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The solution of Riemann problems for the one-dimensional Euler equations with polytropic 
gases usually involves a numerical iterative solution procedure, and more efficient Riemann 
solvers can reduce computational times and costs by factors of up to 25. Riemann solvers that 
have been used in past computational fluid dynamics, those that are used in current numerical 
work, and a new and more efficient one reported in this paper are all assessed in terms of 
their relative computational performance. This assessment includes the type of shock and 
rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, 
Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its 
solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both 
for completeness and to add some new practical insights for improving computer codes. 
0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Riemann problems and related solution procedures were first introduced into 
computational fluid dynamics by Godunov [l-3], in his special finite- 
methods for solving one- and two-dimensional unsteady inviscid gas flo 
[4] later employed Riemann problems in conjunction with a new rando 
procedure as a theoretical tool to derive existence proofs for all time for weak 
solutions of hyperbolic systems of conservation laws. The existence and ~~iq~e~~ss 
of solutions for general Riemann problems with arbitrary initial data has been the 
subject of intensive study (e.g., see [5-71). 

The initial study of Glimm [4] and later work by Moler and Smaller [S] 
stimulated Chorin [9, IO] to make Glimm’s method into a practical cornp~tat~o~al 
tool for solving problems in gas dynamics. Various improvements to G~~mm’s 
method were subsequently made by others such as Sod [ ll], Roe [12]? Colella 
[13], Colella and Glaz [14], and Gottlieb [ 153, and this technique is now well 
known as the random-choice method (RCM). The RCM makes extensive use of 
Riemann solvers and has been used successfully to solve a number of practical 
problems in gas dynamics [ 11, 16-201, underwater explosions [21, 221, and special 
problems related to two-phase flow of petroleum in underground reservoirs [23]. 

437 
@32P-9991jes $3.00 

Copynght % 1988 by Academic Press, Inc. 
All rights of reproductmn in any form reserved. 



438 GOTTLIEBANDGROTH 

The increased usage of Riemann solvers in various numerical solution schemes of 
computational fluid dynamics has stimulated the demand for more efficient iterative 
solution procedures, in order to reduce the often excessive computational times and 
costs. Although some previous work has been done on approximate Riemann 
solvers [ 1-3, 12, 141, this study presents an assessment of the relative performance 
of a collection of exact Riemann solvers which are appropriate for solving one- and 
two-dimensional unsteady flows of thermally and calorically perfect gases 
(polytropic). Furthermore, a new and more efficient solver is given and also 
assessed. These results should help researchers and engineers choose a suitable 
Riemann solver for their computer codes. 

An introduction to the Riemann problem for the specific case of unsteady one- 
dimensional flows of perfect gases is presented in Section 2, including a description 
of its solution based on the pressure-velocity diagram. This is a prerequisite to the 
presentation of the different Riemann solvers appearing in Section 3 and the 
assessment of these solvers which follows in Section 4. 

2. RIEMANN PROBLEM 

For one-dimensional nonstationary flows the state U of a perfect gas is specified 
completely by three dependent variables and two constants that are particular to 
the type of gas. Three convenient dependent variables are the pressure p, density p, 
and flow velocity U, and two fairly convenient constants are the ratio of the specific 
heats y and gas constant R. From these variables and constants all of the other 
state properties may be obtained. For example, the temperature T may be obtained 
from the equation of state (p=pRT) and the sound speed a follows from its 
definition (a* =yRT= yp/p). Hence, the state U may be completely defined by 
(P, P, u, Y, R), or alternately (P, a, u, Y, R). 

Now consider two discrete initial states U(x,, tj) and U(xi+r, tj) at adjacent 
nodes at time level tj of the discretized numerical grid depicted in Fig. 1. The initial 
value or Riemann problem may then be expressed as 

U(x, tJ = u(xi, tj) if x<x~+SZ(X~-X~+~), 
U(xi+,y tj) if X3Xj+Q(Xi-Xi+l), 

(2.1) 

where Q is a number between 0 and 1 that fixes the location of the discontinuity 
between these two states. The initial data U(x, tj) is therefore piecewise constant; it 
equals either U(xi, tj) or U(x,+ 1, , t .) depending on the particular location of the 
discontinuity between the two nodes. 

With increasing time beyond tj the discontinuity between the two initial states 
will break into leftward and rightward moving waves which are separated by a 
contact surface El-11 J. Each wave can be either a shock or a rarefaction wave 
depending on the initial data, and the available combinations produce four unique 
wave patterns which are self-similar (i.e., depend on x/t only). These patterns are 
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U(x,t) 

IJ(xi,tj) 

u(xi,,>tj) 

FIG. 1. Initial piecewise constant data U(x, f) for a Riemann problem on a nonstaggered grid. 

depicted in Fig. 2. It should be noted that a fifth wave pattern is also possible, an 
this pattern is the particular case when a vacuum exists between two contact 
surfaces, all of which occur between two rarefaction waves [3]. This is also shown 
in Fig. 2. Although this last case is of theoretical interest only [S, 241, because it is 
the limit of the perfect gas equations at zero pressure and temperature, it can never 
be realized in practice, Real-gas effects such as molecular vibration, partkle 
covolume and gas liquifaction would violate the assumption of a perfect gas and 
also prevent such an ideal vacuum from developing in reality. 

