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ABSTRACT 
Partially-decoupled upwind-based total-variation-diminishing (TVD) finite-difference schemes for the 
solution of the conservation laws governing two-dimensional non-equilibrium vibrationally relaxing and 
chemically reacting flows of thermally-perfect gaseous mixtures are presented. In these methods, a novel 
partially-decoupled flux-difference splitting approach is adopted. The fluid conservation laws and species 
concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. 
The resulting partially-decoupled gas-dynamic and thermodynamic subsystems are then solved alternately 
in a lagged manner within a time marching procedure, thereby providing explicit coupling between the 
two equation sets. Both time-split semi-implicit and factored implicit flux-limited TVD upwind schemes 
are described. The semi-implicit formulation is more appropriate for unsteady applications whereas the 
factored implicit form is useful for obtaining steady-state solutions. Extensions of Roe's approximate 
Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate 
the numerical flux functions. Additional modifications to the Riemann solutions are also described which 
ensure that the approximate solutions are not aphysical. The proposed partially-decoupled methods are 
shown to have several computational advantages over chemistry-split and fully coupled techniques. 
Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as 
corner-expansion and blunt-body flows, using a five-species four-temperature model for air demonstrate 
the capabilities of the methods. 

KEY WORDS TVD schemes Thermochemical non-equilibrium flows Approximate Riemann solvers Flux difference 
splitting 

INTRODUCTION 

The physics of hypersonic flow is significantly different from that of the subsonic, transonic, and 
supersonic flow regimes. Strong shocks and very high temperatures are two distinctive 
characteristics of the hypersonic flow environment. The high temperatures result in non-ideal 
thermodynamic behaviour of air and other gases. For relatively high-density hypersonic flows 
(normally encountered in atmospheric flight at lower altitudes), molecular and atomic mean 
free paths are such that collisional rates are high. In these cases, the Damköhler number Da, 
defined to be the ratio of the convection or advection time scale to the time scales associated 
with the thermal and chemical processes, approaches infinity and a gas may be modelled as if 
it were in thermodynamic equilibrium. However, for lower density hypersonic flows (usually 
encountered in atmospheric flight at higher altitudes) in which the continuum assumption still 
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applies but molecular collisional rates are sufficiently low, the Damköhler number is finite and 
the fluid cannot always maintain thermodynamic equilibrium. In these cases, non-equilibrium 
effects, such as finite-rate vibrational and chemical processes, become important and must be 
considered. With the present renewed interest in hypersonic aerodynamics, efficient and accurate 
numerical methods are required for the prediction of high-speed flows characterized by strong 
shocks and finite-rate thermodynamic processes. 

In general, the computation of weak solutions to flow problems with strong discontinuities 
necessitates special consideration. Classical first-order shock-capturing schemes require excessive 
grid refinement to resolve the complicated shock structure and second-order schemes lead to 
spurious Gibb's-like oscillations or non-linear instabilities near the discontinuities. For these 
reasons improved solution techniques were sought and, in the last 10-15 years, innovative 
advances in shock-capturing techniques for hyperbolic conservation laws have led to the 
development of several high-resolution numerical schemes for the solution of multidimensional 
flows of polytropic gases (thermally and calorically perfect). Examples of the more powerful and 
popular techniques are the flux-corrected transport (FCT) method of Boris and Book1, 
monotonic upstream-centred scheme for conservation laws (MUSCL) of van Leer2, piecewise 
parabolic method (PPM) of Colella and Woodward3, generalized Riemann problem (GRP) 
method of Ben-Artzi and Falcovitz4, upwind and symmetric total-variation-diminishing (TVD) 
schemes of Harten5,6, Roe7-9, Davis10, Yee11,12, and Osher and Chakravarthy13-15, and the 
essentially non-oscillatory (ENO) schemes of Harten, Enquist, Osher, and Chakravarthy16. 
These solution-dependent (i.e., non-linear) explicit and implicit time-stepping methods provide 
monotonic oscillation-free solutions and increased accuracy near discontinuities, such as shock 
waves, contact surfaces, and slip streams. They are, therefore, appropriate for steady and unsteady 
hypersonic flow applications; however, extended versions of the algorithms are necessary for 
the study of flows with high-temperature and real-gas phenomena. 

A number of the aforementioned modern shock-capturing schemes have been extended to 
include equilibrium high-temperature and real-gas effects17-25. Provided that the thermodynamic 
properties are evaluated in an efficient manner, these equilibrium solvers are computationally 
efficient and provide sharp resolution of discontinuities. 

Extensions of the shock-capturing techniques for non-equilibrium flows require more attention. 
To account for the various species and internal energy modes of gaseous flows predominated 
by finite-rate thermodynamic processes, numerical solutions satisfying monotonicity, positivity, 
and maximum principles are required for large systems of conservation laws with often large 
source terms. In many cases, the large source terms make the solution algorithms stiff (i.e., as 
in the solution of stiff systems of ordinary differential equations, the time-stepping of a marching 
procedure is drastically constrained by stability considerations rather than by the usual accuracy 
concerns). This is problematic because the computational requirements for solving large systems 
with inherent numerical stiffness may become enormous. Furthermore, LeVeque and Yee26, as 
well as Griffiths, Stuart, and Yee27, indicate that if the source terms are sufficiently stiff then 
numerical schemes may propagate solution discontinuities, such as shocks, at incorrect or 
aphysical wave speeds. Thus, shock-capturing schemes for non-equilibrium flows must be 
designed to provide accurate results in an efficient manner. 

Several explicit, semi-implicit, and fully implicit time-stepping MUSCL-type and TVD 
approaches have been devised for the prediction of non-equilibrium flows. Eberhardt and 
Brown28 extended a first-order explicit TVD upwind scheme for investigating chemically reacting 
flows. A fourth-order Runge-Kutta time-differencing of the source terms was employed to 
enhance the numerical stability and the gas-dynamic and species conservation equations were 
solved in a fully coupled (simultaneous) manner. Glaz et al.29 have developed an explicit 
second-order Godunov (MUSCL-like) method for predicting non-equilibrium vibrationally 
relaxing and chemically reacting flows of air, in which the gas-dynamic and thermodynamic 
equations are solved in a time-split (decoupled) fashion. Ben-Artzi30 also describes a 
reformulation of the explicit GRP method for chemically reacting flows. Again, explicit 
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differencing procedures (second- and fourth-order Runge-Kutta) for the source terms were used 
in both of these methods. In other studies, Liu and Vinokur31 and Shuen et al.32 considered 
the most general case of non-equilibrium flow and present formulae for the numerical evaluation 
of the inviscid fluxes using several popular upwind flux-splitting methods. 

The explicit time-stepping schemes described above are valid for either time-accurate or 
steady-state calculations of non-equilibrium flows. However, the stiffness of the source terms 
may force the time step sizes of the explicit schemes to be excessively small and the corresponding 
computer times to be prohibitively large, especially for steady-state computations. Thus, implicit 
solvers for non-equilibrium flows have also been formulated. In these methods, the numerical 
stability is enhanced by treating some or all terms implicitly. Yee and Shinn33 and Ben-Artzi30 

propose fully coupled semi-implicit extensions of symmetric TVD and GRP techniques, 
respectively, for the computation of chemically reacting flows. These schemes treat only the 
source terms implicitly and, therefore, avoid large matrix inversions. They are similar to the 
semi-implicit methods described by Bussing and Murman34. 

Gnoffo and McCandless35, Gnoffo, McCandless, and Yee36, and Gnoffo37 have proposed 
both loosely and fully coupled fully implicit algorithms which use a second-order symmetric 
TVD scheme of Yee11,12 to solve steady viscous hypersonic flows of air and include the effects 
of vibrational relaxation, dissociation/recombination, and ionization. Similar fully implicit 
procedures are discussed by Yee and Shinn33 for chemically reacting flows only. Their paper 
includes discussions of techniques with both implicit and explicit coupling between fluid and 
species equations. In addition, Molvik and Merkle38 and Slomski et al.39 describe fully implicit 
and implicit multigrid solution procedures, respectively, for chemically reacting flows. Both of 
these algorithms are based on extensions to the TVD upwind schemes of Osher and 
Chakravarthy13-15. Point relaxation is employed by Gnoffo et al. and Yee and Shinn for the 
solution of the associated large non-linear system of equations. This stratagem is computationally 
efficient because it does not necessitate the direct inversion of large block banded matrices. 
Molvik and Merkle use approximate factorization in conjunction with a modified Newton 
iteration technique in their solution procedure, whereas Slomski et al. employ approximate 
factorization in conjunction with a multigrid convergence acceleration procedure. 

