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a b s t r a c t

A high-order accurate finite-volume scheme for the compressible ideal magnetohydrody-
namics (MHD) equations is proposed. The high-order MHD scheme is based on a central
essentially non-oscillatory (CENO) method combined with the generalized Lagrange
multiplier divergence cleaning method for MHD. The CENO method uses k-exact multidi-
mensional reconstruction together with a monotonicity procedure that switches from a
high-order reconstruction to a limited low-order reconstruction in regions of discontinu-
ous or under-resolved solution content. Both reconstructions are performed on central
stencils, and the switching procedure is based on a smoothness indicator. The proposed
high-order accurate MHD scheme can be used on general polygonal grids. A highly sophis-
ticated parallel implementation of the scheme is described that is fourth-order accurate on
two-dimensional dynamically-adaptive body-fitted structured grids. The hierarchical
multi-block body-fitted grid permits grid lines to conform to curved boundaries. High-
order accuracy is maintained at curved domain boundaries by employing high-order spline
representations and constraints at the Gauss quadrature points for flux integration.
Detailed numerical results demonstrate high-order convergence for smooth flows and
robustness against oscillations for problems with shocks. A new MHD extension of the
well-known Shu–Osher test problem is proposed to test the ability of the high-order
MHD scheme to resolve small-scale flow features in the presence of shocks. The dynamic
mesh adaptation capabilities of the approach are demonstrated using adaptive time-
dependent simulations of the Orszag–Tang vortex problem with high-order accuracy and
unprecedented effective resolution.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper proposes a high-order accurate finite-volume (FV) scheme for the compressible ideal magnetohydrodynamics
(MHD) equations. The high-order MHD scheme is based on the central essentially non-oscillatory (CENO) method that was
introduced for the compressible Euler equations by Ivan and Groth [1], and has since been extended to the Navier–Stokes
equations [2–4]. The CENO method uses Barth’s k-exact reconstruction mechanism [5] to obtain high-order solution accu-
racy in combination with a monotonicity procedure that switches between a high-order reconstruction and a limited
low-order reconstruction. Both reconstructions are performed on central stencils, and the switching is based on a smooth-
ness indicator [1]. The hybrid CENO approach is combined in this paper with the generalized Lagrange multiplier (GLM)
divergence cleaning method for MHD that was proposed by Dedner et al. [6] to obtain a FV MHD scheme that is high-order
accurate in smooth flow regions and robust against spurious oscillations at discontinuities. The proposed high-order
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accurate MHD scheme has several desirable properties. First, it is suitable for general polygonal grids because Barth’s k-exact
polynomial reconstruction procedure is inherently multi-dimensional and can be used on general stencils that do not need to
be grid-aligned. Second, the scheme can in principle be implemented with arbitrary order. Third, it can be used directly on
block-adaptive grids, which can pose significant challenges to MHD schemes due to the r �~B constraint. And fourth, high-
order accuracy is maintained at curved domain boundaries of the body-fitted mesh by employing accurate spline represen-
tations for the boundaries that enable high-order accurate surface flux computations. These features constitute significant
new developments in high-order finite-volume schemes for MHD. The particular implementation of the proposed scheme
that we present in this paper is a highly sophisticated fourth-order accurate parallel MHD method on two-dimensional
(2D) dynamically-adaptive multi-block body-fitted quadrilateral grids. Our adaptive 2D body-fitted structured grids are
composed of blocks with quadrilateral cells that are organized in a rectangular structure as on a Cartesian grid and, thus,
the grid blocks are sometimes also referred to as logically Cartesian. The body-fitted meshes in our work can have grid lines
conforming to curved boundary surfaces and stretching of the grid lines is permitted to allow for anisotropic mesh spacing.

Development of high-order numerical methods for MHD is an active area of research. Just like for other nonlinear hyper-
bolic systems, spurious oscillations at shocks are a major challenge in MHD, but the r �~B constraint is an additional signif-
icant challenge in MHD. Indeed, it is well-known that simply extending conservation law methods for the Euler equations to
the MHD hyperbolic system fails to work, since r �~B may grow in an uncontrolled fashion (beyond truncation error levels),
which may result in unphysical forces and numerical instability [7,8]. A variety of approaches have been proposed to remedy
this issue. One option is to employ an elliptic correction scheme, called the ‘‘Hodge Projection’’, which essentially projects a
vector field onto its solenoidal part [7,9]. While the elliptic correction scheme maintains solenoidality up to machine accu-
racy (in the chosen discretization), it requires a Poisson equation to be solved at each hyperbolic step. This is not natural in a
‘hyperbolic’ simulation and can be inconvenient in terms of implementation, especially in parallel since the discrete Poisson
potential variables are tightly coupled across the whole computational domain. As an alternative, Powell [8] proposed a
divergence control method that only attempts to approximately satisfy the divergence constraint. In Powell’s approach,
the ideal MHD system is rewritten into its symmetrizable and Galilean-invariant form through the introduction of source
terms proportional to the divergence of the magnetic field. This modification maintains the hyperbolic character of the
MHD equations, but comes at the cost of conservation, and may lead to incorrect jumps for problems with strong disconti-
nuities [10]. For this reason, this approach has lost some of its initial popularity. A third method to controlr �~B is the class of
schemes that fall under the category of ‘constrained transport’ methods, which preserve the solenoidality of the magnetic
field through staggered spatial discretizations [11]. The normal components of the magnetic field are stored on cell faces,
and in every time-step the field is updated in such a way that r �~B remains zero up to machine accuracy (in the chosen dis-
cretization). This approach, however, requires the magnetic field variables to be treated differently from the fluid variables,
which may be inconvenient for implementation. The approach is attractive from a physical point of view and is straightfor-
ward to derive and implement for second-order accurate codes on regular Cartesian grids. It can be extended with second-
order accuracy to logically Cartesian grids and to triangular or tetrahedral unstructured grids [12,13], but extensions beyond
second order [14] and to general polygonal grids are far from trivial. In particular, interpolation and restriction of the mag-
netic field at resolution changes on block-adaptive grids need to be treated very carefully and sophisticated approaches have
been developed for this purpose [14–16].

More recently, Dedner et al. [6] proposed the GLM-based divergence cleaning technique. Through the introduction of a
new transport variable, the divergence error is convected out of the domain, while keeping the hyperbolicity of the system
intact. Unlike the Powell source term method, conservation in all physical variables is maintained. And unlike approaches
following the constrained transport methodology, there is no need to stagger the grid, or to place the magnetic fields at loca-
tions different from those where the fluid variables are located. The GLM approach can easily and naturally be applied on
general polygonal grids, and there is no need to integrate complicated source terms involving flow variable derivatives as
in Powell’s approach. The GLM-MHD approach thus provides an attractive alternative to the more commonly established
ways of divergence control, because it is effective in controlling divergence error, is simple to implement, preserves conser-
vation, and can easily be applied on general grids. We choose GLM for our MHD scheme because, combined with the CENO
method, it leads to a high-order MHD scheme that can be applied on general grids (including our adaptive multi-block body-
fitted structured grid) and naturally handles resolution changes on block-adaptive grids, as demonstrated herein.

Adaptive mesh refinement has proven to be very effective for treating problems with disparate length scales, providing
the required spatial resolution while minimizing memory and storage requirements. Recently, Groth and co-researchers
[17–21] have developed a flexible block-based adaptive mesh refinement (AMR) scheme allowing automatic solution-direc-
ted mesh adaptation on multi-block body-fitted meshes consisting of two-dimensional quadrilateral and three-dimensional
hexahedral computational cells. We have implemented our new high-order MHD scheme that combines CENO and GLM into
a hierarchical quadtree block-based AMR procedure for multi-block body-fitted quadrilateral mesh that is based on this pre-
vious work [17–19,21]. This block-based approach has been shown to enable efficient and scalable parallel implementations
for a variety of flow problems, as well as to allow for local refinement of body-fitted mesh with anisotropic stretching. The
latter aids in the treatment of complex flow geometry and flows with thin boundary, shear, and mixing layers and/or dis-
continuities and shocks. Extensions of the block-based body-fitted AMR approach for embedded boundaries not aligned with
the mesh [22] and with an anisotropic refinement strategy [23] are also possible and have been developed.

In recent years, various high-order schemes have been proposed for the MHD system. Many recent developments employ
discontinuous Galerkin (DG) finite-element methods [24–27], and others are based on essentially non-oscillatory (ENO) FV
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schemes and on weighted ENO (WENO) FV schemes [13,28–33]. Most of these high-order approaches were only described
and implemented for regular Cartesian grids. Our high-order MHD scheme uses a different approach. As already mentioned,
it is based on Barth’s k-exact reconstruction procedure [5], which uses a least-squares approach on overdetermined stencils
to compute polynomial reconstruction coefficients, in a multi-dimensional way that can handle general polygonal grids. In
order to control spurious oscillations at shocks, we use the CENO monotonicity procedure that was introduced by Ivan and
Groth [1] for the Euler equations, and has since been extended to the Navier–Stokes equations [2–4]. Our implementation of
this CENO monotonicity procedure switches between an unlimited piecewise cubic reconstruction (fourth-order accurate)
and a limited piecewise-linear reconstruction (second-order accurate), with the switching based on the smoothness indica-
tor introduced in [1]. Note that the scheme we describe can in principle be implemented with arbitrary order, but fourth-
order accuracy is a suitable practical choice for the numerical results to be presented in this paper. The smoothness indicator
is computed in each cell to determine whether the flow is locally smooth and well-resolved. For cells containing non-smooth
or under-resolved solution content, the unlimited k-exact reconstruction is switched to limited piecewise linear reconstruc-
tion. The smoothness indicator can also be used directly to formulate a criterion for AMR. The CENO scheme is called central
because both the high-order and the low-order stencils are central with respect to the cell. The method is called an ENO
method because it satisfies the ENO property [34]:

TVðunþ1Þ ¼ TVðunÞ þ OðDxkþ1Þ; ð1Þ

where un denotes a solution variable u at time level n, Dx is the grid spacing, k is the order of polynomial reconstruction, and
TV stands for total variation. The ENO property allows the presence of small spurious oscillations that have a magnitude on
the order of the truncation error, but it does not allow Oð1Þ Gibbs-like oscillations at discontinuities [34]. It is important to
note that the CENO method proposed by Ivan and Groth [1] does not choose between asymmetric stencils as most other
methods do that try to enforce the ENO property, but instead uses a hybrid approach that chooses between high-order
and low-order central reconstructions. Note that Harten and Chakravarthy [35] also proposed a technique on Cartesian grids
to obtain an ENO reconstruction using central stencils by hybridizing a high-order reconstruction with a first-order formu-
lation, and this served as an inspiration for the CENO approach of [1,2]. The fixed stencil used during the CENO reconstruc-
tion procedure avoids the complexity of considering multiple non-central stencil configurations that characterizes
traditional ENO schemes. Note also that the CENO method of Ivan and Groth is not a central ENO method in the sense of
Nessyahu and Tadmor’s staggered mesh philosophy [36], but it uses non-staggered central stencils of different order. We
note that our limited low-order least-squares scheme for MHD with GLM divergence cleaning is similar to the discretization
proposed by Yalim et al. in [37] (implemented on unstructured grids), and our high-order method is a high-order extension
of this approach that combines least-squares reconstruction with GLM. Our CENO-GLM high-order MHD scheme thus pro-
vides an alternative to high-order DG and ENO/WENO methods for MHD, and is attractive because it can naturally be applied
on general grids.