The problem of determining the types of waves, their strengths, and the 
properties in each region between the waves and contact surface for some partie~~ar 
set of initial data is called a Riemann problem, and the algorithm for determinist 

FIG. 2. Five possible wave patterns in the solution of a Riemann problem, showing shock (3) and 
rarefraction (R) waves separated by a contact surface (C). The last one has a vacuum (V) in the pattern 
center. 
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the solution to this problem is called a Riemann solver. For the one-dimensional 
unsteady Euler equations and a perfect gas the solution of the Riemann problem 
always exists, and it requires the determination of six state variables p?, p?, UT, 
P,*> PP, and u,* on the two sides of the contact surface. These unknowns can be 
obtained by using the three conservation laws of mass, momentum, and energy and 
the equation of state. These laws reduce to the well-known Rankine-Hugoniot 
relations across shocks [25] and to the well-known isentropic characteristic 
equations across rarefaction waves [25]. These nonlinear and algebraic equations 
may be used to jump across the leftward maving wave from the known left state 
(pl, pr, ui) to the unknown state (p?, p:, u:) to the left of the contact surface. The 
shock relations are employed if p * >p 1 , i, and the rarefaction-wave equations are 
used if pf <pl. Similarly, the shock and rarefaction-wave equations may be used to 
jump across the rightward moving wave from the known right state (p,, pr, u,) to 
the unknown state (p,?, p,?, u,*) to the right of the contact surface. By employing 
p*=pf=pT and u*=u:=up across the contact surface, the set of equations 
describing the Riemann problem may be reduced to a single nonlinear algebraic 
equation in one unknown for any particular wave pattern. However, this equation 
generally is implicit in the unknown p* or U* and an iterative solution scheme is 
required. Different iterative schemes or Riemann solvers will be introduced in the 
next section. 

The manner in which Riemann problems are incorporated in various computa- 
tional methods to solve a complete flow field varies greatly depending on whether 
the numerical integration scheme is based on finite differences, finite volumes, or 
random samplings. In the specific case of the random-choice method a random 
sampling that uses the quasirandom number of Van der Corput [26,27] is 
employed to locate the discontinuity, and the wave pattern can be overlaid or 
mapped onto a time-distance diagram, as illustrated in Fig. 1. The solution of 
whatever part of the wave pattern that overlaps the left or right grid node at the 
next time level is then assigned directly to this node, as the approximate solution. 
For the case shown in Fig. 1, the state between the shock and contact surface is 
assigned to the right node at level tj+ r. The pattern can not simultaneously overlap 
both the left and right nodes because the Courant-Friedrichs-Lewy time step 
criteria will sufficiently limit the size of the time step. This explicit procedure may be 
repeated for all other cells on the same time level and cells on subsequent levels, in 
order to construct a complete flow-field solution. Additional details of the random 
sampling and assignment procedure for a nonstaggered grid with a variable node 
spacing and local time stepping have been given previously by Gottlieb [15]. 

Before presenting different Riemann solvers it is worthwhile examining the 
Riemann problem more closely. The solutions for different wave patterns may be 
illustrated conveniently on the classical pressure-velocity diagram for solving wave 
interaction problems [25,28]. Let us begin with the states on the left and right 
sides of the initial discontinuity; they are known and will be denoted by 
(pl, a,, ul, yi, R,) and (p,, a,, ur, yr, R,). The left state is shown in the diagram of 
Fig. 3 as one point fixed by arbitrary values of p1 and ur. Let the right state be 
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FIG. 3. Five wave pattern regions and boundaries in the pressure-Velocity diagram for the left state 
(pl, u,). Note that fil =ul +2a,/(y, - l), u,=ul -t2a,/(~~- I), uRCVR=C1 +2a,j(y,-l), 

anywhere else on this diagram. Five curved lines labeled SCN, NCR, NCS, RQ7’NY 
and RCVR are the boundaries between the five regions labeled SCS, XX, RC 
RCS and RCVCR, and each region corresponds to one of the wave patterns shown 
in Fig. 2. The notation should be fairly obvious; RCS denotes a wave pattern with a 
rarefaction wave moving to the left and a shock moving to the right, separated by 
contact surface. At each boundary one of the waves from the two adjacent patterns 
on either side of the boundary becomes nonexistent or simply degenerate 
Mach wave. Hence, NCS denotes a wave pattern with no wave or just a 
wave travelhng to the left and a shock travelling to the right, with a contact surface 
between these waves. 

The five boundaries may be expressed analytically in closed form for arbitrary left 
and right states. Without derivation they are given as follows: 

The SCN curve rises monotonically from p, and u1 to p = oc at u = - co, w 

581/78/2-l? 
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the NCS curve falls continuously from p1 and u1 is asymptotic to p = 0 as u 
decreases. The RCN curve decreases monotonically from p1 and u1 to p = 0 at 
6, = u1 + 2a,/(y, - l), whereas the NCR curve rises monotonically from p1 and U, 
and is asymptotic to U, = u1 + 2a,/(y, - 1) as p increases. The RCVR line is vertical 
at the flow velocity uRCYR, which is larger than u,. Furthermore, the SCN and 
RCN boundaries, as well as the NCS and NCR boundaries, are not only matched 
in both pressure and velocity at their junction at the left state (tlsc,,= uRcN, 
24 ,,,oS= uNCR), but the first two derivatives dp/du and &p/du2 are also matched 
there. Third and higher derivatives are not matched at this junction point because 
entropic changes are introduced by finite-amplitude shocks. 

The equations for the boundaries help illustrate that a unique solution always 
exists for the Riemann problem for any arbitrary set of initial data defining the left 
and right states [3, 5,6]. In other words, the solution is one of the five patterns 
shown in Fig. 2, and their five solution domains are distinct and also cover every 
part of the pressure-velocity diagram (without any overlap). 

These boundary equations are also beneficial for determining the type of wave 
pattern without actually computing the solution of the Riemann problem by some 
iterative procedure. For example, let the pressure of the right state be higher than 
that of the left state (p,>pl). If U, is less than uSCN then the pattern must be SCS, if 
u, lies between uNCR and uRC~R then the pattern is SCR, if u, lies between uNCR and 
uRCYR then the pattern must be RCR, and so on and so forth. These equations may 
also be helpful in deriving an initial guess for the iterative procedure, and this will 
be illustrated in the next section. 