In other recent studies, Park and Yoon40 have developed a fully coupled implicit algorithm 
that uses a flux-limited dissipation model to evaluate the higher-order numerical fluxes and a 
lower-upper factorization procedure that does not require the inversion of large banded matrices. 
As well, a comprehensive set of characteristic-based upwind techniques, that use either 
Runge-Kutta, implicit approximate-factorization, or implicit lower-upper decomposition time 
integration schemes are described by Walters et al.41 for computing steady-state solutions of 
thermochemical non-equilibrium flows. In particular, their results emphasize the fact that explicit 
Runge-Kutta methods are generally inappropriate for non-equilibrium flow solution, at least 
for stationary flow applications. 

This paper describes partially-decoupled semi-implicit and factored implicit TVD 
finite-difference schemes for the solution of the conservation laws governing two-dimensional 
non-equilibrium vibrationally relaxing and chemically reacting flows of thermally-perfect gaseous 
mixtures in a generalized transformed coordinate system. These schemes are variants of the 
techniques discussed above. In both the time-split semi-implicit and factored fully implicit 
methods, the gas-dynamic and thermodynamic equations are partially decoupled by employing 
a frozen flow approximation. The two sets of decoupled equations are then solved alternately 
in a lagged manner within a time marching procedure, thereby providing explicit coupling 
between the fluid conservation laws and the species concentration and vibrational energy 
equations. The semi-implicit formulation, based on Roe's higher-order TVD flux-difference split 
(FDS) scheme7,8, is more appropriate for unsteady applications and the factored implicit form, 
based on Osher and Chakravarthy's high-resolution TVD schemes13-15, is useful for obtaining 
steady-state solutions. An extension of Roe's approximate Riemann solver7,18-20, giving the 
eigenvalues and eigenvectors of the fully coupled system, is used to evaluate the numerical flux 
functions in both FDS algorithms. Modifications to the Riemann solutions are also described 
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which ensure that physically realistic approximate solutions are obtained. The proposed 
partially-decoupled methods are shown to have several advantages over other chemistry-split 
and fully coupled techniques. 

The presentation begins with a brief development of the conservation equations for 
two-dimensional non-equilibrium flows. This is followed by a description of the various aspects 
of the numerical algorithm, including details of the decoupling and flux-difference splitting 
procedures, time-stepping schemes, approximate Riemann solvers, and inviscid flux functions. 
Finally, some numerical predictions of non-stationary oblique shock-wave reflections and 
diffractions in both air and oxygen, as well as a blunt-body flow of nitrogen over a circular 
cylinder, are described in order to illustrate the capabilities of the techniques. Note that the 
inclusion of non-equilibrium finite-rate vibrational relaxation and chemical reaction effects in 
an efficient TVD solution algorithm is the present focus. Therefore, the study is restricted to 
two-dimensional planar inviscid flows. Extensions of the methods for application to 
three-dimensional viscous hypersonic flows are possible and are potential topics of future 
research. 

CONSERVATION EQUATIONS 

For the analysis described herein, it is assumed that the dynamic behaviour of the gaseous fluid 
of interest can be accurately represented by an inviscid continuum. This assumption is certainly 
valid for most inviscid flows with Knudsen numbers, Kn, less than 0.0242. (The Knudsen number 
is the ratio of the molecular mean free path to a characteristic length scale.) The thermodynamics 
of the continuum is modelled by treating it as a chemically reactive mixture of thermally perfect 
gases for which the thermal state can be described by a translational-rotational temperature 
and a set of vibrational temperatures (or energies), one for each polyatomic species. The 
translational-rotational temperature represents the contribution to the internal energy by the 
translational and rotational modes of all molecules and atoms in the mixture, which are assumed 
to be in thermal equilibrium. (This is a reasonable approximation for most continuum flows43.) 
Each vibrational temperature represents the contribution to the internal energy by the vibrational 
modes of the corresponding polyatomic species. Intermolecular forces, electronic excitation, 
ionization rate, and radiation effects are all neglected. 

Confining ourselves to two-dimensional planar flows, the weak conservation law forms of the 
mixture mass, momentum, and energy equations and the species mass and vibrational energy 
equations describing the inviscid non-stationary flow of a thermally perfect gaseous mixture 
may be written for a two-dimensional generalized curvilinear coordinate system as42-45: 

where the multi-component solution column vector U and source column vector S are given by: 



TVD FINITE DIFFERENCE METHODS 487 

and the ζ- and η-direction flux column vectors F and G are: 

In (1)-(3), t is time, x and y are the Cartesian coordinates of the physical space, p is the mixture 
density, u and v are the velocity components in the physical coordinate system, p is the pressure, 
e is the total specific translational-rotational energy of the mixture, cs = ps/p is the mass fraction 
of species s with Σs cs = 1, ps is the species density, evs is the species vibrational energy, ev = Σs csevs 
is the total specific vibrational energy of the mixture, and N is the number of species. The 
constant ∆hof, is the heat of formation of species s evaluated at a temperature of absolute zero 
(0 K) and the source term — p Σ ws∆hofs of (2) represents the total change in the zero-point 
energy of the mixture resulting from chemical reactions. Additionally, ws is the time rate of 
change of the concentration of the species s brought about by the chemical reactions and qs 
represents the time rate of change of the vibrational energy of the species s brought about by 
relaxation to its equilibrium value. The term pβswsevs is related to the change in the vibrational 
energy of species s per unit volume of the mixture due to the chemical reactions. The parameter 
βs is an empirical factor greater than or equal to unity and is used to reflect the observed 
preference of higher-than-average vibrationally excited molecules to dissociate and the tendency 
of atoms to combine and form higher-than-average vibrationally excited molecules44. Finally, 
ζ and η are the transformed coordinates, xζ = ∂x/∂ζ, xη = ∂x/∂η, yζ = ∂y/∂ζ, yη = ∂y/∂η are the 
transformation metrics, and J = xζ yη — xη yζ is the Jacobian of the coordinate transformation. 
U = yη u — xηv and V = xζv — yζu are the contravariant velocities. Note that the use of a 
curvilinear coordinate system facilitates complex boundary treatment and grid-point clustering 
in regions of large solution gradients. 

Some additional thermodynamic relationships are useful. The pressure may be expressed in 
terms of the translational-rotational temperature T or energy e and the mixture properties by 
using the ideal equation of state for each thermally perfect species and applying Dalton's law 
of partial pressure. The resulting equation of state for the mixture is: 

p = ρRT = (y - 1)ρe (4) 
where R = R(Σs cs/Ms) = Σs csRs is the specific gas constant of the mixture, R is the universal 
gas constant, Ms is the molecular weight of species s, Rs = R/Ms is the specific gas constant of 
species s, and y = 1 + [Σs csRs]/[Σs csRs/(ys — 1)] is defined to be the frozen specific heat ratio 
of the mixture. The variable ys represents the frozen specific heat ratios of the species s. Note 
that these frozen specific heat ratios are the actual specific heat ratio of the species in the absence 
of vibrational excitation. It is also possible to define a frozen sound speed for the mixture. This 
intensive property may be related to the other mixture properties by: 

a2 = yRT = y = y(y-1)e (5) 
where a is the frozen sound speed. 
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Aside from the need for a more specific prescription of the source terms ws and qs, (1)-(5) 
provide a complete description of the inviscid flow of the non-equilibrium mixture in terms of 
a generalized two-dimensional curvilinear coordinate system. 

NUMERICAL METHODS 

Partially-decoupled approach 
Time-marching upwind TVD finite-difference algorithms are now proposed for both 

non-stationary and stationary solutions of (l)-(3). However, rather than integrating this system 
of equations simultaneously in a directly coupled fashion, the hyperbolic conservation laws are 
first partially decoupled and two alternate subsystems are defined: a gas-dynamic and a 
thermodynamic subsystem. The resulting subsystems are then integrated sequentially in a 
two-stage time-lagged uncoupled manner. The form of the equation decoupling, subsequent 
flux-difference splitting approach, and formulation of these techniques within a TVD solution 
algorithm are new and are presented in full herein. 

The decoupling procedure and associated time marching algorithm may be defined as follows. 
Given a solution U(ζ, η, t 0 ) of (1) at time t0, an approximate solution is obtained at some later 
time t0 + ∆t, where ∆t is a small time increment, by first solving a gas-dynamic initial boundary 
value problem defined by: 

t0 < t < t0 + ∆t, W(ζ, η, t0) = W(U(ζ, η, t0)) (7) 

and then solving a non-equilibrium thermodynamic initial boundary value problem given by: 

t0 < t < t0 + ∆t, Q(x, y, t0) = Q(W(ζ, η, t0 + ∆t), U(ζ, η, t0)) (9) 

where the various solution, flux, and source column vectors of the two newly defined subsystems 
are: 
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The approximate solution at t0 + ∆t is then given by: 

U(ζ, η, t0 + ∆t) ≈ U(W(ζ, η, t0 + ∆t), Q(ζ, η, t0 + ∆t)) (13) 

A solution for all time t > t0 may be obtained by repeating the two-step algorithm and, in the 
limit of vanishing ∆t, this solution should converge to the exact solution of (1). Furthermore, 
as t → ∞ a constant steady-state solution should be obtained. 

