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Abstract The transition from regular to Mach reflection remains a key area of study 
for unsteady oblique shock interactions with a solid surface. In this study, high-
fidelity computational fluid dynamics (CFD) based on the combination of an upwind 
finite-volume spatial discretization and an anisotropic block-based adaptive mesh 
refinement (AMR) procedure applied to the solution of the Euler equations governing 
compressible gaseous flows is used in conjunction with a systematic post-processing 
methodology to accurately compute and compare the regular-to-Mach reflection 
(RR-MR) transition on wedges, cylinders, cones, and spheres. The objective of this 
study is to determine the similarities and differences that arise when oblique shock 
reflection is considered on cones, cylinders, and spheres relative to the well-studied 
case of a planar wedge using past theoretical, experimental and numerical results. 

1 Introduction and Scope 

Oblique shock interactions with solid surfaces have been a research area of inter-
est since 1878, when Mach experimentally discovered the basic three-shock Mach 
reflection pattern [ 1]. Since then, significant efforts have been made theoretically, 
experimentally, and numerically to better understand the underlying physics of 
oblique shock interaction. Examples of notable experimental studies include the 
work by Skews [ 2], Ben-Dor [ 3], and Takayama et al. [ 4]. With the advent of ever-
increasing computing power and the availability of high-performance computing 
(HPC) resources, computational fluid dynamics (CFD) has become a powerful tool 
in this area of study. Attempts to study the oblique shock interaction problem from 
a numerical standpoint include contributions from researchers such as Glaz et al. [ 5, 
6], Collela and Henderson [ 7], Timofeev et al. [ 8], Drikakis et al. [ 9], Saito et al. [ 10], 
and Hryniewicki et al. [ 11– 13]. 

One of the key areas of study concerning oblique shock interaction is that of 
the transition from regular reflection (RR) to Mach reflection (MR); a phenomena in 
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Fig. 1 Regions of regular and Mach reflection for an inviscid polytropic air flow past a wedge 
separated by the analytical transition boundaries. Also shown are the reference points, RP-. i =  (.M∗

i , 
.θ ∗w), along the extreme-angle boundary between RR and MR defined by Hryniewicki et al. [ 12]  and  
the local (. α, . β)-coordinate system defined at each of these points defining the coordinates normal 
and tangent to the boundary 

which a two-shock RR configuration transitions into a three-shock MR configuration 
on the reflecting surface. The RR-MR transition criteria is dependent on the geometry 
of the reflecting surface. A wide range of literature exists concerning the RR-MR 
transition on a planar wedge since the 1940s, with experimental and theoretical 
contributions from researchers such as von Neumann [ 14], Bleakney and Taub [ 15], 
Courant and Friedrichs [ 16], Henderson and Lozzi [ 17], and Ben-Dor and Glass [ 18, 
19]. 

In the present study, the transition from RR to MR for non-stationary oblique 
shock interactions with various canonical two-dimensional geometries, including 
wedges (ramps), cones, semicylinders, and semi-spheres in inviscid, polytropic air 
is further examined in a systematic fashion via numerical methods. Moreover, the 
similarities and differences that arise when oblique shock reflection is considered 
on cones, cylinders, and spheres relative to the more well-studied case of a planar 
wedge are examined with the aid of new simulation results and past theoretical and 
experimental results. 

2 Approach for Detection of RR-MR Transition 

The theoretical boundaries that define the RR-MR transition on planar ramps or 
wedges are the extreme-angle (detachment), the sonic, and mechanical-equilibrium 
boundaries as identified by von Neumann [12– 14]. These boundaries separate the four 
classes of reflection phenomena possible on wedges, cones, cylinders, and spheres: 
regular reflection, single Mach reflection (SMR), transitional Mach reflection (TMR), 
and double Mach reflection (DMR). The extreme-angle and mechanical-equilibrium 
boundaries that separate these reflection regimes are shown as a function of the wedge 
angle,. θw, and incident shock Mach number,.Mi,  in  Fi  g.  1 for oblique shock reflection 
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in inviscid polytropic air. Note that the sonic boundary (not shown) lies very close 
to the extreme-angle boundary. 