Solutions to different Riemann problems are illustrated graphically in the 
pressure-velocity diagram of Fig. 4. An arbitrary left state is indicated by the solid 
circle and four right states for different wave patterns are shown as open circles. 
The solution for each pair of left and right states is given by the open triangle. 
Although in this diagram the solution corresponds to a common pressure p* and 
common velocity U* across the contact surface, the rest of the solution would also 
include other state properties such as pt and pp, and a: and a,*. 

Pi- 

Pl 

P" 

0 i 
- 

RCVCR 

UK Ul U* “1 URCVR 

FIG. 4. Graphical illustration of solutions (a) for the left state (0) and various right states (0). 
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Before concluding this discussion of the Riemann problem, two additional 
interesting features should be mentioned. First, although the solution to ost 
Riemann problems involves an iterative procedure, the problem which has a wave 
pattern featuring two rarefaction waves separated by a contact surface may be 
solved explicitly for p* and u*, provided that yI = y1 [3]. The particular so~~t~o~~ 
for p* and U* on either side of the contact surface are 

R,z+J u*=-----i, 
If2 

(2.7) 

(2.8) 

where 

2 
ii,=u,+-a 

2 
y1-1 l’ 

ii,=u,--u 
yr-l r’ 

z = ; [P-l]” - 1)“3 
Pr 

(2.9) 

(2.10) 

and y = y I = y,. This solution may be used as an approximate solution instead of an 
iterative procedure to reduce computational time and cost. 

The second interesting feature of the Riemann problem is that the flow direction 
may be determined without computing the full solution by iteration. This can 
accomplished rather simply by introducing an artificial stationary boundary or wail 
between the left and right states and calculating the pressures that would act on the 
left and right sides of this boundary. The flow direction will then be from the side 
with the higher pressure to the side with the lower pressure. If the flow at the left 
state is positive (u, > 0) a shock will be reflected from the left side of this b 
and the pressure pL on this side will be dictated by pl[l +y,(y, + 1) 
yIM,(l -t- {y+ lj2 iW:/16)1’2], where M,=u,/a,. On the other hand, if the flow is 
away from the left side of the boundary (ur < 0), a rarefaction wave will be re 
instead. Then pL equals pr[l + (yl - I) MI/21 2yd(y1- I) if fii > 0, or pL = 0 if 
vacuum). The procedure may be repeated for the right side of the boun 

ected shock (u,<O) we have pR=pr[l i-y,(y,+ l)MP/4-y,M,(l+ {yr+ ljz 
;/f6)“*] with M, = u,/a,, and for a reflected rarefaction wave (u, > 0) the 

equation is p,[l - (y, - 1) M,/2] ” 2h’(y~- l) if ii < 0, or pjp = 0 if ii, > 0 (vacu~~)~ The 
fact that the flow is in the direction from the larger to the smaller pressure can be 
proved rigorously by using the pressure-velocity diagram. A vertical line is drawn 
at u = 0 and pL and pR are located on this line. The solution for p* will he between 
pr and pR. More importantly, u* will be positive valued and he on the rig 
the vertical boundary at u = 0 whenever pL >pR, or u* will be negative v 
lie on the left side of this line whenever pL <PRO This proves that the flow direction 
is always from the side of the boundary with the higher reflected pressure to t 
the lower reflected pressure. 
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3. RIEMANN SOLVERS 

A number of different exact Riemann solvers have been developed over the past 
thirty years because there are a variety of ways in which to express the shock and 
rarefaction-wave equations, and different solvers employ different iterative solution 
techniques with different initial guesses. These Riemann solvers are presented briefly 
without derivation in this section, but further details are available in the original 
references. 

3.1. Godunov’s First Method 

In Godunov’s early computational studies [ 1,2] of unsteady one- and two- 
dimensional flows he introduced an elegant method of solving Riemann problems 
for polytropic gases, which was presented as an integral part of his first- and 
second-order finite-difference schemes for the Euler equations. Although some of 
the elegance of the combined difference schemes and Riemann solver are unfor- 
tunately lost when the solver is considered alone, this is unavoidable here. The 
equations representing his solver are summarized in the notation of this paper for 
the initial left and right states. Although Godunov did not generalize his results for 
different gases in the initial left and right state, this simple generalization is included 
herein. 

The pressure p* on each side of the contact surface is related implicitly to the 
mass fluxes passing through the left and right waves (A and B) by the expression 

P* = (BP, + AP, + AB{u, - u,})/(A + B), (3.1) 

where 

(y1pIp1y2 F$+$$ 
[ I 

112 
for p*3p1, 

1 
A= (3.2) 

9 1 (YIP1 P1Y 1 (p*/pI)‘Yl- 1 -P”IP1 1)/2Yl for p* <PI 3 _ 

for p*>pr, 
r r r 

B= 

/ 

(y,p,p,)‘12 [l$i$+z$]1’2 
(3.3) 

Yr-1 
2y bwrPr)1’2 

1 -P*lP, 
1 _ (p*/p,)(‘,- 1mr for p*<pr. 

r 

The elegance of the variables A and B becomes apparent when the three conser- 
vation laws are expressed in Lagrangian form as a set of jump conditions 
across leftward and rightward moving shock and rarefaction waves. For example, 
the conservation laws become A[u] + [p] =O, A[p-‘1 - [u] =O, and 
A[E+ u2/2] + [pu] = 0 for any left wave and B[u] - [p] = 0, B[p-‘1 + [u] = 0, 
and B[E+ 2?/2] - [pu] = 0 for any right wave, where E is the specific internal 
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energy and [ ] denotes the wave jump conditions. IIence, by using A[u] + [p] = 0 
and B[u] - [p] = 0 across the left and right waves of a Riemann problem, and 
[u]=O and [p]=O across the contact surface, one may derive Eq. (3.1) for p*, or 
a similar expression for u *. The elegance is also apparent when one realizes that the 
velocities of left and right shock are given rather simply by I’, = u1 - A/p, and 
V,=u,+B/p,. 

