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Abstract
This article develops high-order implicit time-stepping methods combined
with the fourth-order central essentially-non-oscillatory (CENO) scheme for
stiff three-dimensional computational fluid dynamics problems having dis-
parate characteristic time scales. Both aerodynamic and magnetohydrodynamic
problems are considered on three-dimensional multiblock body-fitted grids
with hexahedral cells. Several implicit time integration methods of third- and
fourth-order accuracy are considered, including the multistep backward dif-
ferentiation formulas (BDF4), multistage explicitly singly diagonally implicit
Runge-Kutta (ESDIRK4), and Rosenbrock-type methods (ROS34POW2). The
resulting nonlinear algebraic system of equations is solved via a preconditioned
Jacobian-free inexact Newton–Krylov method with additive Schwarz precondi-
tioning using block-based incomplete LU decomposition. The performance of
the high-order implicit time-stepping methods on smooth and stiff problems is
compared with a standard fourth-order explicit Runge-Kutta (RK4) method. It is
shown that the Rosenbrock methods, despite their advantage of only requiring
the solution of linear systems, have significant drawbacks in terms of robustness
issues for highly nonlinear compressible flows. The implicit BDF4 and ESDIRK4
methods are found to be much more efficient than the explicit fourth-order
RK4 method for a stiff resistive magnetohydrodynamic (MHD) problem dis-
cretized with the fourth-order CENO method. When applied to the problem of
vortex shedding governed by the Navier–Stokes equations, an A-stable ESDIRK4
scheme proved to be the more robust and accurate implicit time-marching
scheme and was able to offer significant speedup compared with the RK4
method. Initial results are also shown for high-order implicit time integration
applied to two problems with discontinuities. The current study represents the
first to achieve high-order implicit time integration for MHD, enabling large
time steps and substantial speedups for stiff MHD problems with high-order
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accuracy, and it also represents the first to establish high-order implicit time
integration for high-order CENO in space.
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1 INTRODUCTION

Obtaining efficient and stable high-order implicit time integration schemes for high-order spatial discretizations remains
a significant challenge for large-scale parallel compressible computational fluid dynamics (CFD). It is well known that
CFD problems can have disparate characteristic time scales that are associated with different characteristic waves.1-5

This is the case for example in solutions of the ideal magnetohydrodynamics (MHD) equations applied to a tokamak
geometry.2,6 By geometric design, the slow magnetosonic and Alfvén waves only propagate in the direction parallel to
the background magnetic field, whereas the fast magnetosonic wave propagates in a nearly perpendicular direction. The
magnetic field configuration is such that cs < cA ≪ cf , where cs, cA, and cf are the speeds of the slow, Alfvén, and fast
waves, respectively. In MHD problems the dynamics that need to be resolved by simulations often play out primarily on
the slow and Alfvén timescales and not on the timescales of the fast MHD waves, thus rendering the numerical simulation
problem stiff. Another source of stiffness may arise from the underlying physics of the problem when there exists multiple
physical timescales. This often occurs when diffusivity or resistivity terms are present in the governing equations, both
for cases with low and high diffusivity.

The stiffness of such CFD problems constrains the choice of the time-stepping methods. Indeed explicit, conditionally
stable, time-stepping methods are widely used for time-accurate solutions of unsteady flow problems due to their easy
implementation, low cost per time step, and moderate storage requirements, but unfortunately their time step, Δt, is
controlled by a so-called Courant-Friedrichs-Lewy (CFL) constraint which must be satisfied to retain stability. For a stiff
problem, this condition is determined by the fastest time scale, which may not be of primary of physical interest, and
thus computational time and costs can be prohibitive. This renders standard conditionally stable explicit schemes, such
as the family of explicit Runge-Kutta (RK) schemes, as being very expensive, or in some cases not practical, for stiff
problems in terms of computational resources. Conversely, unconditionally stable, implicit time-stepping methods may
provide better overall performance as the time step can be chosen to be much larger while still retaining the desired
accuracy for the solution of the slow physical time scales of interest. However, one issue associated with implicit time
integration methods is the requirement to solve a large algebraic system, which is either nonlinear or linear, at each
time step. For the nonlinear case, Newton’s method may be invoked to convert the problem into one of performing a
sequence of linear iterations. Direct linear solvers are often infeasible to handle the large dimension of the system.7 As an
alternative, Krylov-based iterative methods, such as the generalized minimal residual (GMRES) method, coupled with
Newton’s method have proved to be an efficient approach to large, sparse, and nonsymmetric systems.8,9 Inexact Newton
and Jacobian-free approaches10 have made the implementation of implicit time-stepping schemes far more feasible. The
inexact nature of the scheme relates to the early termination of the inner solver loop, for example, the GMRES iteration,
reducing computational effort without affecting the overall accuracy. The Jacobian-free feature takes into consideration
the fact that Krylov iterative methods require only the results of matrix–vector multiplications and an explicit form of the
full Jacobian is not required.

While stiff MHD applications may clearly benefit from efficient implicit solution methods, high-order implicit time
integration methods with order of accuracy greater than two have, to the author’s knowledge, not been previously
described for MHD in the literature. Similarly, high-order implicit time integration has not been considered extensively in
conjunction with the high-order CENO spatial discretization. Charest et al.11 previously applied a standard fourth-order
backward differentiation formula (BDF) implicit scheme in conjunction with a fourth-order CENO finite-volume scheme
to three-dimensional low-speed viscous flows on unstructured meshes; however, a pseudo-compressibility approach was
used to reduce the numerical stiffness for the variable density low-speed flows of interest. Therefore, the focus and main
contribution of this study is the development of a fourth-order accurate implicit time integration schemes for compressible
MHD combined with a fourth-order-accurate CENO scheme in space, enabling large time steps for stiff MHD problems
with high-order accuracy on parallel block-structured grids.
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There exist a variety of implicit time-stepping methods, for example the aforementioned multi-step BDF12,13 have been
applied in many engineering problems, especially the second-order BDF2 scheme due to its robustness and stability.13-15

Unfortunately, higher-order BDF schemes do not fully maintain the desirable stability properties of BDF2.13-15 Further-
more, depending on the accuracy order, several previous time step solutions are required to determine the solution at
the next time step. This may cause difficulties in initializing the time stepping and constant time steps are required
to maintain high order of accuracy. As an alternate approach, multi-stage diagonally implicit Runge-Kutta (IRK) and
related methods13,16 can be employed. Thanks to their rational stability functions, IRK methods can be devised that
are A-stable for any order (see, e.g., References 13,16 and references therein). In addition, initialization of IRK meth-
ods is simple since only one initial condition is required. However, a general IRK method of s stages and m unknowns
requires solving a nonlinear system of size sm × sm, which is impractical for large m. Further improvements of the IRK
class includes diagonally IRK (DIRK), singly DIRK (SDIRK), or explicit SDIRK (ESDIRK) methods. A detailed discus-
sion of these methods is given in Section 4 below. Besides the well-known BDF and diagonally implicit RK methods,
Rosenbrock-type methods,12,16 which can be seen as a linearization of the diagonally implicit RK methods have also been
studied. For classical Rosenbrock schemes, an exact Jacobian is needed for accuracy and stability.17,18 This may lead to
a high cost due to the computation and storage of the Jacobian matrix. To overcome this shortcoming, Rosenbrock-W
schemes17,18 propose an approach to better handle approximate Jacobians, thus facilitating the matrix-free approach
and the use of Krylov based methods. In addition, the class of Rosenbrock-K schemes19 minimize the dimension of the
Krylov subspaces coupled with the Rosenbrock schemes. In Reference 20, the authors thoroughly investigate different
types of Rosenbrock schemes for the unsteady compressible Navier–Stokes equations. Liu et al.21 present a comparative
study of Rosenbrock and implicit Runge-Kutta methods used in concert with discontinuous Galerkin (DG) spatial dis-
cretization schemes, and apply the combined approaches to a variety of numerical simulations for the three-dimensional
(3D) unsteady compressible Navier–Stokes equations. They present results for the Taylor–Green vortex problem which
is challenging because it incurs disparate length and time scales. It is useful to mention other time-stepping schemes
for stiff problems, for example, exponential-type time integrator methods22-25 which multiply an integrating factor into
the original time-dependent system of ordinary differential equations (ODEs) before applying a corresponding time dis-
cretization method, or implicit–explicit methods in which an implicit time-stepping method is applied to approximate
the fast timescales, whereas the slow scales are numerically treated with a proper explicit time-stepping method.26,27

In the present study, high-order implicit time-stepping is pursued for the high-order central essentially-non-oscillatory
(CENO) scheme of Ivan et al.28 applied to stiff CFD problems. The CENO spatial discretization method was intro-
duced by Ivan and Groth28 for two-dimensional compressible flows,29 and later extended to three-dimensional nonlinear
hyperbolic conservation laws with cubed-sphere grids.30 The method was successfully applied to inviscid and viscous
flows,11,28,31 the ideal MHD equations28,30,32 and also applied to reactive turbulent flows.33 Both isotropic and anisotropic
adaptive mesh refinement (AMR) techniques have also been successfully used with the CENO method.31,32,34-36 Belong-
ing to the essentially-non-oscillatory (ENO) category of schemes, the CENO method adaptively switches between a
high-order linear K-exact polynomial reconstruction in regions where the solution is sufficiently smooth, and limited lin-
ear least-squares reconstruction in the vicinity of shocks and high gradients.37 This switching mechanism depends on a
so-called smoothness indicator which measures how smooth the solution is over the reconstruction stencil. Note that for
CENO, the solution is reconstructed based on a fixed central stencil. This avoids the complexities associated with multiple
stencils of other ENO and weighted essentially-non-oscillatory (WENO) schemes, such that the high-order reconstruction
is relatively less computational expensive and well suited for extension to unstructured grids. The CENO method has been
proven to be suitable for general polygonal grids, it can be implemented with arbitrary order, and it combines well with
dynamically adaptive mesh refinements. In addition, high-order accuracy is maintained at curved domain boundaries of
body-fitted mesh thanks to accurate spline approximation of the boundaries.