The seven-component subsystem of (6) is derived by employing a frozen flow assumption and 
setting the finite-rate thermodynamic source terms of (1) to zero. These equations describe the 
non-equilibrium solution in the limit as the Damköhler number approaches zero. The behaviour 
of the mixture is essentially that of a thermally and calorically perfect gas, except that the specific 
heat ratio and gas constant may vary throughout the flow field and a portion of the internal 
energy is locked in the vibrational modes. The last three equations of the gas-dynamic subsystem 
are introduced to include these effects and describe changes in the quantities y, R, and ev, that, 
in the frozen flow limit, are merely convected with the flow. The use of separate flow equations 
for describing the evolution of these gas-dynamic quantities is akin to the ideas put forward by 
Colella and Glaz17 for solving equilibrium flows of real gases. In their work, an equation for 
the convection of an equivalent y was introduced for solving flows of real gases in complete 
thermodynamic equilibrium. 

The multi-component N-species thermodynamic subsystem represented by (8) is derived by 
assuming that ρ, u, and v are known and fixed. It describes the time rate of change of the species 
mass fractions and vibrational energies and the total internal energy and includes the source 
terms neglected in the derivation of (6). The primitive variables cs, evs, and T, and consequently 
e, ev, p and other thermodynamic properties are all updated by solving this subsystem. 
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Comparisons to chemistry-split and fully coupled methods 

The preceding decoupling procedure is similar in spirit to the techniques put forward by Glaz 
et al.29 and Ben-Artzi30 and the resulting subsystems resemble, to some extent, the uncoupled 
equation sets that may be obtained by using the equation-partitioning procedure suggested by 
Yee and Shinn33. In the GRP method of Ben-Artzi for reactive flow, the solution of the 
homogeneous frozen-flow equations (i.e., source terms set to zero) is used to construct solutions 
for the fully reactive case. The basic proposition employed is that, for a given problem with 
initial conditions specified at t = t0, the inhomogeneous solution can be equated to the 
homogeneous solution in the limit as t → t0 and that approximations to the reactive flow solution 
can be derived by applying corrections to the non-reacting solution. This is the essence of the 
present equation-decoupling technique. 

The term 'partially decoupled' is applied here to distinguish the current method from fully 
coupled algorithms, which at each level in a marching procedure solve the complete set of 
conservation laws in a single step, and uncoupled, loosely coupled, or chemistry-split techniques, 
which at each level decouple the gas-dynamic and finite-rate thermodynamic equations and solve 
them separately in a two-stage process (see References 33 and 46). The partially-decoupled 
approach differs from uncoupled or chemistry-split methods because it provides a physically 
consistent procedure for separating the gas-dynamic and finite-rate models. Furthermore, it will 
be shown that the decoupling procedure readily permits the use of the eigenvalues and 
eigenvectors of the complete system in the evaluation of the numerical fluxes of each subsystem. 
Loosely coupled methods usually employ the eigenvalues and eigenvectors of each decoupled 
subsystem. The use of the eigenvalues and eigenvectors of the full equations should enhance the 
coupling between the equation sets and thereby improve numerical solution quality33. It can 
also be argued (see Reference 47 for details) that if the numerical solutions of (6) and (8) are 
constructed using the proposed approximate Riemann solvers and TVD schemes, then the 
approximate solutions preserve the monotonicity, positivity, and the maximum principles for 
the mass fractions of each species cs as defined by Larrouturou46, without requiring the solution 
of the fully coupled conservation laws. These principles ensure that 0 < cs < 1 and Σs cs = 1, 
which are conditions that must be satisfied for physically realistic solutions. Larrouturou points 
out that chemistry-split and FDS fully coupled solution schemes do not always satisfy these 
important principles. 

The primary advantages of the present decoupling procedure as compared to fully coupled 
methods are related to its simplicity and computational efficiency. One solver can be developed 
for the gas-dynamic subsystem of the partially-decoupled approach and used to predict the flow 
of many different non-equilibrium gaseous mixtures. Mixture-specific solvers are needed only 
for the thermodynamic subsystem. This simplifies computer program development and enhances 
algorithm versatility. Furthermore, with the partially-decoupled approach (as with 
chemistry-split methods), it is easy to employ local-time-stepping or subiteration procedures for 
solving the thermodynamic subsystem without changing the integration of the gas-dynamic 
subsystem. It is also easy to utilize different solvers for the thermodynamic subsystem in different 
regions of the flow depending on the solution characteristics. This additional capability makes 
the approach more flexible and may be useful for treating cases in which the source terms are very 
stiff26. 

The present decoupling technique can also lead to significant computational savings when 
fully implicit schemes are used to solve the gas-dynamic and thermodynamic subsystems. 
Although three additional equations must be solved for y, R, and ev, the reduced subsystems 
are of sizes 7 and 2N + 1 as compared to the complete system that is of size 2N + 4. In addition, 
it will be shown that for linearized factored implicit algorithms the solution of the inviscid 
thermodynamic subsystem does not require the inversion of full (2N + 1) x (2N + 1) block 
tridiagonal systems. In at least one sweep direction, it is only necessary to invert 2N scalar 
tridiagonal systems. In the other sweep direction, the submatrices of the off-diagonal blocks 
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contain only diagonal elements and simple diagonalization procedures are possible. For large 
systems, these features may be exploited to reduce the number of operation counts associated 
with each iteration of an implicit solution procedure. 

In some cases, the explicit coupling of gas-dynamic and finite-rate subsystems provided by 
the present partial-decoupling procedure may not be adequate for numerical predictions of 
steady, viscous, combusting flows. Fully coupled algorithms with implicit coupling may be more 
efficient. However, for many applications like those considered in the next section, the 
partially-decoupled approach is valid and performs well. The technique has also been applied 
successfully by Groth et al.48 to predict one-dimensional non-stationary non-equilibrium flow 
in a hypersonic impulse tunnel. 

Eigensystems of flux Jacobian matrices 
Having uncoupled the gas-dynamic and thermodynamic equations as described above, the 

two subsystems can be updated at each time level by means of a TVD finite-difference method. 
As TVD schemes were originally developed for solving linear and non-linear scalar homogeneous 
hyperbolic conservation laws in one space dimension, algorithm extensions are necessary for 
these weakly conservative two-dimensional subsystems. The non-linear and vector nature of the 
decoupled conservation laws is handled herein by adopting the characteristic decomposition or 
flux-difference splitting technique of Roe7 in which the properties of the flux Jacobians are 
utilized in conjunction with approximate Riemann solvers to represent the solution and flux 
vector jumps in terms of characteristic variables. The homogeneous terms of the thermodynamic 
subsystem represent pure convection and the partial differential equations are therefore already 
in characteristic form. However, a decomposition procedure is required for the gas-dynamic 
subsystem. Following Glaister18-20, extensions to Roe's approximate Riemann solver have been 
developed and are used in the evaluation of the numerical flux functions for (6) to account for 
the transformed coordinate system and the effects of varying y and R and non-zero ev. These 
approximate Riemann solutions require information about the eigensystems of the flux Jacobians 

It can be shown that the seven eigenvalues and right eigenvectors of the (-direction flux 
Jacobian satisfying Âek = Akek, k = 1, . . . , 7, are: 
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where h is the specific enthalpy of the mixture and is given by: 

Similar expressions can be obtained for the flux Jacobian that satisfy ek = Akek. The eigenvalues 
and eigenvectors are: 
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Note that Â and each have only three distinct eigenvalues. The k = 1 and 7 characteristic 
fields of both matrices are genuinely non-linear in the sense of Lax (i.e., ∂Ak/∂W · ek ≠ 0), whereas 
the k = 2, 3, 4, 5, and 6 eigenvalues and eigenvectors are linearly degenerate and are associated 
with purely convective fluxes. In addition, the unique eigenvalues of the gas-dynamic subsystem 
are identical to the unique eigenvalues of the fully coupled conservation laws of (1). This is 
exploited when constructing the approximate TVD solutions of the next subsections. 

