), finite-volume scheme in combi-
nation with a block-based adaptive mesh refinement (AMR) algorithm is proposed for
solution of the Navier–Stokes equations on body-fitted multi-block mesh. In contrast to
other ENO schemes which require reconstruction on multiple stencils, the proposed CENO
method uses a hybrid reconstruction approach based on a fixed central stencil. This
feature is crucial to avoiding the complexities associated with multiple stencils of ENO
schemes, providing high-order accuracy at relatively lower computational cost as well as
being very well suited for extension to unstructured meshes. The spatial discretization
of the inviscid (hyperbolic) fluxes combines an unlimited high-order k-exact least-squares
reconstruction technique following from the optimal central stencil with a monotonicity-
preserving, limited, linear, reconstruction algorithm. This hybrid reconstruction procedure
retains the unlimited high-order k-exact reconstruction for cells in which the solution is
fully resolved and reverts to the limited lower-order counterpart for cells with under-
resolved/discontinuous solution content. Switching in the hybrid procedure is determined
by a smoothness indicator. The high-order viscous (elliptic) fluxes are computed to
the same order of accuracy as the hyperbolic fluxes based on a k-order accurate cell
interface gradient derived from the unlimited, cell-centred, reconstruction. A somewhat
novel h-refinement criterion based on the solution smoothness indicator is used to
direct the steady and unsteady mesh adaptation. The proposed numerical procedure is
thoroughly analyzed for advection–diffusion problems characterized by the full range of
Péclet numbers, and its predictive capabilities are also demonstrated for several inviscid
and laminar flows. The ability of the scheme to accurately represent solutions with
smooth extrema and yet robustly handle under-resolved and/or non-smooth solution
content (i.e., shocks and other discontinuities) is shown. Moreover, the ability to perform
mesh refinement in regions of under-resolved and/or non-smooth solution content is also
demonstrated.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and motivation

In spite of rapid advances in high performance computing, there are a number of physically-complex flows for which
computational costs can make their numerical solution prohibitive and/or non-routine. Such flows would include but are
certainly not limited to compressible turbulent and turbulent reactive flows. Effective numerical solution methods for such
complex flows may require both high-order discretizations and adaptive mesh refinement (AMR). Moin and Mahesh [1]
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point out that even ENO schemes as high as sixth-order can be too dissipative for the prediction of shock/turbulence
interactions without refinement of the mesh in the vicinity of the shock wave and Jameson [2] has shown that high-order
schemes combined with AMR can be very effective for obtaining high solution accuracy and treating flows containing
vortices, eddies, and turbulence.

In the past few decades, there have been numerous studies of high-order methods. For hyperbolic conservation laws
and/or compressible flow simulations, the challenge has been to achieve accurate discretizations while coping with shocks
in a reliable and robust fashion. The essentially non-oscillatory (ENO) finite-volume schemes first proposed by Harten et
al. [3] provide a robust framework for high-order finite-volume discretizations of hyperbolic systems. The original ENO
scheme is based on an adaptive-stencil strategy, in which the stencil leading to the “smoothest” reconstruction is selected
and stencils containing discontinuities are thereby avoided. Although originally developed for structured regular mesh, Ab-
grall [4] and Sonar [5] have since extended the ENO concept for application to unstructured grids. In addition, weighted ENO
(WENO) schemes have also been developed for both structured and unstructured meshes [6–8]. Nevertheless, the difficulty
with these high-order approaches has been the extension of the method to multi-dimensional problems and large systems
of coupled partial differential equations (PDEs). The computational challenges in these cases are primarily related to sten-
cil selection, particularly for unstructured grids [4,5,9,10], and the poor conditioning of the linear systems that define the
reconstructions for the stencils [9,10]. Moreover, the requirement of using a different stencil for each flow variable is also
somewhat problematic, particularly for PDE systems with many dependent variables. Other perceived challenges associated
with ENO and WENO schemes are their relatively large non-compact stencils which can give rise to difficulties with the ap-
plication of boundary data and efficient parallel implementation of the algorithm. While successful implementations of this
class of finite-volume scheme have been developed, in general the computational costs and complexity of the schemes have
somewhat limited their widespread application. In spite of this, combinations of high-order ENO and WENO schemes with
AMR for both structured and unstructured meshes have been developed and applied to a range of engineering problems.
See, for example, the recent study of Wolf and Azevedo [11].

Other high-order finite-volume schemes have been considered, which may be more readily extended to multi-
dimensional problems and unstructured meshes. For example, Barth and Fredrickson [12,13] previously proposed a high-
order, finite-volume approach for unstructured mesh based on k-exact least-squares reconstruction. Following this work,
Ollivier-Gooch [14,15] more recently proposed a data-dependent, weighted, least-squares, reconstruction procedure (DD-
ENO), that uses a fixed stencil and seeks to enforce monotonicity by introducing data-dependent weights for each point in
the stencil. To circumvent some deficiencies in the DD-ENO procedure, Ollivier-Gooch et al. [16,17] have also considered
a high-order limiting strategy in combination with k-exact reconstruction. Capdeville also recently revisited the DD-ENO
concept and formulated a compact Hermite least-square monotone (HLSM) reconstruction scheme for one space dimension
[18]. Additionally, Colella et al. [19] have proposed a high-order finite-volume method for the solution of linear elliptic and
hyperbolic PDEs in mapped coordinates. This approach was also extended to nonlinear systems of hyperbolic conservation
laws on locally-refined grids by McCorquodale and Colella [20]. To suppress oscillations and ensure monotonicity, a rather
elaborate combination of slope limiters, slope flattening, and artificial viscosity is applied in the latter. The proposed multi-
dimensional limiting strategy in this case employs a modified version of the one-dimensional limiter formulated by Colella
and Sekora [21] for preserving accuracy at smooth extrema.

High-order finite-element schemes have also been considered for problems involving discontinuities. The class of
schemes now generally referred to as discontinuous Galerkin (DG) schemes have gained in popularity. Cockburn et
al. [22–24] were the first to formulate a family of high-order, total-variation-bounded (TVB), schemes for nonlinear systems
of conservation laws referred to as Runge–Kutta, discontinuous, Galerkin (RKDG) methods. By combining elements from both
finite-element and finite-volume methods, a family of flexible high-order numerical schemes were obtained with improved
data locality and treatment for discontinuous solutions. The reduced stencil is beneficial for both boundary-condition and
parallel implementation strategies. A variety of approaches have been considered to achieve non-oscillatory solutions. Both
TVB [24] and WENO-type [25] limiting strategies, as well as artificial viscosity techniques, such as the PDE-based artifi-
cial viscosity model formulated by Barter and Darmofal [26,27], have been considered to avoid spurious oscillations in the
proximity of shocks. Xu et al. [28] have also recently proposed a hierarchical limited reconstruction strategy in combination
with WENO-type linear reconstruction. Despite the considerable interest generated by DG methods over the last decade,
the high-order versions of the schemes do suffer from: (i) a generally more restrictive stability limit for time integration
schemes that is exacerbated as the order is increased [29]; (ii) a relatively high computational cost per cell associated with
the solution of additional unknowns; and (iii) a higher storage cost, particularly when implicit time-marching schemes are
considered. Partly in response to some of these issues, Dumbser et al. [30] have recently formulated a unified framework
for both finite-volume and DG methods in terms of a family of reconstructed DG schemes denoted as P N P M methods.

In other work, Wang et al. [31–33] and Liu et al. [34] have proposed variants of the DG formulation, referred to as
spectral volume (SV) and spectral difference (SD) methods. The DG, SV and SD methods share many similarities, with the
main differences being related to how the degrees of freedom of each scheme are selected and updated. A new perspective
regarding these methods was introduced by Huynh [35], who was able to recover each method as a particular case of
a more general formulation of high-order schemes for hyperbolic conservation laws based on a flux reconstruction (FR)
approach. The SV and SD methods usually fall back on total variation diminishing (TVD) limiting strategies for dealing with
undesirable solution oscillations; however, Yang and Wang [36,37] have recently combined a SD scheme for unstructured
grids with a compact high-order hierarchical moment limiter. More recently, Wang and Gao [38] have generalized Huynh’s
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flux reconstruction approach to mixed grids and formulated a unifying lifting collocation penalty (LCP) method for the
Euler equations and applied it to smooth flows. Additionally, the LCP method is shown to be more efficient in terms of
both memory usage and computational cost as compared to standard DG methods. Alternative high-order schemes, such
as residual distribution schemes [39–42] and finite-difference algorithms [43], have also been developed and are currently
being pursued for application on unstructured and/or multi-block structured meshes.

High-order schemes for PDEs having an elliptic nature have also been considered. In these cases, it is desirable that the
discretization of the elliptic operator remain accurate while satisfying a maximum principle, even on stretched/distorted
meshes [44,45]. Even standard lower-order spatial discretization procedure may not possess both of these characteris-
tics. Barad and Colella have proposed a fourth-order-accurate AMR finite-volume scheme for Poisson’s equation [46] and
Ollivier-Gooch and Van Altena [47] describe a general high-order finite-volume framework for the solution of the advection–
diffusion equation on unstructured mesh. The DG method was originally extended for the treatment of the Navier–Stokes
equations with elliptic operators by Bassi and Rebay [48]. In their approach, the Navier–Stokes equations are recast as a
coupled first-order system and then discretized using a standard DG formulation with a symmetric flux function for the
elliptic fluxes. A similar technique was also advocated in the so-called local discontinuous Galerkin (LDG) method of Cock-
burn and Shu [49] convection–diffusion equations; however, in this case a non-symmetric treatment of the elliptic fluxes
was proposed. The symmetric elliptic flux function of Bassi and Rebay can be shown to be unstable and various penalty
methods have been devised to stabilize and couple the scheme based on computed solution jumps at the cell interfaces. In
other high-order DG work related to diffusion problems, van Leer et al. [50,51] have proposed a recovery-based approach
that allows the DG method to be applied directly to the diffusion equation and eliminates the introduction of the some-
what ad hoc penalty or coupling terms of other DG schemes. An alternative and interesting treatment for diffusion problems
has also been proposed by Gassner et al. [52,53] based on a local analytical approximations to the generalized solution of
the Riemann initial value problem for the diffusion equation. The latter readily allows for the treatment of rapidly varying
values of the coefficient of diffusion [53] and has a number of similarities with the so-called direct discontinuous Galerkin
(DDG) method of Liu and Yan [54], in which the high-order approximations for the elliptic fluxes are evaluated based on
an analytical solutions to the heat equation. Finally, Oliver and Darmofal [55] have applied a DG scheme with PDE-based
artificial viscosity method to the prediction of turbulent aerodynamic flows.

In other high-order treatments for PDEs with elliptic terms, Sun et al. [56] and May and Jameson [57,58] have also
considered the application of the SV and SD methods, respectively, to viscous flows. The latter also applied the SD scheme in
combination with AMR. Additionally, Kannan and Wang [59–62] have analyzed and evaluated various elliptic flux functions,
including those based on the LDG, penalty, and DDG methods, for use with the SV approach and shown the importance
of the elliptic flux discretization procedure for high-order discretizations on unstructured grids. Haga et al. [63] have also
extended the so-called correction procedure via reconstruction (CPR) formulation to solve the Navier–Stokes equations on
three-dimensional mixed grids composed of tetrahedrons and triangular prisms. Finally, in other earlier work, De Rango and
Zingg [64] considered the application of high-order finite-difference methods to the prediction of turbulent aerodynamic
flows.

In spite of the advances in high-order accurate methods, there is still no consensus for a robust, efficient, and high-order
accurate scheme that fully deals with all of the aforementioned issues and is applicable to arbitrary meshes and complex
boundary-condition problems. Examples of the complexities that can arise in the specification of boundary values for solu-
tion variables would include boundary conditions for three-dimensional geometries with irregular and complex topologies,
constant mass-flow boundary conditions for internal flow applications, and time-varying boundary conditions involving in-
terfaces between stationary and rotating frames in turbomachinery simulations. In the current study, the high-order central
ENO (CENO) cell-centred finite-volume scheme proposed by Ivan and Groth [65,66,122] for inviscid flows is extended to the
solution of the Navier–Stokes equations governing two-dimensional, compressible, viscous flows on body-fitted multi-block
mesh. The CENO discretization of the inviscid (hyperbolic) flux is based on a hybrid solution reconstruction procedure that
combines the unlimited high-order k-exact least-squares reconstruction technique of Barth [12] based on a fixed central
stencil with a monotonicity-preserving, limited, piecewise, linear least-squares reconstruction algorithm [12]. Switching in
the hybrid procedure is determined by a solution smoothness indicator that specifies whether or not solution content is
resolved on the mesh. Limited reconstruction is applied to computational cells with discontinuous and under-resolved so-
lution content and the high-order, unlimited, k-exact reconstruction scheme is used for cells in which the solution is fully
resolved. To guarantee a consistent k-order accurate numerical scheme on arbitrary meshes, the proposed discretization of
the viscous (elliptic) flux is based on a k-order accurate, average, interface gradient that can be derived from the unlimited,
k-exact, cell-centred reconstruction. In this way, the same solution reconstruction is used in computing both inviscid and
elliptic fluxes. The high-order CENO scheme is combined with a flexible, block-based, hierarchical data structure to facil-
itate parallel implementation via domain decomposition and automatic solution-directed mesh adaptation on body-fitted
multi-block quadrilateral mesh [67–69]. An h-refinement criterion based on the solution smoothness indicator is proposed
to control the refinement of the multi-block AMR mesh.

The key advances in the proposed high-order CENO finite-volume method include:

• the development of a hybrid single-stencil reconstruction procedure as directed by a rather effective and robust smooth-
ness indicator;
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• the formulation of a consistent high-order treatment of the viscous fluxes based on a uniquely defined k-order accurate
interface gradient;

• the high-order treatment for non-rectilinear boundaries; and
• the extension of the high-order approach for use in multi-block AMR mesh as directed by a new and novel h-refinement

criterion.