Godunov obtained the solution for p* from Eqs. (3.1) to (3.3) by e 
fixed-point iterative scheme in the form 

P:+I =f(~iY> A(P:), B(P?% (3.4) 

where the function f is defined by Eq. (3.1). Godunov did not specify a convergence 
criterion in his work; however, it is assumed that the iterative process was st~~~e~ 
when p* ceased to change within some tolerance (or the corresponding values of A 
and B ceased to change). 

In the case of strong rarefaction waves this iterative scheme may fail to con- 
vergence. In order to make the iterative procedure convergent in all cases ~o~~~~v 
modified Eq. (3.4) to the form 

P~+~=C~~P*+~(PI*,A{P*},B(P*~)~/C~~~+II. (3.5) 

If y = y1 = yI, Godunov used an expression for the weighting factor ai given by 

oi=$+zj)z; (Y+ 1)/2~[1l _ z(y- 1WyI --I _ 1 i > (3.6) 

where .Zi=f (p”, Alp:}, B{p”})/(p, cp,). If cl! happens to be negative valued 
then aj is reset to zero, because no modification is needed. If y i and y,. are not equal, 
then another appropriate weighting factor would be required. 

After the iteration has converged successfully and the final values ofp*, A, and 
have been obtained, then u* is given by the equation 

u* = (p1 -pr + Au, + Bu,)/(A -I- B), (3.7) 

which is derived from the jump conditions in the same manner as Eq. (3.1) for p*. 
Other state properties on each side of the contact surface may be calculated by 
using the Rankine-Hugoniot relations for shocks or the characteristic equations for 
rarefaction waves, as required. 

An initial guess of p* is required to start the iterative procedure. In the case when 
‘/ = y1 = yr the initial guess is given by [2] 

P* = i(P, +p,) + ~&I + u,), (3.8) 

wherek=(y(p,fp,){pl+p,)/4) . ‘I2 For the more general case when y1 and y, are 
unequal, the intitial guess 

p*= PlalP,+p,a,Pl+p,a,p,a,(u,--u,) 

Plal+ PrUr 
(3.9) 
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is used [3]. Both guesses are based on weak wave or acoustic theory, and when 
shock and rarefaction waves become stronger these guesses become less accurate. 
However, it should be remembered that weak waves are prevalent in Riemann 
problems which are solved during computations of gasdynamic flow fields, and 
strong waves are encountered infrequently. Hence, these initial guesses are fairly 
accurate for the majority of Riemann problems. 

When implementing Godunov’s Riemann solver on digital computers the 
following precaution should be taken. The second expressions of Eqs. (3.2) and 
(3.3) for A and B across expansion waves are difficult to evaluate accurately on a 
digital computer when the pressure ratios p*/p, are very close to unity. In this case 
the expressions for A and B have finite values and are not theoretically singular; 
however, in practice computer roundoff errors may frequently result in very 
erroneous values computed for A and B. In Godunov’s Riemann solver a special 
check and possible correction must be made during each iteration to overcome this 
problem. 

3.2. Godunov’s Second Method 
Godunov developed a second Riemann solver which was computationally more 

efficient [3]. He expressed the shock and rarefaction-wave equations in a much 
simpler form, and this not only eliminates the difficulty in evaluating the 
rarefaction-wave expressions but simultaneously reduces the number of 
mathematical operations per iterative cycle. Furthermore, the problematic fixed- 
point iterative scheme was replaced by a higher order and trouble-free Newton 
method, in order to accelerate convergence and reduce computational efforts. In 
this second Riemann solver Godunov still retained the initial guess for p* that was 
derived from acoustic theory. 

In Godunov’s second method a function F(p*) is defined as the difference 
between the flow velocities on the two sides of the contact surface; that is, 
F(p*) = u,*(p*) - u:(p*). For the more general case of different gases in the initial 
left and right states, this function may be expressed as 

F(P*) =f(P*, Pl? 01, Yl) +f(p*, Pr, a,, Yr) - u1+ ur, (3.10) 

where 

a P* l 

f(P*Y P> a, Y) = 

t 

r P [ II y+lp*+y-1 -U2 -- - -1 2Y P 2Y 
for p* >,p, 

-z[[E.T+1~~2y-l] 
(3.11) 

for p* <p. 

Hence, the solution for p* corresponds to the particular case when the function 
F(p*) is equal to zero. 
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The higher order Newton iterative scheme which makes use of the first an 
second derivatives of F(p*) may be expressed in the form [3] 

F F=F” 
pi”,,=p*---- 

F’ 2(F’j3’ 
(3.12) 

where F denotes F(pF) for brevity and the prime designates differentiation with 
respect to p*, (In this higher order method a tangent parabola instead of a tannest 
straight line is used to estimate the root.) The corresponding first and second 
derivatives of the functionf(p*,p, a, y) may be written as 

and 

-(Y+l)‘a p* 7y-1 yfl 
16y3p2 [, + ‘+i][F 

(y+ l)a p* (Y--m 
-- - i 1 2bJP*12 P 

if p*>ps 

if p*zp, 

(3.13) 

if p*3g, 

if p*<pI 

(3.14) 

without difficulty. 
To initiate the iterative procedure Godunov used the initial guess given earlier by 

Eq. (3.9). He noted that this initial guess will cause the iteration to approach the 
root in a well-behaved manner from below if p1 <p,, such that all p* values in the 
iterative process are positive valued. In the other case when pi >p, me must 
perform a check for a negative valued p,+. If this occurs then pi” may be reset equal 
to O.Olpj5_ 1. 