Semi-implicit TVD scheme 
Using the proposed equation decoupling technique, finite-difference solutions of (1) can be 

obtained by solving the gas-dynamic and thermodynamic subsystems of (6) and (8) alternately 
in a time-lagged fashion. A semi-implicit TVD scheme is proposed for time-accurate numerical 
solutions. The implicit time differencing of source terms modelling the finite-rate processes 
effectively alleviates the stiffness associated with the relaxation and reaction time scales. The 
explicit treatment of the inviscid fluxes is generally quite efficient for unsteady applications. For 
the present study, the higher-order TVD upwind FDS scheme of Roe7,8,49 is used as the 
underlying scalar solver. Like other TVD methods, the scheme is a smart solution adaptive 
method that provides improved numerical accuracy and monotonic or oscillation-free solutions 
by having difference coefficients which depend on the local solution at each time step. The 
unlimited constant-coefficient scheme is a combination of the second-order schemes of Lax and 
Wendroff50 (central differences) and Warming and Beam51 (upwind differences). Flux limiters 
(see Reference 49) are employed to limit the magnitude of the second-order antidiffusive fluxes 
and reduce the scheme to the first-order fully-upwind method of Cole and Murman52 at local 
extrema of the solution. The extension to two dimensions is achieved by the usual Strang-splitting 
or operator-splitting method53,54, in which the one-dimensional algorithm is applied to the 
one-dimensional analogues of the multi-dimensional equation sets in both coordinate directions. 
Approximate Riemann solvers are employed to decompose solution and flux vectors of the 
time-split conservation laws, which are then solved by applying explicit and semi-implicit versions 
of Roe's scheme to each characteristic field in a scalar fashion. 

As with other TVD schemes, the term 'higher-order' is applied to Roe's method to indicate 
that the formal spatial accuracy of the scheme with a uniform computational mesh is second-order 
in regions where the solution is smooth (i.e., almost everywhere), but reduces to first-order at 
extrema. In the case of linear and non-linear scalar homogeneous hyperbolic conservation laws 
and linear systems of homogeneous conservation laws in one space dimension, the resulting 
non-linear scheme is TVD5,6, which guarantees that the solutions are also monotonicity 
preserving. In the more general case of non-linear multidimensional systems, the accuracy and 
TVD properties may not be realized. First, the truncation error in the physical space can be 
achieved only when the coordinate transformation is smooth55. Furthermore, the notion of what 
constitutes a TVD solution in two space dimensions remains largely unresolved. Goodman and 
LeVeque56 argue that time-split TVD algorithms applied to two-dimensional systems are, at 
most, first-order accurate. However, the recent work of Colella54 indicates that operator split 
methods have the same resolution as unsplit methods and many other numerical experiments 
indicate that higher-order TVD techniques afford improved solution accuracy. 

The proposed semi-implicit algorithm can be formulated as follows. Let Uni,j be the numerical 
approximation of the solution of (1) at time t = tn and at discrete locations (i,j), with curvilinear 
coordinates (ζi, ηj). The numerical solution at subsequent time levels is obtained by means of the 
fully-discrete time-stepping procedure: 

with ∆tn = tn+1 — tn, and where the gas-dynamic and thermodynamic subsystem solution 
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operators are: 

In the preceding equations, 
and denote intermediate solution states and are 
numerical approximations to the flux functions Ĝ, and H, respectively, evaluated at time 
level n and nodal interfaces (i + 1/2, j) and (i,j + 1/2). In (24), I is the identity matrix, ∂Ŝ/∂Q 
is the source Jacobian matrix, and the term [I — Θ∆tn(∂Ŝ/∂Q)ni,j] is similar to the preconditioning 
matrices used by Bussing and Murman34. The parameter Θ controls the time integration of the 
source terms of the operator L∆tQi. For Θ = 0, the time differencing is Euler explicit. For Θ = 1, the 
time differencing is Euler implicit. This value produces the most stable scheme and is appropriate 
for problems with extremely stiff source terms. A value of Θ = 1/2 produces a trapezoidal implicit 
time differencing that is best suited and consistent with the explicit time-differencing of the 
homogeneous terms. 

The numerical flux functions for the gas-dynamic subsystem spatial operator L∆tWi are evaluated 
as follows: 

where the quantities vni+1/2,j,k, ∆Wni+1/2,j,k, and Φni+1/2,j,k are the local average Courant-
Friedrichs-Lewy (CFL) number, solution jump vector, and flux limiter for the kth elemental 
wave of the spatial operator, respectively. Note that, in this case, there are a total of seven 
elemental waves. The CFL numbers and solutions jump vectors are given by: 

where ∆ζ i+1/2,j = ζi+1,j — ζi,j, and there the required transformation metrics xni + 1/2 j, yni + 1 2,j, 
xζi + 1/2,j, and yζi + 1/2,j and Jacobian Ji + 1/2,j may be approximated by standard second-order central 
finite-difference relations. In (27), λni + 1/2,j,k and eni + 1/2,j,k are the kth eigenvalue and eigenvector 
of the ζ-direction gas-dynamic flux Jacobian Â evaluated at an appropriate average state 
Wni + 1/2,j,k. They are defined by λni + 1/2,j,k = λk(Wni + 1/2,j,k) and eni + 1/2,j,k = ek(Wni + 1/2,j,k) where λk 
and ek are given by (14)—(16). Here, ani + 1/2,j,k are defined to be the elemental or characteristic 
wave strengths which are also evaluated at the average state Wni + 1/2,j,k. An extension of Roe's 
approximate Riemann problem solution for the subsystem of (6), derived for the present work, 
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yields appropriate expressions for the wave strengths and various dependent variables defining 
the average state. The wave strengths of the L∆tWi spatial operator satisfying the conditions 

are approximate Roe averages of the primitive variables defining Wni + 1/2,j,k. Note that for 
(28)-(31), the notation ∆Zni + 1/2,j = Zni + 1,j - Zni,j and ∆Zni,j + 1/2 = Znij + 1 - Zni,j is assumed. A 
similar set of equations is used to evaluate the numerical flux functions for the gas-dynamic 
subsystem spatial operator L∆tWn. 

The flux functions of the ND = 2N + 1 component thermodynamic subsystem have slightly 
different forms. The discrete difference expression: 

is used for the convective terms of the ζ-direction spatial operator L∆tQi, where ωni + 1/2,j is the local 
CFL number, ∆Hni + 1/2,j,k is the species concentration and vibrational energy jump column vector, 
and Ψni + 1/2,j,k is the associated flux limiter. In (34), the CFL numbers and jump column vectors 
are prescribed by: 

where Uni + 1/2,j is the local average convection velocity, ∆Hni + 1/2,j = Hni + 1,j - Hni,j, Dk is a diagonal 
matrix for which the elements of the diagonal are (δ1k, . . . , δ k k , . . . , δNDk), and δ is the usual 
Kronecker delta function. Here, the average convection velocity is determined by using the 
eigenvalue associated with the linear fields of the gas-dynamic subsystem and is specified as 
follows: Uni + 1/2,j = λni + 1/2,j,2 (and Vni,j + 1/2 = λni,j + 1/2,2). In this way the eigenvalues of the fully 
coupled system are used in the computation of the flux functions of both the gas-dynamic and 
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thermodynamic subsystems. A very similar evaluation procedure is adopted for the flux functions 
of the L∆tQn solution operator. 

The flux limiters Φni + 1/2,j,k and Ψni + 1/2,j,k appearing in (26) and (34) for the ζ-sweep operators 
are defined to be functions of the local antidiffusive flux ratios and the local CFL numbers. 
They are determined by: 

Φni + 1/2,j,k = σi
+

+
n

1/2,j,kφk(bni + 1/2,j,k) + σ-in+ 1/2,j,kφk(1/bni + 3/2,j,k) (36) 

where φk = φk(b) is the flux limiter function for the kth characteristic field, = 
(σni + 1/2,j,k ±1)/2, and σni + 1/2,j,k is the sign of λni + 1/2,j,k and equal to + 1 if λni + 1/2,j,k is positive 
and — 1 otherwise. Equivalently, and is the sign of ωni + 1/2,j. 
The flux ratios bni + 1/2,j,k and + 1/2,j,k for the gas-dynamic and thermodynamic subsystems are 
defined by the ratio of the antidiffusive fluxes: 

where NWk and NHk are normalization row vectors. In the present algorithm, NWk = 
[1, 0, 0, 0, 0, 0, 0] for k = 1, 2, and 7, and NW3 = [0, 0, 0, 1, 0, 0, 0], NW4 = [0, 0, 0 , 0 , 1, 0, 0], 
NW5 = [0, 0, 0, 0, 0, 1, 0], and NW6 = [0, 0, 0, 0, 0, 0, 1], and NHk is chosen to recover the 
component of the antidiffusive flux vector associated with the kth component of the solution 
vector Q. Following Sweby49, various combinations of flux limiter functions φk are used for 
each of the characteristic fields. Three different functions are employed in the present algorithm. 
They are the well-known minmod limiter, van Leer's flux limiter, and the superbee limiter of Roe 
given by: 

φk(b) = max(0, min(1, b)), φk(b) = max , φk(b) = max(0, min(1, 2b), min(2, b)) 

(40) 

respectively. The latter more compressive limiter improves the sharpness of contact surfaces and 
slip streams. Similar flux-limiter formulations are used for the η-direction solution operators. 