This paper is organized as follows. The ideal MHD equations and the GLM formulation are described in Section 2. In Sec-
tion 3 we give a detailed description of our high-order MHD scheme, which is obtained by combining the CENO method with
GLM divergence cleaning. Section 4 describes detailed numerical results that demonstrate high-order convergence for
smooth flows, and robustness against oscillations for Riemann problems and other flows with shocks. In particular, we also
present a new MHD extension of the well-known Shu–Osher test problem [38] to test the ability of our high-order MHD
scheme to resolve small-scale flow features in the presence of shocks. Finally, we demonstrate the dynamic mesh refinement
capabilities of our implementation using adaptive time-dependent simulations of the Orszag–Tang vortex problem [39] with
high-order accuracy and unprecedented effective resolution. Concluding remarks are presented in Section 5.

2. Ideal MHD

2.1. Ideal MHD equations

The ideal MHD system is described by the following equations in conservation form:

@q
@t
þr � ðq~vÞ ¼ 0; ð2Þ

@ðq~vÞ
@t

þr � q~v~v þ~I pþ
~B �~B

2

 !
�~B~B

 !
¼ 0; ð3Þ

@~B
@t
þr � ð~v~B�~B~vÞ ¼ 0; ð4Þ

@e
@t
þr � eþ pþ

~B �~B
2

 !
~v � ð~v �~BÞ~B

 !
¼ 0: ð5Þ
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Eqs. (2)–(5) are supplemented with a solenoidality condition for the magnetic field,

r �~B ¼ 0: ð6Þ

The conserved quantities of the ideal MHD equation system are the density, q, the momentum, q~v (with ~v being the veloc-
ity), the magnetic field, ~B, and the energy, e. The plasma pressure, p, is given by the equation of state for a perfect gas

p ¼ ðc� 1Þ e� 1
2
qj~v j2 � 1

2
j~Bj2

� �
; ð7Þ

where c is the adiabatic index. We use c ¼ 5=3 in our numerical tests except where noted.

2.2. GLM control of the r �~B constraint

The GLM-MHD formulation can be described as follows. Following a similar approach as for the Maxwell equations [40],
the divergence constraint (Eq. (6)) can be coupled with the induction equation through the introduction of a new potential
variable, w [6]. We consider the so-called hybrid hyperbolic-parabolic approach proposed in [6], in which the equations
describing the evolution of the magnetic field, Eqs. (4) and (6), are replaced with

@~B
@t
þr � ð~v~B�~B~vÞ þ rw ¼ 0; ð8Þ

@w
@t
þ c2

hr �~B ¼ �
c2

h

c2
p
w: ð9Þ

As can be seen from these equations, the system is still conservative except for the evolution equation of w, which is not a
physical variable. This preservation of conservation for physical variables is the main advantage of the GLM method over the
Powell method that was proposed earlier to approximately satisfy the divergence constraint [41]. Two new eigenvalues arise
in the GLM-MHD formulation, which are �ch. The coefficients cp and ch control the amount of diffusion in w and the advec-
tion speed, respectively. The ‘purely hyperbolic’ correction can be obtained by taking cp to infinity (no diffusion). To ensure
that the error is advected as fast as possible, it is desirable to set ch as high as possible. However, because the two new eigen-
values have magnitude ch, it is also important to set ch small enough so that it will not affect the time-step criterion of the
simulation. Thus, ch is often chosen to be the largest of all MHD eigenvalues in the whole domain over all cell interfaces ði; jÞ,
which can be written as

ch ¼max
i;j
jvnj þ cfn

� �
; ð10Þ

where vn and cfn are the plasma velocity and the fast magnetosonic wave speed in the direction normal to the interfaces ði; jÞ.
In [6] it is recommended to choose cp by setting the parameter cr ¼ c2

p=ch to a constant value of 0.18. In [32,33], it is suggested
to choose cp by setting the parameter �a ¼ Dxch=c2

p to a constant value in ½0;1�, where Dx is a measure of the grid spacing. Note
that �a is a dimensionless quantity reflecting the ratio of the diffusive and advective time scales.

2.3. Boundary condition treatment of w at inflow and outflow boundaries

The choice of ch as given by Eq. (10) ensures that no eigenvalue will exceed the largest physical eigenvalue in the domain,
while at the same time, it guarantees that the divergence error will be advected out of the simulation domain with the fastest
physical wave speed in the flow solution. Since the two additional eigenvalues are �ch regardless of the actual plasma veloc-
ities and wave speeds, eigenvalues of both signs will always exist at all cell interfaces. This means that treatment similar to
subsonic inlet and outlet boundary conditions (see [42]) is always required for inflow and outflow boundary conditions.
Since the waves with eigenvalues �ch only carry changes in the normal magnetic field and w [6], only these two variables
need to be taken into account at boundaries to accommodate these waves. For example, consider superfast inflow boundary
conditions and assume without loss of generality that vn > 0. Since the inflow velocity is faster than the fast magnetosonic
wave, all the MHD eigenvalues are positive (information travels into the computational domain). However, for GLM-MHD
one cannot just prescribe all variables, because one of the eigenvalues, �ch, is necessarily negative, even when the flow is
superfast at the inflow boundary. One of either w or the normal magnetic field has to be extrapolated from the interior solu-
tion, and because the inflow magnetic field is prescribed at the boundary, it is w that has to be extrapolated from the interior.
The same logic applies to superfast outflow. Assume again that vn > 0. Without GLM, all of the variables would just be
extrapolated from the inside of the domain, since all eigenvalues are positive, hence no information is propagating into
the domain. However, due to the negative eigenvalue �ch, w needs to be prescribed at the outflow boundary. A suitable
choice for w is to set it to zero at superfast outflow boundaries. (This is consistent with Yalim et al. [37], who set w to a con-
stant at the superfast outlet boundaries.)
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3. High-order CENO scheme for ideal MHD with GLM divergence cleaning

In this section we give a detailed description of the proposed high-order CENO scheme for MHD, which is obtained by
combining Ivan and Groth’s CENO approach with GLM divergence cleaning. We first describe the high-order FV framework,
followed by discussions on Barth’s k-exact reconstruction and the CENO reconstruction selection process using the CENO
smoothness indicator. While the CENO method applies to general mesh topologies, the discussion here is restricted to the
application to 2D, multi-block, body-fitted (logically Cartesian) AMR grids having quadrilateral computational elements of
the type considered by Groth and co-researchers [17–19,21]. Numerical flux calculation and source term integration for
our high-order MHD CENO method are described next, followed by a discussion on how our MHD CENO implementation
obtains high-order accuracy at curved boundaries.

3.1. High-order finite-volume formulation

Consider hyperbolic conservation law

@U
@t
þr �~F ¼ S; ð11Þ

where U is the vector of conserved variables, ~F consists of the flux terms of the system, and S is a source term vector. For a
quadrilateral cell ði; jÞ, the semi-discrete FV form of Eq. (11) is given as

dUi;j

dt
¼ � 1

Ai;j

X4

l¼1

XNg

m¼1

ðx~Fnum �~nDlÞi;j;l;m þ Si;j; ð12Þ

where Ui;j is the numerical approximation of the average value of U in cell ði; jÞ,~Fnum is the numerical flux function, Ai;j is the
area of the computational cell ði; jÞ, Ng is the number of Gauss quadrature points on each cell face and x is the associated
Gauss quadrature weight to each of the Gauss points. The actual number of flux quadrature points, Ng , depends on the order
of solution reconstruction, with two Gauss quadrature points per face for third- and fourth-order accurate schemes, but only
one Gauss quadrature point per face for second-order or lower [1]. The order of the polynomial reconstruction then deter-
mines the spatial accuracy of the solution by providing more accurate approximations of the solution values at the Gauss
quadrature points for flux calculation. In general, an order-k polynomial reconstruction provides an order-ðkþ 1Þ accurate
spatial discretization for smooth problems. We use standard explicit second-order and fourth-order Runge–Kutta methods
[42] to integrate Eq. (12) in time for the second-order and fourth-order accurate spatial discretizations to be compared in our
time-dependent numerical test problems. For steady-state simulations, we use a five-stage optimally smoothing method
regardless of the solution accuracy [43].

3.2. k-Exact piecewise polynomial reconstruction

Following Barth [5], the variation of a solution variable, u, at any location within the quadrilateral computational cell ði; jÞ,
assumes the form

uk
i;jð~XÞ ¼

Xk

p1¼0

Xk

p2¼0
ðp1þp26kÞ

x� xi;j
� �p1 y� yi;j

� �p2 Dk
p1p2

; ð13Þ

where k is the order of the polynomial function,~X ¼ ðx; yÞ are the coordinates at which the solution is sought, ðxi;j; yi;jÞ are the

coordinates of the centroid of cell ði; jÞ, and Dk
p1p2

are high-order polynomial coefficients that will need to be determined for
each of the reconstructed (e.g., primitive) variables for every cell, based on a set of cell averages, uc;d, in the neighbourhood of
cell ði; jÞ. For the test cases presented in this paper, linear (k ¼ 1) and cubic (k ¼ 3) reconstructions are chosen to obtain sec-
ond- and fourth-order accurate schemes. The monotonicity-preserving procedure, which is discussed in Section 3.3, reduces
k to 1 and applies limiters in regions of the flow that are deemed under-resolved or to contain discontinuities.