It is worth mentioning that Zhang and Gottlieb [20] developed a very similar 
Riemann solver which employed a Newton iterative method, witho rim 
knowledge of Godunov’s second method [3]. In their study, Zhang and lieb 
investigated the relative computatioal savings that could be achieved by usi 
Newton’s method with first and second derivatives. Their findings suggest that 
faster convergence rate (reduced number of iterations) of Newton’s method with 
second derivatives was offset by the increased number of mathematical operations 
to compute the higher derivatives, except in the cases when the left and right waves 
of the Riemann problem are fairly strong or the initial guess is inaccurate. Their 
study points out that nothing practical is gained by using the higher order Newton 
method when the standard Newton technique will provide equivalent or better 
computational performance. 
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3.3. Chorin’s Iterative Scheme 
Chorin [9] adopted to a large degree the first Riemann solver of Godunov with 

the same fixed-point iterative scheme, but he made some notable changes to the 
iterative solution procedure, and the combination of these modifications improved 
the overall efficiency substantially. Since the equations employed by Chorin are 
essentially the same as those used by Godunov, they are not repeated here. Only 
Chorin’s modifications are discussed. 

Chorin’s first change involved the initial guess p *. Instead of using the acoustic 
approximation given by Eq. (3.8) or (3.9), he used the average pressure (pl +p,)/2 
and claimed that Godunov’s initial guess was ineffective and that his initial guess 
gave better results. Chorin’s claim is generally incorrect. In the case of strong waves 
both of their initial guesses are relatively ineffective; however, in the opposite case 
of weak waves, which occur frequently in Riemann problems of gasdynamics, 
Godunov’s guess is delinitely superior. Another disadvantage of Chorin’s simpler 
initial guess is that the iterative procedure must be completed at least twice to avoid 
a spurious convergence when the initial pressures p1 and pr are equal. 

Another change introduced by Chorin involved the resolution of negative values 
of p,f+ which sometimes occur during the iterative process. Chorin circumvented the 
occurrence of negative iterates by imposing a minimum allowable value for p*, 
typically a very small positive number (10m6). Chorin also modified the deter- 
mination of convergence. He chose to terminate the iterative process when changes 
in successive values of both A and B became smaller than some small tolerance 
(e.g., 10M6). This imposes two separate checks on A and B instead of only one 
for p:. 

Finally, Chorin’s most important modification to Godunov’s first method to 
improve the computational efficiency of the fixed-point iterative scheme involved 
circumventing convergence failure in the presence of a strong rarefaction wave. 
Instead of adopting Godunov’s cumbersome and computationally inefficient 
method of making the iterative process convergent for all possible cases by adding 
Eqs. (3.5) and (3.6), Chorin devised a relatively simple alternate procedure. If the 
iterative procedure does not converge after 20 iterations Chorin suggests computing 
the next iterate by using 

p,*, 1 = c( max(s, p:) + (1 - a)p* (3.15) 

with s = 10d6 and a = f. If a further 20 iterations do not give convergence, then 
Eq. (3.15) is used once again, but this time with CL = $, and so on and so forth. 
Chorin’s procedure reduces the costly overhead of computing Godunov’s cumber- 
some expressions (Eqs. (3.5) and (3.6)) for each iterative cycle, whether they are 
required or not, and this greatly reduces the computational effort. 

3.4 Van Leer’s Iterative Scheme 
Van Leer [29] adopted the form of the shock and rarefaction-wave equations 

used in Godunov’s first method. However, he and a colleague P. J. Bedijn 
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abandoned the trouble-some and inefficient fixed-point iterative procedure i 
of the standard Newton method, in order to improve the convergence rate. 
more, Van Leer showed that the implementation of Newton’s method with 
derivatives of the shock and rarefaction-wave equations was not very dif~c~It an 
produced valuable reductions in computational effort I 

Van Leer chose to iterate with the pressure of the states on each side of t 
contact surface (p*) and make the flow velocity difference uf - u,* equal to zero, as 
Godunov did in his second Riemann solver. Hence, new values of p” may be 
obtained by using Newton’s method in the form 

P,*, 1 “P? - 
GYP”) - %YP,*) 

ul*‘(p,*) - up’(p*)’ 
(3.16) 

where 

ufyp*, = u1- P” -PI 
NP*,P!* Yll’ 

up(p*)=u,$ p*-pr 
&P”> Pr> Yr)’ 

The expressions for U: and uf are derived from the wave jump conditions, and the 
functions A and B are defined previously by Eqs. (3.2) and (3.3). The first 
derivatives of U: and u,* with respect to p* are 

- (A2 + C3/(2A3) for p*3p1, 
q(p*) = (3.19) for P”<Pl, 

(B* + C3)/(2B3) for pX>pr, 
e+‘(p*) 

C--l ??$z 
i 1 

- (Yr + 1 WY, 
for p* <pry 

where Cl = (~1 PIP,)~‘~ and C,= (Y,P,P,) 1/2 In the iterative procedure Van Leer . 
used the initial guess of Godunov (Eq. (3.9)) and stopped the convergence when 
successive values of the iterate differed by some very small tolerance. If a negative 
iterate was encountered it was reset to a small positive number. Note that Van 
Leer’s scheme and Godunov’s second method are virtually the same, except that 
Van Leer has expressed his equations in a slightly shorter form. 

3.5. Smaller’s Method 

Smoller’s approach [6] in presenting the equations which apply across shocks, 
contact surfaces, and rarefaction waves of the Riemann problem is nonstandard 
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highly elegant mathematically. For the leftward moving wave in the Riemann 
problem his equations are written as 

Pi+ 
p,=exp(-xl, (3.21) 

i 

B + exp(4 
$=r;(x)= 1 +Pexp(x) 

exp( -X/Y) 

if x GO, 
(3.22) 

if x > 0, 

zg-ul 
---=/z,(x)= 

al I 
2F2 1 -exp( -x) 
y-l [1+/Iexp(-x)]‘/2 

if xd0, 

5 Cl -ew(-7x11 

(3.23) 

if x> 0, 

where /I = (y + 1 )/(y - 1) and z = (y - 1)/2y. Note that the case of a shock 
corresponds to x d 0 and a rarefaction wave to x > 0. Also, these expressions have 
not been generalized for the case of different gases in the left and right states. 