Finally, it should be noted that it is necessary to modify Roe's scheme near sonic points in 
order that the method be entropy satisfying and converge to the correct physical solution. In 
particular, the flux functions associated with non-linear characteristic fields 1 and 7 of the spatial 
operators L∆Wtn and L∆Wtn must be augmented to prevent the formation of aphysical expansion 
shocks. A variant of the entropy fix suggested by Roe and Pike8 is employed. Consider elemental 
wave 1 of the operator L∆Wtn. A wave spreading parameter for this wave is defined to be: 

If λni + 1/2,j,1 - 1/2δni + 1/2,j,1 < 0 and λni + 1/2,j,1 + 1/2δni + 1/2,j,1 > 0, then the flux limiter Φni + 1/2,j,1 
is set to zero and the first-order flux jump is split into two components, that is, 

½(vni + 1/2,j,1 - |vni + 1/2,j1|)∆Wni + l/2,j.1 (42) 

is replaced by: 

½(vni++ 1/2,j,1 - |vni++ 1/2,j,1)∆Wni + l/2,j.1 + ½(vni-+ 1/2,j,1 - |vni-+ 1/2,j,1|)∆Wni + l/2,j.1 (43) 
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where 

Equivalent procedures are required for the other non-linear characteristic fields. 
The complete semi-implicit time-marching procedure represented by (21) is conditionally 

stable. The CFL criterion: 

is used to restrict the magnitude of the time increment and thereby ensure stability and 
convergence of the numerical solution for Θ > 1/2. In (45), CCFL is a positive valued constant 
in the range 0 < CCFL < 1. 

For very stiff cases, the time step imposed by (45) can be much larger than the fastest time 
scales associated with the finite-rate source terms. Although the present semi-implicit algorithm 
remains stable, this may result in the loss of accuracy in predicted non-equilibrium shock-front 
structure. For many applications, this form of solution degradation is not too detrimental as 
the computed jump conditions and propagation speeds of the discontinuities should still be 
physically correct, provided that the spatial resolution of the grid is sufficient. If more accurate 
resolution of relaxation fronts are required, then smaller time increments will improve the 
situation; however, it should be emphasized that spatial resolution is as important as temporal 
resolution. LeVeque and Yee26 and Griffiths et al.27 have studied the construction of numerical 
solutions for a model scalar advection equation with a non-linear source term. Both fully coupled 
and split solution algorithms were considered. For very stiff problems, they have shown that, 
in some cases, the schemes produce incorrect propagation speeds for discontinuities and that 
these wave propagation errors result from a lack of spatial resolution. In particular, Griffiths 
et al. have contrasted coupled explicit monotone and (chemistry) split schemes and have shown 
that, with increasing stiffness, the solutions of the split schemes remain monotone and bounded 
but the predicted or numerical propagation speeds do not coincide with the actual or true wave 
speeds. They have also shown that the coupled schemes diverge with increasing stiffness. 
Numerical computations of one-dimensional shock wave propagation problems in air were 
performed as part of the present study using the proposed semi-implicit method. Although these 
results will not be presented, they confirm the observations of LeVeque and Yee and indicate 
that care must be exercised in selecting the spatial mesh to ensure that discontinuities are 
sufficiently resolved. It is felt that further study of the effects of stiffness is warranted. 

Fully implicit TVD scheme 
A factored fully implicit scheme is also proposed for the solution of (1) via the 

partially-decoupled approach and the time integration of (6) and (8). This scheme is more 
suitable for steady-state applications. The basic solution approach follows those given by 
Chakravarthy57 for perfect gases. The numerical flux functions of both the gas-dynamic and 
thermodynamic subsystems are evaluated by applying the flux-difference splitting technique used 
in the preceding semi-implicit scheme in conjunction with the one-parameter family of 
higher-order TVD upwind methods devised by Osher and Chakravarthy13-15 as the underlying 
scalar schemes. The spatial discretization is coupled to a one-step one-parameter implicit time 
discretization. A factored non-conservative linearization procedure is employed for the implicit 
operators in which only the first-order terms of the spatial discretization are considered and the 
Roe-average state, eigenvalues, and eigenvectors of the flux Jacobians are assumed to be slowly 
varying functions of the solution vectors and are thus treated as locally constant. The factorization 
of the implicit operators avoids the inversion of very large matrices. The first-order linearization 
technique has the disadvantage that time accuracy is essentially lost because the implicit operators 
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are not conservative and the implicit and explicit operators no longer possess the same spatial 
accuracy. However, the underlying scheme can be shown to be TVD and has the advantage 
that it is simple and efficient to implement. Additionally, by including the higher-order terms 
in the explicit operators, steady-state solutions will possess the high-accuracy features and 
required conservation properties. 

The two-parameter partially-decoupled factored fully implicit scheme can be expressed as: 

where and the fully-discrete gas-dynamic solution operator L∆Wt is: 

and where and the thermodynamic solution operator L∆Qt is: 

As before, and denote intermediate solutions and and 
Hni,j + 1/2 are numerical flux functions. The parameter Θ again controls the temporal 
discretization of the algorithm. For Θ ≠ 0, the partially-decoupled scheme is implicit. The 
time-differencing is Euler explicit for Θ = 0, trapezoidal implicit for Θ = 1/2, and Euler implicit 
for Θ = 1. 

For the fully implicit algorithm, the numerical flux functions of the gas-dynamic and 
thermodynamic subsystems are specified as follows. The left-hand-side (LHS) implicit terms of 
the flux functions are represented in (47)-(52) by the products , and 

. These are 7 x 7 and ND x ND influence matrices. In the ζ-direction, the right-hand-side 



TVD FINITE DIFFERENCE METHODS 499 

(RHS) explicit terms of the numerical flux functions are given by: 

and 

Similar expressions are used to compute the explicit terms of the η-direction flux functions. 
In (47)-(54), and are the positive and negative CFL 

numbers defined by: 

for which δv and δω are wave speed corrections that ensure that solutions are physically realistic. 
The seven-component column vectors and are defined by: 
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where are again given by (28)—(31). The column vectors and 
are similarly defined. The quantity DN is a ND x ND diagonal matrix with diagonal 

elements Finally, the terms 

are as defined for the semi-implicit scheme of the previous subsection. 
The unlimited schemes of Osher and Chakravarthy are combinations of second-order central 

and fully upwind differences. In (53) and (54), 0 controls the spatial discretization. Values of 
0=1/3, — 1, 0, 1/2, and 1 result in the third-order, fully-upwind, Fromm's method, 
low-truncation-error second-order, and central differencing schemes, respectively. A value of 
0 = —1/3 provides a fifth second-order scheme which does not appear to have a name. The 
truncation error of the semi-discrete schemes decreases in the order 0 = — 1, 1, —1/3, 0, 1/3, 
and 1/2. The use of the central-difference or fully-upwind formulations is not recommended. 
This is because the unlimited semi-discrete central-difference scheme (0 = 1) is non-dissipative 
and therefore unreliable, and the fully-upwind scheme (0 = — 1) has the greatest truncation 
error. Chakravarthy and Osher14 note that Fromm's formulation (0 = 0) provides the highest 
accuracy in nozzle flow calculations with sonic points. 

Like Roe's method, the high-order upwind schemes of Chakravarthy and Osher attain their 
TVD properties by employing flux limiters. The flux limiters are specified 
by: 

where the flux limiter function φ(b) = max(0, min(1, βb)) is used, and are flux 
ratios given by: 

and β is a compression parameter chosen in the interval 0 < β < (3 — 0)/(1 — 0). If β > 1, 
higher-order spatial accuracy is obtained. Larger values of β result in greater compression of 
discontinuities. Comparable expressions are used for evaluating the other flux limiters 

and 
In the current work, the wave speed corrections δv and δω are determined from a modified 

form of the entropy correction of Harten5 as suggested by Yee et al.58. The wave speed correction 
is specified by: 

where ε is a small positive number, with a larger value enhancing the entropy enforcement at 
the expense of solution accuracy. Yee et al. have found that a variable or solution dependent ε 
is required for hypersonic blunt-body flows. They suggest ε have the form: 

where is a constant and U, V, and a are the appropriate Roe-average values. 
Equivalent formulations are used to specify and . Note that the 
inclusion of the wave speed corrections in the evaluation of the higher-order antidiffusive fluxes 
results in a consistent high-resolution scheme. 