The coefficients Dk
p1p2

are determined by solving an overdetermined system of linear equations in a least-squares sense,
fitting the reconstruction polynomial to the solution averages for cell ði; jÞ and for its neighbouring cells in the stencil of cell

ði; jÞ. For a polynomial of degree k, the number of coefficients Dk
p1p2

is given by N D ¼ ðkþ1Þðkþ2Þ
2 [1,2,4]. Thus, there are 3 coef-

ficients to be determined for k ¼ 1 or linear reconstruction and 10 coefficients for k ¼ 3 or cubic reconstruction. Following
the requirements imposed by Barth [5], it is important that these coefficients are determined in such a way that the follow-
ing conditions are satisfied:

� Conservation of the mean. The average of the reconstructed polynomial function over cell ði; jÞ should recover exactly the
cell-averaged value ui;j:

ui;j ¼
1

Ai;j

ZZ
Ai;j

uk
i;jð~XÞdA: ð14Þ
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� k-Exactness. The reconstructed polynomial function should be able to reconstruct polynomials of degree up to k exactly
[5]:

uk
i;jð~XÞ � uexactð~XÞ ¼ OðDxkþ1Þ: ð15Þ

� Compact support. The reconstructed polynomial function should depend only on average values within a relatively small
neighbourhood [5]. Only the cell-averaged data within the supporting stencil is used for reconstruction purposes.

In theory, N D determines the minimum size of the supporting stencil, but in practice more neighbours are included to make
the reconstruction more robust for complicated and stretched meshes [1,2,4]. On our 2D body-fitted structured grid blocks,
first-degree neighbours are included for k ¼ 0 and k ¼ 1 reconstruction stencils (a total of 8 neighbours), and first- and sec-
ond-degree neighbours are included for k ¼ 2 and k ¼ 3 reconstruction stencils (a total of 24 neighbours).

Consider reconstruction for cell ði; jÞ. In the reconstruction step an overdetermined system AD� B ¼ 0 is solved in the
least-squares sense, together with the constraint of Eq. (14), which is imposed exactly. Here, D is the array of polynomial

coefficients, Dk
p1p2

, and the equations AD� B ¼ 0 are given by

ðAD� BÞc;d ¼
1

Ac;d

ZZ
Ac;d

uk
i;jð~XÞdA

 !
� uc;d ¼ 0: ð16Þ

There is one equation for each cell ðc; dÞ in the stencil of cell ði; jÞ. Each equation matches the actual cell average uc;d in cell
ðc; dÞ with the average over cell ðc; dÞ of the reconstructed polynomial uk

i;jð~XÞ for cell ði; jÞ. Equation (14) is enforced analyt-
ically by replacing uk

i;j with Eq. (13) and expressing the first coefficient, Dk
00, as a function of the other M ¼ N D � 1 polynomial

unknowns as

Dk
00 ¼ ui;j �

Xk

p1¼0

Xk

p2¼0
ðp1þp2–0Þ

Dk
p1p2

xp1 yp2
� �

i;j; ð17Þ

where the geometric moment xp1 yp2
� �

i;j of powers ðp1; p2Þ is given by

xp1 yp2
� �

i;j ¼
1

Ai;j

ZZ
Ai;j

x� xi;j
� �p1 y� yi;j

� �p2 dA: ð18Þ

Substituting uk
i;j from Eq. (13) in Eq. (16) and using Eq. (17) for Dk

00 the following overdetermined linear system for the M
unknowns is obtained

L1

L2

..

.

LJ

..

.

LNn

266666666664

377777777775
Nn�M

Dk
01

Dk
02

..

.

Dp1p2

..

.

Dk
k0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
M�1

�

w1ðu1 � uIÞ
w2ðu2 � uIÞ

..

.

wJðuJ � uIÞ
..
.

wNnðuNn � uIÞ

0BBBBBBBBBB@

1CCCCCCCCCCA
Nn�1

¼

0
0
..
.

0
..
.

0

0BBBBBBBBBB@

1CCCCCCCCCCA
Nn�1

; ð19Þ

where a unique index J ¼ ðc; dÞ has been assigned to each of the Nn neighbours in the supporting reconstruction stencil and
the index I ¼ ði; jÞ denotes the cell having the solution reconstructed. The generic row LJ of the matrix A for a neighbouring
cell J is given by

LJ ¼ wJ
dx0y1

� �
IJ

wJ
dx0y2

� �
IJ

. . . wJ dxp1 yp2

� �
IJ

. . . wJ
dxky0

� �
IJ

� �
; ð20Þ

in which wJ is a geometric weight specific to each neighbour J which serves the purpose of improving the locality of the
reconstruction, becoming especially important for stretched meshes with boundary curvature [44]. (In essence, equations
corresponding to close-by neighbour cells in the reconstruction stencil get larger weights in the least-squares solution than

neighbour cells that are further away.) The matrix coefficients dxp1 yp2

� �
IJ

for the pair of I and J cells have the expression

dxp1 yp2

� �
IJ
¼ 1

Ac;d

ZZ
Ac;d

x� xi;j
� �p1 y� yi;j

� �p2 dA

 !
� xp1 yp2
� �

i;j; ð21Þ

where the quantities dxp1 yp2

� �
IJ

depend only on the geometry of I and J cells, and involve a monomial integration that can be

computed by applying quadrature rules. An efficient way to calculate the geometric moments dxp1 yp2

� �
IJ

using only the

xp1 yp2
� �

moments is described in [2].
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QR factorization or multiplication with the pseudo-inverse of A can be used to determine the solution of Eq. (19), as de-
scribed in more detail in [1,2,4]. The complete solution of the constrained least-squares problems is then obtained by calcu-
lating D00 using Eq. (17). In each time step, the constrained least-squares reconstruction problem is solved for each cell and
for each primitive variable. Matrix A depends completely on the geometry and is the same for all least-squares problems in a
given cell ði; jÞ (i.e., for each solution variable) and for all time steps, so it can be precomputed and stored for computational
efficiency (see [1,2,4] for details). As explained in Section 3.5, one-sided stencils and additional constraints on the least-
squares solution are used to handle boundary conditions with high-order accuracy at curved boundaries.

3.3. CENO smoothness indicator to enforce monotonicity

The CENO method controls monotonicity throughout the computational domain by selecting a limited linear reconstruc-
tion in cells where the flow is deemed to be non-smooth or under-resolved, and a high-order k-exact reconstruction else-
where. The limited linear reconstruction is based on k-exact reconstruction with k ¼ 1 combined with the standard
Venkatakrishnan limiter, see [2,45]. To estimate whether the flow in cell ði; jÞ is under-resolved or non-smooth, a variable
S , the smoothness indicator, is computed [1]:

S ¼ acs

maxð1� a; �Þ ; ð22Þ

where a is given by

a ¼ 1�

P
c

P
d

uk
c;dð~Xc;dÞ � uk

i;jð~Xc;dÞ
� �2

P
c

P
d

uk
c;dð~Xc;dÞ � ui;j

� �2 ð23Þ

and cs ¼ ðN SOS � N DÞ=ðN D � 1Þ is a positive constant. Here, N SOS stands for ‘size of stencil’ used for reconstruction, N D stands
for ‘degrees of freedom’ and denotes the number of unknown polynomial coefficients, and � is introduced to avoid division
by zero (we use � ¼ 10�8). Further, c and d denote the indices of the neighbouring cells to the cell ði; jÞ that are part of its

reconstruction stencil, and ~Xc;d is the centroid of cell ðc; dÞ. (Note that the stencil used for computing the smoothness indi-
cator can also be chosen smaller than the reconstruction stencil. In our numerical results, we compute the smoothness indi-
cator associated with each primitive solution variable in cell ði; jÞ using a stencil with nine cells, i.e., the cell ði; jÞ and its eight
first-degree neighbours.) The parameter a basically measures how accurately centroidal solution values of neighbouring
cells can be reproduced using the reconstruction for cell ði; jÞ. The range of a is �1 < a 6 1: for smooth variation, the second
term of the right-hand side of Eq. (23) tends to be close to zero and a is very close to one; for cells close to a discontinuity or
with an under-resolved feature, the magnitude of a tends away from one and it can also become negative. The range of the
smoothness indicator S is �cs < S < cs=�: for smooth variation (a very close to one), S is large; for non-smooth or under-re-
solved features (a away from one), S is small. The smoothness indicator S is then compared with a cutoff value SC : when
S > SC the solution is deemed locally smooth and the high-order reconstruction is used, and for S 6 SC the solution is locally
non-smooth or under-resolved, and the limited low-order reconstruction is used. We also use S in our adaptive procedure to
refine regions where the solution is non-smooth or under-resolved. A potential disadvantage of this approach is that it is not
fully parameter-free. However, we have found it easy to pick suitable values of SC based on the range recommended in [2] for
the numerical tests shown in Section 4. The selection of an appropriate cutoff value is also made easier by the use of the
transition function a=ð1� aÞ, which rapidly magnifies small variations in a very close to one. Additionally, it is worth empha-
sizing that a single value SC is selected and applied to all solution variables and all mesh resolutions used for solving a par-
ticular problem. Note also that the use of the adjustment coefficient,cs, in the expression of S helps making the selection of SC

relatively independent of the order of the scheme and making the smoothness indicators comparable for different stencil
sizes that may occur at domain boundaries. The form of the smoothness indicator is inspired by the definition of multi-
ple-correlation coefficients and least-squares goodness-of-fit testing; see [2] for a more detailed discussion with further
motivation for the approach. As is shown by extensive testing for the Euler and Navier–Stokes equations in [1–4] and is fur-
ther confirmed by the numerical MHD tests presented below, the CENO approach with smoothness indicator S is robust in
terms of providing high-order accurate numerical approximations while avoiding spurious oscillations.