When the oblique shock reflection problem is considered on a cylinder, it can 
be thought of as an equivalent problem to that of a time-variant wedge, where the 
wedge angle changes as a function of time [ 20]. The equivalent wedge angle for a 
cylinder is linked to the position of the incident shock on the cylinder surface. The 
leading edge of the cylinder corresponds to a upward-facing wall with a wedge angle 
of.θw = 90 ◦ (.π/2 radians) and the cylinder apex corresponds to an equivalent wedge 
angle of .θw = 0 ◦. The angular position, . ω, of the incident shock on the cylindrical 
surface of radius, . R, measured clockwise from the leading edge, is related to the 
equivalent wedge angle through the following relationship: 

.θw = 
π 
2 

− ω, (1) 

where 
.x = R − R cos(ω), y = R sin(ω), (2) 

describe the position of the incident shock in terms of coordinates,.(x, y ), of the two-
dimensional Cartesian frame. These relationships can also be applied in the case of 
a sphere, which acts as an axisymmetric variant of the cylinder, where here the . y 
coordinate is taken to be radial coordinate direction. 

For studies involving the RR-MR transition on the wedge and cone geometries, 
multiple numerical simulations are conducted at conditions clustered about reference 
points of interest corresponding to the extreme-angle boundary. The 20 reference 
points, RP-. i =  (.M∗

i , . θ ∗w), defined along the extreme-angle boundary by Hryniewicki 
et al. [ 12] are depicted in Fig. 1. For each numerical simulation, the incident shock 
Mach number and wedge angle are varied using an (.α, β)-coordinate transformation 
[ 13] in which 

.Mi = M∗ 
i + α cos(φ∗) − β sin(φ∗) , (3) 

. sin(θw) = sin(θ ∗ 
w) + α sin(φ∗) + β cos(φ∗) , (4) 

.φ∗ = tan−1

(
d  sin(θw) 
dMi

∣∣∣∗
)

− 90◦ , (5) 

where (.M∗
i ,. θ ∗w) are the incident shock Mach number and wedge angle corresponding 

to the reference point of interest and.d  sin(θw)/dMi| ∗ is the slope of the extreme-angle 
boundary at the reference point of interest. In the axisymmetric case of a cone, . θw 
corresponds to the cone half-angle. Each (.Mi, . θw) test pair is generated by varying 
. α and setting.β = 0, which ensures traversal normal to the extreme-angle boundary, 
wherein.α  <  0 tests points located above the boundary and.α  >  0 tests points below 
the boundary. For each value of. α tested, a non-dimensional parameter. L is computed, 
which represents the separation distance between the incident shock and Mach stem. 
. L is defined as: 
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Fig. 2 Predicted distributions of the flow density for the interaction of a normal shock of strength 
.Mi = 1.43 with a semicircular cylinder. Flow solutions are shown before interaction (left), during 
regular reflection (middle), and after transition to Mach reflection (right) on the cylinder 

.L = 
zc,l − zc,u 

z c,u
, (6) 

where .zc,l is the distance travelled by center of the shock attached to the reflection 
surface, and.zc,u is the distance travelled by the center of the shock attached to the far-
field top boundary of the computational grid. In the case of a regular reflection, both 
.zc,l and.zc,u correspond to the distance travelled by the incident shock, which should 
cause. L to vanish. In the case of a Mach reflection, the Mach stem will remain attached 
to the reflection surface and travels at a higher speed than the incident shock, which 
results in the difference .zc,l − zc,u representing the difference in distance travelled 
by the Mach stem and incident shock. This difference is normalized by .zc,u due to 
the fact that these reflection patterns grow in size over time. The point at which . L 
vanishes corresponds to the RR-MR transition. 

A somewhat analogous procedure is adopted herein for determining the RR-MR 
transition on the cylinder and sphere, wherein the distances travelled by the center 
of the shock fronts attached to the top far-field boundary and cylinder reflection 
surface are tracked and compared via the difference.�z = zc,l − z c,u. Unlike the case 
of a wedge, where multiple numerical simulations are necessary to capture a sweep 
of .θw values for a given test value of .Mi, a continuous sweep of wedge angles are 
automatically tested as the incident shock propagates over the cylinder; therefore, 
only requiring variation in.Mi for cylinder simulations. When the incident shock first 
makes contact with the leading edge of the cylinder, the resultant reflection pattern 
that emerges will always start as a regular reflection, however, as the cylinder is 
convex and.θw decreases as the incident shock traverses over the cylinder, the resultant 
reflection pattern will eventually change into a Mach reflection. An example of this 
unsteady transition behaviour is shown in Fig. 2. When the reflection pattern remains 
regular,.�z = 0; when the reflection pattern transitions into Mach reflection. �z > 0 
and will continue to grow. The equivalent wedge angle on the cylinder that causes 
.�z to grow denotes the RR-MR transition on the cylinder. The RR-MR transition 
for an axisymmetric sphere is similar to that for the planar cylinder. 