Linear stability theory indicates that the solution algorithm of (46)-(52) is unconditionally 
stable for 0 = 1. However, this result is somewhat misleading because TVD schemes are very 
often non-linearly stable even though the underlying unlimited non-TVD version is shown to 
be linearly unstable57. Moreover, in practice, the time step ∆tn is restricted by linearization and 
factorization errors. In this study, it was found that optimum CFL numbers CCFL as defined by 



TVD FINITE DIFFERENCE METHODS 501 

(45) for steady-state convergence are in the range 1 < CCFL < 10, although even smaller time steps 
may be required in cases where the source terms are extremely stiff. 

Equations (47), (48), (50), and (51) represent block and scalar tridiagonal systems of linear 
equations which must be solved for the solution changes. A close inspection of these equations 
reveals that, for a given iteration level, the factored implicit solution of the gas-dynamic subsystem 
only requires the solution of 7 x 7 block tridiagonal systems of linear equations in each sweep 
direction. Moreover, the thermodynamic subsystem does not require the solution of full block 
tridiagonal systems in either sweep direction. In the η-direction, 2N scalar tridiagonal systems 
must be solved for each sweep and, in the ζ-direction, the submatrices of the off-diagonal blocks 
forming the ND x ND block tridiagonal systems contain only diagonal elements. Although not 
carried out here, block tridiagonal matrix inversion routines can be devised to account for the 
simplified structure of these off-diagonal submatrices and, thereby, reduce the computational 
effort required for each ζ-sweep. For large thermodynamic systems (i.e., N > 5), additional 
computational savings may be realized if, as suggested by Bussing and Murman34, the source 
Jacobian matrices ∂Ŝ/∂Q are diagonalized by neglecting the off-diagonal influence coefficients. 
This would simplify the system of linear equations representing each ζ-sweep and it would then 
only be necessary to solve ND scalar tridiagonal systems in both sweep directions. All of this 
make the proposed partially-decoupled fully implicit scheme potentially more attractive than 
fully coupled factored implicit schemes, which require the solution of (2N + 4) x (2N + 4) block 
tridiagonal systems in both sweep directions. 

It has been suggested by Yee and Shinn33 that approximate factorization and/or 
alternating-direction-implicit (ADI) procedures may not be appropriate for the solution of 
non-equilibrium flows because the stiff source terms can make the factored or ADI algorithm 
inefficient. However, this observation concerned fully coupled solution algorithms. The 
gas-dynamic subsystem of the present partially-decoupled approach contains only homogeneous 
terms. The stiff source terms are only present in the thermodynamic subsystem. Furthermore, 
Molvik and Merkle38 have successfully applied a factored implicit scheme to predict 
non-equilibrium flows and Shih and Chyu59 discuss various approximate factorization 
methodologies for systems of equations with source terms and suggest techniques for reducing 
the factorization errors when the source terms are large. In the present study, it was found that 
by choosing the time step so as to maintain the diagonal dominance of the implicit operators 
of the thermodynamic subsystem and performing subiterations on the thermodynamic subsystem 
without updating the gas-dynamic subsystem as needed (the capability of performing 
subiterations on either subsystem for steady or unsteady problems is another computation-saving 
feature permitted by the partially-decoupled approach), steady-state solutions were obtained 
within a reasonable number of iterations. Further research is required to examine whether the 
convergence of the factored implicit algorithm can be significantly improved by employing 
convergence enhancing methods such as local time stepping, diagonalization, and/or multigrid 
procedures, or whether unfactored implicit schemes, such as point and line relaxation techniques 
(e.g., refer to References 33, 35-37, and 57), provide steady-state solutions in a more efficient 
manner. 

Boundary conditions 
Boundary conditions are required for prescribing the numerical solution at the extremities of 

the computational domain. For the example problems considered here, two types of approximate 
boundary conditions are required: a transmissive or nonreflecting far-field outflow boundary 
condition and a reflection or solid-wall boundary condition. 

Reflection boundary conditions at solid boundaries are applied by enforcing flow tangency 
and employing the frozen-flow Rankine-Hugoniot and Riemann invariant relations across 
unsteady surface-normal shocks and rarefaction waves to determine the various solution 
properties. Non-reflecting boundary conditions are implemented by employing a constant 
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extrapolation technique60. If the flux limiters at the boundary node are set to zero, thereby 
reducing the differencing to first order, this form of boundary condition is known to permit 
out-going waves, propagating normal to the boundary, to leave the domain without the formation 
of unwanted numerical disturbances. Although more sophisticated non-reflecting boundary 
conditions can be applied by using a characteristic extrapolation technique60, the simplified 
lower-order approach is sufficient for the present calculations. Note that for general flows, 
constant extrapolation should be employed with caution. The method is appropriate for 
supersonic outflows in which disturbances cannot travel upstream. However, the boundary 
condition is over-determined and invariably incorrect for subsonic outflow and subsonic and 
supersonic inflows. This is because the solution state at the boundary is prescribed entirely by 
the interior solution and does not necessarily correctly represent the physics of the flow outside 
the computational domain. 

THERMODYNAMIC MODEL FOR AIR 

A number of numerical examples are presented in the next section to verify the proposed 
semi-implicit and fully implicit TVD methods and demonstrate the capabilities of the algorithms 
for predicting non-equilibrium vibrationally relaxing and chemically reacting flows. The test 
flows include non-equilibrium flows of air as well as pure oxygen and nitrogen. A five-species 
(N2, O2, NO, N, and O) four-temperature (i.e., translational-rotational temperature T, and 
vibrational energies evN2, evN2, and evNO) non-equilibrium thermodynamic model for air is used 
in all of the computations. This model is valid for temperatures up to 8000 K and pressures 
above about 0.1 kPa and can be used to represent the flows of pure oxygen and nitrogen by 
setting the mass concentrations of the other species to zero. For temperatures above 8000 K, 
ionization and other rate processes become significant. 

The dissociation-recombination reaction mechanism of air is represented in the model by 
following the elementary reactions: 

where M is a collision partner or catalytic molecule; it can be any one of the five species. 
Seventeen elementary reactions (fifteen dissociation/recombination and two exchange reactions) 
are represented by the reaction scheme of (62). The forward reactions of the first three reaction 
equations above are bimolecular dissociation reactions (reactions involving the collision of two 
molecules) and the associated reverse reactions are termolecular recombination reactions 
(reactions involving the collision of three molecules). The forward and reverse reactions of the 
fourth and fifth reaction equations are bimolecular exchange or shuffle reactions involving NO. 
The forward exchange reactions are fast compared with the dissociation reactions and are 
important in establishing the concentrations of NO and N in many flow situations. 

Collision theory and the law of mass action are used to describe the finite-rate reaction 
processes from which empirical expressions for the net time rate of change of the species 
concentrations may be obtained. The expressions take the form42,43 
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where and are the stoichiometric coefficients of the reactant and product species s of the 
reaction r, and are the forward and backward reaction rates of reaction r, and Ms is the 
molecular weight of species s. The variable NR represents the total number of elementary reactions 
(in this case, NR = 17). The reaction rates are assumed to be functions of the 
translational-rotational temperature and are described by modified forms of the Arrhenius 
equation. They can be written as: 

where K is Boltzmann's constant. The reaction rate coefficients and are 
taken from the data set compiled by Dunn and Kang61. 

The finite-rate vibrational relaxation of the diatomic molecules N2, O2, and NO is represented 
in the model by assuming that vibrationally excited molecules behave as ideal harmonic 
oscillators. It is further assumed that the relaxation process from an excited non-equilibrium 
state to a state of thermodynamic equilibrium occurs only through translational-vibrational 
collisions. It then follows that the time rate of change of the vibrational energy eVs of the species 
s may be prescribed by the so-called Landau-Teller law having the form42,43: 

where is the equilibrium vibrational energy given by: 

and Τs is the characteristic relaxation time. The characteristic vibrational temperatures ΘvN2, 
ΘvO2, and ΘvNO are taken to be 3353, 2239, and 2699 K, respectively. The semi-empirical 
correlations of Millikan and White62: 

based on modifications to the Landau-Teller equation are used to determine τs, where AN2, 
AO2, and ANO are assumed to have values of 220, 129, and 168, respectively, and the units of 
pressure, temperature, and molecular weight are atmospheres, Kelvin, and grams per mole. 