One more element has to be added to the approach in order to get good results for problems with uniform regions. In
uniform regions, the formula for a in Eq. (23) may lead to 0=0 in the second term of the right-hand side, rendering the
smoothness indicator unpredictable. It has been observed before [46] in a related context that it is desirable to eliminate
the effect of switching mechanisms altogether in nearly uniform regions, and just use high-order reconstruction. To do
so, we define the newly proposed parameter

ni;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

p1¼0

Xk

p2¼0
ð0<p1þp26kÞ

ðDk
p1p2
Þ2ðAi;jÞp1þp2

vuuuut ; ð24Þ
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which measures the variability of solution variable u in cell ði; jÞ. (It takes into account all the derivatives at the centroid of
cell ði; jÞ.) When ni;j is smaller than a threshold value (low variability), high-order reconstruction is always used, and only
when ni;j is greater than the threshold the smoothness indicator is computed and the CENO switching mechanism is acti-
vated. In particular, the smoothness indicator for the solution variable u is evaluated in cell ði; jÞ when

ni;j > �A þ �Rui;j; ð25Þ

where �A and �R represent absolute and relative variability thresholds, chosen to be 10�5 for the simulations performed in
this paper.

3.4. Numerical flux function and source term integration

In this subsection we discuss numerical flux computation and treatment of the GLM source term (in Eq. (9)) for the high-
order MHD CENO scheme. We use the Lax–Friedrichs numerical flux function for the implementation of the proposed high-
order MHD CENO scheme. Following Dedner et al. [6], the equations for Bx and w are decoupled from the rest of the system,
so the Lax–Friedrichs numerical fluxes are applied only to the other seven variables. The fluxes at the interfaces for Bx and w
are calculated by setting these variables to the following values at the cell interfaces [6]:

Bx;m ¼
1
2
ðBx;r þ Bx;lÞ �

1
2ch
ðwr � wlÞ; ð26Þ

wm ¼
1
2
ðwr þ wlÞ �

ch

2
ðBx;r � Bx;lÞ; ð27Þ

where the subscripts l and r denote the left and right reconstructed states at cell interfaces and ch is the global maximum of
jvxj þ cfx at cell interfaces. These values are substituted directly into the exact flux formulas for the Bx and w equations. In a
multi-dimensional setting, Bx is effectively Bn, which is the magnetic field component normal to the interface. These wm and
Bn;m values are also used for flux calculation of the other seven variables, which uses the Lax–Friedrichs numerical flux with
local values of jvxj þ cfx as the largest wave speed that determines the size of the numerical dissipation.

As an alternative, one can also apply the standard Lax–Friedrichs flux directly to the full system with nine variables, with-
out decoupling the 2 � 2 system. One can expect this to be more diffusive since in this case ch (the global maximum of
jvxj þ cfx ) determines the numerical diffusion, but we have not found much difference with the decoupled approach when
trying this for our numerical tests. Nevertheless, in the numerical results presented below we use the decoupled approach.
Other flux functions such as Roe and HLLE can also be considered. Wheatley et al. [47] compared flux functions for high-or-
der DG methods, and found that using more accurate Riemann solvers improves results in some cases (e.g., at shocks), but
does often not make much difference in smooth regions of the flow. This is also expected for CENO since the intercellular
solution jumps diminish in size as the reconstruction order increases, but a detailed investigation of this for the CENO
MHD scheme is beyond the scope of this paper.

The ideal (non-modified) MHD system (Eqs. (2)–(5)) is a hyperbolic system of equations, so it easily fits within the CENO
framework. The GLM-MHD formulation adds a source term to the w-update equation (Eq. (9)), which can be treated in two
different ways in our implementation. A first option, as proposed in Dedner et al. [6], is to incorporate the source term using
an operator splitting approach, in which the following ordinary differential equation is solved analytically for each cell in
each time step:

dwi;j

dt
¼ � c2

h

c2
p

wi;j: ð28Þ

The second option is to integrate the source term as part of the hyperbolic system update. Note that this can be done auto-
matically with high-order accuracy: integrating Eq. (9) over cell ði; jÞ gives

d
dt

ZZ
Ai;j

wdA

 !
¼ �c2

h

ZZ
Ai;j

r �~BdA

 !
� c2

h
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p

ZZ
Ai;j

wdA

 !
; ð29Þ

which directly leads to the discrete equation

dwi;j

dt
¼ � 1

Ai;j

X4

l¼1

XNg

m¼1

ðx~fnum �~nDlÞi;j;l;m �
c2

h

c2
p
wi;j; ð30Þ

where~fnum is the numerical flux function for Eq. (9). This is a high-order discretization of Eq. (9) as long as the fluxes are
computed with high-order accuracy, relying on high-order polynomial reconstruction.

An advantage of the operator splitting approach is that exact analytical integration of Eq. (28) does not impose an addi-
tional stability constraint on the time step. In contrast, integrating the source term numerically in a coupled fashion as part
of the hyperbolic update may incur an additional source term time step constraint of the type Dt 6 CS DtS, with DtS ¼ 2c2

p=c2
h

and CS a constant of Oð1Þ related to the time integration scheme. (For example, CS would be one for Forward Euler time inte-
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gration.) This should be compared with the hyperbolic time step constraint of the type Dt 6 CH DtH , with CH the CFL number
of the scheme and DtH ¼ Dx=ch, where Dx is a measure of the grid spacing. Recalling the ratio of the diffusive and advective
time scales, �a ¼ Dxch=c2

p [32,33], and assuming that CS � CH , it can be seen that the ratio of the hyperbolic and source term
time step limits is approximately given by DtH=DtS ¼ �a=2. It follows that, for example, for the choices of �a advocated in
[32,33], namely, �a 2 ½0;1�, the source term time step constraint would normally be less stringent than the hyperbolic time
step constraint. Also, for constant ch and cp, the hyperbolic time step constraint becomes increasingly dominant as the grid is
refined. It also follows that setting �a to a constant for a sequence of grid sizes implies that the ratio between the hyperbolic
and source term time step limits remains the same on those grids, which may be an advantage if the source term is inte-
grated numerically as part of the hyperbolic step and one wants to make sure that the hyperbolic time step restriction dom-
inates the source term time step restriction on all grids in the sequence.

While an operator splitting approach may in principle reduce the order of accuracy, depending on the type of the equa-
tion, it is often observed that it does not reduce accuracy in practice even if the formal order of accuracy is reduced [48]. We
have done extensive numerical comparisons of the two mechanisms for integrating the GLM source term in our code and
have not found any sign of reduced accuracy or reduced convergence order for the operator splitting approach. Further inves-
tigation revealed that, in the case of GLM-MHD with mixed hyperbolic-parabolic correction, it can be shown formally that
the splitting error vanishes, see Appendix A.

On a related note, we have also confirmed in numerical tests for smooth flows that employing low-order (e.g., linear)
reconstruction for w while using reconstruction with degree-three polynomials for the physical variables does not lead to
convergence degradation: fourth-order accuracy is maintained. This can be explained by relying on similar arguments as
those used in Appendix A to show that the operator splitting error vanishes: due to the fact that the exact solution of
wðx; tÞ is the zero function for smooth flow, all constants in the Taylor series expansion of the exact solution for w vanish,
which implies that discretization of w does not introduce truncation errors and high-order reconstruction is not required
for accurately approximating w (which converges to the zero function). Note, however, that during the convergence process
the error in w is nonzero: it is generated by the truncation error in the components of the magnetic field, and is of the same
order of magnitude. Low-order reconstruction of w may in principle lead to some computational savings, but it may make
implementation somewhat more complex since the reconstruction process for w is then different from the other variables.

In our implementation we have several options for integrating the GLM source term, and for choosing the order of recon-
struction for w and the value of cp. In the numerical tests presented in the next section we choose the following options. We
reconstruct w with the same polynomial order as the physical variables, and we integrate the source term numerically as part
of the hyperbolic update. For setting cp, we followed [6] and set cp by fixing the constant cr ¼ c2

p=ch to a value of 0.18. We
have verified that, for this choice, the hyperbolic time step restriction was dominant for all problems and grids we
considered.

3.5. High-order accuracy at curved boundaries

In our CENO MHD implementation, two general mechanisms are available to prescribe boundary conditions. The first
mechanism uses ghost cells. Every grid block in our hierarchical block-adaptive body-fitted quadrilateral grid framework
is equipped with three or four layers of ghost cells. In the numerical results to be presented in Section 4, we compare sec-
ond-order results with fourth-order results. The second-order simulations employ three layers of ghost cells for each block,
and the fourth-order results employ four layers of ghost cells for each block. All blocks have the same size, and the parall-
elization strategy distributes blocks over parallel message passing interface (MPI) processes [49,50] as uniformly as possible
(with typically multiple blocks per MPI process and one MPI process per CPU core), resulting in adequate load balancing. The
ghost cells enable the message passing that parallelizes the code. They are also used in the adaptivity mechanism to transfer
information between coarse and fine blocks, as is explained in Section 4.3. Note that the number of ghost cell layers is one
greater than the number required to enable reconstruction in the first ghost cell layer; this additional ghost cell layer is nec-
essary for computing the smoothness indicator in the first layer of ghost cells (which determines whether the high-order or
low-order reconstruction is used there) [2]. The ghost cells can also be used to impose boundary conditions at the domain
boundaries in standard ways. All second-order simulations use ghost cells to impose boundary conditions. Ghost cells are
also used to impose boundary conditions for our fourth-order tests in certain cases, for example in the case of periodic
boundary conditions. However, for high-order accuracy near curved boundaries, a more accurate second mechanism for
boundary conditions is needed.