By adopting a hybrid approach based on a single central stencil for all solution variables, the CENO scheme overcomes
some of the practical drawbacks of other ENO and WENO schemes for application to multi-dimensional problems with large
numbers of unknowns, especially for unstructured meshes, which are: (i) stencil selection; (ii) high computational cost
associated with multiple reconstructions on different stencils for each dependent variable; (iii) issues with singular stencils
[10]; and (iv) the occurrence of negative weights [70]. Other issues associated with loss of strict monotonicity [4,71] and
tuning of WENO weights to recover the central stencil, recognized to be the most accurate stencil, in the smooth parts
of the solution [72,73] are also dealt with. The proposed central treatment for the elliptic flux, based on averaging of the
reconstructed solution and its gradient, is rather inexpensive to compute and provides a consistent approach in which the
hyperbolic and elliptic fluxes are of equal order and yet it avoids issues with solution decoupling and severely restrictive
stability limits.

In what follows, the proposed high-order CENO finite-volume method, block-based AMR procedure, and high-order treat-
ment of boundary data are all described. Specifically, the next section, Section 2, reviews the governing equations of interest
here. This is followed in Section 3 by a detailed description of the high-order CENO finite-volume scheme, including the
high-order evaluation of the numerical residual containing both inviscid and viscous fluxes. The same section provides de-
tails of the hybrid CENO reconstruction procedure, smoothness indicator, high-order boundary conditions implementation.
The combination of the high-order CENO algorithm with a block-based AMR scheme, previously developed for second-order
accuracy, is then described in Section 4, with an emphasis on the algorithmic extensions required to maintain high-order
solution accuracy on the AMR mesh. Finally, the properties of the proposed CENO scheme are investigated in Section 5
by comparing numerical solutions to analytical results for a range of problems pertaining to an advection–diffusion model
equation. The accuracy of the hyperbolic flux discretization is demonstrated for solutions of the Euler equations governing
inviscid flows. Moreover, the capabilities of the proposed approach for laminar viscous flows governed by the Navier–Stokes
equations are demonstrated by comparing numerical predictions to other numerical and experimental results reported in the
literature for flow past a NACA0012 airfoil as well as a circular cylinder. Results obtained with the CENO scheme with AMR
are also described to illustrate the capabilities of the proposed combined approach. For additional computational details and
discussions of the CENO scheme, the reader is referred to the dissertation of Ivan [66].

2. Conservation equations

The proposed high-order finite-volume method is applied herein to solutions of both a scalar advection–diffusion model
equation and the Navier–Stokes equations governing laminar compressible flows. The advection–diffusion equation is a
convenient mathematical model for the development of numerical methods for it contains many of the features of more
complicated PDEs, yet retains a simplicity that permits direct analysis. The particular form considered here is

∂u

∂t
+ �∇ · ( �V (�r)u

) = �∇ · (κ(�r) �∇u
) + φ(�r, u), (1)

where t is the time, u is the solution, �V is the advection velocity vector, κ is the diffusion coefficient, and φ is a non-linear
source term. Here, �V and κ are most generally functions of the position vector, �r. Based on the relative magnitudes of
the advective and diffusive fluxes, solutions of the equation can range from those having a more hyperbolic nature and
governed by wave propagation phenomena to those having a more elliptic nature and governed by diffusive processes. It
is desirable that numerical solution schemes do not introduce excessive artificial dissipation, large dispersive error, and
spurious oscillations arising from the discretization of the hyperbolic flux, and provide accurate discretizations of the elliptic
flux while satisfying a maximum principle [74,75].

The Navier–Stokes equations governing viscous compressible gaseous flows have the general weak conservation form

∂U

∂t
+ �∇ · �F = ∂U

∂t
+ �∇ · �FH(U) + �∇ · �FE(U, �∇U) = S, (2)

where U is the vector of conserved solution variables, and �F is the solution flux dyad, and S is a source vector representing
various physical phenomena and/or body forces. The solution flux, �F, is the sum of a hyperbolic (inviscid) term, �FH, which
depends on the solution vector and accounts for transport by wave phenomena and an elliptic (viscous) term, �FE, associated
with diffusion processes and dependent on both the solution vector and its gradient. In the absence of body forces, such as
gravity, S = 0 and, for two-dimensional planar flows, the solution vector, U, is given by

U = [ρ, ρvx, ρv y, ρe]T, (3)

where ρ is the gas density, vx and v y are the velocity components in the x- and y-coordinate directions, e = p/(ρ(γ −
1)) + (v2

x + v2
y)/2 is the specific total energy, p = ρRT is the pressure, T is the gas temperature, R is the gas constant, γ
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is the specific heat ratio. The components of the hyperbolic flux dyad, �FH(F,G), and elliptic flux dyad, �FE(Fv,Gv), are in this
case given by

F = [
ρvx,ρv2

x + p,ρvx v y, vx(ρe + p)
]T

, G = [
ρv y,ρvx v y,ρv2

y + p, v y(ρe + p)
]T

, (4)

and

Fv = −[0, τxx, τyx, vxτxx + v yτxy − qx]T, Gv = −[0, τxy, τyy, vxτyx + v yτyy − qy]T. (5)

The terms τxx, τyy and τxy are the components of the fluid stress tensor, ��τ = 2μ(
��S − ��I �∇ · �V /3), where μ is the dynamic

viscosity and ��S = [ �∇ �V + ( �∇ �V )T]/2 is the strain rate tensor. The heat flux vector, �q = [qx,qy], follows from Fourier’s law and
is given by �q = −κ �∇T , where κ is the thermal conductivity. For a calorically perfect polytropic gas, the ratio of specific
heats, γ , is a constant and the specific heats are C v = R/(γ − 1) and C p = γ R/(γ − 1). In this case, Eq. (2) can be then
re-written as

∂U

∂t
+ ∂

∂x
(F + Fv) + ∂

∂ y
(G + Gv) = 0. (6)

Note that in two space dimensions, the advection–diffusion equation above can also be written in the form of Eq. (6). By
defining the scalar fluxes f = V xu, g = V yu, fd = −κ∂u/∂x, and gd = −κ∂u/∂ y, and source s = φ, one can write

∂u

∂t
+ ∂

∂x
( f + fd) + ∂

∂ y
(g + gd) = s. (7)

3. High-order CENO finite-volume scheme

A high-order, cell-centred, CENO, finite-volume scheme is proposed for solving mixed type systems of conservation laws
as given in Eqs. (6) and (7) on body-fitted multi-block quadrilateral mesh in conjunction with a block-based adaptive mesh
refinement technique. Use of this particular grid structure and AMR strategy has been shown to allow highly efficient and
scalable parallel implementations of finite-volume methods [67–69].

Each block of the body-fitted multi-block grid is associated with a structured quadrilateral grid with boundary geometry
defined by possibly up to four body-fitted curved boundaries. The latter are represented as piecewise Lagrange polynomial
splines of an order consistent with that of the finite-volume scheme. Interior inter-block boundaries are always represented
by straight line segments and only block boundaries associated with the boundaries of the physical domain are represented
by the body-fitted splines. Schematic representations of geometric elements of the grid encountered at block boundaries
of a body-fitted quadrilateral mesh are depicted in Fig. 1(a). The standard quadrilateral computational cells, used for all
interior cells and non-curved boundaries, as well as the special curved-boundary cell, introduced here specifically for the
high-order treatment of curved physical boundaries, are both shown in Figs. 1(b) and 1(c), respectively. The introduction
of the latter is a distinctive feature of the present method compared to previous lower-order implementations on similar
meshes [67–69,76,77]. These generalized computational cells are introduced to represent in an accurate fashion the curved
physical boundaries of the mesh. Note that the connector between any two adjacent mesh nodes on the curved boundary
is a piecewise-smooth curve defined by the boundary splines of the grid block.

3.1. Semi-discrete form

The proposed finite-volume solution method starts with the integral form of Eqs. (6) and (7) applied to the two-
dimensional polygonal control volume representing the computational cell (i, j) as shown in Fig. 1 and then makes use
of the divergence theorem to arrive at the following semi-discrete form:

d

dt
Ui, j(t) = − 1

Ai, j

N f∑
l=1

NG∑
m=1

(ω�F · �n 	
)i, j,l,m + Si, j = Ri, j(U), (8)

where

Ui, j = 1

Ai, j

∫ ∫
Ai, j

U dx dy, (9)

is the average value of the conserved solution vector for cell (i, j),

Si, j = 1

Ai, j

∫ ∫
A

S(U)dx dy, (10)
i, j
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Fig. 1. Features of multi-block, body-fitted, quadrilateral mesh showing: (a) schematic representation of geometric elements of the grid at the block bound-
aries of body-fitted mesh; (b) standard straight-edge quadrilateral computational cell; and (c) special curved-edge boundary cell for high-order treatment
of curved physical boundaries considered in this study. Cardinal directions (i.e., N, S, E, W) relative to the element centroid, �Xi, j , are used to identify each
face and node of the computational cells. Outward normal vectors, �n, and lengths, 	
, of the cell edges/faces are also shown.

is the corresponding average value of the source vector, Ri, j is the so-called residual vector, and Ai, j is the cell area.
An NG -point Gaussian quadrature integration procedure is used to evaluate the solution flux along each of the N f faces
of the cell, where ω is the quadrature weighting coefficient and 	
 and �n are the length of the cell face and unit vector
normal to the cell face or edge, respectively.

The coupled non-linear system of ordinary differential equations (ODEs) given by Eq. (8) describe the time evolution of U.
The proposed finite-volume scheme involves three main steps when integrating the ODEs forward in time: (i) reconstruction
in which an approximation for U( �X) is obtained within each computational cell; (ii) residual evaluation in which the residual
vector, R, is evaluated for each cell based on the reconstructed solution; and (iii) time integration, in which a time-marching
scheme is used to advance the solution to the next time level based on the residual. Details about each of these three steps,
with an emphasis on approaches used to ensure high-order spatial accuracy, now follow.

3.2. High-order residual evaluation

High-order solutions of Eq. (8) are sought here by evaluating the residual vector, Ri, j , to high order, based on high-order
reconstruction, an upwind discretization of the hyperbolic flux, and a centrally weighted discretization of the elliptic flux.
A high-order evaluation of the net flux through the boundary of a computational cell first requires the selection of the
number of Gauss quadrature points, NG , required for the evaluation of the integrated cell face flux, �F · �n, to the desired level
of accuracy [13]. The sum of the non-linear hyperbolic and elliptic fluxes, �F · �n = �FH(U) · �n + �FE(U, �∇U) · �n, must be estimated
at each quadrature point, m, of a cell face, l, with a flux function that approaches the true flux at the rate imposed by the
expected order of accuracy in the asymptotic limit of infinitely small mesh size. This requirement translates to a similar set
of conditions on the accuracy of the solution vector, U, and its gradient, �∇U, used in calculating the hyperbolic and elliptic
fluxes. In addition, the flux function should produce a dissipative and stable scheme.

The hyperbolic flux at each cell interface is determined here using an upwind flux formulation as originally pioneered
by Godunov [78]. The flux is based on the solution of a local Riemann problem with discontinuous initial data defined by
left and right solution quantities, Ul and Ur [79,80]. The hyperbolic numerical flux at each quadrature point is thus given by

�FH · �n = FH(Ul,Ur, �n), (11)
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where the flux function FH returns the solution to the Riemann problem in a direction defined by the cell face normal,
�n, and with left and right solution values, Ul and Ur . Both exact and approximate Riemann solvers can be used to solve
the Riemann problem and evaluate the numerical flux [79,80]. Details of the flux functions considered herein are given in
Sections 3.4 to follow. The left and right solution states, Ul and Ur , are determined by performing cell-centred, piecewise,
k-exact, polynomial reconstruction within each computational cell. As the truncation error for k-order exact reconstruction
is O(	xk+1), a (k + 1)-order accurate spatial discretization can be achieved for smooth hyperbolic problems.

Numerical values for the elliptic fluxes, �FE · �n, must also be evaluated at the quadrature points of each cell face. In general,
the elliptic fluxes will have the form

�FE · �n = FE(U, �∇U, �n), (12)

where FE is the corresponding elliptic flux function that returns the flux in direction �n given the cell interface values of
the solution, U, and its gradient �∇U. In the proposed scheme, the unlimited, cell-centred, k-exact, polynomial reconstruc-
tion used in the hyperbolic flux evaluation is re-used (to avoid considerable additional computational effort) to obtain a
(k + 1)-order accurate value of the interface solution, U. Direct differentiation of this k-exact reconstructed solution is also
then used to obtain a k-order accurate value of the interface gradient, �∇U (i.e., one order less accurate due to differentia-
tion).

In this way, a consistent spatial discretization scheme is obtained for both hyperbolic and elliptic fluxes. The over-
all accuracy of the proposed scheme is k-order accurate on arbitrary and irregular meshes (including meshes resulting
from the application of AMR). This is achieved through the use of k-exact solution reconstruction (i.e., reconstruction with
(k + 1)-order truncation error for the solution itself and, hence, the hyperbolic fluxes) without relying on regularity of the
grid and error cancellation. Most finite-volume methods generally use (k − 1)-exact solution reconstruction to achieve a
k-order accurate scheme. The use of k-exact reconstruction is particularly helpful in ensuring uniform accuracy on irregular
and solution adapted mesh. Appropriate choices for the evaluation of U, �∇U, and the elliptic flux function, FE, at the cell
face are discussed below in Section 3.5.

The number of Gauss quadrature points used in the integration of the numerical flux on each cell face is selected to
match the order of the reconstruction. Recall that an NG -point Gaussian quadrature rule integrates polynomials of degree
2NG − 1 exactly, providing a 2NG -order accurate formula [81]. To obtain a consistent k-order accurate scheme for both
hyperbolic and elliptic operators, with (k + 1)-order solution reconstruction and k-order gradient representation following
from k-exact reconstruction, requires a k-order accurate quadrature rule. Hence, the practice adopted here is to use one
quadrature point (NG = 1) for second-order schemes (piecewise quadratic, k = 2, reconstruction) and two quadrature points
(NG = 2) for third- and fourth-order schemes (piecewise cubic, k = 3, and quartic, k = 4, reconstruction). Note that piecewise
linear, k = 1, reconstruction with one quadrature point is also appropriate for a second-order treatment of the hyperbolic
fluxes, but (k = 1)-exact reconstruction is problematic for the evaluation of elliptic fluxes. For the latter, second-order
accuracy is only formally achieved by relying on error cancellation on uniform regular grids.