The implementation and performance of several high-order implicit time integrators, in terms of accuracy and
efficiency, coupled with the high-order CENO spatial discretization method for several stiff numerical problems are con-
sidered herein. In particular, the effectiveness of the high-order BDF4, ESDIRK4, and ROS34POW2 time-implicit methods
are examined and compared with the standard conditionally stable, explicit, fourth-order-accurate RK scheme (RK4)
in terms of computational cost to achieve a given level of accuracy. While the primary focus of the current study is on
problems involving smooth or regular solutions, a standard Sod shock tube problem for the Euler equations and a more
challenging MHD Shu-Osher-type problem are also considered herein. The numerical results for these cases confirm that
the fourth-order accurate implicit approach works well for shocks, maintaining positivity using the fourth-order accu-
rate CENO spatial discretization for moderate CFL numbers. As is well known, extending strong-stability preserving time
integration (SSP) schemes38,39 to implicit high-order integration methods with larger CFL numbers in an efficient manner
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is an unsolved research problem, even for equation systems like compressible Euler that are simpler than MHD, and this
remains a topic of future research. Note that the high-order time integration techniques used here as building blocks were
developed previously in their basic form, but this work is the first that combines and integrates these building blocks
to achieve high-order implicit time integration for high-order MHD and CENO discretizations in space, and the first to
thoroughly analyze the potential gains from high-order implicit time integration for MHD and CENO, demonstrating
substantial potential gains for stiff MHD problems.

The remainder of the article is organized as follows. The governing equations are described in Section 2. In Section 3
the fourth-order CENO method is briefly summarized. Various implicit time-stepping methods are discussed in detail in
Section 4. In Section 5, six numerical simulations are presented to illustrate the benefits of the aforementioned schemes
with a focus on stiff problems. In particular, numerical simulations of inviscid flow (Section 5.1), magnetohydrodynamic
flow (Sections 5.2 and 5.3), and viscous flow (Section 5.4) are all presented. In Sections 5.5 and 5.6 numerical simulations
of inviscid and magnetohydrodynamic flow for problems with shocks are proposed.

2 GOVERNING EQUATIONS

The governing equations for both nonconducting viscous hydrodynamic and conducting resistive MHD flows can be
summarized as

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v) = 0, (1)

𝜕(𝜌v)
𝜕t

+ ∇ ⋅
(
𝜌vv + I

(
p + B ⋅ B

2

)
− BB

)
= ∇ ⋅ 𝜏 + Sm, (2)

𝜕B
𝜕t

+ ∇ ⋅ (vB − Bv) + ∇ × (𝜂J) = Sb, (3)

𝜕e
𝜕t

+ ∇ ⋅
((

e + p + B ⋅ B
2

)
v − (v ⋅ B)B + 𝜂J × B

)
= ∇ ⋅ (v ⋅ 𝜏) − ∇ ⋅ q + Se, (4)

∇ ⋅ B = 0. (5)

Equations (1)–(4) represent the conservation equations for the mass, momentum, induction, and energy respectively.
Equation (5) is called the solenoidality condition for the magnetic field. Here, 𝜌, p, and e are the gas density, pressure, and
total energy, respectively. The vectors v, B, J, and q represent the velocity field, magnetic field, current density, and heat
flux. Sm, Sb, and Se are the source terms in the momentum, induction, and energy equations. The resistivity coefficient,
𝜂, is taken here to be constant. Finally, 𝜏 is the fluid stress tensor which is explicitly given as28

𝜏 = 𝜏(𝜇,∇v) = 2𝜇
(
𝜀 − 1

3
(∇ ⋅ v)I

)
, (6)

where 𝜇 is the dynamic viscosity, I is the identity tensor, and

𝜀 = 1
2

(
∇v + (∇v)T)

, (7)

is the fluid strain rate tensor. The relation between pressure and energy is given through the following equation of state
for a perfect gas

p = (𝛾 − 1)
(

e − 1
2
𝜌||v||2 − 1

2
||B||2

)
, (8)

where 𝛾 is the adiabatic index or specific heat ratio. The square length of a vector is denoted by || ⋅ ||2 = (⋅)2
x + (⋅)2

y + (⋅)2
z .

The heat flux follows from Fourier’s law of thermal conduction given by

q = −𝜅∇T, (9)
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where 𝜅 is the thermal conductivity, and T is the temperature. Applying Ampere’s law, and ignoring the displacement
current, the current density can be expressed in terms of the curl of the magnetic field

J = ∇ × B =
[
𝜕Bz

𝜕y
−
𝜕By

𝜕z
,
𝜕Bx

𝜕z
−
𝜕Bz

𝜕x
,
𝜕By

𝜕x
− 𝜕Bx

𝜕y

]T

. (10)

For clarity, these terms are explicitly expanded here in terms J and B and can be expressed as

∇ × J = ∇ ⋅

⎡⎢⎢⎢⎢⎢⎢⎣

0 𝜕By

𝜕x
− 𝜕Bx

𝜕y
𝜕Bz

𝜕x
− 𝜕Bx

𝜕z

𝜕Bx
𝜕y

− 𝜕By

𝜕x
0 𝜕Bz

𝜕y
− 𝜕By

𝜕z

𝜕Bx
𝜕z

− 𝜕Bz

𝜕x
𝜕By

𝜕z
− 𝜕Bz

𝜕y
0

⎤⎥⎥⎥⎥⎥⎥⎦
, (11)

and

∇ ⋅ (J × B) =
𝜕

(
BzJy − ByJz

)
𝜕x

+
𝜕 (BxJz − BzJx)

𝜕y
+
𝜕

(
ByJx − BxJy

)
𝜕z

. (12)

For nonconducting hydrodynamic flows, where there are no magnetic fields (B = 0), Equations (1)–(5) reduce to the
Navier–Stokes equations describing compressible laminar viscous flows, for which 𝜇 ≠ 0 and 𝜅 ≠ 0, and further reduce
to the Euler equations if the viscosity and thermal conduction vanish (𝜇 = 𝜅 = 0). The latter represents compressible
inviscid flows. When a magnetic field is present (B ≠ 0) and resistivity is negligible such that 𝜂 = 0 , the equations revert
to the well-known ideal MHD equations governing perfectly conducting fully ionized plasma flows. Finally, for B ≠ 0 and
𝜂 ≠ 0, Equations (1)–(5) are the so-called resistive MHD equations.

The characteristic MHD wavespeeds for Equations (1)–(5) above are given by, for example, in the x-direction,

c2
fx =

1
2

⎛⎜⎜⎝
𝛾p + ||B||2

𝜌
+

√(
𝛾p + ||B||2

𝜌

)2

− 4
𝛾pB2

x

𝜌2

⎞⎟⎟⎠ , (13)

c2
sx =

1
2

⎛⎜⎜⎝
𝛾p + ||B||2

𝜌
−

√(
𝛾p + ||B||2

𝜌

)2

− 4
𝛾pB2

x

𝜌2

⎞⎟⎟⎠ , (14)

c2
Ax =

B2
x

𝜌
, (15)

where cfx, csx, and cAx are the fast, slow, and Alfvén speeds, respectively. The eigenvalues, 𝜆i, of the flux Jacobian for the
MHD equation are as follow

𝜆1,2 = vx ± cfx, 𝜆3,4 = vx ± cAx,

𝜆5,6 = vx ± csx, 𝜆7 = vx ± cAx, 𝜆8 = 0. (16)

The corresponding eigenvectors can also be found. See, for example, the article by Susanto et al.40

3 FINITE-VOLUME CENO SPATIAL DISCRETIZATION

3.1 High-order finite-volume CENO scheme

As discussed in the introduction, spatial discretization of the preceding conservation equations is considered herein using
a high-order finite-volume CENO scheme.28,30,34,40,41 The CENO schemes have been successfully applied to both inviscid
and viscous compressible flows28,34 as well as to ideal MHD flows.30,32 This family of schemes is also readily applicable to
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high-order solutions on hexahedral cells with nonplanar cell faces and, in particular, those associated with cubed-sphere
grids.30 Moreover it has been developed and applied to problems involving disparate spatial scales when used in conjunc-
tion with both isotropic and anisotropic block-based AMR strategies.31,32,34-36 Detailed descriptions of the CENO method
can be found in References 29,42 and references therein.

A fourth-order CENO finite-volume scheme is applied here to the weak conservation form of the governing equations.
Equations (1)–(4) can be rewritten in weak-conservation vector form as

𝜕U
𝜕t

+ ∇ ⋅ F = S, (17)

where U is the vector of conservative variables and given by

U = [𝜌, 𝜌v, e,B]T, (18)

F is the corresponding flux dyad, and S is the vector source term. The flux dyad comprises both the inviscid (hyperbolic),
FH , and viscous (elliptic), FE, components where the latter depends on both the solution states and their gradients and
can be written as

∇ ⋅ F = ∇ ⋅ FH(U) + ∇ ⋅ FE(U,∇U). (19)

Integrating Equation (17) over a hexahedral cell, ijk, applying the divergence theorem to the flux dyad term, and
subsequently dividing by the cell volume, one can obtain the following integral form:

d
dt

(
1

Vijk ∫ ∫ ∫Vijk

U(X)dV

)
= 1

Vijk

(
−∯𝜕Vijk

F ⋅ ndA + ∫ ∫ ∫Vijk

S(X)dV

)
, (20)

where Vijk and 𝜕Vijk are the volume and surface of cell of interest, ijk, and n is the unit outward normal vector for the
surface 𝜕Vijk. Introducing numerical Gaussian quadrature to approximate both the surface and volume integrals appear-
ing in the equation above, the so-called semidiscrete form of the governing equations for cell, ijk, can be obtained and
written as

dUijk

dt
= − 1

Vijk

Nf∑
l=1

Ng∑
m=1

(𝜔Fnum ⋅ nΔA)ijk,l,m + Sijk ≡ Rijk(U), (21)

where

Fnum ⋅ n =
(
FH

num + FE
num

)
⋅ n =  (UL,UR,n) + FE

num ⋅ n, (22)

and where Uijk and Sijk are the volume-averaged values of the solution and source vectors, respectively, for cell ijk defined
by

Uijk ≡ 1
Vijk ∫ ∫ ∫Vijk

U(X)dV , Sijk ≡ 1
Vijk ∫ ∫ ∫Vijk

S(X)dV . (23)

In the above, X = (x, y, z) is the coordinate vector X = (x, y, z), Fnum is the so-called numerical flux defined by the
numerical flux function, and ΔA the surface area. Here, Nf = 6 is the number of faces in each hexahedral cell, Ng is the
number of Gaussian quadrature points, and𝜔 is the weight associated with each of the Gauss points. Additionally, Rijk(U)
is defined to be the residual vector for cell ijk.