The second boundary condition mechanism relies on accurate representation of the curved boundaries with high-order
piecewise polynomial splines. It uses one-sided stencils near boundaries that only contain cells within the computational
domain, and it imposes additional constraints on the least-squares reconstruction problem at the Gauss points [51]. It is also
important to compute the geometric data such as cell areas, centroid locations, etc. to the same order of accuracy as that of
the interior scheme [2,4]. We represent curved boundaries with piecewise polynomial splines of an order consistent with
that of the FV numerical scheme, which allows us to locate Gauss quadrature points and compute flux integrals with high
accuracy. One-sided reconstruction stencils are used for the first and second layer of cells in the computational domain at the
boundaries, and constraints are added to the least-squares reconstruction of the cells in the first layer to accurately impose
certain types of boundary conditions on the curved boundaries at the Gauss points. When ghost cells are not used, the one-
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sided reconstructed values at the Gauss points are directly plugged into the exact MHD flux functions to obtain the numer-
ical flux. For variables to be left free at the boundaries (extrapolation from the computational domain), no additional con-
straints are necessary. For variables to be imposed at the boundaries, the appropriate constraints are added at the Gauss
points used in the flux integration.

More generally, our framework accepts Robin boundary conditions (which consist of linear combinations of Dirichlet and
Neumann conditions), and it also accepts linear relations among variables which form a coupling constraint for a set of
reconstructed variables [2]. These coupling constraints can be used to impose wall conditions at curved boundaries with high
accuracy. This has been explained for Euler flows in [1,2], and we extend it here to perfectly conducting walls in MHD prob-

lems. For perfectly conducting walls, we impose that~B �~n ¼ 0 and~v �~n ¼ 0 in each Gauss quadrature point. Let ðng
x ;n

g
yÞ be the

normal vector in Gauss quadrature point g of cell ði; jÞ, and let ðxg ; ygÞ be its coordinates. Then, using the polynomial expan-

sion of Eq. (13), the conditions ~B �~n ¼ 0 and ~v �~n ¼ 0 at the Gauss point can be expressed asXk
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with ðDk
p1p2
ÞBx

the polynomial coefficients for the Bx magnetic field component, and similar for the By;u and v vector compo-
nents. To impose ~B �~n ¼ 0 in the reconstruction, we solve the least-squares reconstruction problems for the Bx and By poly-
nomials together, with the additional constraints of Eq. (31) for each Gauss point. Similarly, the least-squares reconstruction
problems for u and v are solved together to impose ~v �~n ¼ 0, with the additional constraints of Eq. (32). For full implemen-
tation details, see [2].

4. Numerical results

In this section we present numerical results that demonstrate high-order convergence for smooth flows and robustness
against oscillations for flows with shocks. We present four continuous test problems followed by two problems with discon-
tinuities, including a new MHD extension of the well-known Shu–Osher test problem [38]. Finally, we demonstrate the dy-
namic AMR capabilities of our implementation using adaptive time-dependent simulations of the Orszag–Tang vortex
problem [39] with high-order accuracy and unprecedented effective resolution. Note that the proposed finite-volume meth-
od has been implemented in parallel using the C++ programming language and MPI [49,50] and closely follows the tech-
niques and implementations described by Groth and co-workers [17–19,21], with the necessary extensions to high-order
accuracy as described by Ivan and Groth [1,4]. All of the numerical results presented below were obtained using a parallel
computing cluster. In particular, the computations were performed on a cluster consisting of 3,780 Intel Xeon E5540
(2.53 GHz) nodes with 16 GB RAM per node. The cluster nodes were interconnected with a high-speed, low-latency, Infin-
iBand switched network. We used from 16 up to 512 cores, depending on the problem under consideration. Please refer
to the thesis of Ivan [4] for an assessment of the parallel performance of the high-order finite-volume scheme with AMR,
demonstrating the near-ideal parallel efficiency and scalability of the parallel implementation.

4.1. Continuous problems

We first present two smooth test problems on Cartesian grids, which are the rotated Alfvén problem from [10], and the
magnetostatic problem from [24]. We then present two continuous test problems on body-fitted multi-block structured
grids with non-rectangular cells and curved boundaries: the rotating radial outflow problem and the expanding tube prob-
lem from [52].

To quantify the accuracy of the numerical solution, the errors are measured in the L1, L2, and L1 norms:

L1 ¼ jEj1 ¼
1
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where AT is the total area of the computational domain. The integrals are evaluated with high-order accurate Gaussian quad-
rature, see [2] for details. In most of our numerical tests, we compare convergence for four numerical methods: fourth-order
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CENO, fourth-order unlimited k-exact reconstruction, second-order CENO, and second-order unlimited k-exact reconstruc-
tion. The CENO methods switch between the k-exact reconstruction and the limited piecewise linear reconstruction based
on the smoothness indicator. We use a smoothness indicator cut-off value SC ¼ 800 except where noted.

4.1.1. Rotated Alfvén travelling wave propagation
The circularized Alfvén wave problem from [10] represents analytical solutions of the MHD equations for arbitrary ampli-

tudes. The wave propagates with an angle of a ¼ 30	 with respect to a Cartesian grid, and assumes the initial conditions (as
in [10]): q ¼ 1, vk ¼ 0; p ¼ 0:1;Bk ¼ 1, v? ¼ B? ¼ 0:1 sinð2pðx cosðaÞ þ y sinðaÞÞ, and vz ¼ Bz ¼ 0:1 cosð2pðx cosðaÞ þ y sinðaÞ�.
The parallel velocity, vk, is set to zero, which corresponds to the travelling wave test case. The perpendicular and parallel
directions are defined with respect to the direction of wave propagation. These initial conditions give an Alfvén speed of
1, which corresponds to a transit period of 1. The computational domain is set to be periodic (using ghost cells), with ranges
½0;1= cosðaÞ� for x, and ½0;1= sinðaÞ� for y. As in [10], the number of cells in the x-direction is equal to the number of cells in the
y-direction, which corresponds to a ratio of 1=

ffiffiffi
3
p

between Dx and Dy. The simulations are run for 5 transit periods (or up to
t = 5). Density and other scalar variables are expected to be constant throughout the simulation since they are not perturbed

by the Alfvén wave, so only the accuracy of the ~v and ~B fields were assessed for convergence studies.
As can be seen from Fig. 1, the expected order of convergence is achieved for the x-direction magnetic field, at least in the

asymptotic limit. For the sake of brevity, only the results of the x-direction magnetic field are shown, but the other variables
behave in a similar manner. The effect of the CENO monotonicity-preserving reconstruction switching procedure (SC ¼ 800)
can be seen: a ‘‘transition’’ regime occurs where the mesh is not fine enough and the smooth flow features are not sufficiently
resolved. This transition regime does not occur for the fourth-order method because it sufficiently resolves the flow already
with low resolution, see also [2,4]. The high-order scheme represents significant savings in the number of computational
cells required for some specific level of accuracy: a 64-by-64 grid resolution was sufficient for the fourth-order scheme to
obtain a smaller error than the limited second-order scheme on a 384-by-384 grid.

4.1.2. Two-dimensional magnetostatic problem
We next consider the magnetostatic problem from [24]. The exact solution of this stationary problem is known: q ¼ 1,

vx ¼ 0, vy ¼ 0, vz ¼ 0, Bx ¼ � cosðpxÞe�py, By ¼ sinðpxÞe�py, Bz ¼ 0, p ¼ 19:84ðc� 1Þ, w ¼ 0. Following Warburton et al.
[24], this exact solution is used as the initial condition for the simulation, and the error at steady-state is a measure of
the deviation of the numerical solution from the exact solution. The second-order methods use ghost cells to impose bound-

ary conditions: ~v and~B are imposed in the ghost cells (accurate average values of the exact solution, obtained by numerical
quadrature), and q; p and w are extrapolated to the ghost cells (the average values are linearly extrapolated). The fourth-or-

der methods use one-sided reconstruction, with the exact values of ~v and ~B imposed at the Gauss points using constraints,
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Fig. 1. The L1-, L2-, and L1-norm errors for the magnetic field in the x-direction for the rotated Alfvén wave problem, calculated at t = 5 (five transit periods).
N is the total number of grid cells. The solution is compared with the initial conditions to compute the error. The error converges to zero with the expected
order of accuracy in the asymptotic limit. A transition region is observed for the second-order CENO scheme, consistent with the findings of Ivan and Groth
[2,4].
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and q, p and w are left free at the Gauss points. Fig. 2 shows how the error norm of Bx converges to zero as a function of grid
size with the expected order. The fourth-order scheme requires much fewer computational cells to achieve a specified level
of error (in this case, the error can differ by as much as 4 orders of magnitude for the same number of cells).

4.1.3. Superfast rotating outflow from a cylinder
We next consider the rotated outflow problem from [52] on a body-fitted structured grid with non-rectangular cells and

curved boundaries. While the exact analytical solution is not available, several theoretical flow invariants are available [52],
against which the corresponding computed quantities can be compared. We measure error in the entropy, s, and the radial
magnetic flux.

The problem is defined on a domain between two concentric circles, and superfast inflow conditions (normal velocity fas-
ter than the fast magnetosonic wave speed) are imposed at the inner circle. The domain goes from r ¼ 1 to r ¼ 6, and the
inflow conditions imposed at the r ¼ 1 boundary are q ¼ 1, p ¼ 1, v r ¼ 3, vh ¼ 1, and Br ¼ 1. The second-order methods
use ghost cells to impose boundary conditions. At the inner boundary (inflow), q, p, ~v and ~B are imposed in the ghost cells
using linear extrapolation (to impose the desired values exactly at the domain boundary), and w is extrapolated linearly from
the interior of the domain. At the outer boundary (outflow), q, p, ~v and~B are extrapolated linearly, and w is set to zero using
linear interpolation (to impose the desired value exactly at the domain boundary). The fourth-order methods use high-order
piecewise polynomial spline representation of the curved boundaries, combined with one-sided reconstruction and con-
straints. At the inner boundary (inflow), q, p, ~v and ~B are imposed by constraints at the Gauss points, and w is left free. At
the outer boundary (outflow), w is set to zero by constraints at the Gauss points, and q, p, ~v and ~B are left free.

The steady-state solution of the rotated outflow problem obtained with the fourth-order CENO scheme on a mesh with
80-by-80 cells can be seen in Fig. 3. The magnetic field lines are not aligned with the streamlines. The solutions obtained
with second- and fourth-order CENO schemes are compared in Fig. 4.