Across the contact surface Smoller defines the density ratio as 

P:/P~* = ew(y) (3.24) 

and sets p: =p,* and UT = u,?. 
For the rightward moving wave in the Riemann problem Smoller’s equations are 

written as 

(3.25) 

2T’12 exp(2) - 1 

u,-24: 
- = h,(z) = 

y- 1 [l +j3exp(z)]“2 
if 2 GO, 

a,* 
& CexpW - 11 

(3.27) 

if z > 0. 

In obtaining the solution to the Riemann problem Smoller combined his previous 
equations to give the intermediate results: 

(3.29) 

(3.30) 
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These equations may be manipulated into the final form [6] 

h,(x) + (B/Ap2 h,(x + In(B)) = C, (3.31) 

which provides an implicit expression for x. The variable x may be d.etermined by 
an iterative procedure, and then z is obtained from Eq. (3.29) and y folIows from 
Eq. (3.28). Once x, y, and z have been determined, the remainder of the flow 
properties on each side of the contact surface are computed easily by means of 
Eqs. (3.21) to (3.27). Note that a unique solution will always exist if the condition 
2 $2(B/A)“” > (y - 1) C is satisfied, which is just the normal check to ensure that a 
vacuum state does not exist at the contact surface. 

Smoller’s equations representing the Riemann problem were em~io~ed in a 
Riemann solver developed by Dutt [30]. Dutt solved the equations by using the 
regula-falsi iterative scheme (false position), which is a combination of the well- 
known bisection technique with a secant method. This scheme has a slower rate of 
convergence rate than Newton’s method. Dutt employed a simple guess of x = 
start the iterative procedure. Note that Dutt’s computer program was reconstructed 
from the listing given in his report, but it was modified slightly by impleme 
proper check for the determination of convergence, in order to avoid a 
large numbers of iterations in certain cases. 

3.6. A New Riemann Solver 

The most efficient Riemann solver will always be the one with the fewest number 
of mathematical operations for the entire solution procedure, which will include the 
initial guess, equations used in the iterative procedure, check to stop the iterative 
process, and additional expressions required to completely specify the states on 
both sides of the contact surface, as well as determine both the left and right wave 
speeds. In an attempt to develop a more efficient Riemann solver we have st 
employ the fewest and simplest equations possible to represent the 
problem, and we have used the standard Newton iterative method in conjuction 
with a new efficient initial guess. Another important feature of this new Riema~n 
solver is the choice of state variables. From experience we have found that 
numerical computations of unsteady flows of inviscid and perfect gases are sl~g~tIy 
more efIicient when the states at grid nodes are defined by (p, a, u, y, R) instead of 
(p, p, u, y, R), because the speed of sound is dependent variable which appears 
more frequently than the density in the equations. For example, it occurs directly in 
the characteristic equations for rarefaction waves, in computing shock an 
expansion wave speeds, and in the calculations of the Co~rant-F~iedricbs-~~~~ 
time step. It easily replaces the density in the Rankine-Hugoniot relations for shock 
waves. The sound speed is used to advantage as one of the dependent variables in 
this new Riemann solver. 

Instead of solving for the common pressure of the intermediate states (p*), t 
common flow velocity of the intermediate states (u*) is used as the iterate in the 
new Riemann solver, and the pressure difference pf’ -pp across this contact 
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discontinuity is made equal to zero. This is in direct contrast to all previous 
Riemann solvers (which iterate with p*). However, this new approach helps 
improve the computational performance. 

By using the standard Newton iterative procedure to determine the solution of 
the Riemann problem, successive iterates of U* are given by 

* = ulr _ Pl*(u*) -P,x(G-) 
ui+1 r pl*‘(u,*) -p,*yu*y 

(3.32) 

where the prime denotes differentiation with respect to u*. In this solution process, 
convergence is determined by satisfying the inequality ) 1 --pF/p,YI <E, and the 
tolerance E is usually 10e6. The other shock and rarefaction equations that yield 
PL P,“, aI y * a:, dp:/du*, and dp,*/du* follow without derivation. 

In the case of the leftward moving shock of the Riemann problem, for which 
U* < ui, the pertinent equations are 

w  =Yl+lu*--1 

1 

- - -  

4 a1 [  [  

1+ y,+1u*-241 2 1’2 
- -  

4 al 11 ’ (3.33) 

P:’ =p1+ c,cu* - %) WI, (3.34) 

(3.35) 

al*=a 
I 

(Y1+~)+(Yl-~)P:/Pl 1’2 
l (Y1+l)+(Y,-l)PJP:: 1 ’ (3.36) 

where C, = y1 PI/a, is computed before the iterative procedure begins, and WI is 
the shock Mach number with respect to the moving gas ahead of the shock. WI is a 
by-product of the iteration. Note that the shock velocity V, is given by u1 + a, W, 
in the laboratory reference frame. Also, the variables a: and V1 are not needed in 
the iterative procedure and should therefore be computed later. 

For a rightward moving shock for which U* s U, the equations are 

w =Yrfl u*--u, y,+1u*-24, 2 1’2 
i- --+ 1-t -- 

4 ’ a, i [ 4 a, 11 (3.37) 

Pr* = Pr + c&u* - u,) w,, 

py= w; 2cr 
1+%’ 

(3.38) 

(3.39) 

[ 

(Yr+l)+(Y,-1)P,*/Pr 1’2 
a,*=ar (Y,+l)+(Y,-l)Pr/P,* 1 ’ (3.40) 

where C, = yrpr/ar and W,. is the shock Mach number. Again, the shock velocity V, 
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is given by U, + a, W, in the laboratory frame of reference, and the variables V, and 
a,! are not required in the iterative process and should therefore be c~rn~~t~~ 
afterwards. 