Standard Riemann-solver-based numerical flux functions such as Lax-Friedrichs, Roe, or HLLE43,44 are used to com-
pute the hyperbolic numerical flux, FH

num ⋅ n =  (UL,UR,n). A central-type approximation of the solution gradients
∇Ui+ 1

2
,j,k at cell interfaces is used in the evaluation of the numerical viscous or elliptic flux, FE

num, which are given by

FE
num

(
Ui+ 1

2
,j,k,∇Ui+ 1

2
,j,k

)
= FE

(1
2

(
UK

L + UK
R
)
,

1
2

(
∇UK

L + ∇UK
R
))
, (24)
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where UK
L and UK

R are the high-order K-exact left and right solution reconstructions provided by the CENO method. The
reconstructed gradient is given by

∇UK(X) = 𝜕UK

𝜕x
i + 𝜕UK

𝜕y
j + 𝜕UK

𝜕z
k, (25)

where the spatial derivatives are obtained by differentiating directly the reconstruction polynomial (26). Additional details
of the procedures used in the flux evaluation are given by Ivan and Groth.28

Evaluation of the numerical flux at faces of the hexahedral cell, ijk, requires reconstruction of the solution within
each cell based on cell-averaged solutions quantities associated with a stencil of cells having compact support. Unlike
other ENO schemes in which a hierarchy of multiple upwinding stencils are used in the solution reconstruction,45,46 or
WENO schemes with a high-order reconstructed solution based on nonlinear convex combinations of several low-order
reconstructions,47,48 the high-order, linear (optimal), solution reconstruction of the CENO method is based on a fixed,
central, and overdetermined reconstruction stencil using Barth’s K-exact polynomial reconstruction.28,30,40 The choice
of overdetermined stencils is particularly useful for complicated grid topology, for example, unstructured grids or grid
degeneration near root-block edges of a cubed-sphere grid,30,40 where the number of available cells is fewer than that
of regular Cartesian grid topology. Following Ivan and Groth,30 a K-exact polynomial reconstruction for each solution
variable in cell ijk is used of the form

uK
ijk(X) =

K∑
p1=0

K∑
p2=0

K∑
p3=0

p1+p2+p3≤K

(x − xijk)p1 (y − yijk)p2 (z − zijk)p3 DK
p1p2p3

, (26)

where K is the polynomial degree, X = (xijk, yijk, zijk) is the cell center, and DK
p1p2p3

are the polynomial coefficients to be
determined. For the purely hyperbolic equations of interest here (i.e., the Euler and ideal MHD equations), a K = 3 cubic
polynomial reconstruction is chosen here so that the resulting CENO scheme is fourth-order accurate. For the governing
equations involving both hyperbolic and elliptic fluxes (i.e., the Navier–Stokes and resistive MHD equations), a K = 4
quartic polynomial reconstruction is adopted to ensure consistent fourth-order accuracy of the scheme.11,28 The total
number, ND, of unknown coefficients, DK

p1p2p3
, for the fourth-order reconstruction scheme is

ND = (K + 1)(K + 2)(K + 3)
6

= 20 and 35, (27)

for K = 3 and K = 4, respectively, and they are computed such that the following conditions are satisfied:30,37,45

• Conservation of the mean:

ūijk = 1
Vijk ∫ ∫ ∫Vijk

uK
ijk(X)dV , (28)

and (
1

V𝛾𝛿𝜁 ∫ ∫ ∫V𝛾𝛿𝜁
uK

ijk(X)dV

)
− ū𝛾𝛿𝜁 = 0, (29)

for all conserved solution variables, u, and for all cells 𝛾𝛿𝜁 ≠ ijk in the reconstruction stencil of ijk.
• K-exactness:

uK
ijk(X) − uexact(X) =  (

ΔxK+1) . (30)

Here, uexact(X) is the exact solution, and Δx is the grid size.
• Compactness: the polynomial function is reconstructed over an overdetermined reconstruction stencil with the number

of cells that is at least equal to the number of unknown coefficients.
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The unknown coefficients, DK
p1p2p3

, are determined by first representing DK
000 in terms of the other coefficients, substi-

tuting Equation (26) into Equation (28). By enforcing the condition of Equation (29), one solves an overdetermined linear
system for the unknowns using either the normal equation, QR factorization, or multiplication with a pseudo-inverse
matrix.49 A combination of inverse-distance weighting and column-scaling are used here to deal with conditioning and/or
invertibility issues of the least-squares problem that arise as the stencil size and hence the size of the least-squares problem
grow with the order of the K-exact resconstruction procedure.28 The validity of Equation (30) can be readily shown using
standard Taylor approximation theory. For a more detailed discussion of these properties, the reader is referred to the
original article by Ivan and Groth.28

The main concept behind all ENO/WENO schemes is a switching mechanism between high-order reconstruction
in smooth regions and low-order reconstruction in areas where the solution is deemed nonsmooth or underresolved, in
order to suppress (1), nonphysical, Gibbs-like oscillations.45,47 The CENO method uses a limited linear least-squares
reconstruction polynomial of degree one (K = 1), for example, a MUSCL method43 as the low-order scheme. A variety
of slope limiters can be used within CENO such as Barth-Jespersen limiter37 or Venkatakrishnan limiter.50 Additionally,
a smoothness indicator determines the switching between the high-order and low-order reconstruction. Various pro-
posed smoothness indicators for ENO/WENO schemes are available, see, for example, References 47,48,51. Following
Ivan et al.,30 the CENO smoothness indicator,  , is evaluated as

 = 𝛼cs

max(1 − 𝛼, 𝜀)
, (31)

where

𝛼 = 1 −

∑
𝛾

∑
𝛿

∑
𝜁

(
uK
𝛾𝛿𝜁

(
X⃗𝛾𝛿𝜁

)
− uK

ijk

(
X⃗𝛾𝛿𝜁

))2

∑
𝛾

∑
𝛿

∑
𝜁

(
uK
𝛾𝛿𝜁

(
X⃗𝛾𝛿𝜁

)
− ūK

ijk

))2 , (32)

which measures how accurately centroidal solution values of neighboring cells can be reproduced using the reconstruc-
tion for cell ijk. Here, 𝜀 = 10−8 and is introduced to prevent division by zero, and

cs =
NSOS − ND

ND − 1
. (33)

For the purely hyperbolic conservation equations and K = 3 cubic reconstruction of interest here, ND = 20 as given
by Equation (27) above, and NSOS = 32 is the actual number of cells used in the overdetermined reconstruction stencil
based on an extended nearest neighbor reconstruction stencil. In the case of conservation equations also involving elliptic
numerical fluxes and K = 4 quartic reconstruction, ND = 35 and NSOS = 56 or NSOS = 125 based on stencils involving next
to nearest neighbors.30 Note that in both cases NSOS > ND as required for an overdetermined stencil.

It is observed that for smooth flow, the smoothness parameter, 𝛼, tends to 1 and it follows that  → cs∕𝜀 whereas
𝛼 tends to −∞ such that  → −cs for nonsmooth or underresolved features. The switching between third-order and
first-order reconstructions is then triggered as follows:{ > c smooth case ⇒ Barth’s optimal third-order reconstruction with K = 3,

 ≤ c nonsmooth case ⇒ limited first-order reconstruction with K = 1.
(34)

Here, c is a user-defined cutoff parameter chosen as c = 1500 for all the simulations considered in Section 5 of this
study. In practice, in order to prevent the 0∕0 indefinite form in the second term of 𝛼, the computation of the smoothness
indicator,  , is carried out in cell, ijk, only when a gauge parameter 𝜉ijk exceeds some threshold value, that is,30

𝜉ijk > 𝜀A + 𝜀Rūijk, (35)

where

𝜉ijk =

√√√√√√ 1
ND − 1

K∑
p1=0

K∑
p2=0

K∑
p3=0

0<p1+p2+p3≤K

(DK
p1p2p3

)2(V 2∕3
ijk )p1+p2+p3 , (36)
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which measures the variability of the solution u in cell ijk. Here, 𝜀A and 𝜀R represent the absolute and relative
variability thresholds, respectively. For the numerical simulations considered herein, 𝜀A = 𝜀R = 10−5 as prescribed by
Ivan et al.30

3.2 GLM control of the 𝛁 ⋅ B = 0 constraint

For the purpose of the numerical treatment of the solenoidality condition on the magnetic field, B⃗, following the work of
Susanto et al.,40 the generalized Lagrangian multiplier (GLM) divergence cleaning originally proposed by Dedner et al.52

is used here. For this, Equations (3) and (5) are replaced by

𝜕B⃗
𝜕t

+ ∇ ⋅
(

v⃗B⃗ − B⃗v⃗
)
+ ∇𝜓 = 0, (37)

𝜕𝜓

𝜕t
+ c2

h∇ ⋅ B⃗ = −
c2

h

c2
p
𝜓. (38)

Here, 𝜓 is an additional nonphysical potential variable which is added to the solution vector of unknowns, and the
coefficients ch and cp are appropriately selected to control the diffusion in𝜓 . By introducing𝜓 , the errors in the divergence
of the magnetic field are propagated out of the computational domain, whereas other physical conservative variables
retain their hyperbolicity. It is also advantageous that no staggered grids are needed with the GLM-MHD formulation,
and the method is readily applicable to problems with more general grid topologies. As suggested by Susanto et al.,40 ch
is chosen as follows,

ch = max
(|vn| + cfn

)
, (39)

where vn and cfn are the velocity component and fast MHD wave in a direction normal to cell interfaces, and the maximum
value is taken over all cells in the reconstructed stencil. This choice allows the error introduced by 𝜓 to be propagated
out of the computational domain as rapidly as possible, yet does not add additional constraints on the time step, Δt, as
determined by the CFL condition. It is recommended that cp satisfy the relation cr = c2

p∕ch = 0.18.40

Note that, besides the GLM-MHD method described above, a number of other methods have been proposed for han-
dling the difficulty of the solenoidality condition, without resorting to staggered mesh approaches. For example, the
so-called “Hodge Projection” scheme,53,54 which projects a vector field onto its solenoidal part, or the Powell method,55

where an additional source term proportional to the divergence of the magnetic field is introduced into the ideal MHD
equations to maintain strict hyperbolicity and Galilean invariance are possible alternatives. Please refer to Reference 55
and references given therein.