Lastly, Gaussian quadrature is again used to evaluate the cell-average value of the source vector, Si, j , and its contribution
to the solution residual for each quadrilateral cell as defined by Eq. (10) above. As with the cell face flux integration,
k-exact reconstruction requires a k-order accurate quadrature rule for the source vector, which in this case involves a
two-dimensional integral. Thus, for piecewise quadratic, k = 2, reconstruction, a single quadrature point is used in evaluating
Si, j whereas, for piecewise cubic, k = 3, and quartic, k = 4, reconstruction, four quadrature points (two quadrature points
per dimension) are used in computing the cell-average source vector.

3.3. High-order CENO reconstruction

As with other finite-volume methods, a piecewise polynomial approach is used to perform the solution reconstruction
within each computational cell. However, rather than selecting or weighting reconstructions from multiple stencils, a hybrid
solution reconstruction procedure is used that combines the high-order k-exact least-squares reconstruction technique of
Barth [12], based on a fixed central stencil, with a monotonicity preserving limited piecewise linear least-squares reconstruc-
tion algorithm [12]. The central stencil is optimal in the sense that it generally provides the most accurate reconstruction.
In case of unstructured meshes, the central stencil be interpreted as the stencil that includes all nearest neighbour cells.
The limited reconstruction procedure is applied only to computational cells with under-resolved solution content, thereby
avoiding undesirable solution oscillations. The unlimited k-exact reconstruction scheme is used for all cells in which the
solution is fully resolved. Switching in the hybrid procedure is determined by a solution smoothness indicator. Accuracy to
any order is possible by simply expanding the support for the cell-centred reconstruction. Direct benefits and/or advantages
of the proposed reconstruction procedure are two-fold: (i) reconstruction on multiple stencils, which in some cases can lead
to poorly conditioned linear systems, is avoided; and (ii) the same fixed stencil is used for each variable and thus solution
of the least-squares problem associated with reconstruction can be made very efficient. All of this also makes the hybrid
CENO algorithm well suited for application to unstructured mesh. As will be shown, mesh adaptation can also be directed
based on the ability of the scheme to differentiate between resolved and under-resolved or non-smooth solution content.

For hyperbolic conservation laws, the CENO reconstruction leads to a finite-volume scheme that is high-order accurate
for smooth solutions, even at extrema, and avoids the appearance of O (1) numerical oscillations in under-resolved regions
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and for solutions containing strong discontinuities and/or shocks. However, the formal ENO property of uniform accuracy
is lost for non-smooth solutions. Note that Harten and Chakravarthy [82] previously also proposed a technique to obtain
an ENO-like reconstruction on a fixed central stencil by hybridizing a high-order reconstruction with a first-order formu-
lation. Switching in their proposed hybrid scheme was based on undivided differences and the TVD property [83] and not
directly on the smoothness of the reconstructions. More recently, Haselbacher [10] explored the use of fixed stencil central
reconstructions in the formulation of WENO schemes for unstructured mesh. Haselbacher’s approach, is quite different to
the current approach and schemes of accuracy greater than second order (i.e., k = 1) were not considered.

The proposed reconstruction scheme depends intimately on the average value of the solution within each cell of the
stencil. For non-linear systems of PDEs, the reconstruction can be theoretically applied to any of the dependent variables,
regardless of their physical meaning and whether or not they are conserved, primitive, or characteristic quantities. Never-
theless, as the cell-averaged values of the conserved solution variables (e.g., U = [ρ,ρvx,ρv y,ρe]T for the Navier–Stokes
equations) are updated directly at each time level or iteration in a time-marching scheme, it would seem natural to perform
the reconstruction using the conserved variables. While Zhang and Shu [84,85] have recently developed a rather elegant
approach that allows the positivity-preserving high-order reconstruction of conserved variables and this approach has been
applied to non-linear systems of conservation laws, including the equations governing inviscid compressible flows [85,86]
and ideal magnetohydrodynamics [86], in many cases it is often preferable to perform the reconstruction in terms of other
derived or so-called primitive variables (e.g., W = [ρ, vx, v y, p]T for the Navier–Stokes equations) in order to control more
effectively monotonicity, positivity, and realizability of key physical solution values. This is the approach adopted here. To
convert average conserved into average primitive solution values and/or vice-versa, a simple and straightforward point-wise
mapping is used. A potential weakness of the latter is that the use of a point-wise mapping does not provide an exact
conversion between the cell-averaged conservative and primitive variables when the relationship between variables is non-
linear. Conversion errors are theoretically introduced. Recently, McCorquodale and Colella [20] proposed a mapping which
provides a fourth-order accurate conversion between the cell-averaged values of conserved and primitive quantities. While
a similar procedure is not considered here, numerical experiments, the results of which are in Section 5.6 to follow, have
demonstrated that the errors introduced by the point-wise conversion do not detrimentally affect the order of accuracy of
the proposed CENO scheme.

3.3.1. k-exact least-squares reconstruction
In piecewise k-exact polynomial reconstruction [12], it is assumed that a solution variable, u, at any location, �X , in

computational cell (i, j) of a two-dimensional space has the general form

uk
i, j(

�X) =
k∑

p1=0

k∑
p2=0

(p1+p2�k)

(x − x̄i, j)
p1(y − ȳi, j)

p2 Dk
p1 p2

, (13)

where (x, y) are the Cartesian coordinates of the point of interest, (x̄i, j, ȳi, j) are the coordinates of the cell centroid, �Xi, j , k
is the order of the piecewise polynomial interpolant, the summation indices p1 and p2 satisfy the condition that p1 + p2 � k,
and Dk

p1 p2
are the coefficients of the k-exact polynomial approximation. The latter are in general functions of the mean or

average solution, ūi, j , within the cell and its neighbours. For a two-dimensional reconstruction, the number of coefficients,
ND , for a particular order, k, is given by ND = (k + 1)(k + 2)/2. For example, cubic reconstruction, k = 3, requires the
specification of ND = 10 polynomial coefficients for each solution variable in terms of cell-averaged solution values.

In determining Dk
p1 p2

, the following conditions should be satisfied by the k-exact reconstruction procedure:

• the reconstruction procedure must reproduce exactly polynomials of degree N � k;
• the reconstruction must preserve the mean or average value within the computational cell; and
• the reconstruction must have compact support.

The first condition is equivalent to

uk
i, j(

�X) − uexact( �X) = O
(
	xk+1), (14)

which is assumed to hold anywhere in the vicinity of cell (i, j). The second condition requires the integral of the piecewise
polynomial approximation to recover the cell average

ūi, j = 1

Ai, j

∫ ∫
Ai, j

uk
i, j(

�X)dx dy. (15)

Finally, the third condition involves the number and locality of neighbouring solution values used in the supporting stencil.
The minimum size of the compact stencil is determined by the number of required unknown coefficients, but in practice,
additional neighbours are included to make the reconstruction more robust in the presence of stretched meshes and solution
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gradients not aligned with the mesh. For body-fitted quadrilateral mesh of interest here, fixed central stencils which include
the 8 nearest neighbour cells for k = 1 and 24 nearest neighbours for k = 2, 3, and 4 are used.

The coefficients, Dk
p1 p2

, can be computed by assuming that the k-exact polynomial for uk
i, j(

�X) given in Eq. (13) above
extends to all computational cells within the supporting stencil. This results in an overdetermined system of linear equations
for Dk

p1 p2
which can then be solved via a least-squares approach. The overdetermined linear system may be written as

Ax − b = e, (16)

where the left-hand-side coefficient matrix, A, depends only on the mesh geometry and can be largely pre-computed and
re-used. The right-hand-side vector, b, contains the average values of the solution values in each cell and x is a vector
containing the desired coefficients for the k-exact reconstruction. The vector, e, represents the error associated with the
least-squares solution, which is minimized in a least-squares sense. To localize and improve the accuracy of the recon-
struction for stretched meshes with surface curvature, geometric weights of the form wγ ,δ = |	 �Xγ ,δ|−θ are applied to the
equation for each neighbouring control volume, (γ , δ), where 	 �Xγ ,δ = �Xγ ,δ − �Xi, j and appropriate values for the exponent
θ are either one or two [87]. The preservation of the average value, ūi, j , within the reconstructed cell can be either explicitly
enforced by expressing the coefficient, Dk

00, as a function of the other unknowns or by solving a linear equality constrained
least-squares problem with the full set of equations. The former technique gives rise to a computationally more efficient
implementation and is recommended here.

Both Householder QR factorization and singular value orthogonal decomposition (SVD) can be used to solve the weighted
least-squares problem of Eq. (16) [88]. In general, the latter is particularly advantageous when used in the proposed CENO
reconstruction scheme. The SVD approach permits the computation of a pseudo-inverse matrix, A†, with which the solution
to the least-squares problem is then given by the matrix–vector product x = A†b [89]. The use of a single fixed stencil, the
same for all dependent variables, allows the pseudo-inverse matrix to be stored and re-used in the reconstruction of all
variables. The repeated evaluation of the pseudo inverse is avoided and the computation of the coefficients associated with
the reconstruction polynomials then reduces to the evaluation of simple matrix–vector products, which can be performed
rather efficiently. Storage and re-use of A† was found to reduce significantly the computational costs of performing the high-
order reconstructions. Although requiring some additional storage, the added memory requirements are not that substantial
and are generally readily available on most modern distributed memory architectures.

One concern with k-exact reconstruction is that the stencil size and hence the size of the least-squares problem grow
with the order of the scheme. This can potentially lead to issues with the conditioning and/or invertibility of the least-
squares problem. Aside from the stencil size and desired order of the polynomial reconstruction, the conditioning of the
least-squares system will in general be very dependent on features of the mesh, such as the cell size or spacing, cell aspect
ratio, and irregularity of the mesh topology. Recently, Jalali and Ollivier-Gooch [90] have shown that a rather simple column-
scaling procedure can be applied to the least-squares problem to improve the conditioning and make it independent of the
mesh size and aspect ratio. This column-scaling conditioning of the least-squares problem can be introduced by defining a
diagonal column-scaling matrix, DC, with diagonal entries that are equal to the inverse of the maximum absolute value of
the entries of each column of matrix A. Post multiplication of A by DC results in the product, ADC, the entries of which
are all in the range [−1,1]. As a result, the conditioning of this modified reconstruction matrix is significantly improved
compared to the original. With the column scaling, the modified least-squares problem can be expressed as

ADCD−1
C x − b = ADCz − b = e, (17)

and the solution for the reconstruction coefficients, x, is then obtained from the scaled solution of the least-squares problem,
z, by using x = DCz. In the case that the SVD approach is used to solve the least-squares problem, the solution is then given
simply by x = DC(ADC)†b where the matrix DC(ADC)† can be pre-computed and stored for re-use.

To examine these conditioning issues, the condition number, κ(A), of the coefficient matrix, A, for least-squares problems
corresponding to different reconstruction orders, k, on several representative quadrilateral meshes was analyzed. Table 1
provides the maximum values of the computed condition number as defined by the L∞-norm of A and its pseudo-inverse
A† given by

κ∞(A) = ‖A‖∞
∥∥A†

∥∥∞, (18)

for linear (k = 1), quadratic (k = 2), cubic (k = 3) and quartic (k = 4) solution reconstructions on Cartesian grids with aspect
ratio, ar , of 1, 240, and 14,012, respectively, as well as on two quadrilateral meshes: one a smooth regular mesh and the
other an irregular mesh, having the geometry depicted in Fig. 4. Quartic reconstruction, which produces a 4th-order scheme
for both hyperbolic and elliptic fluxes, was deemed to be the highest order of interest and thus reconstruction orders up
to k = 4 were examined. The effect of different geometric weighting formulations, wγ ,δ , on the condition number was also
considered, with both inverse (θ = 1) and inverse squared (θ = 2) weighting examined. In addition, the effectiveness of the
column-scaling procedure outlined above is also assessed. Results for all of these cases are given in the table.

Table 1 reveals that, without the application of weighting or scaling, the condition number increases with an increase in
the reconstruction order as expected. Additionally, larger values for the condition number are observed as the mesh deviates
from a regular square Cartesian grid, either through an increase in the aspect ratio or irregularities in the mesh. The largest
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Table 1
The condition numbers of the coefficient matrix, A, obtained based on L∞-norm of the matrix for different geometric-weighting and column-scaling
strategies and for several representative meshes: Cartesian grids with aspect ratio, ar , of 1, 240 and 14,012; as well as both a regular smooth mesh and an
irregular grid for the Ringleb flow geometry as defined in Section 5. The irregular grid is depicted in Fig. 5(a).