For a left rarefaction wave with U* > u1 the relevant equations are 

a~=a,-~~-- Yj--- cu* - %I, (3.48) 

;k 2Yll(Yl- 1) 

pl*=pl If?- : [ 1 ai 
(3.42) 

P?’ = --Y1 p~/a~. (3.43) 

In this case a: is a by-product of the iterative procedure, and the velocity of 
rarefaction-wave head u1 -a, and tail U; -a: in the laboratory frame of reference 
should be camputed after the iterative process is completed. 

In the other case of the right rarefaction wave the equations are 

a: = ar+q (u* - zd,), 

a* 21rl(Yr- 1) 

P,*‘PF -l 3 
i 1 a, 

pP’=~~Pr*lar*. 

(3.45) 

(3.46) 

In this case a,* is a by-product of the iterative process, and the velocity of 
expansion-wave head U, + a, and tail up + a,* in the laboratory frame of reference 
may be computed after the iteration is completed. 

To start the solution procedure the initial guess for the flow velocity u$ is 
obtained by using the expressions 

u*- ii,Z+ii, 
a --i-T7 

where 
2 2 

ii,=u,+-a 
yl-1 I’ 

ii,=u,----a 
‘/,-I r’ 

z _ yr - 1 4 5 (O- 1)‘20 yl 
i 1 

with ~ = 
i 

if p1 BP,, 
Y?- 1 al pr Yr if Pl <Pr. 

(3.49) 

On the other hand, the initial guess pz can be expressed in the form 

which is more cumbersome because of the extra power. These initial guesses have a 
graphical interpretation on the pressure-velocity diagram. Consider the case when 
z~r <p, first, for which the right state is higher in the diagram than the left state an 
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also located in the RCR domain as indicated in Fig. 5. One can see that the right 
state for a RCR wave pattern must have a velocity U, which lies between boundary 
values uNCR and nRCVR at the pressure level of pr, whereas the actual solution U* 
must be in the range from ui to ii,. If it is assumed that the initial guess U* lies in 
the same proportion between ui and 6, as U, lies between U,,, and uRCVR, this 
guess is then given by u$ = ui + (u, - u,,,)(Zi - ul)/(uRCyR - uNCR). This 
expression may be reduced to those given earlier by Eqs. (3.47) to (3.49). In the 
other case in which p1 >pr we note that u, now lies between uRCN and uRCVR for a 
RCR pattern By using the same method of proportions the other initial guess is 
similarly determined from u$ = uRCN + (u, - u,,)(iii - uRCN)/(uRCVR - u,,,), and 
it also reduces to Eqs. (3.47) to (3.49). 

Although these results for the initial guess may appear to be restricted to the 
RCR wave pattern domain only, this is untrue. The initial guess may be 
extrapolated beyond the RCR domain into the other SCR, RCS, and SCS 
domains. However, in general, the intitial guess becomes less accurate as the right 
state moves farther to the left of the NCR and RCN boundaries and one or both 
shocks in the wave patterns become stronger. 

Some interesting aspects of this initial guess are worth mentioning. In the 
particular case when y = yi = yr, which will occur frequently in unsteady flow 
computations, the initial guess is the exact solution for u* for the case of the RCR 
wave pattern. Equations (3.47) to (3.49) reduce to those given earlier by Eqs. (2.8) 
to (2.10). Hence, if yi = y,, a simple check to determine if u$ lies between u1 and U, 
will immediately indicate whether the wave pattern is RCR and U$ is part of the 
exact solution. If this is the case, the complete solution should then be determined 
directly, to bypass the Newton iterative procedure and save some computational 
effort (about 4 to 7%). 

Another interesting feature is that the intitial guess is the exact solution for the 
case of yi = yr and isentropic left and right waves, that is, if the shocks in the 
Riemann problem were replaced by compression waves. This is true even if the left 

SCR 

NCR I 
RCVR 

Y "NCR IL* $ '1 % URCVR 

FIG. 5. Illustration of determining the initial guess u$. For a right state (0) in the RCR domain u, 
lies between uNCR and uRCvR, and the solution u$ lies between u, and zi, in the same proportion. 
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and right states have different entropies. Hence, this initial guess will be very 
accurate for wave patterns with shocks which have small entropy changes (e.gG3 
pressure ratios less than about 2), and it will be much superior to any initial guess 
based on acoustic theory. Furthermore, in most cases this new initial guess will still 
provide good estimates for much higher pressure ratios than 2. For example, if two 
flows with similar pressures and sound speeds in the left and right states coli 
produce an SCS pattern in which the shocks are strong, the initial guess u$ would 
be accurate with a velocity near zero, and it would in turn predict fairly a~~~r~t~ 
values of p: and pp. It should be noted that if this isentropic wave theory was use 
to predict 9: instead of ut, it would be inaccurate for strong shocks an 
resulting values for 2.47 and u,* would be correspondingly inaccurate. This is a 
illustration af one additional advantage of iterating with u* instead of with p” as in 
previous Riemann solvers. 

In the other case when y1 and y, are unequal, the new initial guess is exact only 
at the boundaries NCR, RCN, and RCVR. Elsewhere i RCR domain and 
other SCR, RCS, and SCS domains it is simply app ate but still fairly 
accurate. It sould be remembered that Riemann problems wi ifferent gases in the 
left and right states occur infrequently in numerical computations. 

Other initial guesses may also be developed by following this method of 
proportions. For example, for the SCR and SCS domains for which pi <pI: the 
initial guess may be expressed as u$ = uSCN + (u, - tiSCN)(EZ1 - usc~)/(uN,,-~ - u”sc 
I-Iowever, such guesses are normally more harmful than helpful because they a 
computational overhead almost equivalent to completing a full iterative cycle, and 
most often the guess is not sufficiently more accurate than the isentropic guess in 
reducing the number of iterations. 