Numerical Study of the Transition from Regular … 321 

3 Numerical Method for Unsteady Oblique Shock 
Reflections 

3.1 Governing Equations 

In this numerical study, two-dimensional planar and axisymmetric inviscid shock 
reflection processes are considered. Accordingly, numerical solutions of the Euler 
equations governing two-dimensional, compressible, gaseous flows associated with 
planar Cartesian and axisymmetric coordinate systems are examined. The Euler 
equations in this case can be summarized in matrix-vector form as 

. 
∂U 
∂t 

+ �∇  · �F = 
∂U 
∂t 

+ 
∂F 
∂ x 

+ 
∂G 
∂y

= Sa, (7) 

where . t is the physical time, . x and . y are the two spatial coordinates, .U is the con-
served solution column vector, and . F and .G are the inviscid solution flux column 
vectors in the .x- and .y-coordinate directions, respectively, .�F =  [F,G] is the two-
dimensional solution flux dyad, and .Sa is a source term column vector associated 
with axisymmetric geometry. In Eq. (7), . U, . F and .G have the form 

.U = 

⎡ 

⎢⎢⎣ 

ρ 
ρu 
ρv 
ρ E 

⎤ 

⎥⎥⎦ , F = 

⎡ 

⎢⎢⎢⎢⎣ 

ρu 
ρu2 + p 

ρuv 

ρu

(
E + 

p 

ρ

)

⎤ 

⎥⎥⎥⎥⎦ 
, G = 

⎡ 

⎢⎢⎢⎢⎣ 

ρv 
ρ uv

ρv2 + p

ρv

(
E + p

ρ

)

⎤
⎥⎥⎥⎥⎦ , (8) 

where . ρ is the flow density, . u and . v are the flow velocity components in the .x- and 
.y-coordinate directions, respectively, . p is the pressure, and.E = e + (u2 + v2)/2 is 
the total specific energy of the gas expressed in terms of the specific internal energy, 
. e, and the specific kinetic energy. Additionally, for planar geometry,.Sa = 0, and, for 
axisymmetric geometry, 

.Sa =  −  
1 

y

[
ρv, ρuv, ρv2 ,  ρv

(
e + p

ρ

)]T

. (9) 

3.2 Upwind Finite-Volume Method 

A high-resolution, upwind, Godunov-type, finite-volume method [ 21]  is  used  in  the  
spatial discretization of the Euler equations given previously in Eq. (7). As described 
in more detail by Hryniewicki et al. [ 22], the integral form of Eq. (7)  is  solved  
on quadrilateral-shaped computational cells or elements, .(i, j ), of two-dimensional, 
multi-block, body-fitted, computational meshes as illustrated in Fig. 3a, having cen-
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Fig. 3 Illustration of two-dimensional multi-block body-fitted mesh used in finite-volume dis-
cretization showing (a) the quadrilateral cell (element) and (b) an example multi-block anisotropic 
AMR mesh with 11 levels of mesh refinement consisting of 17,995 .8×8 grid blocks (boundaries 
of grid blocks are shown) for a total of 1,151,680 quadrilateral cells 

troid,.(xi, j , yi, j ), area,.Ai, j , four cell faces,. k, with face lengths,.��i, j, k , and outward-
pointing, face-normal, unit vectors,.�ni, j, k ,  fo  r.k = 1,  2,  3,  4.  Following  application  of  
the divergence theorem and a second-order accurate, mid-point, quadrature rule for 
the evalution of the closed-path integral of the flux on the faces of the quadrilateral 
cell, the following semi-discrete form of Eq. (7) is obtained 

. 
dNUi, j 

dt
=  −  

1 

Ai, j 

4∑
k=1

(�F · �n ��
)
i, j,k 

+ Sa,i, j = Ri, j (U), (10) 

where .NUi, j = (1/A)
∫
A Ui, jdA is the cell-averaged conserved solution vector and 

.Ri, j is the solution residual. The values of the inviscid flux vector, . �F, on the cell 
boundary is evaluated herein by using a combination of a Riemann-solver-based flux 
function and second-order, piecewise linear, limited reconstruction. In particular, the 
approximate Riemann solver of Harten, Lax, and van Leer [ 23], with the evalua-
tion of the wave speeds as suggested by Einfeldt [ 24], are used. Piecewise linear 
reconstruction of the primitive solution quantities, . ρ, . u, . v, and. p, within each cell is 
carried out as described by Barth [ 25] and the slope limiter of Venkatakrishnan [ 26] 
is used, to ensure solution monotonicity in the presence of discontinuous solutions 
and shocks. 