It can be seen that the errors converge to zero with the expected order of accuracy. For this problem, the second-order
scheme has not reached the asymptotic regime beyond the transition region yet for the resolutions we tested, and the sec-
ond-order CENO error remains above the unlimited second-order error due to ongoing switching from unlimited k-exact
reconstruction to limited second-order reconstruction, especially for the error in the radial magnetic field as seen in
Fig. 4(b). This is possibly due to the inability of the piecewise linear function to capture the curvature of the boundaries prop-
erly, so the switching procedure continues to see some cells close to the boundaries as under-resolved, thus limiting the
reconstruction functions at these places and affecting the magnitude of the error. In contrast, for fourth-order CENO and
the unlimited k-exact schemes produce the same error for resolutions above 80-by-80. It is clear that our approach can han-
dle curved boundaries with high-order accuracy, and the fourth-order method requires significantly fewer cells than the sec-
ond-order method to obtain a given error level.

In Fig. 5 we illustrate that the high-order CENO-GLM approach can naturally handle resolution changes on block-adaptive
grids and the errors introduced by AMR restriction and interpolation procedures. We have performed a grid convergence
study on a series of grids where there is a change in resolution between some blocks (corresponding to one level of refine-
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Fig. 2. The L1-, L2-, and L1-norm errors for the magnetic field in the x-direction for the magnetostatic problem. The steady-state solution is compared with
the initial conditions to compute the error. The error converges to zero with the expected order of accuracy in the asymptotic limit.
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ment). In each successive point of the convergence study, all blocks in the grid of Fig. 5(b) are refined by dividing them into
four blocks. The convergence plot of Fig. 5(a) shows that fourth-order convergence is automatically maintained by the CENO-
GLM approach, and magnetic field lines remain smooth at the jump in grid resolution.

4.1.4. Expanding tube problem
The expanding tube problem from [52] is another continuous problem that uses a body-fitted structured grid with curved

boundaries. It models plasma flow in an expanding tube, which gives rise to an MHD solution that contains a rarefaction
wave with a weak discontinuity at the edge of the rarefaction (see Fig. 6). Across the weak discontinuity, the first spatial
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Fig. 3. Density contour lines, magnetic field lines, and streamlines for the rotated outflow problem, obtained on a mesh with 80-by-80 cells. The magnetic
field lines and the streamlines are not aligned. The flow is smooth throughout the entire domain, which enables high-order convergence rates. The density
contour lines are equally spaced in the range (0.17,0.97).
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(a) The L1-, L2-, and L∞ -norm errors for entropy, which is
constant in the domain.
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(b) The L1-, L2-, and L∞ -norm errors for the radial magnetic
flux. While there is no analytical solution for the full mag-
netic field, the radial component of the magnetic field can be
determined, due to the conservation of the radial magnetic
flux.

Fig. 4. Convergence study for the rotated outflow problem using both unlimited k-exact reconstruction (black lines) and CENO with SC ¼ 800 (red lines).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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derivative of the flow variables is discontinuous. Therefore, even if fourth-order reconstruction accuracy is targeted (by
employing degree-3 polynomial functions to reconstruct the solution), the solution accuracy is still limited to second-order
near the weak discontinuity.

The flow is simulated on a domain with x 2 ½0;1�, and y 2 ½y0ðxÞ;1�, where y0ðxÞ ¼ cosðp4 ðx� 0:3ÞÞ � 1 for x 2 ½0:3;1�, and
zero elsewhere in the domain. The lower wall starts to curve at x ¼ 0:3, giving rise to a rarefaction wave downstream of the
weak discontinuity. The boundary curve follows a cosine function rather than a straight line to avoid a geometrical singu-
larity in the boundary, which results in the rarefaction wave not converging to a single point, as can be seen from
Fig. 6(a) [52]. At the x ¼ 0 boundary, a uniform inflow with the following conditions is imposed: q ¼ 1, p ¼ 1, vx ¼ 8, and
Bx ¼ 4. These initial conditions correspond to superfast horizontal inflow conditions, with an acoustic Mach number
vx=c ¼ 8

ffiffiffiffiffiffiffiffi
3=5

p
, and Alfvénic Mach number vx=cAx ¼ 2. The second-order methods use ghost cells to impose boundary condi-

tions. The superfast inflow and outflow boundary conditions at the left and right boundaries, respectively, are implemented
as for the rotating outflow test problem of Section 4.1.3. For the top and bottom boundaries, standard wall boundary con-

ditions are implemented that symmetrically copy q, p and w to the ghost cells, and mirror ~v and ~B with respect to the wall.
The fourth-order methods use high-order piecewise polynomial spline representation of the wall boundaries, combined with
one-sided reconstruction and constraints. For the top and bottom wall boundaries, q, p, w and the tangential components of
~v and~B are left free, while the normal components of ~v and~B are set to zero at the Gauss points using constraints. The high-
order outflow boundary condition is handled as in the rotating outflow test problem of Section 4.1.3. We simply use ghost
cells for the high-order inflow boundary condition, since the flow remains uniform close to the inflow boundary and q, p, ~v
and ~B can just be imposed in all ghost cell layers, while w can be extrapolated linearly.

To assess the accuracy of the solution, entropy, which is one of the invariants for this flow, is measured. Fig. 6(b) shows
convergence analysis of the entropy error. As can be seen in this figure, second-order accuracy is achieved for the L1-norm
error of the entropy for both the second-order and the fourth-order accurate methods. While Fig. 6(b) illustrates how the
weak discontinuity in the solution limits the order of accuracy, reduction in the total error is still observed when higher-
order polynomial functions (the fourth-order method) are used to represent the solution. It is interesting to note that the
log error of the CENO solution decreases linearly, whereas some zigzagging is present in the unlimited k-exact error plot.
This can be explained by the fact that the flow is not fully smooth, and the weak discontinuity that exists can potentially
generate spurious oscillations when monotonicity is not enforced, though the level at which these oscillations occur is
apparently much smaller than the solution variation. Note also that, even at the highest attempted resolution, the conver-
gence plots of the CENO error do not converge to those of unlimited k-exact reconstruction (as was the case for the other
test cases), implying that, due to the weak discontinuity, reconstruction switching is always performed for at least a few
cells.
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(b) The grid with resolution change used for the conver-
gence study in the left panel. This grid has 8 coarse blocks
and 32 fine blocks, each with 8 × 8 cells. In each succes-
sive point of the convergence study, all blocks in the grid
are refined by dividing them into four blocks. The magnetic
field lines of the solution on this grid are plotted in blue.
The smoothness of the magnetic field lines is not adversely
affected by the jump in grid resolution.

Fig. 5. Convergence study for the rotated outflow problem on a grid with change in grid resolution between blocks, illustrating that the high-order CENO-
GLM approach naturally handles resolution changes on block-adaptive grids.
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4.2. Problems with discontinuities

4.2.1. Rotated Brio–Wu shock tube problem
The Brio–Wu shock tube problem [53] is a standard test case to demonstrate the capability of a numerical MHD scheme to

handle discontinuities. The initial conditions are given by

ðq; v?;vk; vz;B?;Bk;Bz;p;wÞ ¼
ð1;0;0;0;0:75;1;0;1;0Þ for x1 < 0;
ð0:125;0;0;0;0:75;�1;0;0:1;0Þ for x1 > 0;



ð36Þ

with c ¼ 2. Here, x1 is the coordinate variable perpendicular to the shock, given by x1 ¼ x cos aþ y sin a with a the angle at
which the shock frame of reference is rotated with respect to the x-axis (we choose a ¼ 45	). This setup is illustrated in Fig. 7.

Ghost cells are used and constant extrapolation boundary conditions are applied to all boundaries, though the top and the
bottom boundaries require that the cells not only be copied to the ghost cells, but also shifted to the left or the right by one
cell (similar to Fig. 10 from [10]). It is important to note that, for this boundary condition to work, the ratio between the
spacing in the x-direction and the spacing in the y-direction needs to be 1, because otherwise the 45� symmetry would
not translate to a (1,1) translational symmetry, see also [10,33,54].

Fig. 7. Setup for the rotated one-dimensional problems with discontinuities. The discontinuity is rotated 45� counterclockwise with respect to the x-axis.
The solution thus exhibits a translational symmetry in the y1-direction.
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(a) The expanding tube flow, solved on
a 160-by-160 grid with the fourth-order
CENO scheme. The contour lines are
equally spaced in the range (0.45,0.95) (21
contours).
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Fig. 6. Expanding tube flow: density contour lines and entropy convergence study. The error converges with at most second-order accuracy, due to the non-
existence of higher-order derivatives across the weak discontinuity. Convergence study is performed for entropy using both unlimited k-exact
reconstruction (black lines) and CENO with SC ¼ 800 (red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

A. Susanto et al. / Journal of Computational Physics 250 (2013) 141–164 155



Author's personal copy

The Brio–Wu problem gives rise to several types of waves and shocks: fast rarefaction waves, a contact discontinuity, a
slow compound wave, and a slow shock [53]. Simulations were performed for the rotated cases using 600 cells in the x-direc-
tion, and 4 cells in the y-direction. The density plot is shown in Fig. 8, and illustrates that our method is robust with respect
to spurious oscillations. The fourth-order solution has slightly sharper features than the second-order solution. All of the
important wave features are captured well without spurious oscillations, except for a slight undershoot between the fast rar-
efaction (FR) and the slow compound wave (SM) (which is also observed in other work on high-order MHD schemes [27,33]).

4.2.2. MHD Extension to Shu–Osher shock tube problem
The shock tube problem proposed by Shu and Osher [38] is commonly used to test the ability of high-order numerical

schemes to resolve small-scale flow features in the presence of shocks. A sinusoidal density perturbation is added down-
stream of a purely advecting supersonic shock wave. The interaction of the shock wave with the sinusoidal part of the den-
sity field gives rise to fast oscillations and complex flow features downstream to the shock. The Shu–Osher shock tube
problem provides an excellent testbed to highlight the benefits of the improved accuracy of high-order numerical schemes,
while at the same time the presence of the shock puts the robustness and stability of the schemes to test. In what follows, we
develop a new MHD version of the Shu–Osher shock tube problem.