It should be noted that the preceding chemical and vibrational rate equations have been 
derived from theoretical considerations and analyses which do not encompass the coupling that 
is known to exist between the chemical reaction and vibrational relaxation processes. 
Chemical-vibrational coupling (CVC) effects can be important, and both preferential CVC models 
(βs > 1) and non-preferential CVC models (βs = 1) have been proposed44. However, these effects 
are not included here and a value of unity is used for βs in all of the computations which now 
follow. 

NUMERICAL RESULTS AND DISCUSSION 

The validity of the partially-decoupled semi-implicit and fully implicit TVD algorithms is now 
illustrated by investigating five different test flows. The flow problems considered are as follows: 
the single, complex, and double Mach reflections of a planar incident shock from a wedge in 
air; the diffraction of a planar high-Mach-number incident shock at an expansion corner in 
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oxygen; and the hypersonic flow of nitrogen over a cylindrical blunt body. All of the flows possess 
complicated shock structure and in most cases exhibit substantial vibrational and chemical 
non-equilibrium effects. They have also been investigated experimentally, thus making them 
worthy test problems. Of these flows, the three oblique shock-wave reflections and one 
shock-wave diffraction are non-stationary flow problems and the blunt-body flow is a stationary 
flow problem. The unsteady cases are considered for the purposes of validating the semi-implicit 
solver and the steady case is used to validate the fully implicit scheme. The five-species 
four-temperature thermodynamic model described in the previous section is used in all of the 
computations. 

Single Mach reflection in air 
In this and the following two subsections, numerical predictions of the semi-implicit TVD 

scheme are presented for three different types of non-stationary oblique shock-wave reflections 
in air and compared directly to experimental data. Deschambault and Glass63,64 have conducted 
an extensive experimental investigation of regular and Mach reflections in air at the University 
of Toronto Institute for Aerospace Studies (UTIAS). The experiments were performed in the 
UTIAS 10 cm by 18 cm hypervelocity shock tube and a Mach-Zehnder interferometer was used 
to obtain infinite fringe interferograms of the flow-fields. These experiments are an excellent 
source of benchmark data for the validation of computer codes and numerical algorithms 
developed for solving unsteady compressible flow problems with complex non-linear wave 
interactions. A number of recent studies have made direct comparisons between the 
interferometric results and numerical predictions of other sophisticated shock-capturing schemes. 
See, for example, References 17, 29, and 65. For the experiments in which dissociation and 
vibrational relaxation effects are negligible, the interferograms provide direct observations of 
the flow isopycnics (lines of constant density). For the higher shock-Mach-number cases in 
which non-equilibrium effects are significant, the fringe patterns of the interferograms provide 
qualitative information about the flow-field density distribution and shock structure. 

The first shock reflection problem considered is the oblique reflection of a Ms = 2.03 planar 
shock wave propagating in air incident on a 27° compression corner. A schematic diagram of 
the resulting single Mach reflection pattern is given in Figure 1. The incident and reflected 
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shocks, along with the Mach stem and slipstream, are shown. The pressure p0 and temperature 
T0 of the quiescent air ahead of the shock are 33.25 kPa and 299.2 K, respectively. The density 
ρ0 is 0.387 kg/m3. The equilibrium flow Mach number and temperature behind the incident 
shock are about 0.99 and 507 K, respectively. Although non-equilibrium effects are insignificant 
for this first problem, it provides an excellent test of the capabilities of the gas-dynamic solver 
for predicting complicated shock structure. The experimental interferogram obtained by 
Deschambault and Glass is shown in Figure 2. In this case, the temperatures are low and each 
fringe of the interferogram corresponds to an actual isopycnic. The density difference ∆ρ between 
any two fringes can be related by: 

where λ is the wavelength of the interferometer light source, K is the Gladstone-Dale constant 
of the gas, and l is the depth of the test section. The corresponding isopycnics as determined 
from an analysis of the interferometric fringe pattern using (68) (refer to Reference 63 for details) 
are also given in Figure 2. 

The predicted density contours of the single Mach reflection flow field are depicted in Figure 
3. The labelled density contours shown in this Figure are nearly identical to the isopycnics 
shown in Figure 2. A 312 x 104 node mesh was used in the numerical computation, van Leer's 
flux limiter was used for the nonlinear characteristic fields (i.e., k = 1 and 7 for the gas-dynamic 
subsystem), and the superbee limiter was employed for the linearly degenerate fields. As is the 
case for all of the shock reflection and diffraction problems considered herein, the initial data 
for the computations were specified by locating the incident shock upstream of the corner and 
using the Rankine-Hugoniot conditions to prescribe the equilibrium post-shock state. 

By comparing Figures 2 and 5, it is readily apparent that the proposed partially-decomposed 
semi-implicit TVD scheme accurately reproduces the general structure of the flow field. The 
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predicted reflected shock is detached from the corner of the wedge, as in the experiment, and 
its shape is very similar to that of the reflected shock in the interferogram. The position of the 
triple point appears to be well predicted, as is the slipstream position. Furthermore, the qualitative 
and quantitative agreement between the two sets of isopycnics is very good. This is true even 
in the reflected flow region, which can be difficult to predict accurately. These findings are further 
supported by the additional comparisons of the predicted and measured distributions of the 
density along the wall of the compression corner shown in Figure 4 (the experimental values 
are interpreted from the interferogram). Overall, it can be said that the agreement between 
calculation and experiment is very good. 

Complex Mach reflection in air 
The next test flow problem considered is the non-stationary oblique reflection of a Ms = 10.37 

planar shock wave propagating in air incident on a 10° compression corner. Again the calculations 
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are compared to the experimental data of Deschambault and Glass. A schematic diagram of 
the resulting complex Mach reflection pattern is given in Figure 5. The incident and reflected 
shocks along with the Mach stem, slipstream, and kink are all shown. The pressure p 0 , density 
ρ0, and temperature T0 ahead of the shock are 6.67 kPa, 0.0777 kg/m3, and 299 K, respectively. 
Under these conditions, the state of the air behind the incident shock exhibits substantial high 
temperature effects. The post-shock equilibrium state temperature is about 4,040 K, the flow 
Mach number is 2.6, and the degree of dissociation of the diatomic molecules is about 10% 
(cN2 = 0.731, cO2 = 0.098, cNO = 0.077, cN < 0.001, and cO = 0.094). Furthermore, the chemical 
and vibrational relaxation lengths behind the incident shock are of the order of 1-5 mm, which 
is quite large when compared to the characteristic dimensions of experimental flow field64, and 
Glaz et al.29 have demonstrated that a finite-rate non-equilibrium model is required to accurately 
predict this type of flow. 

The experimental interferogram and associated isopycnics for the complex Mach reflection 
are depicted in Figure 6. Note that the values of the isopycnics indicated in Figure 6 are different 
from those of Reference 63. The experimental isopycnics have been re-evaluated by first assuming 
that the state of the air some distance behind the incident shock is equal to the equilibrium 
state obtained by solving the Rankine-Hugoniot conditions, and then by matching one of the 
experimental fringes within the reflected shock region to an isopycnic of the semi-implicit TVD 
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solution. Although it is recognized that the occurrence of dissociation means that the fringes 
no longer correspond directly to lines of equi-density, as was the case in the previous non-reacting 
Mach reflection problem, the evaluation procedure for the experimental isopycnics still provides 
some quantitative information about the flow density distribution. 

The predicted density contours of the partially-decoupled semi-implicit scheme for the complex 
Mach reflection flow field using a 450 x 125 node computational mesh are shown in Figure 7. 
A combination of the minmod and superbee limiters was used. As for the single Mach reflection 
problem, the overall agreement between the numerical and experimental results of Figures 6 and 
7 can be seen to be quite good. The predicted reflected shock and Mach stem are well resolved 
and the computed slipstream position and associated vortex roll-up also compare favourably 
with the experiment. The numerical simulation predicts that the reflected shock is attached and 
has a distinct kink just behind the incident shock. These features are also observable in the 
experimental interferogram. In addition, the computed isopycnics appear to agree both 
qualitatively and quantitatively with experiment. Similar agreement can be observed in the wall 
density plots of Figure 8. 

The exaggerated deformation or toe-out of the base of the Mach stem in the numerical 
computations is the only major difference between the experimental and simulated flow fields. 
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The deformation is produced by the interaction of the Mach stem and slipstream vortex. Although 
some curvature of the Mach stem exists in the actual flow, the interaction process is overpredicted 
in the numerical simulation, and hence the toe-out of the Mach stem is also overpredicted. This 
discrepancy is attributed to: (1) the absence of viscous effects in the numerical predictions; and 
(2) the under-resolution of the complicated solution (i.e., insufficient grid refinement) in the 
Mach stem region. It is conjectured that further refinement of the discretized solution domain 
and inclusion of viscous effects would improve the predictions. It is informative to note that the 
quality of the semi-implicit scheme solutions in the Mach stem region was found to be very 
dependent on four factors: (1) the type of flux limiting used; (2) orthogonality of the grid with 
respect to the wall; (3) size of the time step; and (4) uniformity of the grid spacing. By employing 
almost uniform grids that are orthogonal to the wall and by taking the largest time steps 
permitted by the CFL criterion, numerical diffusion errors are reduced and higher quality 
solutions are obtained in this region. Some solution tuning is also possible through the choice 
of flux limiters. 