Mesh Geometric weighting

w J = |	�XI J |−θ

Column scaling
applied

κ∞(A)

k = 1 k = 2 k = 3 k = 4

Cartesian grid θ = 0 no 2.0 25.4 452.2 6748.4
ar = 1 θ = 1 no 1.7 22.0 273.2 3223.8
	X = 0.0965 θ = 2 no 1.3 32.6 335.3 4007.2

θ = 1 yes 1.7 5.3 15.1 49.3

Cartesian grid θ = 0 no 227.6 292,335.1 5.71 × 108 9.69 × 1011

ar = 240 θ = 1 no 1.8 1116.6 1.72 × 106 2.01 × 109

	X = 0.0965 θ = 2 no 239.0 245,311.9 3.15 × 108 4.03 × 1011

θ = 1 yes 1.8 16.6 83.7 395.3

Cartesian grid θ = 0 no 12,780.4 8.40 × 108 8.78 × 1013 1.10 × 1014

ar = 14,012 θ = 1 no 1.8 60,118.4 4.66 × 109 9.17 × 1013

	X = 0.0965 θ = 2 no 15,047.1 8.32 × 108 5.40 × 1013 2.78 × 1014

θ = 1 yes 1.8 17.4 1357.1 4246.6

Regular θ = 0 no 4.1 172.9 9232.4 524,247.3
smooth grid θ = 1 no 2.2 77.5 3815.2 171,418.2

θ = 2 no 3.2 141.9 4928.2 192,885.6
θ = 1 yes 3.2 18.2 105.0 872.9

Irregular grid θ = 0 no 5.2 191.7 10,552.5 699,826.2
θ = 1 no 2.4 84.1 4661.8 199,873.8
θ = 2 no 4.6 203.2 6688.5 240,616.7
θ = 1 yes 3.9 21.9 134.7 1096.5

values for the condition number were encountered on the Cartesian grid with an aspect ratio of ar = 14,012. The results
of Table 1 also reveal that some improvements in the conditioning of the systems can be obtained through the use of ge-
ometric weighting. For the meshes considered herein, simple inverse-distance geometric weighting (i.e., wγ ,δ = |	 �Xγ ,δ|−1)
provided lower values of the condition number for all reconstruction orders, as compared to the inverse-distance-squared
weighting. More importantly, it is also very clear that the column-scaling conditioning procedure effectively eliminates the
poor conditioning of the least-squares problems and makes the condition numbers effectively independent of the mesh
size and aspect ratio. Even for the Cartesian meshes with a high aspect ratio of ar = 14,012, the conditioning number is
reduced from 1.10 × 1014 to 4246.6 through a combination of inverse-distance weighting and column-scaling. Based on
these observations, it is felt that the conditioning of the least-squares problem can be dealt with, at least for reconstruction
orders up to four, but caution should still be exercised when considering either higher than quartic reconstruction and/or
highly irregular grids. Finally, it should be noted that for all of the numerical results pertaining to the validations cases
and flow problems to follow, column-scaling conditioning was not required to achieve the desired computational precision;
however, it was used in a few of the computations, including those for the NACA0012 airfoil, to ensure that full accuracy
was achieved in the high-order reconstructions.

3.3.2. Monotonicity enforcement via smoothness indicator
Solution monotonicity is preserved in the hybrid scheme by reverting the high-order k-exact reconstruction to a lim-

ited piecewise linear (k = 1) reconstruction where necessary. In the present work, a standard MUSCL-type limited linear
reconstruction procedure [91] is used along with the slope limiters of Barth–Jespersen [12,123] and Venkatakrishnan [92].
This piecewise limited linear scheme is only applied in regions of the solution which are deemed as being non-smooth
and fully replaces the high-order k-exact reconstruction locally only in these appropriately identified regions. In order to
detect regions where the order of the reconstruction should be reduced and limited linear reconstruction applied, a smooth-
ness indicator is computed for every variable individually within each cell once the unlimited k-exact reconstruction has
been performed. The smoothness indicator is then used in the manner described below to ensure that limited linear re-
construction is applied only to cells with under-resolved and/or non-smooth solution content and the unlimited k-exact
reconstruction is retained elsewhere.

The form of the smoothness indicator proposed here was inspired by the definition of multiple-correlation coefficients
that are often used in evaluating the accuracy of curve fits [88]. The idea is to assess how accurately the cell-centred
polynomial expansion represents the solution within the reconstruction stencil. This is achieved by comparing reconstructed
solutions in neighbouring cells. In particular, the smoothness indicator, S , is calculated in terms of a smoothness parameter,
α, as well as in terms of the number of unknowns (degrees of freedom), NDOF, and stencil size, NSOS, for the reconstruction.
The smoothness indicator is taken to have the form

S = α (NSOS −NDOF)
, (19)
max((1 − α), ε) (NDOF − 1)
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Fig. 2. The graph of f (α) = α
(1−α)

illustrating the behaviour of the solution smoothness indicator as a function of the smoothness parameter, α.

where α is determined as follows

α = 1 −
∑

γ

∑
δ (uk

γ ,δ(
�Xγ ,δ) − uk

i, j(
�Xγ ,δ))

2

∑
γ

∑
δ (uk

γ ,δ(
�Xγ ,δ) − ūi, j)

2
, (20)

and where the ranges of the indices, γ and δ, are taken to include all control volumes in the reconstruction stencil for cell
(i, j), �Xγ ,δ is the centroid of the cell (γ , δ), and the tolerance, ε , has been introduced in order to avoid division by zero.
A suitable value for ε has been found to be 10−8.

It should be evident that the parameter, α, is based on a comparison of the values of reconstructed solutions at the
centroids of neighbouring cells used in the reconstruction procedure for cell (i, j). Additionally, the average value of the
solution in the cell is used in normalizing the differences in the reconstructed solution values. The range for α is −∞ <

α � 1 and it rapidly approaches unity as the mesh is refined and/or the solution becomes smooth such that near perfect
matching of the reconstructions in adjacent cells is achieved. To see this, first consider the numerator of the second term
appearing in Eq. (20) for the smoothness parameter, α. Using standard Taylor approximation theory and assuming u is a
continuous and differentiable function and the mesh is Cartesian with uniform spacing, 	x, it is rather straightforward to
show that the numerator has the form

uk
γ ,δ(

�Xγ ,δ) − uk
i, j(

�Xγ ,δ) ≈ O
(
	xk+1). (21)

Similarly, it can be shown that the denominator of the second term has the form

uk
γ ,δ(

�Xγ ,δ) − ūi, j ≈ O(	x). (22)

From this it follows that

α ≈ 1 −O
(
	x2k), (23)

for smooth resolved solution content. In this case, it is evident that α → 1 as 	x → 0 and this occurs at a rate that
is significantly more rapid than the formal order of accuracy of the scheme. In this way, the asymptotic accuracy of the
k-exact reconstruction is recovered as 	x → 0.

Conversely for the reconstruction of non-smooth data, it is expected that

uk
γ ,δ(

�Xγ ,δ) − uk
i, j(

�Xγ ,δ) ≈ O(1), uk
γ ,δ(

�Xγ ,δ) − ūi, j ≈ O(1), (24)

and therefore α will be generally far from a value of one. The variation of α/(1 − α) is depicted in Fig. 2. The figure shows
that S rapidly becomes large as α approaches unity. Also, by definition, S is invariant to scaling of the solution.

Once evaluated, the smoothness indicator, S , is then compared to a pass/no-pass cutoff value, Sc . An appropriate value
for the cutoff has been determined from a wide range of numerical experiments. Values for Sc in the range 1000–5000
work well. For smooth solutions, the actual value of the smoothness indicator is typically orders of magnitude larger (e.g.,
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∼100,000). For non-smooth solutions (i.e., the interior of discontinuities), typical values for S are close to 10. For cells
with S < Sc , the solution is deemed to be under-resolved and/or non-smooth and the high-order k-exact reconstruction
is replaced by the limited linear reconstruction. In this case, the stencil is also reduced and includes just the 8 nearest
neighbours so as to retain a compact stencil for the treatment of shocks and discontinuities. Note that this is only done
for the hyperbolic flux evaluation. The k-exact reconstruction is retained in the evaluation of the elliptic fluxes. For S > Sc ,
the unlimited k-exact reconstruction is deemed acceptable and retained in the evaluation of both the hyperbolic and elliptic
fluxes. Note that with this definition of the smoothness indicator, the effect of reconstructions containing discontinuous
data is reflected in the smoothness indicator of just a few neighbouring cells and, consequently, solution discontinuities
are typically contained within 7 to 10 cells. It is also worthwhile noting that while ENO and WENO schemes can suffer a
loss in accuracy from the rapid switching from one-sided to centred stencils, the present hybrid scheme as directed by the
smoothness indicator does not suffer from this effect as the high-order reconstruction is based only on the centred and
most accurate stencil.

3.3.3. Reconstruction at boundaries and implementation of high-order boundary conditions
Consistent high-order treatment of boundary conditions is a crucial element for high-order methods. In order to re-

tain high accuracy at boundaries, all geometric data (i.e., cell area, centroid, geometric moments, normals, edge lengths,
locations of the Gauss quadrature integration points) must be evaluated to the same order of accuracy as that of the inte-
rior scheme and an appropriate high-order representation of the boundary geometry is required. In addition, a high-order
prescription for solution values at the boundary based on the boundary equations in needed. One approach to imposing
high-order boundary data is to make use of extra rows of ghost cells which are added beyond the geometric boundary of
the computational domain. Solution values are then imposed in the ghost cells in such a way that the reconstructed solution
values and/or fluxes at the boundary approximates the required boundary condition. An alternative approach is to enforce
the boundary conditions by constraining the least-squares reconstruction in control volumes adjacent to the boundary as
described by Ollivier-Gooch and Van Altena [47]. Constrained reconstruction is generally preferred here. Nevertheless, for
some boundary data, this approach may prove difficult and therefore both procedures (i.e., ghost cell and constrained re-
construction treatments) have been implemented and are used. The present implementation of constrained reconstruction
is summarized below.

Boundary condition prescription via constrained reconstruction is more accurate and straightforward for boundary ge-
ometries that are curved. In this case, the boundary data is enforced using only information from the interior of the
computational domain and by the imposition of boundary conditions at the Gaussian quadrature integration points of cell
faces lying along the boundary of the domain. This yields additional constraints on the cell-centred reconstruction proce-
dure for interior cells adjacent to the boundary. By constraining the least-squares reconstruction in control volumes near
boundaries, complex boundary data can be enforced. Two basic types of boundary constraints have been developed here:
(i) general Robin boundary conditions (i.e., linear combinations of Dirichlet and Neumann boundary data) which can be
applied individually to any variable; and (ii) linear boundary relations between variables which can be applied as coupled
constraints to a set of reconstructed variables.

Robin boundary data for dependent variable, u, in terms of a k-degree reconstruction polynomial, uk( �X), at a given
quadrature point, �Xg , is imposed using a general constraint which can be expressed as

f ( �Xg) =
[

a( �X)u( �X) + b( �X)
∂u( �X)

∂n

]
�Xg

=
k∑

p1=0

k∑
p2=0

(p1+p2�k)

{
	X (p1−1)

g 	Y (p2−1)
g

[
a	Xg	Y g + bp1	Y gng

x + bp2	Xgng
y
]}

Dk
p1 p2

(25)

where a( �X) and b( �X) are the coefficients defining the contributions of the Dirichlet and Neumann components to the
boundary value, f , respectively, 	Xg = xg − x̄i, j , 	Y g = yg − ȳi, j , and �ng(ng

x ,ng
y) is the normal unit vector at the point �Xg .

The constraint of Eq. (25) can be added to the system of linear equations making up the least-squares problem for a
boundary cell and the resulting system can then be solved in a least-squares sense while ensuring that the constraint is
exactly satisfied. The latter can be accomplished by applying Gaussian elimination with pivoting to eliminate the constraints
and then obtaining a least-squares solution for the remaining equations in the overdetermined linear system.

To illustrate the imposition of boundary conditions via coupled linear constraints, consider the specification of boundary
data for an inviscid solid wall or zero-shear slip boundary for which �V · �n = 0, where �V is the velocity vector. In two di-
mensions, this condition is imposed using coupled constrained reconstruction for velocity components, (u, v), and requiring
that �V is tangent to the boundary at every Gauss integration point. In this case, the coefficients of the reconstruction for
the x- and the y-velocity components, (Dk

p1 p2
)u and (Dk

p1 p2
)v respectively, must satisfy the condition
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)
v = 0. (26)
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Eq. (26) couples the linear systems defining the reconstructions for variables u and v within the boundary cell. Gaussian
elimination can again be applied followed by solution of the coupled least-squares problem to determine the reconstructed
velocity components at the slip boundary.

3.4. Inviscid (hyperbolic) flux evaluation

Given the cell-centred CENO reconstruction for each cell, the values of the solution flux can be calculated at each inte-
gration point. For the hyperbolic flux, upwinding is used, which for the advection–diffusion equation of Eq. (1), yields an
expression for the numerical flux at each quadrature point given by

�FH · �n = FH(ul, ur, �n) =
{

ul( �V · �n) if �V · �n � 0,

ur( �V · �n) if �V · �n < 0,
(27)

where the left and right solution values, ul and ur , are the CENO reconstructed solution values to the left and right of the
inter-cellular face, respectively. For the Navier–Stokes equations, upwinding of the hyperbolic flux, �FH · �n, at the quadrature
points is achieved by using Eq. (11) where FH represents the solution of the Riemann problem for the inviscid form of the
conservation equations in a direction, �n, normal to the face, and the left and right solution vectors, Ul and Ur , are given
by the CENO reconstructed solutions at the face of interest arising from the two cells sharing the interface. Both exact and
approximate Riemann solvers can be used here to solve the Riemann problem and evaluate the numerical flux. In particular,
the approximate Roe Riemann solver [93], HLLE and modified HLLE flux functions due to Linde [94–96], and exact Riemann
solver of Gottlieb and Groth [79] have all been implemented and may be used.