4. PERFORMANCE OF RIEMANN SOLVERS 

The performance of various exact Riemann solvers given in the previous charter 
is assessed in the following manner. All of the Riemann solvers were progra 
on a digital computer. Forty Riemann problems were posed such that ten pr 
corresponded to each of the SCS, SCR, RCR, and RCS wave patterns. 
more, in each set of ten Riemann problems, two consisted of one or more st 
waves and the other eight contained only weak waves. The computer program 
overhead was kept constant and small for each performance run, so that the 
separate Riemann solver subroutines could be assessed fairly. 

The solution to each Riemann problem consisted of computing the corncob 
pressure p* and flow velocity u* on each side of the contact surface, and one 
additional variable for the left (pt or a;) and right (pp or a,*) sides of the contact 
surface, in order to complete the minimum three state variables needed to specify 
these intermediate states. If the left wave was a shock then its velocity zlr + a, j in 
the laboratory frame of reference was also computed. This was also done for any 
right shock wave. If the left wave was an expansion wave then the velocity of both 
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the head u1 - a, and tail u: - a: were also calculated. This was similarly done for a 
right rarefaction wave. Finally, an attempt was made to ensure that the con- 
vergence criteria were equivalent for each Riemann solver, such that the solutions 
were computed to the same accuracy. 

The various central processor unit (CPU) times required for each Riemann 
solver to compute solutions to the forty Riemann problems are summarized in 
Table I, normalized to the time of the fastest Riemann solver. Additional CPU 
times for most of the Riemann solvers are also given for the case when their initial 
guess was replaced by the new initial guess described in this paper. Note that these 
relative CPU times should be considered typical rather than exact, because they are 
problem dependent and forty problems cannot be considered as comprehensive. 

The new Riemann solver has the best performance because it is made very 
efficient in terms of minimizing the number of mathematical operations to complete 
the entire solution process, from the new initial guess to the final computations of 
the wave speeds. The new initial guesses u$ and p$ are also helpful in reducing 
CPU times. When p$ is employed in other Riemann solvers it significantly reduces 
their CPU times by 25 to 40%, as can be seen in Table I. 

Smoller’s method [6] of presenting the equations for the Riemann solver used in 
Dutt’s numerical solution procedure [30] perform badly in comparison to all the 
other methods. This can be attributed directly to the addition of numerous 
mathematically elegant but needless exponentials to the shock and rarefaction-wave 
expressions and partly to the slow convergence rate of the regula-falsi method. 
Godunov’s first method [ 1,2] and his modified method by Chorin [9] do not 
perform very well. This is mainly because the shock and expansion-wave equations 
are somewhat cumbersome, the initial guesses are not very accurate, and the 

TABLE I 

Relative Performance of Riemann Solvers 

Type of Riemann solver 
Relative Time with the new 

time initial guesspo* 

Godunov’s first method 7.22 4.78 
Godunov’s second scheme with 

a normal Newton method 
Godunov’s second scheme with 

a highen order Newton method 
Chorin’s method 
Von Leer’s scheme 
Smoller’s scheme with 

Dutt’s iterative procedure 
New iterative solution procedure 

with the new initial guess 

2.16 1.48 

2.17 1.62 
4.42 2.65 
1.96 1.36 

24.7 

1.00 
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iterative procedure is a fixed-point scheme with a slow convergence rate. Chorin’s 
method is faster than Godonov’s by a factor of about two because he replated 
Godunov’s cumbersome modification for making the method convergent in all 
cases with a simpler and more efficient procedure. 

Godunov’s second method [3] and Van Leer’s scheme [29] both have good and 
similar performance ratings. This might have been expected because they are 
virtually identical methods with similar efficiencies. Both employ fairly simple and 
very similar shock and rarefaction-wave equations, and both use the same initial 
guess and Newton’s iterative solution process. Van Leer’s method is slightly faster 
than Godunov’s-by about lo%--because the derivatives in his Newton iterative 
method are expressed in a simpler form. 

It is worth noting that Godunov’s second method [3] with the standard Newton 
iterative scheme (first derivatives only) is just as eflicient as the same metho 
the higher order Newton scheme (including second derivatives), when the a 
guess of Godunov is used. On the other hand, when the new initia 
included along with the higher order Newton scheme, Godunov’s seco 
becomes less efficient. This shows that the higher order iterative scheme increases 
the number of mathematical operations for the entire convergence procedure, 
despite the reduction in the number of iterations to obtain convergence. A similar 
observation has been noted by Zhang and Gottlieb [20]. 

5. CONCLUDING REMARKS 

From a historical viewpoint it should be mentioned that Godunov’s first 
Riemann solver was available in scientific papers in Russian and in various trans- 
lations to researchers outside the Soviet Union [l, 21. As a consequence 
method in modified form due to Chorin [9] has been used rather extensively (e.g.g 
[9-11, 13-14, 16-191). On the other hand, Godunov’s second method [3] was not 
readily available because it was in a Russian book on numerical solutions to multi- 
dimensional problems in gasdynamics which was not readily available outside t 
Soviet Union If this Riemann solver had been known it would have been t 
obvious choice for the numerical work by Chorin and his followers. However, in 
spite of its unavailability, it was eventually re-invented by Van Leer [29] and 
others [ZO] as a means of improving the performance of computer codes for 
solving unsteady gasdynamic problems. These improvements in Riemann solvers 
have now led to a new and more efficient solver. 

Approximate, instead of exact, Riemann solvers which are based on linear or 
acoustic theory were often employed in the past Russian literature to 
computational effort [ 1-3, 3 11. However, the use of substantially faster corn 
today along with the new Riemann solver given in this study will make the 
approximate Riemann solvers unnecessary in many cases. In those cases 
approximate Riemann solvers are still required and y1 = yI, however, the acoustic 
approximations for p* and u* should possibly be abandoned in favor of the 

581/78/i-14 
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substantially more accurate expressions given by Eqs. (3.47) and (3.50), which are 
based on isentropic wave theory. 
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