4 HIGH- ORDER IMPLICIT TIME-STEPPING METHODS

Application of the fourth-order CENO finite-volume spatial discretization scheme described in the previous section
results in the semidiscrete form of the governing equations given by Equation (21). The latter is a coupled system of
nonlinear ODEs for the cell-averaged values of conserved solution vector, Uijk for computational cell, ijk, and can be
reexpressed as

dU
dt

= R(U), U ∈ R
m, (40)

where U is taken to be the solution vector containing all volume-averaged solution quantities from all cells in the entire
computational domain. Given initial data for U, this coupled system of nonlinear ODEs can be evolved forward in time
using a variety of time-marching schemes. For robust implicit time-stepping, desirable methods are A-stable, that is, the
stability region contains the entire left half of the complex plane.
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4.1 Backward differentiation formulas (BDF)

BDF time-marching schemes are linear multistep methods that approximate the solution, U
n+1

, at time step tn+1 by a pth
degree polynomial that interpolates U

n+1−k
at tn+1−k, k = 0, … , p. This results in a nonlinear equation for U

n+1

p∑
k=0

𝛼kU
n+1−k

= ΔtR
(

U
n+1)

, (41)

where the coefficients, 𝛼k, are identified from the interpolation process. Due to the second Dahlquist barrier,12,14 lin-
ear multistep methods with an order of accuracy greater than two cannot be A-stable and BDF schemes of order p > 2
can be at most A(𝛼)-stable with the value of 𝛼 decreasing as p increases. For comparison with other high-order implicit
time-stepping methods of interest here, the fourth-order BDF4 method applied to the ODE system of Equation (40) can
be written as

25
12

U
n+1

− 48
12

U
n
+ 36

12
U

n−1
− 16

12
U

n−2
+ 3

12
U

n−3
− ΔtR

(
U

n+1)
= 0. (42)

4.2 Diagonally implicit Runge-Kutta (DIRK) methods

An alternative approach for implicit time integrators is to apply multistage IRK methods. The s-stage IRK method applied
to Equation (40) is given by

ki = R

(
U

n
+ Δt

s∑
j=1

aijkj

)
, for i = 1, … , s, (43)

U
n+1

= U
n
+ Δt

s∑
i=1

biki, (44)

where ki are stage tangent vectors of the same dimension as U, and the coefficients aij, bi are specified to satisfy the desired
accuracy and stability properties. For IRK methods, a full nonlinear system of size sm × sm must be solved at every time
step. This is often infeasible in practice for s ≥ 2 and large m, as for example in the system arising from Equation (21). Diag-
onally IRK (DIRK) methods16,56 circumvent this difficulty. By choosing aij = 0 for all j > i, only a sequence of s nonlinear
systems of smaller size needs solving. A DIRK scheme is formulated as

si = U
n
+ Δt

i−1∑
j=1

aijkj, (45)

ki = R (si + Δtaiiki) , (46)

for i = 1, … , s, and the solution is updated following Equation (44). If all values of aii are identical, the method
is called singly DIRK (SDIRK).16 A further relaxation is to have the first stage solved explicitly results in ESDIRK
methods.16

Having a rational stability function,16 all IRK methods are A-stable. This allows a choice of high-order DIRK schemes
where the costly computation of solving s nonlinear systems at each time step is compensated by choosing a time step
size, Δt, as large as possible while achieving a desired solution accuracy. Further restriction on stability allows the design
of stiffly accurate DIRK methods, or L-stable schemes which are desirable for especially stiff problems. L-stability implies
an A-stable scheme with an additional condition

lim
z→∞

𝜙(z) = 0, (47)

where 𝜙(z) is the stability function. It is recalled that L-stable methods correctly represent the solution quantitatively,
even for large time steps. This is due to the fact that𝜙(z) = 𝜙(𝜆Δt) ≈ 0 even whenΔt is large, which resembles the analytic
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T A B L E 1 Coefficients for ESDIRK4 scheme20

aii = 1
4

a21 = 1
4

a31 = 8611
62500

a32 = − 1743
31250

a41 = 5012029
34652500

a42 = − 654441
2922500

a43 = 174375
388108

a51 = 15267082809
155376265600

a52 = − 71443401
120774400

a53 = 730878875
902184768

a54 = 2285395
8070912

a61 = 82889
524892

a62 = 0 a63 = 15625
83664

a64 = 69875
10672

a65 = − 2260
8211

b1 = 82889
524892

b2 = 0 b3 = 15625
83664

b4 = 69875
102672

b5 = − 2260
8211

b6 = 1
4

solution e𝜆Δt ≈ 0. In this study, the L-stable, six-stage, fourth-order, ESDIRK4 method,57 which has been previously
applied to the solution of CFD problems,20 is considered. The coefficients of this scheme are listed in Table 1.

4.3 Rosenbrock-type methods

The idea of Rosenbrock methods is to linearize the nonlinear systems arising in the formulas of SDIRK schemes. Thus,
nonlinear iteration techniques (i.e., Newton’s method) are not required. Instead, one only needs to solve a sequence of
s linear systems in each time step. This strategy may considerably reduce the computational cost of each time step. The
tradeoff for this reduction in computational effort is a loss of some stability and accuracy. Rosenbrock methods can be
thought of as applying only one Newton iteration to the nonlinear system of each DIRK stage, but the coefficients are
chosen such that the desired accuracy and stability can be achieved.

Linearizing Equation (45) about si yields

ki = R(si) + ΔtaiiJki, (48)

where 𝜕R(U)
𝜕U

|||si
at each stage has been replaced by J ≡ 𝜕R(U)

𝜕U
|||U

n . Replacing aii by 𝛾ii = 𝛾 , and adding unknowns 𝛾ij, for j < i,
to create more degrees of freedom in the method, the general form of Rosenbrock-type methods is given by

⎧⎪⎪⎨⎪⎪⎩
(I − 𝛾iiΔtJ)ki = R(si) + ΔtJ

i−1∑
j=1

𝛾ijkj,

si = U
n
+ Δt

i−1∑
j=1

aijkj,

i = 1, … , s, (49)

U
n+1

= U
n
+ Δt

s∑
i=1

biki. (50)

In practice, the multiple matrix–vector multiplications on the right-hand side of Equation (49) can be avoided by an
efficient implementation. Introducing the auxiliary variables

⎧⎪⎪⎨⎪⎪⎩
Vi = Δt

i∑
j=1

𝛾ijkj,

ki =
1
Δt

(
1
𝛾ii

Vi −
i−1∑
j=1

cijVj

)
,

i = 1, … , s. (51)
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T A B L E 2 Coefficients for ROS34PW2 scheme16

𝜸 = 0.435866521508459

a21 = 2 𝛾21 = −0.87173304301691801

a31 = 1.419217317455765 𝛾31 = −0.90338057013044082

a32 = −0.259232211672970 𝛾32 = 0.054180672388095326

a41 = 4.184760482319161 𝛾41 = 0.24212380706095346

a42 = −0.285192017355496 𝛾42 = −1.2232505839045147

a43 = 2.294280360279042 𝛾43 = 0.54526025533510214

b1 = 0.24212380706095346 b2 = −1.2232505839045147

b3 = 1.545260255335102 b4 = 0.435866521508459

Equations (49)–(50) can be rearranged as

⎧⎪⎪⎨⎪⎪⎩
(I − 𝛾iiΔtJ)Vi = Δt𝛾iiR(ŝi) + 𝛾ii

i−1∑
j=1

cijVj,

ŝi = U
n
+

i−1∑
j=1

ãijVj,

i = 1, … , s, (52)

U
n+1

= U
n
+

s∑
i=1

miVi, (53)

where, with 𝚪 = (𝛾ij) and A = (aij), the cij, ãij, and mi coefficients are given by C = (cij) = diag(𝛾−1
11 , … , 𝛾−1

ss ) − 𝚪−1, Ã =
(ãij) = A𝚪−1, and mt = bt𝚪−1.

Obtaining an exact form of the Jacobian, J, is not an easy task, especially for large systems which can arise from
a method of lines approach applied to the semidiscrete form of the PDEs. Instead, one may seek an approximation of
the Jacobian, for example, using a low-order finite-difference approximation. Such a strategy is adopted in the class of
Rosenbrock-W methods18 which considered as part of this study. The coefficients in this case are computed in a way
that attempts to retain the desired order of accuracy when a matrix, W, is used to approximate the Jacobian, J. It is also
observed that Rosenbrock-W methods may suffer from an order reduction when applied to the semidiscrete forms of
certain types of PDEs.58,59 Examples of high-order Rosenbrock-W methods include the third- and fourth-order schemes
proposed by Rang and Angermann.18 In this study, the third-order, four-stage Rosenbrock-W ROS34PW2,18 which sup-
ports the Jacobian-free approach is applied for the numerical simulations and comparisons presented in Section 5. The
coefficients of this scheme are given in Table 2, with 𝛾ii = 𝛾 ∀i.