A conditionally-stable, explicit, two-stage, Runge-Kutta (RK2), time-marching 
scheme is used to integrate the semi-discrete form of the Euler equations given by 
Eq. (10). For an appropriately restrictive choice of physical time step, .�t , satisfying 
a Courant-Friedrichs-Lewy (CFL) condition, the latter can be shown to be strong 
stability preserving (SSP) when applied along with the limited, upwind, finite-volume 
scheme outlined above as originally described by Shu and Osher [ 27, 28]. The 
SSP property ensures accurate and positive treatment of unsteady solution content 
associated with discontinuities and shocks. 
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3.3 Anisotropic Block-Based Adaptive Mesh Refinement 

As indicated above, the proposed finite-volume discretization of the governing par-
tial differential equations has been implemented for quadrilateral elements which 
are contained within structured grid blocks of a multi-block, body-fitted, computa-
tional grid. See Fig. 3(b). In order to ensure accurate and high-resolution treatment 
of the unsteady shock reflection flows of interest, an anisotropic block-based adap-
tive mesh refinement (AMR) method, based on the previous work of Williamschen 
and Groth [ 29], Freret and Groth [ 30], and Freret et al. [ 31] and as implemented 
by Hryniewicki et al. [ 22], is also used here. In the block-based anisotropic AMR 
approach, the two-dimensional grid blocks of the multi-block mesh are automatically 
coarsened or refined, depending on the solution, in a preferred coordinate direction 
in order to handle flows with strong anisotropic solution features, as demonstrated in 
Fig. 3(b). Grid block refinement is performed periodically at regular intervals during 
the simulation based on local spatial gradients of the flow density and flow velocity 
magnitude [ 29– 31]. The computational advantage of the current AMR strategy is 
the ability to refine locally the computational mesh as the solution evolves in time, 
with the refinement occurring only in regions of interest to the study, such as a shock 
front, while leaving the grid in less important flow regions relatively coarse. 

4 Numerical Results 

The numerically-determined RR-MR transition points are now considered for the 
cases of a normal shock in air interacting with two-dimensional smooth wedges, 
cones, semicircular cylinders, and spheres. Transition results for each of these 
geometries are shown for incident shock strengths of .Mi = 1.305 and .Mi = 3.00, 
corresponding to reference points RP-07 = (1.305, 46.4516. ◦) and RP-16 = (3.00, 
50.703. ◦) on the extreme-angle boundary. For each case considered, the numerically-
determined RR-MR transition points are compared to the corresponding extreme-
angle and sonic boundary values for wedges. 

4.1 RR-MR Transition for Wedges and Cones 

The RR-MR transitions are depicted as a function of . α in Fig. 4 for reference points 
RP-07 and RP-16 based on numerous simulations of the non-stationary shock reflec-
tion process for the wedge (each point of the curve corresponds to a full simulation), 
where the parameter,. L , is the non-dimensional representation of the Mach stem sep-
aration distance defined earlier. Simulation results are shown for three different levels 
of AMR (13, 14, and 15) allowing the grid convergence of the predicted transitions 
to be assessed. An increase in the level of refinement by one provides a reduction 
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Fig. 4 Predicted RR-MR transition in (. L , . α)-space for non-stationary shock reflection processes 
on a wedge corresponding to (a) reference points RP-07 = (1.305, 46.4516. ◦) and (b) RP-16 = (3.00, 
50.703. ◦), respectively, obtained using 13, 14, and 15 levels of anisotropic AMR 

Table 1 Summary of numerically-determined RR-MR transition points for inviscid air flow past a 
wedge and cone with comparisons to values for the extreme-angle and sonic boundaries for wedges. 
Wedge results are denoted with W; cone results are denoted with C 

RP Extreme-Angle Sonic Ref. [ 12] Current Wedge & Cone Results 

.M∗
i .θ ∗w (◦) .θw (

◦) .θw (
◦) .Mi .�Mi .θw (

◦) . �θw (
◦) 