3.5. Viscous (elliptic) flux evaluation

Numerical values of the elliptic fluxes are also required at each quadrature point. For the advection–diffusion equation,
given left and right (k + 1)-order accurate unlimited reconstructions, uk

l (
�X) and uk

r (
�X), for the scalar field, u, a k-order so-

lution gradient at the cell face is obtained as the arithmetic mean of the left and right reconstructed gradients. A numerical
approximation for the elliptic flux, �FE · �n = −κ �∇u · �n, at location �X is then evaluated as

�FE · �n = FE(u, �∇u, �n) = −κ

[
1

2

( �∇uk
l (

�X) + �∇uk
r (

�X)
)] · �n. (28)

Similarly, elliptic fluxes for the Navier–Stokes system of Eq. (12) are evaluated as

�FE · �n = FE(U, �∇U, �n) = �FE(U, �∇U) · �n = �FE

(
1

2

[
Uk

l (
�X) + Uk

r (
�X)

]
,

1

2

[ �∇Uk
l (

�X) + �∇Uk
r (

�X)
]) · �n, (29)

where the reconstructed gradient, �∇Uk , at location, �X , is given by

�∇Uk( �X) = ∂Uk

∂x

∣∣∣∣ �X
ı̂ + ∂Uk

∂ y

∣∣∣∣ �X
ĵ , (30)

and where ı̂ and ĵ are the Cartesian unit vectors for the two-dimensional space. The derivatives of the reconstructed
polynomial in the x- and y-directions, are based on the polynomial coefficients of the unlimited k-exact reconstruction and
given by

∂Uk

∂x

∣∣∣∣ �X
=

k∑
p1=0

k∑
p2=0

(p1+p2 
=0)

p1(x − x̄i, j)
p1−1(y − ȳi, j)

p2 Dk
p1 p2

, (31a)

∂Uk

∂ y

∣∣∣∣ �X
=

k∑
p1=0

k∑
p2=0

(p1+p2 
=0)

p2(x − x̄i, j)
p1(y − ȳi, j)

p2−1 Dk
p1 p2

. (31b)

While other methods for the numerical evaluation of the elliptic fluxes would also be possible, such as the method based
on the solution of the generalized Riemann problem for diffusion equations as proposed by Gassner et al. [52,53] or the DDG
elliptic flux of Liu and Yan [54], the evaluation of the elliptic fluxes in terms of simple arithmetic means of the unlimited
cell-centred k-exact reconstructed solutions and their gradients in the cells to the right and left of the interface is certainly
straightforward and offers some important computational advantages. In particular, a k-order accurate flux is obtained by
using just cell centred reconstructions. However, it is important to assess other properties of the proposed elliptic operator,
such as positivity of the operator (related to local satisfaction of a discrete maximum principle) as well as the susceptibility
of the operator to odd–even solution decoupling, as similar formulations for standard second-order discretizations can lead
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to numerical difficulties related to these issues [44,97]. For these purposes, the proposed discretization scheme for the
elliptic flux was assessed by considering its application to the Laplacian operator, L(u) = ∇2u, as was done previously by
Coirier [44]. In this case, sufficient conditions for the discrete Laplacian based on an N-point stencil given by

L̃(u) ≈
N∑

n=0

αnūn, (32)

to satisfy a discrete version of the maximum principle are that the weights or influence coefficients, αn , satisfy αn � 0 for
n ∈ [1, N] and α0 < 0. As proposed by Coirier [44], the positivity and stability of the scheme can be characterized in terms
of α0 and α̃min where

α̃min = min(αn,0)√
1
N

∑
n α2

n

, n ∈ [1, N]. (33)

Ideally, α0 < 0 for stability and α̃min = 0 for positivity [45]. Odd–even decoupling properties of the scheme can be assessed
by checking for vanishing values for the weights, αn , for n ∈ [1, N].

For a given elliptic discretization scheme and supporting stencil, the weights for the approximate Laplacian operator
and consequently the positivity of the scheme depend only on local mesh geometry. In the current study, a range of two-
dimensional mesh topologies were therefore considered, including Cartesian, stretched, and randomly disturbed quadrilateral
grids. For each grid, the associated weights for the proposed schemes were computed numerically. Analysis of the high-order
CENO discretization schemes in this manner showed that odd–even solution decoupling does not occur for schemes of all
orders 2 � k � 4, even for the second-order scheme with k = 2. Furthermore, it was found that α0 < 0 in all cases, imply-
ing that all of the schemes are stable. Unfortunately, it was also found that α̃min < 0 for the proposed elliptic discretization
scheme of all orders, implying that, while stable, none of the discretizations satisfy a discrete maximum principle. This result
agrees with the general perception that, for finite-volume discretizations, accuracy and positivity are essentially conflicting
properties [44]. However, it is important to note that the lack of strict positivity for the elliptic operator does not seem to
present an obvious issue in practice, at least for the range of numerical problems that are examined in what follows.

Note that for square Cartesian meshes, values for α̃min were found to be −0.823 for k = 2, −0.362 for k = 3 and −0.854
for k = 4 when inverse-distance geometric weighting is used in the k-exact reconstruction. The positivity is improved by
using an inverse-distance-squared geometric weighting, for which α̃min was found to be −0.051 for k = 2, −0.247 for
k = 3 and −0.324 for k = 4. Nevertheless, for non-Cartesian meshes, large variations in the value of α̃min were observed
(−5 < α̃min < 0), depending on the regularity and topology of the mesh.

Aside from positivity and decoupling properties, the stability of the proposed high-order discretization scheme for the
elliptic operator is also of concern. While either Fourier or eigensystem analysis can be applied to the discrete spatial
operator of the CENO scheme and assessed for various time-marching schemes [98], such a systematic analysis has been
reserved for follow-on studies in which optimal high-order time-marching schemes are considered for use in conjunction
with the CENO finite-volume method. However, numerical experiments with the proposed elliptic flux function and CENO
scheme, carried out using the selected explicit time-marching schemes described in the next section, suggest that the
high-order CENO schemes are conditionally stable for these rather standard explicit schemes and that the stability limits
are defined by Courant–Friedrichs–Lewy or CFL-like and Neumann-like conditions for the hyperbolic and elliptic operators,
respectively, that appear to be only very slightly more restrictive than that those of standard second-order discretizations.
Penalty terms for the elliptic fluxes do not appear to be required for stability but may enhance the stability and/or accuracy
of the scheme and will be assessed more carefully in future follow-on studies, along with a formal stability analysis of the
high-order scheme.

3.6. Explicit time-marching schemes

Efficiency and accuracy of the temporal discretization were not the focus here. While possibly more efficient explicit and
implicit high-order time-marching schemes have been examined in several recent studies (see, for example, the studies by
Balsara et al. [99] and Bijl et al. [100]), integration of Eq. (8) was carried out using standard explicit time-marching schemes
for both steady and unsteady problems. For steady, time-invariant problems, for which Ri, j(U) = 0, the explicit optimally-
smoothing multi-stage schemes developed by van Leer et al. [101,102] were used. For time-accurate calculations, standard
two- and four-stage Runge–Kutta schemes [98,103,104] were used, depending on the accuracy of the spatial reconstruction.
When applied in conjunction with the AMR scheme to be described in the section to follow, the explicit time integration
procedure for time accurate computations is applied to all cells on all grid levels with a single global time step and no
effort is made to reduce the computational effort by advancing the solutions on each level of mesh resolution with its own
optimal time step. The formulation and use of more efficient, high-order, time-marching schemes for use in conjunction
with the proposed high-order finite-volume method is beyond the present scope but will certainly be considered in future
follow-on research.
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Fig. 3. Depiction of a coarse cell division into four fine cells for low- and high-order block boundary elements.

4. Adaptive mesh refinement

The development of the proposed high-order CENO finite-volume algorithm is considered here in conjunction with the
block-based AMR scheme originally formulated by Sachdev et al. [67], Gao and Groth [68,105], and Gao et al. [69] for second-
order, finite-volume schemes on body-fitted mesh. As in the lower-order approach, a flexible hierarchical data structure is
used in combination with the CENO scheme to facilitate automatic solution-directed mesh adaptation on two-dimensional,
body-fitted, multi-block, quadrilateral mesh. The AMR technique allows for the use of anisotropic mesh and is well suited
to parallel implementation via domain decomposition. The high-order variant requires inter-block communication of high-
order solution content, as well as high-order treatments of physical boundaries, boundary conditions, and solution transfer
between AMR grids. While the combination of high-order CENO finite-volume and AMR strategies has been considered by
Ivan and Groth for inviscid flows [65,66,122], the application to the advection–diffusion equation and fully-viscous flows is
the current focus.

In the proposed high-order, block-based, AMR approach, mesh adaptation is accomplished by the dividing and coarsening
of appropriate solution blocks. In regions requiring increased cell resolution, a “parent” block is refined by dividing itself into
four “children” or “offspring”. Each of the four quadrants or sectors of a parent block becomes a new block having the same
number of cells as the parent and thereby doubling the cell resolution in the region of interest. This process can be reversed
in regions that are deemed over-resolved and four children are coarsened into a single parent block. The mesh refinement
is constrained such that the grid resolution changes by only a factor of two between adjacent blocks. A hierarchical tree-like
data structure with multiple “roots”, multiple “trees”, and additional interconnects between the “leaves” of the trees is used
to keep track of mesh refinement and the connectivity between solution blocks.

In order to apply the CENO finite-volume scheme to all grid blocks in an independent manner, solution information is
shared between adjacent blocks having common interfaces. This information is contained in and exchanged using additional
layers of overlapping “ghost” cells associated with each block. Additional inter-block communication is also required at inter-
faces with resolution changes to enforce strictly the flux conservation properties of the scheme [106,107]. In particular, the
interface fluxes computed on more refined blocks are used to correct the interface fluxes computed on coarser neighbouring
blocks and ensure the solution fluxes are conserved across block interfaces.

During refinement of grid blocks, the geometry of newly created cells is obtained by dividing each coarse interior cell into
four fine cells denoted as I , II, III and IV , and illustrated in Fig. 3. The newly introduced nodes are merely the midpoints of
each coarse cell face and weighted averages of the four cell nodes as defined in the curvilinear or computational coordinate
frame of the grid. Second-order estimates of the grid metrics are used to define the transformation between the curvilinear
coordinate frame and physical space so as to preserve the smoothness and stretching of the grid lines in the body-fitted
mesh as described by Gao and Groth [105]. Nodes of the refined mesh inserted at curved physical boundaries are made
to lie on the high-order splines defining each boundary. The utilization of high-order boundary elements (i.e., cells with
non-straight, curved edges), as depicted in Fig. 3(b), ensures naturally the equality of the coarse element area, AΩ , with the
summation of the areas of the offspring, AI + AII + AIII + AIV . It then follows that the conservation property for the transfer
of solution content between coarse and fine mesh can be expressed simply as

ūΩ AΩ = ū I A I + ūII AII + ūIII AIII + ūIV AIV . (34)

The hybrid CENO solution reconstruction procedure is used in conjunction with standard multi-grid-type restriction and
prolongation operators to evaluate the solution on all blocks created by coarsening and division processes, respectively.
High-order operators for restriction and prolongation of the solution between coarse and fine meshes are used here based
on the coarse-to-fine cell conservation property for conserved variables as expressed by Eq. (34). High-order restriction
from the fine to coarse cells is straightforward and can be achieved by simple application of the conservation property. The
high-order prolongation from coarse to fine cells can be accomplished by direct integration of the appropriate coarse-cell
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polynomial reconstructions for the conserved variables over the domain of each newly created fine cell. While satisfying the
conservation property above, this prolongation operator does not explicitly enforce solution positivity and, in some instances,
negative pressures and densities may result when solving the Navier–Stokes equations. Although positivity-preserving high-
order reconstructions of conserved variables are certainly possible as discussed by Zhang and Shu [84,85] and Balsara [86],
a more pragmatic approach is currently adopted here. In situations where solution positivity is violated by the high-order
prolongation operator, simple direct injection of the solution is used with ū I = ūII = ūIII = ūIV = ūΩ .

The preceding approach for the prolongation of solution content is rather straightforward when the coarse-cell re-
construction is carried out in terms of the conserved variables. When other non-conservative variables are used in the
reconstruction as also proposed here, conservative prolongation is achieved in terms of the derived and/or primitive solu-
tion quantities, W̄ , by first determining the average integrated value of the primitive variable, W̄ ′

f , in each newly created
fine cell, f , then by evaluating an estimate for the corresponding cell average of the conservative variables using the ex-
pression Ū ′

f = f (W̄ ′
f ), where f (W ) represents the conversion from primitive to conserved solution quantities, and finally

by determining the desired values of conserved solution in each fine cell, Ū f , by correcting the preceding estimate with a
term related to the total integrated error in the conserved quantity. The corrected conserved solution for fine cell, f , is then
given by

Ū f = Ū ′
f + 	Ū f = f

(
W̄ ′

f

) + 1

AΩ

[
ŪΩ AΩ −

I V∑
i=I

f
(
W̄ ′

i

)
Ai

]
, (35)

where f corresponds to the fine cells associated with sectors I , II, III and IV of the coarse cell Ω . As discussed above, direct
injection is again used in cases for which non-physical prolonged solutions are encountered.

While heuristic, physics-based, refinement criteria have been used in previous work to direct the coarsening and division
of grid blocks [67–69,105], a novel h-refinement criterion based on the CENO solution smoothness indicator is instead used
here to control refinement of the body-fitted, multi-block, AMR mesh. The proposed h-refinement criterion is based solely
on values of a refinement parameter, Rs , for solution variable, s, given by

Rs = exp

(
−max(0,Ss)

UsSc

)
, (36)

where Ss is the smoothness indicator for variable s, Sc is the corresponding cut-off value, and Us is an appropriate scal-
ing coefficient. Grid blocks having values of Rs greater than a specified maximum are flagged for division and those having
values less than a specified minimum are tagged for coarsening. By definition, the proposed refinement parameters are non-
dimensional and have values in the range [0,1]. Consequently, the importance of different solution quantities in directing
the AMR is based only on their relative smoothness.

Although the block-based AMR approach described above is somewhat less flexible and incurs some inefficiencies in
solution resolution as compared to cell-based approaches [108–111] (i.e., for the same solution accuracy, generally more
computational cells are introduced in the adapted grid), the method offers many advantages over cell-based techniques
when parallel implementation and performance of the solution algorithm are taken into account. In particular, the multi-
block quadrilateral mesh and quadtree data structure lend themselves naturally to geometric domain decomposition based
on the grid block. The solution blocks can be easily evenly distributed to the available processor cores, with more than one
block permitted on each core. In this way, very efficient and scalable implementations of the CENO finite-volume scheme
on distributed-memory parallel architectures can be achieved. The parallel efficiency of the proposed scheme is examined
in Section 5.7.2.

5. Numerical results

To demonstrate the capabilities of the proposed high-order CENO scheme, numerical results are now presented for
solution reconstruction in two-space dimensions, as well as for various two-dimensional flow problems governed by the
advection–diffusion and Navier–Stokes equations. Moreover, the influence of the choice of reconstruction variables on the
accuracy of the CENO scheme is assessed for Ringleb’s flow, an inviscid flow having an analytical solution. Numerical results
are considered for both fixed and AMR meshes.