4.4 Solution of algebraic systems

Application of the implicit time-marching methods discussed above results in algebraic systems of equations that must
be solved at each time step. The systems are generally sparse, nonsymmetric, and often ill-conditioned. Depending
on which temporal integration method is used, the resulting algebraic system is either nonlinear, as for the BDF and
DIRK methods, or linear, as for the Rosenbrock-type schemes. Newton’s method coupled with the GMRES method
is invoked here for iterative solution of the nonlinear equations, and in the case of the Rosenbrock schemes, the
GMRES method alone is used for solving the resulting linear system. Since the algebraic systems are ill-conditioned,
preconditioning is important in both instances. The additive global Schwarz preconditioner with incomplete LU
decomposition in each block is applied here for all the numerical simulations considered in Section 5. For Rosen-
brock schemes, as the matrix on the left-hand side is the same for all stages, the same preconditioner can be
applied for all stages of each time step. Furthermore, as is possible with the GMRES approach, a Jacobian-free
implementation of the iterative method is adopted as the Krylov subspace construction requires only Jacobian-vector
multiplications.
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All of the implicit time-marching methods of interest here applied to the coupled ODEs of Equation (40) can be written
in the following form:

G(U) ≡ U − Ũ − 𝛼ΔtR(U) = 0. (54)

Starting from an initial estimate, U(0), Newton’s method seeks the root of Equation (54) by the iteration

⎧⎪⎨⎪⎩
𝜕G(U)
𝜕U

|||U(k)ΔU = −G
(
U(k)) ,

U(k+1) = U(k) + ΔU,
k = 0, 1, 2, … , (55)

where the Jacobian is

𝜕G(U)
𝜕U

= I − 𝛼Δt𝜕R(U)
𝜕U

. (56)

In practice, the Jacobian matrix is often ill-conditioned, thus a preconditioning technique is required before applying
the GMRES inner iteration. A right preconditioning is considered here that can be expressed as(

𝜕G(U)
𝜕U

|||U(k)M
−1

)
(MΔU) = −G

(
U(k)) , (57)

where here M is a global additive Schwarz preconditioning matrix which has the form

M−1 =
Nb∑

k=1
Bt

kM−1
k Bk, (58)

and where Bk is the operator for the kth block which gathers the solution unknowns for the block from the global solution
vector and Nb is the number of grid blocks. The local preconditioning matrix in each block is obtained via an incomplete
lower-upper (ILU) factorization, that is,

Mk = LkUk, (59)

which approximates the Jacobian in each block.
As Krylov methods only require Jacobian-vector multiplications, no storage or explicit form of the Jacobian is neces-

sary. Hence, a Jacobian-free approach can be applied. One can invoke the directional derivative such that, for any vector v,(
𝜕G(U)
𝜕U

M−1
)

v ≈ M−1v − 𝛼Δt R(U + 𝜀M−1v) − R(U)
𝜀

. (60)

The choice of 𝜀 follows Northrup41 and is given by

𝜀 = 𝜀0√||v||2
, (61)

where 𝜀0 = 10−7–10−8. The tolerances for the Newton and GMRES methods, and row scaling of the linear systems are
discussed in detail in the works of Northrup et al.41,60

4.5 Block ILU preconditioner

In Equation (59), the local ILU preconditioner Ml factorizes an approximate Jacobian of block k, that is,

Mk = LkUk ≈ J̃k ≈
(

I − 𝛼Δt 𝜕R
𝜕U

)
k
. (62)
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The Jacobian has both hyperbolic and elliptic components. For the former part, the computation is carried out in a
fixed reference frame and then projected back to the original cell face orientation through a rotation matrix A, that is,

𝜕 (UL,UR,n)
𝜕U

=
𝜕

(
A−1 (AUL,AUR)

)
𝜕U

= A−1 𝜕 ( (AUL,AUR))
𝜕U

. (63)

Then, an approximate Jacobian of the hyperbolic flux can be obtained by invoking the chain rule

A−1 𝜕 ( (AUL,AUR))
𝜕U

≈ A−1 𝜕 ( (AUL,AUR))
𝜕UL

= A−1 𝜕 ( (AUL,AUR))
𝜕(AUL)

A. (64)

The derivative here can be computed by a direct differentiation with respect to the first argument of the numerical flux
function, for example, the Lax–Friedrichs flux function. More details can be found in References 41,60. The preconditioner
terms for the viscous flux can be obtained via differentiation and the chain rule applied to the flux at the cell interfaces
as described by Northrup.41

5 NUMERICAL RESULTS

In order to assess the relative performance and efficiencies of the preceding high-order implicit BDF4, ESDIRK4, and
ROS34PW2 time-marching schemes used in conjunction with the high-order CENO finite-volume scheme, the applica-
tion of the combined approaches to several representative CFD-type problems are now examined. Four smooth flow cases,
including several stiff problems, are first examined: the inviscid convection of a density pulse; the transport of an isoden-
sity vortex governed by the ideal MHD equations; the transport of stiff resistive MHD waves; and an unsteady viscous flow
vortex shedding problem. Two additional nonsmooth flow problems involving shocks and discontinuous solutions are
also considered here: the so-called Sod shock tube problem61 and an ideal MHD version of the Shu–Osher problem.40,62

For each of these cases, comparisons are also made to predictions obtained using the explicit RK4 method, which serves
as a reference. Additionally, the numerical solution errors of the various schemes were evaluated in terms of the exact
solution (when available and appropriate) using the following L1, L2, and L∞ norms:

||uexact − unum||L1 =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

|||uexact
ijk − unum

ijk
|||ΔVijk, (65)

||uexact − unum||L2 =

( Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(
uexact

ijk − unum
ijk

)2
ΔVijk

)1∕2

, (66)

||uexact − unum||L∞ = max
i,j,k

|||uexact
ijk − unum

ijk
||| , (67)

where uexact and unum are the exact solution and its numerical approximation of one component of the solution vector U,
and ΔVijk = (ΔxΔyΔz)ijk is the volume of cell ijk, and Nx, Ny, and Nz are the numbers of cells in the x, y, and z directions,
respectively. It is also noted that as the BDF4 scheme is not self-starting, the exact solution (again when available) was
imposed for the first four time steps in Equation (42) in the numerical validation tests which now follow.

5.1 Numerical validation 1: Inviscid convection of a density pulse

The first problem considered in the evaluation of the proposed combined time-marching, finite-volume methods is associ-
ated with the convection of a prescribed density pulse or variation across a two-dimensional (2D) domain in a background
constant pressure inviscid flow by a uniform and constant velocity field. There is no magnetic field in this case and the
exact solution of the Euler equations is given by⎧⎪⎪⎨⎪⎪⎩

𝜌(x, t) = 1
10

(
1 − tanh2(|x − (x − tv)|) ,

v(x, t) =
( 1

10
, 1

)
,

p(x, t) = 1,

(68)
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where the constant velocity is taken to be v = ( 1
10
, 1), x = (x, y), and x = (− 1

10
, 0) is the initial position of the center of the

density pulse. The 2D computational domain is defined by (x, y) = [−1, 1] × [− 1
2
,

1
2
] such that the density pulse is entirely

located within the domain. Constant extrapolation of the solution quantities is applied to all domain boundaries and
simulations of this problem were run until a maximum time, T = 0.1.

To study the convergence order of the various time-stepping schemes, the simulations for the density pulse were
performed on a sequence of uniform Cartesian grids with resolutions Nx = [32, 64, 128, 256, 512, 1024], Ny = [16, 32,
64, 128, 256, 512], where Nx, Ny are the numbers of grid cells in the x- and y-direction, respectively. The z-direction was
discretized by a single cell so as to make the problem two-dimensional. The time step, Δt, was specified via the CFL
condition with a Courant number of 𝜈CFL = 0.50 for the explicit RK4 method. This value was also adopted in all of the
simulations with the implicit time-stepping methods.

The convergence of the predicted numerical errors in terms of L1, L2, and L∞ norms as a function of mesh spacing for
each of the time-stepping schemes considered are depicted in Figure 1 and also shown quantitatively in Table 3. It can
be seen that all time-stepping schemes, except for the Rosenbrock ROS34PW2 scheme, achieve the desired fourth-order
accuracy on the grids with Nx = 512 and Nx = 1024 cells (shown in bold face text in table). It is interesting to observe
that the Rosenbrock scheme achieves third-order accuracy on the grids with Nx = 256 and Nx = 512 but the accuracy
deteriorates for Nx = 1024 (shown in italic text in table). Note that reducing the CFL leads to improved convergence
(i.e., for 𝜈CFL = 0.125 the final slope is 2.5), but the time step size for fully accurate results may be overly restrictive. It
is also worth mentioning that the approximate Jacobian of Equation (60) is used in place of the exact Jacobian. For the
BDF4 and ESDIRK4 schemes, the finite-difference error introduced by the Jacobian-free approach does not affect the
scheme’s accuracy because the accuracy of the solution from Newton’s method is fully determined by the accuracy of the
right-hand side terms in Equation (55), and is not influenced by the accuracy of the Jacobian, given the fixed-point nature
of Newton’s method. Rosenbrock methods are generally sensitive to the accuracy of the Jacobian since they are no longer
fixed-point methods, due to the linearization process, but Rosenbrock-Wanner-type schemes such as the ROS34PW2
method of Equation(52) were especially derived to be less sensitive to the accuracy of the Jacobian, so the deterioration
of the ROS34PW2 error in Figure 1 for Nx = 1024 is not clear.

5.2 Numerical validation 2: Isodensity vortex problem for ideal MHD

The next problem considered is the 3D isodensity vortex governed by the ideal MHD equations as previously studied by
Ivan et al.30 Numerical results for the various time-marching schemes combined with the CENO method are compared
with the exact solution for this case, which is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(x, t) = 1,

v(x, t) = 1 + (−y, x, 0)𝜅 exp[q(1 − r2)],

B(x, t) = (−y, x, 0)𝜇 exp[q(1 − r2)],

p(x, t) = 1 + 1
4q

(𝜇2(1 − 2qr2) − 𝜅2𝜌) exp[2q(1 − r2)],

(69)

where 𝜅 = 𝜇 = 1
2𝜋

, q = 1
10

, and r2 = x2 + y2 and x = (x, y, z) is defined for the computational domainΩ = [−5, 5]3. Uniform
Cartesian meshes were used in all of the simulations of this case and periodic conditions were applied to all boundaries.
Predicted solutions were obtained to a maximum time of T = 1.