7 1.305 46.452 46.835 46.460 1.304 . ±0.001 46.83 . ±0.02 W 

1.304 . ±0.001 46.85 . ±0.02 C 

16 3.000 50.703 50.812 52.137 3.000 . ±0.0001 52.23 . ±0.01 W 

3.000 . ±0.0001 52.19 . ±0.01 C 

in the minimum mesh spacing by a factor of two and the finest AMR grid (level 
15) involved minimum mesh spacings that were a factor of four times smaller than 
the level 13 mesh. For AMR level 15, the adapted meshes in the simulations gener-
ally contained between 4,000 and 6,000 .8 × 8 grid blocks and ranged in size from 
2,500,000 to nearly 4,000,000 computational cells. The ratio of the minimum mesh 
spacing to wedge length, .�xmin/Lw, for the anisotropic AMR meshes with 13, 14, 
and 15 levels of refinement were .4.97 × 10− 5, .2.48 × 10− 5, .1.24 × 10− 5, respec-
tively, with .Lw = 1 m. Each simulation was initialized with a normal shock placed 
.40 cm away from the wedge/cone surface, with flow conditions downstream of the 
shock corresponding to atmospheric conditions (.p1 = 101.325 kPa, .T1 = 295. 0 K, 
.ρ1 = 1.197 kg/m. 

3). Flow conditions upstream of the incident shock were calculated 
using the Rankine-Hugoniot jump conditions. Reflection boundary conditions were 
used for the wedge and cone surface as well as the far-field top boundary of the 
computational grid. 
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For reference point RP-07, which is associated with RR-MR transition at shock 
Mach numbers below the dual region, there is continuous and gradual increase in . L 
with . α and transition is taken to occur when .L > 0. The estimates of the transition 
point are represented in Fig. 4(a) by the three vertical lines for the anisotropic AMR 
meshes with 13, 14, and 15 levels of refinement. It is evident that there is convergence 
of the predicted transition location as the mesh is refined. For reference point RP-16, 
which lies within the so-called dual region, the value of. L remains zero up until there 
is a sudden and discontinuous change in. L ,  after  whic  h. L remains positive valued and 
continues to gradually increase. The location for the discontinuous change in . L is 
taken to be the point for RR-MR transition and is represented in Fig. 4(b) by the three 
vertical lines for AMR mesh refinement levels 13, 14, and 15. Again, convergence of 
the predicted transition point is evident as the mesh is refined. A similar set of results 
for RR-MR transition in air were also obtained for axisymmetric cones at RP-07 and 
RP-16 but are not shown. 

Summaries of the RR-MR transition results for the wedge and cone are provided 
in Table 1, as well as graphically in Fig. 5, for reference points RP-07 and RP-16. 
The values reported here are based on the AMR mesh simulations with 15 levels of 
refinement and a Richardson extrapolation procedure assuming first-order conver-
gence (due to limiting in finite-volume solutions) was used to estimate the errors in 
the transition incident Mach number and angle,.�Mi and.�θw, respectively. It can be 
seen that the current predictions of the transitions for the wedge and cone at reference 
points RP-07 and RP-16 are nearly equal, with differences in the transition wedge 
angle on the order of the estimated numerical error. This is not unexpected. Further-
more, when these numerically-determined RR-MR transition points are compared 
to the extreme-angle and sonic boundaries, it is evident that, for point RP-07 outside 
the dual region, the predicted transition points are in excellent agreement with both 
inviscid theoretical results. Closer agreement to the sonic condition can be observed. 
However, for point RP-16, which lies within the dual region in terms of Mach num-
ber, the predicted RR-MR transition is located above the extreme-angle and sonic 
boundaries and is found to occur fully within the dual-region. Note that these find-
ings are fully consistent with the previous numerically-determined RR-MR transition 
for wedges of Hryniewicki et al. [ 12], although the predicted transition points are 
estimated to occur at very slightly larger wedge angles than those reported in this 
previous study. 