5.1. Reconstruction of two-dimensional smooth trigonometric function

The properties of the CENO reconstruction for two-dimensional smooth solutions are illustrated by considering recon-
struction of the trigonometric function, u(x, y), given by

u(x, y) = 1.1 + cos
(
πx2 + 4π y

)
, (37)

on body-fitted computational domains defined between streamlines corresponding to k = 0.75 and k = 1.5 and the iso-
velocity contour q = 0.5 for Ringleb’s flow of an inviscid compressible gas [112]. Refer to Section 5.6 for further details of
the Ringleb’s flow. The exact distribution of the function, u, and the corresponding cell-centred, quartic (k = 4), CENO, re-
constructed solution for a regular body-fitted mesh with 40 × 40 cells are compared in Fig. 4. From the figure, it is evident
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Fig. 4. Exact distribution of smooth function, u(x, y) = 1.1 + cos(πx2 + 4π y), and corresponding quartic CENO reconstruction on a regular body-fitted mesh
having 40 × 40 computational cells.

the quartic CENO reconstruction is able to capture all of the smooth extrema associated with the function, even on this
relatively coarse mesh, providing a solution profile that is visually indistinguishable from the original exact function. Note
that the gradients of the function are not at all aligned with the computational mesh.

To quantify the CENO performance and reconstruction errors for this smooth function, convergence studies were carried
out using two mesh types with mesh densities ranging from 10×10 to 160×160 computational cells. A sequence of regular
body-fitted grids with smooth grid lines was considered along with a second sequence of irregular, non-smooth, grids
produced by perturbing randomly the nodes of the regular meshes. An irregular perturbed mesh from the second sequence
with 40 × 40 cells is depicted in Fig. 5(a). The accuracy of the CENO reconstruction procedure for cubic (k = 3) and quartic
(k = 4) representations was evaluated by considering reconstructed solution accuracies for the following cases: (i) k-exact
reconstruction; (ii) CENO reconstruction with a value for the cutoff parameter of Sc = 1000; (iii) CENO reconstruction with
Sc = 5000. The L1-, L2-, and L∞-norms of the reconstruction error defined in terms of the integrated difference between the
smooth function and reconstructed solutions in each computation cell were computed in each case. For each cell, adaptive
quadrature was used in integrating the difference between the functional and reconstructed solution over the cell area.

Fig. 5 shows the convergence of the L1, L2, and L∞-norms of the reconstruction error with increasing mesh resolution
for the k-exact method and CENO schemes with Sc = 1000 and Sc = 5000 on the regular and perturbed meshes. Firstly,
the results of the figure verify that the expected theoretical order of accuracy or convergence rate is achieved in each
case (four for the cubic and five for the quartic reconstruction schemes), at least in the asymptotic limit. Additionally, the
reconstruction error norms obtained on the perturbed meshes are very similar to those corresponding to the regular grids,
although the absolute error is slightly larger. The influence of the cutoff value, Sc , can also be inferred from the figure.
On coarse meshes, the smooth function is deemed to be under-resolved and the CENO reconstruction procedure reverts to
piecewise limited linear reconstruction with similar accuracies in each case. As the mesh density increases, the function is
eventually resolved, the CENO reconstructions deemed smooth, and k-exact reconstruction is recovered. While the extent
of the transition from limited piecewise linear to k-exact reconstruction is somewhat sensitive to the cutoff value, Sc , in
the asymptotic limit the results are insensitive to values of Sc in the recommended range (i.e., 1000–5000). It seems that
for complex but smooth functional variations of the type considered here, a minimum of about 60 to 100 cells per space
dimension is needed before the cubic CENO reconstruction scheme identifies the solution as being smooth and the unlimited
k-exact reconstruction based on the central stencil is used. This minimum cell resolution is reduced to about 40 to 60 cells
per direction when quartic CENO reconstruction is used. This minimum mesh resolution requirement for feature detection
and recovery of the asymptotic solution may be slightly larger than that of other ENO and WENO schemes (see, for example,
Jiang and Shu [6] and Balsara and Shu [113]), but not by a significant margin.

5.2. Residual accuracy assessment for Poisson’s equation

The accuracy of the proposed, high-order, finite-volume, discretization scheme for elliptic operators is confirmed by
considering the convergence of the discretized residual error for a Poisson equation of the form

�∇ · ( �∇u) = aeβu, (38)
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Fig. 5. Example of irregular perturbed grid with 40 × 40 cells and L1, L2, and L∞-norms of the cubic and quartic reconstruction error for smooth function,
u(x, y) = 1.1 + cos(πx2 + 4π y), obtained using k-exact and CENO reconstruction schemes, the latter with Sc = 1000 and Sc = 5000, as a function of mesh
resolution for regular and perturbed meshes.

on a rectangular domain defined by 0.5 � x, y � 4.5 and having the exact solution

u(x, y) = 1

β

[
ln

(
8C

aβ

)
− 2 ln

∣∣(x + A)2 + (y + B)2 − C
∣∣], (39)

where A = 2.0, B = 1.0, C = 2.0, a = 2.5 and β = 0.001. The L1-, L2-, and L∞-norms of the errors in the discrete residual
(i.e., the flux integral for the elliptic operator minus the area integral of the source term) are shown in Figs. 6(a) and
6(b), as a function of the mesh density for sequences of regular Cartesian grids with uniform mesh spacing as well as
randomly disturbed variants of these meshes. The numerical results for quadratic (k = 2), cubic (k = 3), and quartic (k = 4)
reconstruction were obtained by applying the unlimited k-exact reconstruction to the exact solution and then evaluating
the flux integral and the area integral of the source term for each computational cell (the difference between the values
of the two latter integrals is expected to be identically zero on all meshes). The corresponding slopes of the L1-, L2- and
L∞-norm error curves as determined from the computed errors are also shown in Table 2 for both Cartesian and disturbed
meshes and compared to the expected theoretical residual accuracies (convergence rates) of the schemes.

The results of Fig. 6 and Table 2 show that, in agreement with theoretical expectations, both cubic and quartic inter-
polants produce 4th-order schemes on uniform Cartesian meshes in all error norms, whereas the quadratic scheme yields
a second-order accurate discrete elliptic operator. For uniform Cartesian meshes, the absolute error of the quartic recon-
struction scheme is only marginally lower than those of the cubic reconstruction scheme. This is because error cancellation
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Fig. 6. L1-, L2-, and L∞-norms of the discretized residual error for Poisson’s equation, �∇ · ( �∇u) = aeβu , obtained using CENO, finite-volume discretization
of the elliptic operator based on unlimited, piecewise, quadratic (k = 2), cubic (k = 3), and quartic (k = 4) k-exact reconstructions as a function of mesh
density cells for regular Cartesian meshes and randomly distorted meshes.

Table 2
Estimated slopes of the curves of Fig. 6 for the L1-, L2- and L∞-norm error in the solution residual compared to expected
theoretical residual accuracies (convergence rates).

Mesh Reconstruction order L1 L2 L∞
Cartesian grid k = 2 1.99 2.01 1.93

k = 3 3.98 4.07 3.89
k = 4 3.77 4.02 3.87

Distorted grid k = 2 1.41 1.47 1.10
k = 3 1.99 2.05 1.86
k = 4 3.35 3.53 3.18

on the Cartesian mesh yields a 4th-order discretization scheme for the Poisson operator, in the case of k = 3 (cubic) re-
construction. However, error cancellation does not occur on the irregular randomly-disturbed meshes and the convergence
rates (slopes) of the error norms for cubic and quartic reconstructions differ by more than one. The quartic (k = 4) scheme
provides a significantly more accurate residual estimation that approaches theoretical expectations, even for the sequence
of irregular randomly-disturbed meshes which lack the usual nesting property of mesh sequences used in rigorous conver-
gence studies. Due to the lack of error cancellation and irregular nature of the meshes, cubic reconstruction yields a scheme
that is only about second-order accurate on the perturbed grids.

5.3. Solution of Laplace’s equation on domains with curved boundaries

Numerical solution of Laplace’s equation is explored next for Dirichlet boundary-value problems on domains having
curved boundaries. The circular-shaped annular domain shown in Fig. 7(a) was considered and Dirichlet boundary conditions
were implemented via constrained reconstruction based on the exact solution for this problem given by

u(x, y) = eμx(A cos(μy) + B sin(μy)
)
, (40)

where A = 1, B = 2 and μ = 1.5. A predicted solution obtained using the proposed 4th-order (k = 4), CENO, finite-volume
scheme on a body-fitted curvilinear mesh with 40 × 40 cells is depicted in Fig. 7(a). The L1-, L2-, and L∞-norms of the
error in the predicted solutions compared to the exact result for both cubic (k = 3) and quartic (k = 4) interpolants are
given in Fig. 7(b) for this problem. The slopes of the L1- and L2-norms achieve asymptotic values of −3.86 and −3.85 for
k = 3 and −3.86 and −3.81 for k = 4, respectively, confirming the expected 4th-order accuracy on curvilinear mesh. While
the cubic and quartic reconstruction schemes have virtually identical accuracy, there is about one order difference between
the absolute magnitudes of the solution errors, demonstrating the benefits of using a quartic interpolant.
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Fig. 7. (a) Fourth-order solution to the Laplace equation, u, obtained using the 4th-order, CENO, finite-volume discretization of the elliptic operator based
on unlimited quartic (k = 4) reconstruction on a mesh with 40 × 40 computational cells; and (b) computed L1-, L2-, and L∞-norms of the solution error as
a function of mesh density obtained using CENO, finite-volume discretization of the elliptic operator based on unlimited cubic (k = 3) and quartic (k = 4)
k-exact interpolants.

5.4. Solution of advection–diffusion equation for a range of Péclet numbers

The application of the proposed CENO scheme is now considered for problems involving the advection–diffusion equation
for a range of Péclet numbers. In particular, solution of Eq. (1) with constant advection velocity, �V = [v0,0], and constant
diffusion coefficient, κ(x, y) = κ0 = 0.01, on a rectangular domain of length L = 3 and unit width was considered for three
different Péclet numbers as dictated by the value of v0. Péclet numbers of Pe = 0.1, 1, and 10 were examined correspond-
ing to diffusion-dominated, advection–diffusion balanced, and advection-dominated regimes. The boundary data for this
channel-flow problem, as illustrated in Fig. 8, were

u(x,0) = u(x,1) = 0, u(0, y) = sin(π y),
∂u

∂x

∣∣∣∣
x=L

= 0. (41)

An exact analytical solution to this boundary-value problem can be determined by the method of separation of variables
and has the form

u(x, y) = sin(π y)

(R[eL(R−1)]r1 − 1)

(
R
[
e(RL+x−L)

]r1 − er2x), (42)

where r1,2 = (v0/2κ0)±
√

(v2
0/4κ2

0 ) + π2 and R = r2/r1. An example numerical solution obtained for Pe = 10 on an 80×40

Cartesian mesh is shown in Fig. 8(a). Similar problems were considered previously by Ollivier-Gooch and Van Altena [47]
for evaluating high-order schemes.

The various norms of the solution error for the advection–diffusion problem with Pe = 0.1, 1, and 10 are shown in
Figs. 8(b)–8(d). It is evident that the errors for the high-order, CENO, finite-volume scheme with quartic reconstruction are
consistently lower than those of the scheme employing a cubic interpolant by at least one order of magnitude for all Péclet
numbers. Furthermore, the computed convergence rates for L1 and L2 error norms with k = 4 are −4.02 and −4.08 for Pe =
0.1, −4.30 and −4.46 for Pe = 1.0, and −3.92 and −3.95 for Pe = 10.0, respectively, indicating that a uniformly accurate
fourth-order scheme is recovered in all cases, in agreement with theoretical expectations. For k = 3, the convergence rates
of the error norms are −3.92 and −3.85 for Pe = 0.1, −3.88 and −3.81 for Pe = 1.0 and −3.53 and −3.62 for Pe = 10.0,
respectively, indicating a slight loss in accuracy for high Péclet numbers. For the same accuracy level, the CENO scheme with
cubic reconstruction requires almost twice as many computational cells as the scheme based on quartic reconstruction. The
increased accuracy of the quartic-based scheme comes at a relatively small additional computational cost: the quartic and
cubic use the same reconstruction stencil, the only additional costs of the quartic reconstruction scheme are associated with
storage, computation, and use of five additional coefficients in the least-squares reconstruction procedure.

5.5. Solution of advection equation with AMR

The application of the proposed high-order, CENO, finite-volume, scheme to the solution of the pure advection equation
(Pe → ∞) is now examined. The particular case of circular advection with a constant angular velocity was considered on
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Fig. 8. (a) Numerical prediction of the solution, u, for the advection–diffusion channel flow problem with Pe = 10 obtained using 80 × 40 Cartesian mesh;
and (b)–(d) L1-, L2-, and L∞-norms of the solution error for the advection–diffusion channel flow problem as a function of mesh density obtained with
cubic (k = 3) and quartic (k = 4) CENO reconstruction for Pe = 0.1, 1, and 10.

a square solution domain with a dimension of 1.5. A prescribed inflow solution was specified along the bottom of the
domain (y = 0) having the form

u(x,0) =
{

e2(x−0.4) sin6[2π(x − 0.4)], for 0.4 � x � 1.2,

0, for x < 0.4 or x > 1.2,
(43)

and an outflow boundary condition was applied along the left boundary (x = 0). The discontinuous inflow function was
chosen to test both the accuracy and robustness of the scheme as well as the capabilities of the proposed AMR algo-
rithm.