An illustration of the numerical solution of the magnetic field in the x-direction, Bx, at T = 1 is provided in Figure 2
for the isodensity ideal MHD problem obtained using the RK4 scheme on a 64 × 64 × 64 grid. Furthermore, the errors in
the predicted solution on 3D Cartesian meshes with uniform spacing grids and Nx = Ny = Nz ≡ N cells in each coordi-
nate direction are depicted in Figure 3 as well as listed in Table 4 for N = [16, 32, 64, 128] as a function of Nx. It is evident
that the desired fourth-order accuracy is achieved for RK4, BDF4, and ESDIRK4 from grid size N = 64 cells. However,
the ROS34PW2 scheme suffered from robustness issues with negative densities and pressures for this nonlinear com-
pressible MHD problem and, as such, results for this approach have been omitted. For this reason, as well as the accuracy
issues identified in the first validation problem, the ROS34PW2 scheme was not assessed further as part of the current
study.
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F I G U R E 1 Numerical validation 1: Comparison of the errors in the predicted solution at final time T = 0.1 as a function of mesh size
for inviscid convection of a density pulse on a 2D domain governed by the Euler equations. The errors are measured in (left) L1 norm, (right)
L2 norm, and (bottom) L∞ norm [Colour figure can be viewed at wileyonlinelibrary.com]

5.3 Numerical validation 3: Transport of 1D stiff resistive MHD wave

The efficiencies of the explicit and implicit time-stepping methods coupled to the fourth-order CENO finite-volume
scheme are now investigated when applied to the solution of a one-dimensional (1D) manufactured resistive MHD
problem governed by the resistive MHD equations and having the following solution:

⎧⎪⎨⎪⎩
𝜌(x, t) = p(x, t) = 100,
v(x, t) = 0,
B(x, t) = (Bx,By,Bz) = (cos(2𝜋(z − t)), 0, 0),

(70)

where (x, y, z) = [−4Δz, 4Δz] × [−4Δz, 4Δz] × [− 1
2
,

1
2
] and Δz = 1∕Nz where Nz defines the extent of the computational

domain for the problem and represents the number of computational cells in z direction. The solution given in
Equation (70) is obtained by adding a source term to the resistive MHD equations (1)–(4). Thanks to this manufactured
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T A B L E 3 Numerical validation 1: Convergence of errors in the predicted solution at final time T = 0.1 for inviscid
convection of a density pulse on a 2D domain governed by the Euler equations.

Nx L1 err. L1 order L2 err. L2 Order L∞ err. L∞ order

RK4

32 2.1492 (10)−4 – 1.8878 (10)−3 – 1.9584 (10)−2 –

64 9.9073 (10)−5 1.1172 1.0816 (10)−3 0.8352 1.8502 (10)−2 0.0820

128 2.2459 (10)−5 2.1412 3.3313 (10)−4 1.6991 1.2837 (10)−2 0.5274

256 2.0229 (10)−6 3.4728 4.2379 (10)−5 2.9747 2.7498 (10)−3 2.2229

512 8.7109 (10)−8 4.5375 2.2453 (10)−6 4.2384 1.9337 (10)−4 3.8299

1024 2.9235 (10)−9 4.8970 7.8904 (10)−8 4.8307 7.6329 (10)−6 4.6630

BDF4

32 1.5550 (10)−4 – 1.5754 (10)−3 – 1.7341 (10)−2 –

64 8.2853 (10)−5 0.9083 9.5447 (10)−4 0.7230 1.6650 (10)−2 0.0586

128 1.9658 (10)−5 2.0754 2.9927 (10)−4 1.6732 1.1653 (10)−2 0.5148

256 1.8367 (10)−6 3.4200 3.8869 (10)−5 2.9448 2.5354 (10)−3 2.2005

512 8.2934 (10)−8 4.4690 2.1401 (10)−6 4.1829 1.8425 (10)−4 3.7824

1024 2.8601 (10)−9 4.8578 7.7189 (10)−8 4.7931 7.4641 (10)−6 4.6256

ESDIRK4

32 2.1494 (10)−4 – 1.8881 (10)−3 – 1.9587 (10)−2 –

64 9.9073 (10)−5 1.1173 1.0816 (10)−3 0.8037 1.8502 (10)−2 0.0822

128 2.2459 (10)−5 2.1412 3.3313 (10)−4 1.6991 1.2837 (10)−2 0.5274

256 2.0229 (10)−6 3.4728 4.2379 (10)−5 2.9747 2.7498 (10)−3 2.2229

512 8.7109 (10)−8 4.5375 2.2453 (10)−6 4.2384 1.9337 (10)−4 3.8299

1024 2.9235 (10)−9 4.8970 7.8904 (10)−8 4.8307 7.6329 (10)−6 4.6630

ROS34PW2

32 2.1023 (10)−4 – 1.8750 (10)−3 – 1.9492 (10)−2 –

64 9.7440 (10)−5 1.1094 1.0738 (10)−3 0.8041 1.8459 (10)−2 0.0785

128 2.2315 (10)−5 2.1265 3.3340 (10)−4 1.6875 1.2956 (10)−2 0.5107

256 2.0397 (10)−6 3.4516 4.3980 (10)−5 2.9224 2.9044 (10)−3 2.1574

512 1.5804 (10)−7 3.6900 3.4648 (10)−6 3.6660 2.8809 (10)−4 3.3336

1024 6.1272 (10)−8 1.3670 9.9394 (10)−7 1.8015 5.7283 (10)−5 2.3304

source term, the sinusoidal varying MHD solution is not damped out by the diffusivity, but rather propagates with a slow
speed. There exists two widely different time scales for the problem: a fast diffusion scale dictating the numerical stability
when conditionally stable time-marching schemes are used to obtain solutions, and a slow wave propagation scale which
determines the accuracy of the numerical simulation. As such, this manufactured solution is a stiff problem. In order to
examine the stiffness, the fast MHD wavespeed can be approximated as

cf ≈
√
𝛾 = 1.2923, (71)

where the adiabatic constant 𝛾 = 1.67 for the monotonic charged molecules of the plasma. As noted above, this problem
exhibits two distinct time scales. The slow time scale corresponds to the MHD wavespeed cf = (1), whose required time
step, ΔtS, determines the simulation accuracy of the wave in Equation (70). On the other hand, there is a fast diffusion
(resistivity) time scale in which the time step, ΔtF , depends on the resistivity, 𝜂, and this fast time scale determines the
numerical stability. To make the problem stiff, the resistivity is taken to be large with a value of 𝜂 = 100. For Nz = 32,
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F I G U R E 2 Numerical validation 2: Predictions of (left) the 3D isosurfaces of x-component of the magnetic field, Bx; and (right) 2D
contour plot of x-component of the magnetic field, Bx , across the vortex of the isodensity vortex problem of ideal MHD for a grid size N = 64
and final time T = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

Δz = 1∕32 and the required time steps for the two disparate time scales can then be estimated as follows:

⎧⎪⎨⎪⎩
ΔtS ≈ Δz

cf
= 2.4206 (10)−2,

ΔtF ≈ Δz2

Cdiff𝜂
= 1.2207 (10)−6,

(72)

with

𝜀Δt =
ΔtS

ΔtF
= 1.9830 (10)4, (73)

where 𝜀Δt is the time scale disparity ratio. The coefficient, Cdiff, depends on the problem dimension. Here, for a 3D sim-
ulation, Cdiff = 8. For numerical stability, the CFL time step restriction for the explicit RK4 scheme depends on the fast
time scale, that is, ΔtEX = (ΔtF) = (10−6), whereas a much larger time step ΔtIM = (ΔtS) = (10−2) can be used for
the implicit time-stepping methods.

The resistive MHD problem settings for the simulations performed here are summarized in Table 5. It is noted that
the number of time steps for all implicit schemes was fixed to be 20 for all grid resolutions considered. In order to arrive at
the appropriate choices for the convergence tolerances using in the Newton and GMRES iterative schemes of the implicit
time-stepping solution methods, parametric studies were performed at each grid resolution. Optimal tolerances for each
iterative scheme were selected in terms of producing reducing the simulation time while preserving solution accuracy.
This provides a fair comparison between the best case for each algorithm, but may, of course, not be practical in real appli-
cation settings. For the current stiff resistive MHD problem, the optimal values for the Newton and GMRES tolerances
are given in Table 6. It is worth mentioning that since an inexact Newton’s method is used here, the GMRES tolerance
can be chosen to be much less stringent than the Newton tolerance.

The numerical distribution of the x-component of the magnetic field, Bx, is provided in Figure 4 as obtained using the
explicit RK4 scheme on the regular Cartesian mesh with Nz = 32. The sinusoidal nature of the resistive MHD solutions
is clearly shown. Moreover, in Figure 5, the convergence of the predicted solution errors for the explicit RK4 as well as
implicit BDF4 and ESDIRK4 schemes is depicted as a function of Nz. The L1, L2, and L∞ norms of the solution error for the
RK4, ESDIRK, and BDF4 time-marching schemes are all shown and one can see that all of the methods provide virtually
equivalent accuracy and converge at the same rate. As ΔtEX ≪ Δz, the solution error is indeed determined by the spatial
error associated with each grid resolution and not the time marching errors.