Consider the Rankine–Hugoniot conditions in the shock frame:

FðUlÞ ¼ FðUrÞ; ð37Þ

where Ur and Ul denote the state vectors of the right and left state, respectively, and FðUiÞ denotes the flux evaluated at state
i. We choose the following initial conditions that satisfy the Rankine–Hugoniot condition:

ðq;u?;uk;uz;B?;Bk;Bz; p;wÞ ¼
ð1;0;0;0;1;1;0;1; 0Þ for x < 4;
ð3:5;5:8846;1:1198;0;1;3:6359;0;42:0267;0Þ for x > 4:



ð38Þ

The numbers in Eq. (38) were obtained by choosing the left state and numerically solving the MHD Rankine–Hugoniot con-
ditions for a fast shock moving to the left with speed 8.2385. The numerical solution values were rounded to four decimal
digits (which is sufficiently accurate for the numerical tests).

Eq. (38) represents the unperturbed portion of our newly proposed MHD version of the Shu–Osher shock tube problem.
Similar to the Shu–Osher problem, sinusoidal perturbation is added to the downstream part of the density field (because the
shock and the flow travel to the left, the sinusoidal perturbation is added to ql). The initial density function is then chosen as

ql ¼ 1þ 0:2 sinð5xÞ; qr ¼ 3:5 ð39Þ

and all the other variables are kept as given in Eq. (38).
As in the case of the rotated Brio–Wu problem, the initial condition given by Eq. (38) and (39) has been applied in the

rotated frame of reference x1 � y1 (see Fig. 7). The boundary conditions for our simulation of this problem are as explained
in Section 4.2.1. The left and right boundaries are taken sufficiently far from the initial discontinuity, such that they do not
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Fig. 8. Comparison of the density solution of the Brio–Wu shock tube problem at t = 0.1414, rotated at 45�. Here, FR denotes fast rarefaction, SM slow
compound wave, C contact discontinuity, and SS slow shock. A cutoff value of SC ¼ 8000, is chosen for these simulations.
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influence the solution. The comparison of the density profiles between the different methods is shown in Fig. 9. The benefit
of the high-order method is clear: using the same number of cells, the fourth-order method captures the small-scale flow
features much better than the second-order method. For all simulations performed for this section, no stability or overshoot
problem were observed, which indicates that the monotonicity-preserving mechanism is doing its job properly to ensure
that the method is stable in the presence of discontinuities.

4.3. Application of CENO with dynamic adaptive mesh refinement: Orszag–Tang vortex problem

In this section we demonstrate the dynamic AMR capabilities of our implementation using adaptive time-dependent sim-
ulations of the Orszag–Tang vortex problem [27,30,39] with high-order accuracy and unprecedented effective resolution.

We have implemented our new high-order MHD scheme that combines CENO and GLM into a hierarchical quadtree
block-based AMR procedure for multi-block body-fitted quadrilateral mesh that is based on the previous work of Groth
and co-workers [17–19,21] and is extended to high-order accuracy as in [1,4]. We give a brief summary of the approach,
and details are described in [1,2,18]. In our hierarchical quadtree block-based AMR algorithm, mesh adaptation is accom-
plished by dividing and coarsening appropriate solution blocks. In regions requiring increased cell resolution, a ‘parent’ block
is refined by dividing it into four ‘children’. Each of the four quadrants or sectors of a parent block becomes a new block hav-
ing the same number of cells as the parent, thereby doubling the cell resolution in the region of interest. This process can be
reversed in regions that are deemed over-resolved and four children can be coarsened into a single parent block. The mesh
refinement is constrained such that the grid resolution changes by at most a factor of two between adjacent blocks, and the
minimum resolution is not less than that of the initial mesh. A hierarchical quadtree data structure and additional intercon-
nects between the ‘leaves’ of the trees are used to keep track of mesh refinement and the connectivity between solution
blocks. The hybrid CENO solution reconstruction procedure is used in conjunction with standard multigrid-type restriction
and interpolation operators to evaluate the solution on all blocks created by the coarsening and division processes. Interpo-
lation is performed with high-order accuracy by computing reconstructed polynomials for solution variables in each coarse-
grid cell and integrating them over the fine-grid children cells to determine the fine-grid cell averages with high-order accu-
racy (see [2] for details). Restriction and interpolation are performed in such a way that conservation is maintained, but in
our CENO-GLM MHD approach no special treatment is required for restricting or interpolating the cell-centred magnetic
fields: restriction or interpolation may introduce errors of the order of the discretization error, and they are handled properly
by the GLM mechanism for controlling r �~B.

Grid refinement and coarsening are based on the maximum value of the CENO smoothness indicator over each block for
the density variable. For each cell, the variable

R c ¼ e�
maxð0;SÞ

Sc ð40Þ
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Fig. 9. Comparison of the density solution of the MHD Shu–Osher problem at t = 0.6906, rotated at 45�. As can be observed from the figure, the fourth-order
method produces results that are much closer to the non-rotated reference result in the highly oscillatory region, illustrating the benefits of high-order
accuracy. A cutoff value of SC ¼ 80 is used for these simulations.
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is calculated, where S is the value of the smoothness indicator and Sc is the cutoff value for the smoothness indicator. The
range of R c is (0,1]. The maximum R B

c of all R c values within a block is computed. In blocks with R B
c close to 0, all cells are

smooth and resolved, and blocks with R B
c close to 1 have cells that are non-smooth or under-resolved. The block-based R B

c

values are compared with refinement and coarsening thresholds to determine if a block should undergo refinement, or if a
group of blocks should be combined for coarsening. Full details on the algorithm followed for coarsening and refinement are
given in [18,2]. The refinement/coarsening algorithm is invoked at regular intervals during the simulation to obtain dynamic
AMR.

For the Orszag–Tang vortex problem, the same initial conditions and domain as in [27] are used, with q ¼ c2,
vx ¼ � sinðyÞ, vy ¼ sinðxÞ, Bx ¼ � sinðyÞ, By ¼ sinð2xÞ, and p ¼ c. The remaining variables (vz, Bz, and w) are initialized to zero.
The computational domain is a square with x and y values between 0 and 2p, and periodic boundary conditions (ghost cells
are used). The simulation is performed with CENO cutoff tolerance SC ¼ 500. The mesh is refined every 0.025 s up to t = 1. For

(a) Density solution at t = 0.5. The contour lines are equally
spaced in the range (2.11,5.82) (15 contours).

(b) Density solution at t = 1.0. The contour lines are equally
spaced in the range (1.25,6.9) (15 contours).

(c) Density solution at t = 2.0. The contour lines are equally
spaced in the range (0.62,6.41) (15 contours).

(d) Density solution at t = 3.0. The contour lines are equally
spaced in the range (1.16,6.42) (15 contours).

Fig. 10. The evolution of density for the Orszag–Tang vortex problem at different times: t = 0.5, t = 1.0, t = 2.0, and t = 3.0. The ranges for the contour lines
shown here are as in [27]. These fourth-order accurate results were obtained using dynamic grid adaption with the meshes shown in Fig. 11.
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later times, AMR is performed every 50 time steps because Dt decreases rapidly. The contour lines of the density for the Ors-
zag–Tang vortex problem are shown at t = 0.5, t = 1.0, t = 2.0, and t = 3.0 in Fig. 10. The results show agreement with results
shown in other papers [10,27,30,55]. Figure 11 shows the sequence of adaptive meshes. Comparing the density contour lines
shown in Fig. 10 with the way the grid is refined as shown in Fig. 11, it can be seen that the refinement closely follows the
parts of the solution where interesting flow features and discontinuities occur, illustrating the effectiveness of the smooth-
ness indicator-based refinement criterion.

Following [27,30], pressure distribution cuts at t = 2.0 and t = 3.0 along the line y = 1.9635 are shown in Fig. 12. The AMR
results are compared to results on a uniform 1024-by-1024 mesh. The uniform mesh corresponds to the smallest cell reso-
lution at 7 levels of refinement, while 8 levels of refinement are used in the AMR results, so that the smallest cell in the

(a) AMR as applied to the Orszag-Tang vortex problem at t
= 0.5. At this point, the mesh consists of 118 8-by-8 blocks,
or 7,552 cells in total.

(b) AMR as applied to the Orszag-Tang vortex problem at t =
1.0. At this point, the mesh consists of 1,474 8-by-8 blocks,
or 95,810 cells in total.

(c) AMR as applied to the Orszag-Tang vortex problem at t =
2.0. At this point, the mesh consists of 8,428 8-by-8 blocks,
or 539,136 cells in total.

(d) AMR as applied to the Orszag-Tang vortex problem at t =
3.0. At this point, the mesh consists of 13,522 8-by-8 blocks,
or 865,408 cells in total.

Fig. 11. The evolution of the mesh for the simulation of Fig. 10 with adaptive refinement. Up to t = 1.0, the mesh is refined every 0.025 s, after which it is
refined every 50 time steps. The lines in the figure represent the boundaries of the 8-by-8 Cartesian blocks.
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adaptive mesh (Fig. 11) corresponds to a resolution of 2048-by-2048 if done uniformly. From Fig. 12, it can be seen that the
AMR results in general agree well with the uniform reference results. Note that our results have a much higher effective res-
olution than previously shown results (and they are fourth-order accurate). It is also interesting to note that, while the uni-
form mesh has 1,048,576 computational cells, the AMR mesh has 865,408 cells at t ¼ 3:0, which is smaller than the uniform
mesh, despite having twice the effective resolution at the highest level of refinement. Note also that, before t ¼ 3:0, much
fewer cells are used by the adaptive simulation (see Fig. 11). This illustrates the effectiveness of the CENO scheme in com-
bination with the block-based AMR algorithm to reduce the number of required computational cells.