Numerical results for circular advection problem with AMR are given in Fig. 9. Predicted steady-state solutions were
obtained on a sequence of adaptively refined meshes starting with an initial mesh consisting of 16 10 × 10 solution blocks
as shown in Fig. 9(a). An intermediate mesh resulting from three levels of adaptive refinement is depicted in Fig. 9(b)
and the final mesh consisting of 2911 blocks and 291,100 computational cells is shown in Fig. 9(c). The predicted solution
obtained using the 4th-order CENO scheme (k = 3) on the final mesh is given in Fig. 9(d) and a comparison between
the predicted profile along the cross-section A–A to the exact solution is provided in Fig. 9(e). It should be evident from
the quality of the predicted solution that the proposed AMR scheme in combination with the h-refinement criteria based
on the smoothness indicator is capable of refining both under-resolved and non-smooth regions of the solution, yet will
not unnecessarily refine resolved solution content. Smooth extrema are well captured by the high-order scheme whereas
discontinuities are readily identified by the smoothness indicator and subsequently resolved by the AMR procedure.

5.6. Solution of Euler equations for Ringleb’s flow

The accuracy of the CENO approach is now demonstrated for the discretization of the hyperbolic operator represent-
ing the Navier–Stokes equations. The hyperbolic operator in this case corresponds to the well-known Euler equations of



L. Ivan, C.P.T. Groth / Journal of Computational Physics 257 (2014) 830–862 851
Fig. 9. Numerical solution of circular advection problem with AMR showing: (a) initial mesh with 16 10 × 10 blocks with regions in which limited linear
reconstruction is used shown in red; (b) refined mesh after 3 levels of refinement; (c) final refined mesh after 6 refinement levels with 2911 10 × 10
blocks, 291,100 computational cells, and a refinement efficiency of η = 0.955; (d) prediction solution, u, obtained using the fourth-order (k = 3), CENO,
finite-volume scheme on finest mesh; and (e) comparison of exact analytical and predicted solutions for u along cross section A–A. (For interpretation of
the references to colour in this figure, the reader is referred to the web version of this article.)

compressible gas-dynamics which follow from the Navier–Stokes equations under the inviscid assumption (i.e., μ = ν = 0).
Ringleb’s flow involves compressible, inviscid, isentropic, and irrotational flow in a stream tube as described by the Eu-
ler equations and exact solutions for this smooth continuous flow field can be determined by analytical means [109,112].
A transonic variant of Ringleb’s flow defined by kmin = 0.5, kmax = 1.2, and q = 0.3 was considered here. In this case, the
inflow to the converging stream tube is subsonic with a Mach number of about M ≈ 0.34 and, following convergence and
turning of the flow, a portion of the outflow is supersonic with M ≈ 1.30.

Numerical solutions of the Ringleb flow problem on body-fitted multi-block quadrilateral mesh were determined and
compared to the exact analytical result as part of a systematic grid convergence study. In addition, a head-to-head com-
parison of the CENO scheme predictions for cell-centred reconstruction based on both primitive and conserved dependent
variable sets was also carried out to assess the effects of this choice on solution accuracy and errors that may be introduced
by working with a primitive set. Note that it is important to assess any potential sources of errors that may be introduced by
the conversion from conserved to primitive variables as discussed previously in Section 3.3. Reflection boundary conditions
were applied along the streamline boundaries by enforcing the inviscid (slip) condition, �V · �n = 0, at all Gauss integration
points via the constrained least-squares reconstruction procedure outlined in Section 3.3.3 above.

The predicted Mach number distribution for the Ringleb flow problem obtained using the 4th-order, CENO, finite-volume
scheme on an 80 × 80 body-fitted mesh is given in Fig. 10(a). The computed L1-, L2-, and L∞-norms of the solution error
in both predicted density and pressure obtained using the 3rd- and 4th-order versions of the CENO scheme with k = 2
and k = 3, respectively, are shown in Figs. 10(b) and 10(c). The slopes of the L1- and L2-norm curves of Fig. 10(b) for the
3rd- and 4th-order CENO schemes based on reconstruction of the primitive variables are −3.06, −3.00, −3.93, and −4.02,
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Fig. 10. Numerical solution of transonic Ringleb’s flow showing: (a) predicted distribution for Mach number, M, obtained using 4th-order, CENO, finite-
volume scheme; (b) L1-, L2-, and L∞-norms of the solution error in density, ρ , for 3rd- and 4th-order CENO schemes as a function of mesh resolution;
and (c) L1-, L2-, and L∞-norms of the solution error in pressure, p, for 3rd- and 4th-order CENO schemes as a function of mesh resolution. The predicted
error norms for the 4th-order CENO scheme are given for reconstruction in terms of both primitive (PV) and conservative (CV) solution variables.

respectively, illustrating that the expected formal accuracy of the schemes is maintained on body-fitted mesh with strongly
curved boundaries by using the constrained least-squares reconstruction procedure.

The error norms of the 4th-order CENO schemes based on reconstruction of primitive (PV) and conserved (CV) depen-
dent variables, respectively, are also compared for this transonic flow in Figs. 10(b) and 10(c). The results show that the
convergence rates of the error norms in density for the reconstruction methods based on primitive and conserved variables
are very similar. Both methods recover the expected order of accuracy in the asymptotic limit. Furthermore, inspection of
Figs. 10(b) and 10(c) reveals that the error norms in predicted pressure exhibit almost identical trends to those of density. It
would seem that the same order of accuracy is recovered for all primitive variables. While formal analysis suggests that the
point-wise mapping of average conserved to average primitive variables has the potential to introduce unwanted low-order
errors, the numerical experiments for Ringleb’s flow indicate that these errors are relatively small and do not noticeably
affect the accuracy of the scheme.

5.7. Solution of Navier–Stokes equations

Finally, the application of the proposed high-order, CENO, finite-volume scheme to the numerical solution of the full
Navier–Stokes equations is considered to illustrate the predictive capabilities of the solution method for laminar viscous
flows. Numerical results are presented for a subsonic laminar flow past a NACA0012 airfoil at zero angle of attack, with
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a free-stream Mach number of M∞ = 0.5 and a Reynolds number of Re = 5000. This is a useful case for verification and
validation purposes for it simultaneously tests the viscous flux discretization, inviscid flux formulation, effect of curved
boundary treatment, and the ability to predict the underlying physics like flow separation and re-circulation. Moreover, this
laminar airfoil case has been considered quite extensively in other previous studies [59,61,114,115], and reported results
for low- and high-order schemes on both structured and unstructured meshes are available for comparison. Additionally,
numerical predictions are presented for both steady and unsteady, subsonic, laminar flow past a circular cylinder with M∞ =
0.1. The simulations were carried out for two Reynolds numbers, Re = 30 and Re = 110. There are no three-dimensional
flow effects in either case [116]. For Re = 30, the flow is steady and possesses a steady wake with symmetric separated
flow behind the cylinder. For Re = 110, the flow is unsteady and characterized by the periodic shedding of vortices and the
formation of a von Kármán vortex street behind the cylinder. Fixed body-fitted meshes were used to obtain the steady flow
solutions and the AMR scheme was used in obtaining high-order unsteady flow results.

5.7.1. Subsonic laminar flow past a NACA0012 symmetric airfoil
As mentioned above, this laminar airfoil case has been examined in previous studies [59,61,114,115]. The free-stream

Mach and Reynolds numbers for this flow are M∞ = 0.5 and Re = 5000, respectively, and for zero angle of attack the flow
is both steady and symmetric with respect to the stagnation stream line and symmetric airfoil. However, flow separation
occurs near the trailing edge, resulting in the formation of small re-circulation bubbles on the upper and lower surfaces of
the airfoil that extend into the near-wake region and present numerical challenges for the accurate numerical prediction of
the airfoil drag.

The computational domain for this case was constructed to be similar to those of previous studies [115]. The outer
boundary of the domain was positioned at about 24 chord lengths from the airfoil surface. An O-type meshing strategy
was used and a sequence of five uniformly refined multi-block body-fitted meshes arising from an initial coarse mesh were
considered. The initial coarse mesh consisted of 96 cells along the upper and lower surfaces of the airfoil (48 cells for each
side) and 32 cells in the direction normal to the surface. The 3072 cells were grouped into two initial grid blocks, each
consisting of 48 × 32 cells. The grid lines in the tangential direction to the airfoil were clustered such that cell aspect ratios
near the airfoil surface were in the range from 10 to 20. The higher-resolution meshes in the sequence were then generated
by uniformly and successively refining each grid block to arrive at five meshes, having 8, 32, 128, 512 and 2048 solution
blocks and a total number of N1 = 12,288, N2 = 49,152, N3 = 49,152, N4 = 786,432 and N5 = 3,145,728 computational
cells, respectively. Fig. 11(a) depicts the second computational grid in the sequence having 49,152 cells, showing the grid
structure in the vicinity of the airfoil.

Computations were performed on each of the first four meshes using both high- and low-order schemes. Simulations
on the finest mesh with N5 = 3,145,728 computational cells were performed only for the low-order scheme to provide
reference values and confirm the convergence of the results. Results were obtained for the proposed 4th-order, CENO,
finite-volume, scheme with quartic reconstruction as well as for a standard, second-order, finite-volume method that used a
combination of piecewise linear least-squares and diamond path reconstructions in the discretization of the hyperbolic and
elliptic operators, respectively. The latter provides a reference for the high-order results. Details of the second-order scheme
are given by Sachdev et al. [67]. The CFL number in these simulation was taken 0.4 for both the low- and high-order
schemes. No-slip boundary conditions for velocity and adiabatic boundary conditions for temperature were imposed on the
airfoil surface. The constrained reconstruction algorithm proposed here was used in the enforcement of these conditions in
the high-order CENO computations.

Fig. 11(b) depicts the spatial distribution of the flow Mach number determined using the 4th-order (k = 4), CENO, finite-
volume scheme on the second body-fitted mesh with N2 = 49,152 computational cells. A close-up view of the predicted
solution for the Mach number in the trailing-edge region of the flow is shown in Fig. 11(d). The re-circulation bubbles
appear as regions of low Mach number and can be clearly identified by the symmetric set of flow streamlines. When com-
pared to similar previous results [59,61,114,115], this predicted solution would seem to agree very well with those solutions
obtained in previous studies, at least qualitatively.

The solution accuracy of the 4th-order CENO scheme is assessed here on the sequence of five grids based on the predic-
tion of the extent of the re-circulation bubbles as measured by the locations of the separation point as well as the computed
values of the pressure, viscous, and total drag. Similar metrics have been used and reported elsewhere [59,61,114,115]. The
predictions of the 4th-order scheme for the separation point and coefficients of pressure drag, CD,p, viscous drag, CD,f , and
total drag, CD, are given and compared to those of the 2nd-order method in Fig. 11 for each of the five grids. The variation
with mesh resolution of total drag is given in Fig. 11(e). Fig. 11(f) depicts the predicted values of the two contributions
to the total drag coefficient, CD,p and CD,f , as a function of mesh density. Finally, the predicted chord locations of the flow
separation point, xs, as identified by the zero of the derivative of tangential velocity component in the wall normal direction,
are shown in Fig. 11(c). The separation location is expressed as a percentage of the chord length.

From the results of Fig. 11 is evident that, as the mesh is successively refined, the 2nd- and 4th-order schemes appear
to be converging asymptotically to identical results for the various drag coefficients and separation location. The value of
the total drag coefficient, CD, predicted by the 2nd-order scheme on the 3,145,728-cell mesh is 0.05555 and the 4th-order
CENO scheme yields a nearly equivalent value of 0.05553 on the mesh with 786,432 control volumes. Similarly, the predicted
locations of the separation point, xs, for the 2nd- and 4th-order schemes on the N4 and N5 meshes are 81.0% and 80.9%,
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Fig. 11. Computed Mach number distribution by the 4th-order CENO scheme and comparison of location of the separation point and the drag coefficients
determined by the 2nd- and 4th-order schemes as a function of mesh resolution.
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respectively. These values compare well and are within engineering accuracy to the values reported in previous studies [59,
61,114,115]. It is also obvious from Fig. 11(c) that the pressure drag can be captured relatively accurately by both low- and
high-order schemes, even on relatively coarse meshes. However, in contrast, the viscous drag is only predicted accurately
on coarser meshes by the 4th-order scheme, whereas the 2nd-order method requires a significantly finer mesh to achieve
a similar level of accuracy. A similar behaviour, but with greater differences, can be observed for the prediction of the flow
separation point.

The results of Fig. 11 also demonstrate the potential benefits of the proposed high-order finite-volume scheme. Assuming
that the values of the total drag and separation point as determined by the reference 2nd-order solution method are the
correct fully-converged results, then the estimated relative errors in the predictions obtained by the 4th-order scheme on
the coarsest mesh, N1, with 12,288 cells is about 0.05% for CD and 0.4% for xs, whereas the corresponding errors for the
2nd-order scheme on the 12,288-cell mesh are 5.36% and 17.4%, respectively. Both errors for the 4th-order scheme on the
coarse mesh are considerable less than 1% even though the coarse mesh is 256 times smaller than the finest mesh and has a
spatial resolution that is coarser by a factor of 16. Moreover, to obtain an equivalent error in the prediction of the separation
point (i.e., a 0.4% error in xs), it is estimated from Fig. 11(c) that the second-order method would require a two-dimensional
computational mesh that is about 123 times larger than the coarsest mesh, N1, and has a finer spatial resolution by a factor
of about 11. In terms of the accuracy as a function of the number of unknowns or degrees of freedom, the performance of
the 4th-order CENO scheme is very similar if not slightly superior to that offered by the SD scheme of Sun et al. for this
case [115], for which it can be estimated from their results that about 15,000 degrees of freedom are required to obtain
an error in the separation point of less than 0.4%. The latter comparison is obviously affected by possible differences in the
actual meshes used to obtain the solutions, but shows a rather good performance of the proposed CENO scheme relative to
other recently proposed spatial discretization schemes.

The preceding observations suggest that there is a significant performance gain, in terms of accuracy, in going from the
standard second-order approach to the proposed 4th-order CENO scheme. While no attempt has been made here to quantify
directly the overall computational savings offered by the high-order method (such an evaluation was deemed beyond the
scope of the present study due to several inefficiencies and inequities in the implementations of the reference second-order
scheme, high-order approach, and time-marching schemes which could potentially lead to unfair comparisons), estimates of
the relative cost of performing one residual evaluation per computational cell for the reference second-order and 4th-order
CENO schemes are also quite favourable. While representing about 75% of the total computing time for the simulations with
explicit time marching, the cost of evaluating the high-order spatial residual, Ri, j , for cell (i, j) was found to be only about
2.9–3.4 times that of the second-order operator. The latter would imply that the proposed high-order CENO scheme has the
potential to provide large computational savings when accurate predictions of separation and drag are required.