The efficiency of the various time-marching schemes applied to the resistive MHD problem, in terms of total compu-
tation time, is summarized in Figure 6 (left panel), where the computational time is given as a function of the mesh size
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F I G U R E 3 Numerical validation 2: Comparison of the errors in the predicted solution for Bx at final time T = 1 for the isodensity
vortex problem of ideal MHD. The errors are measured in (left) L1 norm, (right) L2 norm, and (bottom) L∞ norm [Colour figure can be
viewed at wileyonlinelibrary.com]

parameter Nz. The results of this figure clearly show that the implicit ESDIRK4 and BDF4 schemes require much less
computational effort than the explicit RK4 method in order to achieve the same level of accuracy. Defining the speedup
factor, S, of the implicit schemes as compared with the explicit scheme RK4 for each grid resolution as

S = EX

IM
, (74)

where EX is the computational (CPU) time or cost for the explicit RK4 method and EX is the corresponding computa-
tional time for the implicit method, the speedup factors of the ESDIRK4 and BDF4 schemes are then shown in Figure 6
(right panel). From the latter, it can be observed that the maximal speedup for the ESDIRK4 scheme is obtained at grid size
Nz = 32 where S ≈ 166 and the minimal speedup occurs at grid size Nz = 64 with S ≈ 48, whereas for the BDF4 scheme,
the maximal speedup is achieved at grid size Nz = 16 with S ≈ 148 and it is minimal at grid size Nz = 64 with S ≈ 83. It is
also noted that, although the ESDIRK4 scheme involves the solution of a greater number of nonlinear systems than the
BDF4 scheme at each time step, overall the former is more efficient, except for grid size Nz = 64.
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T A B L E 4 Numerical validation 2: Convergence of errors in the predicted solution for Bx at final time T = 1 for the
isodensity vortex problem of ideal MHD

N L1 err. L1 order L2 err. L2 order L∞ err. L∞ order

RK4

16 6.1969 (10)−4 – 3.4995 (10)−3 – 6.9021 (10)−2 –

32 6.3773 (10)−5 3.2789 4.5803 (10)−4 2.9322 1.2959 (10)−2 2.4119

64 2.9413 (10)−6 4.4378 2.2458 (10)−5 4.3495 7.0752 (10)−4 4.1944

128 1.4075 (10)−7 4.3850 9.8378 (10)−7 4.5126 2.8628 (10)−5 4.6271

BDF4

16 5.3993 (10)−4 – 3.1345 (10)−3 – 6.2740 (10)−2 –

32 5.7601 (10)−5 3.2270 4.1528 (10)−4 2.9147 1.1812 (10)−2 2.4080

64 2.7855 (10)−6 4.3695 2.1302 (10)−5 4.2844 6.7687 (10)−4 4.1246

128 1.4105 (10)−7 4.3035 9.9312 (10)−7 4.4227 2.8508 (10)−5 4.5693

ESDIRK4

16 6.1980 (10)−4 – 3.4998 (10)−3 – 6.9037 (10)−2 –

32 6.3775 (10)−5 3.2792 4.5806 (10)−4 2.9323 1.2962 (10)−2 2.4119

64 2.9419 (10)−6 4.4375 2.2466 (10)−5 4.3491 7.0806 (10)−4 4.1937

128 1.4083 (10)−7 4.3846 9.8476 (10)−7 4.5117 2.8660 (10)−5 4.6266

T A B L E 5 Numerical validation 3: Simulation settings for stiff resistive
MHD wave transport problem: T, final time; ΔtEX, CFL stable time step for the
explicit RK4 scheme; ΔtIM, time step for the implicit schemes; and Nt, total
number of time steps

Nz T 𝚫tEX Nt,EX 𝚫tIM Nt,IM

8 0.8 9.77 (10)−6 81,921 4.00 (10)−2 20

16 0.4 2.44 (10)−6 163,841 2.00 (10)−2 20

32 0.2 6.10 (10)−7 327,680 1.00 (10)−2 20

64 0.1 1.53 (10)−7 655,360 5.00 (10)−3 20

T A B L E 6 Numerical validation 3: Optimal Newton and GMRES
convergence tolerances used in simulation of stiff resistive MHD wave
transport problem

ESDIRK4 ESDIRK4 BDF4 BDF4
Nz Newton GMRES Newton GMRES

8 10−3 10−1 10−4 10−2

16 10−4 10−1 10−5 10−2

32 10−5 10−1 10−6 10−2

64 10−6 10−2 10−7 10−2
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F I G U R E 4 Numerical validation 3: Predicted distribution of the x-component of the magnetic field, Bx for stiff resistive MHD wave
transport problem obtained using the explicit RK4 scheme on a Cartesian mesh with Nz = 32 [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Numerical validation 3: Comparison of the errors in the predicted solution as a function of the mesh size parameter, Nz, for
stiff resistive MHD wave transport problem. The errors are measured in (left) L1 norm, (right) L2 norm, and (bottom) L∞ norm [Colour figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 6 Numerical validation 3: Computational cost (left) and speedup factor, S, (right) as a function of the mesh size parameter Nz

for stiff resistive MHD wave transport problem [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Numerical validation 3: Total number of Newton iterations per time step required by ESDIRK4 scheme (left) and BDF4
scheme (right) in the solution of the stiff resistive MHD wave transport problem [Colour figure can be viewed at wileyonlinelibrary.com]

To understand the performance of the nonlinear Newton iterative solution scheme, the total number of Newton and
GMRES iterations at each time step for each implicit scheme has been investigated and the findings summarized in
Figures 7 and 8, respectively. Recall that at each time step, the fourth-order ESDIRK4 scheme solves a sequence of five
nonlinear systems of size m × m where m is the number of unknown cell centers, whereas the fourth-order BDF4 solves
only one such nonlinear system. This explains why ESDIRK4 requires more Newton iterations than BDF4. In exchange,
thanks to a better initial guess at each stage, ESDIRK4 requires far fewer GMRES iterations than BDF4 for the inner
linear solves as shown in Figure 8. This results in the overall cost of the ESDIRK4 scheme being less than or comparable
to that of the BDF4 method, except for the case Nz = 64, where the number of GMRES iterations for both schemes is
similar.
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F I G U R E 8 Numerical validation 3: Total number of GMRES iterations per time step required by ESDIRK4 scheme (left) and BDF4
scheme (right) in the solution of the stiff resistive MHD wave transport problem [Colour figure can be viewed at wileyonlinelibrary.com]

5.4 Numerical validation 4: Unsteady viscous vortex shedding

Further assessment of the predictive capabilities of the proposed high-order implicit schemes used in conjunction with the
CENO finite-volume scheme has been carried here by considering the prediction of the unsteady, viscous, vortex shedding
associated with subsonic flow past a circular cylinder. This vortex shedding problem was previously examined by Ivan and
Groth28 and is governed by the Navier–Stokes equations. For the particular case of interest, air is the working gas and the
Reynolds number, Re, and Mach number, M∞, based on free-stream conditions are Re = 110 and M∞ = 0.1, respectively.
The Strouhal number, St, based on experimental data is St = 0.1711 and the mean value of the drag coefficient, CD, is
expected to be close to 1.34.63 The radius of the cylinder is di = 0.0001 m. For the simulations, a cylindrical computational
domain was used which is comprised of the cylindrical-shaped volume between two cylinders of diameter di = 0.0001 m
and do = 0.004 m and extruded in the third direction over a length of L = 0.002 m. The latter places the outer boundary
about 40 diameters away from the inner boundary of the cylinder. The initial and boundary conditions used here are
similar to those described by Ivan and Groth.28

A quasi-steady periodic solution with periodic vortex shedding leading to the formation of a so-called a Kármán vortex
street was first obtained using the explicit RK4 scheme on a body-fitted O-grid mesh consisting of 1024 self-similar grid
blocks, each containing 8 × 16 × 4 cells, having a total of 524,288 computational cells. Figure 9 depicts the predicted
density distribution, showing the periodic shedding of the vortices, obtained at the end of this initial simulation period
at t = 6 (10)−5 s. All subsequent simulations were then restarted from this initial physical time of t0 = 6 (10)−5 s and
the computations were continued for a total computational time of 24 h on 1024 processors with a number of different
configurations for the restarted simulations. For one set of simulations, the ESDIRK4 scheme was used with four different
values for the size of the time step: Δt = 1 (10)−7, Δt = 1 (10)−8, Δt = 1 (10)−9, and Δt = 1 (10)−10. In the fifth simulation,
the explicit RK4 scheme was used with the time step satisfying both the CFL condition and Neumann conditions for
the viscous terms and having a value of 1 (10)−10. Finally, the BDF4 time marching scheme was subsequently used in
simulations with time steps of Δt = 5 (10)−9, Δt = 1 (10)−9, Δt = 5 (10)−10, and Δt = 1 (10)−10.

The predicted unsteady drag coefficient, CD, as a function of time obtained using the reference explicit RK4 scheme is
depicted in Figure 10 (top panel, orange colored curve). The numerical mean drag is 1.346 which is in very good agreement
with References 28,63. The period or time length between any two peaks is around 1.64 (10)−5 s. This ultimately constrains
the size of the time step that may be used with the implicit time-marching schemes for accurate predictions. The largest
time step for ESDIRK4, Δt = 1 (10)−7, provides about 86 time steps to describe the period of oscillations for the drag,
which of course is associated with the vortex shedding. The predicted temporal variations of CD for the ESDIRK4 and RK4
simulations are also given in Figure 10 (top panel, blue, green, red, black and orange colored curves, respectively). The
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F I G U R E 9 Numerical validation 4: Predicted instantaneous distribution of the density, 𝜌, at t = 1.20(10)−4 s for unsteady, subsonic,
laminar flow past a circular cylinder with a free-stream Mach number of M∞ = 0.1 and Reynolds number of Re = 110 obtained using the
fourth-order, CENO, finite-volume method combined with the explicit RK4 time marching scheme [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 10 Numerical validation 4: (top) Predicted time histories of the unsteady drag coefficient, CD, obtained using the ESDIRK4
scheme for the time step Δt = 1 (10)−7 (blue), Δt = 1 (10)−8 (green), Δt = 1 (10)−9 (red), and Δt = 1 (10)−10 (black) compared with the
reference solution of the RK4 method (orange); (bottom) predicted time histories of the unsteady drag coefficient, CD, obtained using the
BDF4 scheme for Δt = 5 (10)−9 (gray), Δt = 1 (10)−9 (blue), Δt = 5 (10)−10 (green), and Δt = 1 (10)−10 (red) compared with the reference
solution of the RK4 method (orange) [Colour figure can be viewed at wileyonlinelibrary.com]
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time histories of this figure clearly demonstrate that the implicit ESDIRK4 scheme outperforms the explicit RK4 method,
in terms of the total length of simulated time for a fixed computational cost (i.e., 24 × 1024 = 24, 576 CPU core hours), for
the two larger time steps Δt = 1 (10)−8 (green) and Δt = 1 (10)−7 (blue). Additional predicted time histories of the drag
coefficient for the BDF4 simulations are shown in Figure 10 (bottom panel, gray, yellow, purple, and pink colored curves).
It is evident that, for time steps larger than 1 (10)−9, the BDF4 scheme proved to be unstable and the drag coefficient
diverges from the expected periodic behavior. The divergent results correspond to the gray curve of BDF4 - Δt = 5 (10)−9

shown in Figure 10 (bottom). For a time step equal to that used in the RK4 simulation, Δt = 1 (10)−10, and up to a time
step of Δt = 1 (10)−9, the BDF4 scheme was found to be stable for cylinder flow problem.