We conclude this section with some comments on AMR performance for the Orszag–Tang problem. Numerical experi-
ments show that, for the adaptive simulation of Fig. 11, the speedup compared to a uniform simulation with the same max-
imal resolution (on a 2048-by-2048 mesh) is 2.066. In spite of refinement/coarsening overhead and some increase in load
imbalance, the total CPU time is improved by a factor of more than two for AMR, and the number of cells at t = 3 is reduced
by a factor of about four. In fact, AMR can be expected to be more advantageous for problems with greater disparity in spatial
scales where a smaller portion of the domain is at the highest level of refinement, but it is already worthwhile for this sim-
ulation in which small-scale structure is spread through much of the domain and a relatively large fraction of the domain is
at the finest mesh level. For the simulation of Fig. 11 in the developed flow after t = 2, one refinement/coarsening step takes,
on average, approximately as much time as four to five simulation time steps. In each of these refinement/coarsening steps
approximately 20% of the blocks were refined or coarsened. In terms of relative costs of the components of the AMR process,
computing the refinement/coarsening indicators takes about 10% of the time of a refinement step, restriction and prolonga-
tion take about 60%, and moving blocks between nodes for load balancing takes about 30%. In terms of parallel scaling of the
AMR process, repeating the simulation while doubling the number of cores from 128 to 256 cores and keeping the problem
size constant leads to an efficiency loss of about 10% to 15%, which is expected due to the increase in communication and the
reduction of the number of blocks per core, which exacerbates the load imbalances that may occur due to AMR. Note that
this loss of efficiency depends on the block size and the specifications of the communication network. Note also that AMR
steps do not need to be performed after every time step because of the block-based nature of our approach, and because bulk
solution features do not necessarily move with maximum wave speed. Therefore we follow the strategy that is common in
dynamic block-based AMR to perform multiple time steps between AMR steps (see [17–21] and references therein). Numer-
ical experimentation has shown that an offset of 50 time steps between AMR steps is a suitable choice for the AMR simu-
lation of Fig. 11. Note that this choice is not very sensitive; we found mostly similar results with offsets up to 200.

4.4. Discussion on CENO performance and divergence errors

We conclude this section with some discussion on performance and on the behaviour of r �~B in the numerical results
obtained with the fourth-order CENO-GLM method.

A range of numerical experiments carried out on several computing platforms indicate that the fourth-order CENO spatial
discretization optimized for computational efficiency (i.e., storing the pseudo-inverse matrix) is on average about three
times more expensive than a second-order spatial discretization. This ratio is independent of the grid size, and since the error
drops much faster for high-order schemes as grids are refined, there is significant potential for computational savings in re-
gions of smooth flow. This was, for example, illustrated for the fourth-order CENO method in Section 5.10 of [2], where it was
found that for a particular smooth 2D Euler flow the fourth-order CENO method reached the same solution accuracy as a
second-order method on a grid with 200 times fewer cells, in 1/40th of the time. It has to be noted, however, that reaching
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Fig. 12. Pressure cuts at y ¼ 1:9635 at two different times (t = 2.0 [left], and t = 3.0 [right]). High-order results obtained in combination with adaptive mesh
refinement are compared with uniform high-order high-resolution results on a 1024-by-1024 mesh, and found to be similar. Our results agree with the
results from [27,30].
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these kinds of savings for realistic flow problems with varying spatial and temporal scales and non-smooth features remains
a significant research challenge.

The high-order explicit CENO scheme spends up to 90% of the total CPU time in computing the high-order spatial residual,
out of which 75% is dedicated to performing the high-order CENO solution reconstruction. The remaining 15% consists of
polynomial evaluations at the interfaces, evaluation of the Riemann fluxes there, and geometry evaluation. The high-order
CENO solution reconstruction procedure consists in performing the least-squares reconstruction, the computation and anal-
ysis of smoothness indicators and the enforcement of solution monotonicity in cells deemed as non-smooth. Among these,
the least-squares reconstruction represents 55% of the total simulation cost, consisting mostly of matrix–vector multiplica-
tions, which represent about 37% of the total simulation cost. Computation of smoothness indicators and monotonicity
enforcement account for the other 20% of the total simulation cost. Note however that these values can vary depending
on the particular flow problem under study.

As in other finite-volume or finite-difference schemes that employ GLM divergence cleaning, the divergence of the mag-
netic field is expected to be of the magnitude of the truncation error in the magnetic field components. For our smooth test
problems, for example, the rotating outflow problem of Section 4.1.3, we have verified that this is indeed the case, and that w
andr �~B converge to zero with the same order as the other solution variables (plots not shown due to space constraints). For
problems with shocks, the maximum values of w and r �~B do generally not decrease with increasing grid resolution, con-
sistent with the Oð1Þ jumps in the magnetic field components at the discontinuities, but the GLM mechanism effectively
dampens the divergence errors and maintains the stability of the scheme.

5. Concluding remarks

We have proposed a high-order CENO FV scheme for ideal MHD. The scheme is based on the CENO approach that was
proposed by Ivan and Groth for compressible Euler flows in [1] and uses the GLM divergence cleaning method for MHD
of Dedner et al. [6]. The resulting FV MHD scheme is high-order accurate in smooth flow regions and robust against spurious
oscillations at discontinuities. The proposed high-order accurate MHD scheme can be used on general polygonal grids and
can deal naturally with resolution changes on hierarchical quadtree block-adaptive body-fitted grids. The proposed scheme
was implemented in a highly sophisticated fourth-order accurate parallel MHD code on 2D dynamically-adaptive multi-
block body-fitted structured grids, and curved boundaries are handled with high-order accuracy using high-order spline rep-
resentations and constraints at the Gauss points.

Detailed numerical results were given that demonstrate high-order convergence for smooth flows, and robustness against
oscillations for Riemann problems and other flows with shocks. A new MHD extension of the well-known Shu–Osher test
problem [38] was proposed to test the ability of the high-order MHD scheme to resolve small-scale flow features in the pres-
ence of shocks. The dynamic AMR capabilities of our approach were demonstrated using adaptive time-dependent simula-
tions of the Orszag–Tang vortex problem with high-order accuracy and unprecedented effective resolution.

The scheme we described can in principle be implemented with arbitrary order. It can also be extended naturally to three
spatial dimensions and to unstructured grids, which are topics of future work.
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Appendix A. Analysis of operator splitting error

Consider the conservation-form equations of ideal MHD with mixed hyperbolic-parabolic GLM correction, given by Eqs.
(2), (3), (5), (8) and (9). For simplicity, we consider planar 2D MHD.

Let U ¼ ½q;qvx;qvy;Bx;By; e;w�T be the vector of conserved variables, and let V ¼ ½q;vx;vy;Bx;By; p;w�T be the vector of
primitive variables. Consider smooth solutions of the conservation law. The quasi-linear form of the equations in conserva-
tive variables is given by

@U
@t
þAc

@U
@x
þ Bc

@U
@y
þCcU ¼ 0; ðA:1Þ

and in primitive variables by

@V
@t
þAp

@V
@x
þ Bp

@V
@y
þ CpV ¼ 0: ðA:2Þ

Here, the flux Jacobian matrices Ac and Bc are related to the coefficient matrices Ap and Bp as follows:
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Ac ¼
@U
@V

Ap
@V
@U

; Bc ¼
@U
@V

Bp
@V
@U

: ðA:3Þ

These expressions can be used to compute Ac and Bc from

Ap ¼

vx q 0 0 0 0 0
0 vx 0 �Bx=q By=q 1=q 0
0 0 vx By=q �Bx=q 0 0
0 0 0 0 0 0 1
0 By �Bx �vy vx 0 0

0 cp 0 ðc� 1Þ~v �~B 0 vx �ðc� 1ÞBx

0 0 0 c2
h 0 0 0

2666666666664

3777777777775
; ðA:4Þ

Bp ¼

vy 0 q 0 0 0 0
0 vy 0 �By=q �Bx=q 0 0
0 0 vy Bx=q �By=q 1=q 0
0 �By Bx vy �vx 0 0
0 0 0 0 0 0 1
0 0 cp 0 ðc� 1Þ~v �~B vy �ðc� 1ÞBy

0 0 0 0 c2
h 0 0

2666666666664

3777777777775
; ðA:5Þ

(see [6]), and from

@U
@V
¼

1 0 0 0 0 0 0
vx q 0 0 0 0 0
vy 0 q 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

~v �~v=2 qvx qvy Bx By 1=ðc� 1Þ 0
0 0 0 0 0 0 1

2666666666664

3777777777775
; ðA:6Þ

@V
@U
¼

1 0 0 0 0 0 0
�vx=q 1=q 0 0 0 0 0
�vy=q 0 1=q 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0

c~v �~v=2 �cvx �cvy �cBx �cBy c 0
0 0 0 0 0 0 1

2666666666664

3777777777775
: ðA:7Þ

It is easily seen from Eq. (9) that

Cc ¼ Cp ¼

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 c2

h=c2
p

2666666666664

3777777777775
: ðA:8Þ

Further, for Eq. (A.1), define the differential operator

Dc ¼ Ac
@

@x
þ Bc

@

@y
: ðA:9Þ

Following Section 17.3 of [48], the splitting error E arising from operator splitting on the time integration of Eq. (A.1) at some
time t is given by

E ¼ 1
2

Dt2ðDcCc � CcDcÞUþ OðDt3Þ; ðA:10Þ
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where U is the exact solution of Eq. (A.1) at that time t. Simple multiplication of the operators Cc and Dc shows that

ðDcCc � CcDcÞU ¼
c2

h

c2
p

0
0
0
@w
@x
@w
@y

0
0

2666666666664

3777777777775
� c4

h

c2
p

0
0
0
0
0
0

@Bx
@x þ

@By

@y

2666666666664

3777777777775
: ðA:11Þ

This vanishes because the exact solution of Eq. (A.1) satisfies wðx; y; tÞ ¼ 0 and r �~Bðx; y; tÞ ¼ 0 for all x, y and t, showing that
operator splitting is at least third-order accurate locally in time (and second-order accurate globally). Again following [48],
all higher-order error terms also vanish when ðDcCc � CcDcÞU ¼ 0. This shows that no extra error arises from performing the
time integration using operator splitting: the result is accurate up to the order of accuracy of the methods used to compute
the solution in the separate steps of the operator splitting. Note that this result is obtained essentially because all quantities
in the equation for w converge to zero for smooth flows, and because there is a source term in the equation for w only. The
same result can be obtained for the case of 3D MHD in an analogous fashion.
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