5.7.2. Steady subsonic laminar flow past a circular cylinder
The flow-field geometry considered in the simulations of the steady, subsonic, laminar flow past a cylinder consists of

a domain between two concentric cylinders. The inner cylinder has a diameter di = 0.0001 m and the ratio of the outer
and inner cylinder diameters is 40. Results for five non-uniformly-spaced, body-fitted, O-grid meshes were considered with
clustering of the grid lines toward the inner cylinder. The five grids contained M1 = 3200, M2 = 12,800, M3 = 51,200,
M4 = 204,800, and M5 = 3,276,800 computational cells, respectively. As for the airfoil case, the computations for the
cylinder were again performed on each of the meshes using both high- and low-order schemes. Results were obtained
for the proposed 4th-order, CENO, finite-volume, scheme with quartic reconstruction as well as for the standard, second-
order, finite-volume method described above. No-slip boundary conditions for velocity and adiabatic boundary conditions
for temperature were imposed on the inner cylinder wall. The constrained reconstruction algorithm was again used in the
enforcement of these conditions in the high-order CENO computations.

The predicted Mach number distribution for steady laminar flow past the cylinder at Re = 30 obtained using the 4th-
order (k = 4), CENO, finite-volume scheme on body-fitted mesh M3 is shown in Fig. 12, along with the predicted cylinder
drag coefficients obtained using both the second- and 4th-order schemes on the sequence of five computational meshes,
M1, M2, M3, M4, through M5. The re-circulating flow regions behind the cylinder following separation can be clearly iden-
tified by the streamlines of Fig. 12(a). As indicated in Fig. 12(b), the drag coefficients, CD, predicted by the high-order
scheme were CD = 1.7498 for mesh M1, CD = 1.7512 for mesh M2, CD = 1.7522 for mesh M3, CD = 1.7528 for mesh M4,
and CD = 1.7541 for mesh M5. These values are generally in good agreement with the curve fits proposed by Henderson
[117], which yield a value of CD = 1.737 for this case, as well as available experimental data from the open literature [118,
119]. Note that Henderson’s fits are based on thorough numerical studies near the onset of vortex shedding and have been
verified against experimental data [117].

Several conclusions can be drawn from the predictions of the drag coefficient given in Fig. 12(b). First of all, it is quite
apparent that as the mesh is refined, the predictions of the proposed 4th-order CENO scheme and the reference second-
order method converge to the same value of the drag coefficient. On the finest mesh, M5, with more than three million
cells, the difference between the predictions of the two schemes is just 6.5 drag counts. Secondly, assuming that the value
of the drag obtained using the high-order scheme on the finest mesh, M5, is the exact converged result, the error in the
drag coefficient for the 4th-order CENO scheme on the coarsest mesh, M1, relative to this best estimate is only 0.245%. This
is a rather small error in drag considering that mesh M1 is 1024 times smaller than mesh M5 and has a spatial resolution
that is coarser by a factor of 32. In contrast, the estimated error in drag for the reference second-order scheme on mesh
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Fig. 12. Predicted numerical results for steady, subsonic, laminar flow past a circular cylinder with a free-stream Mach number of M∞ = 0.1 and Reynolds
number of Re = 30 showing: (a) predicted distribution of Mach number, M, and streamlines obtained using the 4th-order, CENO, finite-volume scheme
on mesh M3 with 51,200 cells; and (b) comparison of predicted drag coefficients, CD, for the 4th-order CENO and standard second-order finite-volume
methods as a function of mesh density (	x = 1√

N
) obtained using meshes M1, M2, M3, M4, and M5.

M1 is about 8 times larger with a 1.966% relative error compared to the 4th-order solution on the finest mesh. Finally, the
results of Fig. 12(b) would suggest that to obtain the identical error in drag as that of the high-order CENO scheme for
mesh M1 (i.e., a 0.245% error in drag), the second-order method would require a two-dimensional computational mesh that
is about 132 times larger than M1 and has a finer spatial resolution by a factor of 11–12. Somewhat surprisingly, these
values for the reductions in the mesh or degrees of freedom offered by the high-order approach are very similar to those
found for the NACA0012 airfoil case described previously. As for the airfoil case, the possible performance gains, in terms
of accuracy, in going from a standard second-order approach to the proposed 4th-order CENO scheme are very evident.
When the CENO method is eventually combined with an efficient convergence acceleration technique and/or time-marching
scheme, the potential for appreciable computations savings would seem rather significant.

5.7.3. Parallel performance
The parallel performance of the proposed high-order CENO algorithm has also been assessed for this steady, subsonic,

laminar cylinder flow of the previous section. The parallel speedup and efficiency, defined as

S p = t1

tp
, E p = S p

p
, (44)

respectively, were both evaluated for this case, where t1 and tp are the total computational times required to solve the
problem using a single processor core and using p cores, respectively. A strong scaling study was considered in which these
parallel performance measures were estimated for a fixed size problem consisting of 2048, 20 × 20-cell, grid blocks with
819,200 computational cells. The scalability was computed using up to 1024 cores. The computations were performed on a
high performance parallel cluster consisting of 3780 Intel Xeon E5540 (2.53 GHz) nodes with 16 GB RAM per node and a
total of 30,240 cores. The cluster is connected with a high speed InfiniBand switched fabric communications link.

Fig. 13 provides the actual computed parallel speedup and efficiency achieved for the 4th-order CENO method as a func-
tion of the number of computing cores. The results are compared directly to the corresponding ideal values assuming the
computation for p cores is p times smaller than t1. The results show that, despite the expected increases in inter-processor
communication and decreases in computational work per core with increasing core count, rather impressive parallel effi-
ciencies in excess of 70% are achieved in all cases up to 1024 cores for this relatively small two-dimensional strong-scaling
problem.

5.7.4. Unsteady subsonic laminar flow past a circular cylinder with AMR
As a final assessment of the predictive capabilities of the proposed high-order, CENO, finite-volume schemes when also

used in conjunction with the block-based AMR method, the prediction of unsteady vortex shedding for subsonic flow past
a circular cylinder is considered. In this case, a cylinder flow with a Reynolds number of Re = 110 was studied. A com-
putational domain with di = 0.0001 m and an outer boundary positioned at 80 inner diameters was used. A quasi-steady
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Fig. 13. Parallel speedup, S p , and efficiency, E p , of the 4th-order, CENO, finite-volume scheme as a function of the number of processor cores, p, for steady,
subsonic, laminar flow past a circular cylinder with a free-stream Mach number of M∞ = 0.1 and Reynolds number of Re = 30.

Fig. 14. Predicted drag coefficient, CD, as a function of physical time, t , for unsteady, subsonic, laminar flow past a circular cylinder with a free-stream
Mach number of M∞ = 0.1 and Reynolds number of Re = 110 obtained using the 4th-order, CENO, finite-volume scheme with block-based AMR. The three
inserts provide details of the instantaneous and mean drag for the computational meshes with 221 (Detail A), 536 (Detail B), and 2486 blocks (Detail C),
respectively.

periodic solution was first obtained on an initial O-grid mesh of 32 self-similar 8 × 8 grid blocks containing 2048 compu-
tational cells. Mesh adaptation as directed by the proposed h-refinement criterion based on the CENO smoothness indicator
was then applied successively to the coarse-mesh solution to improve the accuracy. Over a period of simulated physical time
from t = 0.00055 s to t = 0.006225 s, a sequence of five new solution-dependent meshes were then created by applying the
AMR procedure. In each case, a quasi-steady periodic solution was again obtained on the refined mesh prior to performing
another level of the mesh adaptation. The five new meshes generated by the block-based refinement algorithm consisted
of 80, 221, 536, 1349 and 2486 8 × 8 grid blocks and 5120, 14,144, 34,304, 86,336 and 159,104 cells, respectively. After
t = 0.006225 s, further dynamic mesh adaptation was performed at regular time intervals. Following an initial increase to
4175 grid blocks, the AMR mesh resolution gradually increased during this final period until a quasi-steady periodic solution
was obtained on meshes ranging in size from 10,000 to 11,000 grid blocks with 600,000–700,000 computational cells and
10–12 levels of mesh refinement.

The predicted unsteady drag coefficient, CD, for the Re = 110 circular cylinder flow is depicted in Fig. 14. The simulated
temporal variation of CD is shown for the entire sequence of AMR meshes starting with the initial under-resolved mesh
having just 32 grid blocks and 2048 computational cells, on through five additional grids for which quasi-steady periodic
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Fig. 15. Predicted instantaneous distributions of density, ρ , and entropy, s, as well as dynamically refined mesh, at t = 0.006269 s for unsteady, subsonic,
laminar flow past a circular cylinder with a free-stream Mach number of M∞ = 0.1 and Reynolds number of Re = 110 obtained using the 4th-order, CENO,
finite-volume scheme. The instantaneous AMR mesh contains 10,784 grid blocks and 690,176 computational cells.

solutions were obtained without dynamic mesh adaptation, to the final dynamically adapted meshes having 10,000–11,000
grid blocks and 600,000–700,000 computational cells. The three inserts show the establishment of quasi-periodic behaviour
as well as details of the instantaneous and mean drag for the computational meshes with 221 (Detail A), 536 (Detail B),
and 2486 blocks (Detail C), respectively. While it is apparent that the mean drag is under-predicted on the initial mesh,
the predicted solutions exhibit convergence to a grid-independent result as the mesh is successively refined by the AMR
algorithm as described above. On the finest dynamically adapted meshes, the best predictions of the mean drag coefficient
and Strouhal number, St, are CD = 1.3314 and St = 0.1696, respectively, which both agree very well with established values
from the literature. The Strouhal number for this case based on the relationship proposed by Roshko [120] to describe a
best fit to experimental data is St = 0.1711. A value of CD = 1.34 is reported in the computational study by Henderson
[117].

The capabilities of the proposed AMR scheme for this case can be seen by considering Fig. 15, which depicts the pre-
dicted instantaneous distributions of density, ρ , and entropy, s, as well as dynamically refined mesh, at t = 0.006269 s for
the unsteady, subsonic, laminar, cylinder flow. The instantaneous AMR mesh contains 10,784 grid blocks and 690,176 com-
putational cells at t = 0.006269 s. The figure shows the distribution of the AMR blocks in the vicinity of the cylinder and
the wake behind it containing the shed vortices. The h-refinement criterion based on the smoothness indicator is clearly
able to identify the boundary layer, regions of flow detachment, shed vortices, and other wake-flow structures and these
areas are targeted for mesh enrichment. When applied at a regular frequency throughout the calculation, the AMR mesh is
then able to “track” and follow the unsteady flow features and vortices transported downstream, as shown in the figure.
Note that the portion of the computational domain shown in Fig. 15 spans more than 60 cylinder diameters, yet the wake
and shed vortices are well resolved, even at relatively large distances from the trailing edge of the cylinder.

5.7.5. Predicted drag for subsonic laminar flow past a circular cylinder
As a final summary of the subsonic, laminar, cylinder flow computations, a comparison of the predicted drag coefficients,

CD, for the Re = 30 and Re = 110 cases obtained using the proposed 4th-order, CENO, finite-volume scheme to the ex-
perimental measurements of Wieselsberger [119], two- and three-dimensional computations by Henderson [117,121], and
other more recent numerical predictions by Sheard et al. [121] was made, the results of which are given in Fig. 16. It is
quite evident from the figure that the drag predicted by the CENO scheme for both the steady (Re = 30) and unsteady
(Re = 110) cases agree extremely well with the previously reported values. Despite only considering cylinder flows at two
Reynolds numbers, it is felt that these numerical results demonstrate the validity of the proposed finite-volume approach
and indicate that the high-order CENO scheme in combination with the block-based AMR algorithm has the potential to
provide very accurate and reliable predictions of viscous laminar flows while significantly reducing the number of required
computational elements.

6. Discussion and concluding remarks

A new high-order, CENO, finite-volume scheme with AMR has been proposed for solving the two-dimensional form of
the Navier–Stokes equations governing compressible, laminar, viscous flows on body-fitted, multi-block, quadrilateral mesh.
The procedure represents an extension of the CENO approach previously developed for inviscid flow simulations to viscous
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Fig. 16. Variation of the drag coefficient, CD, as a function of the Reynolds number, Re, for subsonic laminar flow past a circular cylinder showing com-
parisons of the predictions of the 4th-order, CENO, finite-volume scheme for both Re = 30 and Re = 110 to experimental measurements of Wieselsberger
[119], two- and three-dimensional computations by Henderson [117,121], and other more recent numerical predictions by Sheard et al. [121]. The vertical
lines indicate the Reynolds numbers for transition from steady to unsteady flow (Re ≈ 47) and from two- to three-dimensional flow (Re ≈ 189).

flows of thermally and calorically perfect gases. The verification and validation of the proposed high-order AMR algorithm
has been accomplished by comparing predicted solutions to a variety of available analytical results, previously reported
computations, and experimental data. The numerical properties and validity of the proposed discretization scheme for the
elliptic (viscous) operator were assessed and verified. The ability of the scheme to accurately represent solutions with
smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., solutions with disconti-
nuities) was demonstrated. The usefulness of the h-refinement criterion based on the smoothness indicator was evaluated
and shown to provide a robust and reliable mesh adaptation algorithm that is capable of refining both under-resolved and
non-smooth regions of the solution, while not unnecessarily over-refining resolved content. Finally, the extensive numerical
experiments have well demonstrated the potential of the high-order and AMR schemes to reduce the overall computa-
tional cost of large-scale numerical simulations by reducing the grid resolution requirements for a given solution accuracy.
Future research will involve further investigation of the CENO approach, the application of the method to more complex
flows, its extension to three-dimensional problems and unstructured meshes, and the development of the scheme for use
in conjunction with more efficient, high-order, time-marching schemes for both steady and unsteady applications.
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