Double Mach reflection in air 
The third test case considered is also a non-stationary oblique reflection problem in which a 

Ms = 8.7 planar shock wave propagating in air is incident on a 27° compression corner and 
results in a double Mach reflection pattern. A schematic diagram of this flow field is depicted 
in Figure 9. Primary and secondary reflected shocks, Mach stems, and slipstreams are shown. 
The pressure, density, and temperature ahead of the shock are 4.097 kPa, 0.0477 kg/m3 and 
299.2 K, respectively. Non-equilibrium effects are prevalent in this flow. The equilibrium flow 
Mach number behind the incident shock is 2.44 and the equilibrium temperature is approximately 
3320 K. The equilibrium post-shock state is about 5-6% dissociated with cN2 = 0.739, cO2 = 0.166, 
cN2 = 0.059, cN < 0.001, and cO = 0.035. Furthermore, one-dimensional numerical experiments 
suggest that the non-equilibrium relaxation lengths behind the incident shock are about 3-6 mm. 
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The infinite-fringe interferogram of the Ms = 8.7 double Mach reflection recorded by 
Deschambault and Glass is illustrated in Figure 10. As with the complex Mach reflection, the 
approximate values of the experimental isopycnics indicated in the Figure have been re-evaluated 
using the procedure described in the previous subsection. Shown in Figure 11 are the predicted 
contours of constant density for this reflection process obtained by employing the 
partially-decoupled semi-implicit TVD scheme. The computations were performed using a 
486 x 80 node mesh with the minmod flux limiter applied to all characteristic fields. The 
corresponding experimental and calculated wall density profiles are given in Figure 12. It can 
be seen from Figures 10-12 that the proposed semi-implicit TVD scheme is capable of reproducing 
both primary and secondary reflected shocks, Mach stems, and slipstreams. Furthermore, the 
relaxation region directly behind the incident shock appears to be quite well predicted. Although 
the toe-out of the Mach stem in the numerical flow field is evident, the agreement between 
numerical and experimental results is again reasonably good. 

It is worth mentioning that the time scales associated with the finite-rate source terms for 
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both the complex and double Mach reflection computations were approximately 100-1000 times 
smaller than the gas-dynamic time scales. The semi-implicit solver effectively removed the stability 
constraints imposed by the finite-rate time scales and permitted the computations to be performed 
with the numerical time steps controlled only by the gas-dynamic time scales. 

Shock-wave diffraction in oxygen 
Another application of the semi-implicit TVD algorithm relates to the prediction of the 

non-stationary planar flow of dissociated oxygen around a 15° expansion corner. This flow is 
generated by the diffraction of a Ms = 12 planar shock wave. The pressure p0, density ρ0, and 
temperature T0 of the quiescent oxygen ahead of the shock are 2.67 kPa, 0.0342 kg/m3, and 
300 K, respectively. The frozen flow Mach number behind the shock is 2.7 and the temperature 
is about 3825 K. The post-shock state of the oxygen is approximately 23% dissociated. The 
classical shock-wave diffraction pattern is shown in the diagram of Figure 13. The Figure 
illustrates the Prandtl-Meyer expansion wave and the recompression shock and associated 
contact surface. A strong non-equilibrium recombination process occurs through the rarefaction 
wave fan after the high-Mach-number shock passes the corner. 

The shock diffraction problem was computed using the semi-implicit algorithm and a 308 x 156 
node grid. A combination of the van Leer and superbee flux limiters was used. The predicted 
density contours at a time 26.5 μs after the shock has passed the corner are given in Figure 14. 
The recompression shock and contact surface are clearly evident in the Figure and appear to 
be well resolved. The fan of the stationary rarefaction wave evolving from the corner can also 
be observed. 

An experimental study of the flow of dissociated oxygen around expansion corners was carried 
out by Drewry66,67 in the UTIAS 10 cm by 18 cm hypervelocity shock tube. Comparisons of 
the predicted isopycnics of Figure 14 to schlieren photographs (Fig. 33a and Fig. 35 of Reference 
66) reveal that the general features of the flow field are duplicated by the present numerical 
method, including the shapes and relative positions of the recompression shock and contact 
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surface. The predicted angles of the head and tail of the rarefaction wave relative to the horizontal 
also agree with the values of 20° and 1-2°, respectively, reported by Drewry. 

Experimental measurements of the wall density distribution were also made by Drewry using 
finite-fringe Mach-Zehnder interferometry. (The actual density values were interpreted from the 
fringe shifts.) However, these data are not included in the comparisons due to uncertainties in 
the interpretation of the experimental results. Unfortunately, the measured densities were clearly 
influenced by the presence of a wall boundary layer and viscous effects. 

Blunt-body flow in nitrogen 
The final test case considered in the evaluation of the proposed TVD schemes is a hypersonic 

flow around a two-dimensional circular cylinder with its axis of symmetry perpendicular to the 
free-stream flow direction such that a stationary bow shock forms about the body. This is 
illustrated in the schematic of Figure 15. The free-stream gas is pure nitrogen and the radius of 
the cylinder is 2.54 cm. The thermodynamic state of the free-stream nitrogen is such that the 
gas is 7% dissociated (i.e., cN2 = 0.93 and cN = 0.07). The free-stream pressure p∞, density ρ∞, 
temperature T∞, and velocity u∞ are 2.445 kPa, 5.50 x 10 -3 kg/m3, 1400 K, and 5.5 km/sec, 
respectively. The frozen-flow Mach number is about 6.9. This blunt-body flow was investigated 
experimentally by Hornung68,69. The infinite-fringe interferogram of the flow field recorded by 
Hornung using Mach-Zehnder interferometry is given in Figure 16. A strong non-equilibrium 
dissociation process occurs following the bow shock in the stagnation region of the flow and 
thermal equilibrium conditions are reached in the vicinity of the stagnation point where flow 
Mach numbers are small. Recent numerical studies have shown that a non-equilibrium analysis 
is required to accurately predict the density distribution and shock standoff distance for this 
flow (see, for example, Reference 40) and, therefore, it was felt that the problem would be very 
appropriate for assessing the fully implicit TVD algorithm. 

The preceding blunt-body flow problem was solved by using the fully implicit 
partially-decoupled TVD scheme on a 100 x 100 grid. The time-stepping, spatial differencing, 
and compression control parameters used for the calculation are as follows: Θ = 1;0 = 0; and 
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β = 0.75. A value of 0.30 was used for the entropy parameter . A uniform free-stream was 
assumed for the initial data and the computations were carried out until the measure of the 
solution residual, , was reduced by three orders of magnitude and velocity of 
the bow shock approached zero. About 2500 iterations were required to achieve the steady-state 
solution with the size of the time steps corresponding to a CFL number of about two (CCFL = 2). 
Shown in Figure 17 are the isopycnics of the numerical solution. The predicted stagnation 
temperature and density are approximately 6600 K and 0.066 kg/m3. Although the fringes of 
the experimental interferogram do not represent the actual isopycnics, a comparison of Figures 
16 and 17 reveals that the numerical results closely resemble the experimental flow field. The 
bow-shock standoff distance and shape are both well predicted. Some of the finer details of the 
density distribution also seem to be reproduced by the fully implicit TVD scheme. 

CONCLUSIONS 
Semi-implicit and fully implicit extended versions of Roe's and Osher and Chakravarthy's upwind 
TVD finite-difference schemes have been described for predicting steady and unsteady, 
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two-dimensional, inviscid flows in thermal and chemical non-equilibrium. The proposed schemes 
solve the governing hyperbolic conservation laws by means of a partially-decoupled FDS 
approach. This decoupling procedure is shown to offer many of the computational simplifications 
and savings of uncoupled or chemistry-split procedures while affording the solution quality of 
fully coupled algorithms (i.e., the solutions are monotonic and positively conservative, and 
preserve the maximum principle of Larrouturou46). Sample numerical computations with 
comparisons to available experimental data have demonstrated the abilities of the techniques 
to predict flows with substantial non-equilibrium features and complex shock and non-linear 
wave structure. Future research will involve enhancing the convergence characteristics of the 
fully implicit algorithm and extending the schemes for the solution of high-speed viscous flows. 
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