4.2 RR-MR Transition for Cylinders and Spheres 

The computed RR-MR transition for non-stationary shock reflection processes on 
a semicylinder at reference points RP-07 and RP-16 based on a single unsteady 
numerical simulation is given in Fig. 6. As for the wedge and cone predictions, 
simulation results are shown for three different levels of AMR (10, 11, and 12). The 
finest adapted anisotropic AMR meshes consisted of between 1,300 to 2,000 . 8 × 8 
grid blocks and approximately 900,000 to 1,200,000 computational cells. In these 
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Fig. 5 Regions of regular and Mach reflection for in inviscid polytropic air flow past a wedge 
separated by the analytical transition boundaries showing current numerical predictions of the 
equivalent RR-MR transition for wedges, cones, cylinders, and spheres for reference points RP-07 
and RP-16 

cases, the ratio of the minimum mesh spacing to radius of the cylinder, .�xmin/R, 
for the anisotropic AMR meshes with 10, 11, and 12 levels of refinement were 
.1.26 × 10− 4,.6.28 × 10− 5,.3.14 × 10− 5, respectively, with.R = 1 m. The same initial 
conditions used for the wedge and cone geometries were used in these simulations. 
Similarly, reflection boundary conditions were used for the cylinder/sphere and top 
far-field boundary of the computational grid. For the cylindrical reflection geometry, 
the RR-MR transitions are depicted as a function of .x/R in Fig. 6 for reference 
points RP-07 and RP-16. In the figure, .�z/R is given as a function of .x/R and, as 
described previously, transition has occurred and a Mach reflection pattern has been 
established for .�z > 0. The estimated transition points are shown in the figure for 
the sequence of refined meshes. A similar set of computational results were obtained 
for the sphere but are not shown. 

Summaries of the RR-MR transition results for the cylinder and sphere are pro-
vided in Table 2 and Fig. 5 for reference points RP-07 and RP-16. Richardson extrap-
olation was again used to estimate the error in the equivalent wedge angle, .�θw,  for  
the transitions. It is evident that, as for the wedge and cone results, the equivalent 
transition wedge angles for both the cylinder and sphere are equal to within the esti-
mated numerical error. Furthermore, the numerically-determined transition points
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Fig. 6 Predicted RR-MR transition in (.�z/R, .x/R)-space for non-stationary shock reflection 
processes on a semicylinder corresponding to (a) reference points RP-07 = (1.305, 46.4516. ◦)  and  
(b) RP-16 = (3.00, 50.703. ◦), respectively, obtained using 10, 11, and 12 levels of anisotropic AMR 

Table 2 Summary of the numerically-determined RR-MR transition points for inviscid air flow 
past a cylinder and sphere with comparisons to values for the extreme-angle and sonic boundaries 
for wedges 

RP Extreme-angle Sonic Ref. [ 12] Cylinder Sphere 

.M∗
i .θ ∗w (◦) .θw (

◦) .θw (
◦) .θw (

◦) .�θw (
◦) .θw (

◦) . �θw (
◦) 

7 1.305 46.452 46.835 46.460 46.454 . ±0.10 46.47 . ±0.30 

16 3.000 50.703 50.812 52.137 52.83 . ±0.30 52.852 . ±0.25 

for RP-07 and RP-16 are in full agreement with the wedge and cone results of the 
previous section. 

5 Conclusions 

In this study, the RR-MR transition was examined for the case of a normal shock wave 
interacting with two-dimensional wedges, cones, cylinders, and spheres for inviscid 
air. A numerical methodology to accurately determine the RR-MR transition points 
for all of these canonical geometries was presented. The proposed approach makes 
use of a systematic post-processing methodology applied to the numerical solutions 
of the Euler equations, which were obtained through the use of high-fidelity CFD 
based on a combination of an accurate and robust upwind finite-volume scheme 
and anisotropic block-based AMR strategy. The latter permitted the convergence of 
the numerical predictions and error to be demonstrated. The present results for the 
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various geometries confirm the previous numerically-determined RR-MR transition 
results on wedges alone obtained in previous studies by Hryniewicki et al. [ 12] and 
Gottlieb et al. [ 13]. In particular, the transition predictions for all reflection geometries 
considered, including both planar and axisymmetric cases, were found to agree within 
the estimate computational error of the finite-volume solution method. Furthermore, 
the predicted transitions were found to occur at equivalent wedge angles with values 
considerably above the extreme-angle and sonic boundaries and located fully inside 
the dual-region at higher Mach numbers. Future follow-on studies will consider RR-
MR transitions at other reference points along the extreme-angle boundary, both 
outside and within the dual region, as well as the important influence of viscous 
effects on transitions from regular to Mach reflection. 
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