The efficiency,  , of the ESDIRK4 and BDF4 implicit time-marching schemes, relative to the explicit RK4 method, is
estimated herein using

 =
tS
end − t0

tRK4
end − t0

, (75)

where tS
end is the final physical time obtained for scheme S at the end of the 24-h simulation. The resulting efficien-

cies for the ESDIRK4 simulations are ESDIRK4−Δt=1(10)−7 = 6.82, ESDIRK4−Δt=1(10)−8 = 2.49, ESDIRK4−Δt=1(10)−9 = 0.63, and
ESDIRK4−Δt=1(10)−10 = 0.12, respectively. Conversely, the accuracy, , of the implicit time-marching schemes for the vortex
shedding simulations, relative to the RK4 method, can also be estimate in term of the computed unsteady drag coefficient
for the cylinder

 =
‖‖CS

D − CRK4
D

‖‖1‖‖CRK4
D

‖‖1

, (76)

where ||CS
D − CRK4

D ||1 is the L1-norm such that

‖‖‖CS
D − CRK4

D
‖‖‖1

= (t1 − t0)
N

N∑
i=0

|||CSi

D − CRK4i

D
||| , (77)

where t1 = min(tS
end, t

RK4
end ), N is the number of points between t0 and t1 in the RK4 temporal grid and CS

D is the drag
of the implicit scheme, S, interpolated on to the RK4 temporal grid. The accuracy estimates obtained for the ESDIRK4
simulations are ESDIRK4−Δt=1(10)−7 = 2.12 (10)−6, ESDIRK4−Δt=1(10)−8 = 3.42 (10)−9, ESDIRK4−Δt=1(10)−9 = 9.67 (10)−12, and
lastly ESDIRK4−Δt=1(10)−10 = 4.1 (10)−14, respectively. These values for  and  indicate that while there are some sacrifices
in terms of solution accuracy in going to the larger time steps with the ESDIRK4 scheme, these errors may be acceptable
depending on the application, and for stiff applications speedup in terms of reduced computational times can be realized.
Note also that the test problem of Figure 10 is only moderately stiff, and increasing the grid resolution would increase the
stiffness.

Finally, for the BDF4 scheme, the following measures of the efficiency and accuracy measures were obtained:
BDF4−Δt=1(10)−9 = 0.53 and BDF4−Δt=1(10)−9 = 5.43 (10)−12 for Δt = 1 (10)−9; BDF4−Δt=5(10)−10 = 0.31 and BDF4−Δt=5(10)−10 =
2.45 (10)−13 for Δt = 5 (10)−10 and BDF4−Δt=1(10)−10 = 0.07 and BDF4−Δt=1(10)−10 = 2.16 (10)−14 for Δt = 1 (10)−10 indicat-
ing very good accuracy but rather poor computational efficiency due to the rather restrictive upper bound on the time
step for the vortex shedding simulation.

The computational savings provided by employing the ESDIRK4 scheme over the conditionally stable RK4 method
are summarized in Figure 11. For these purposes, the accuracy of the solutions has been estimated by comparing the
predicted value of the x-direction component of the flow velocity over one full oscillation of the vortex shedding pro-
cess. As there is no analytical solution for this case, the solution error is calculated with reference to a computed solution
obtained using a very small time step (i.e., Δt = 5 (10)−12). Figure 11 depicts this estimated error in the predicted tempo-
ral variation of the x-direction component of the flow velocity as a function of the total computational CPU time (left)
and the size of the physical time step (right) used to obtain the unsteady vortex-shedding solution. It can be seen that
rather significant computational savings are provided by the ESDIRK4 scheme without significantly compromising the
global accuracy of the solution. Overall, the slight loss of accuracy incurred in using ESDIRK4 scheme is thought to be
outweighed by the computational savings afforded by the use of a larger time step. The numerical results for the vor-
tex shedding problem show that the implicit, A-stable, ESDIRK4, time-marching scheme is both an efficient and stable
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F I G U R E 11 Numerical validation 4: Estimated error in the x-direction component of the flow velocity as a function of the total CPU
time for the simulation (left) and as a function of the size of the time step,Δt, (right) obtained using the RK2, RK4, and ESDIRK4 time marching
schemes when simulating the unsteady viscous vortex shedding flow problem [Colour figure can be viewed at wileyonlinelibrary.com]

method. When combined with CENO finite-volume scheme, the ESDIRK scheme is capable of outperforming standard
explicit time stepping schemes in terms of computational work or effort for relatively stiff problems. On the other hand,
the BDF4 scheme, which is not A-stable, was found to be unstable even for time steps that are not large compared with
stable time step sizes of comparable explicit time stepping methods. For example, a value of Δt = 5 (10)−9 proved to be
unstable while stable RK4 results could be obtained for Δt = 1 (10)−10.

5.5 Numerical validation 5: 1D Sod shock tube problem

While the focus of the present study is the formulation and assessment of high-order implicit time-stepping schemes in
combination with the CENO finite-volume method for application to smooth unsteady flows having regular solutions
and the formulation and application to problems with nonsmooth solution will be considered in future follow-on studies,
the capabilities of the proposed high-order implicit time-stepping schemes for several nonsmooth problems, for example,
with shocks and/or discontinuities, is now investigated thus providing a starting point for the follow-on research. As a first
nonsmooth flow case, the well-known 1D Sod shock tube problem61 for the inviscid Euler equations of gas dynamics is
examined here. For the purpose of this validation study, the fourth-order CENO method for spatial discretization coupled
with the fourth-order RK4, ESDIRK4, and BDF4 time integrators was applied to the solution of the Sod problem using
various 1D grid resolutions. The HLLE flux function was used in this case. The initial data for the Sod shock tube problem
associated with the one-dimensional coordinate, x, is given by61

(𝜌, v, p) =

{
(𝜌0, 0, p0), for x < 0,
(8𝜌0, 0, 10p0), for x > 0,

(78)

where here 𝜌0 and p0 are the standard atmospheric density of dry air and standard atmospheric pressure at sea level,
respectively.

Figure 12 depicts the numerical approximations obtained using both the explicit and implicit time-stepping schemes
on the increasingly finer meshes corresponding to Nx = 64, 128, 256, 512 uniformly spaced cells in the x-direction,
respectively, on x ∈ [−1∕2, 1∕2] for the 1D Sod shock tube problem. The step size, Δt, for the RK4 scheme was restricted
to a relatively small value corresponding to a Courant number of 𝜈CFL = 0.25. For comparison purposes, numerical results
are also given in the figure for the related second-order limited least-squares spatial discretization scheme with Venkatakr-
ishnan limiter50 coupled with the RK2 time marching method with a Courant number of 𝜈CFL = 0.25. For this value
of the CFL or Courant number, the RK2 time marching scheme applied to the semidiscrete form of the ODEs result-
ing from the limited linear least squares spatial discretization procedure can be shown to satisfy the SSP property as
originally defined by Shu and Osher38,39 and hence this reference second-order numerical solution is expected to be
total-variation-diminishing (TVD) (i.e., monotone, at least for a nonlinear scalar PDE). The exact solution of Sod problem
is also provided in Figure 12 for reference purposes. The latter was determined via solution of the corresponding Riemann
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F I G U R E 12 Numerical validation 5: Predicted density profiles for the 1D Sod tube problem at simulation time t = 0.7 obtained for 1D
mesh sizes of 64 cells (top left), 128 cells (top right), 256 cells (bottom left), 512 cells (bottom right) in the x-coordinate direction using the
second-order limited linear least-squares scheme in space with the explicit RK2 time integrator (LLLS-RK2); the fourth-order CENO scheme
in space with the implicit BDF4 time integrator (CENO4-BDF4); the fourth-order CENO scheme in space with the explicit RK4 time
integrator (CENO4-RK4); and the fourth-order CENO scheme in space with the implicit ESDIKR4 time integrator (CENO4-SDIRK4). The
predicted solutions are also compared with the exact solution of the Sod problem [Colour figure can be viewed at wileyonlinelibrary.com]

problem using the exact Riemann solver of Gottlieb and Groth.64 For the high-order implicit time marching methods, CFL
or Courant numbers of 𝜈CFL = 0.5 and 𝜈CFL = 1 were used for the BDF4 and ESDIRK4 time marching schemes, respec-
tively. It is noted that for higher values of 𝜈CFL, that is, for 𝜈CFL > 0.5 and 𝜈CFL > 1 respectively, the BDF4 and ESDIRK4 fail
to provide solutions due to loss of solution monotonicity and the occurrence of nonphysical solution values (i.e., negative
densities and/or energies).

As can be observed from Figure 12, the explicit RK4 and implicit BDF4 and ESDIRK4 methods coupled with the
fourth-order CENO scheme provide comparable predictions for the Sod problem and the latter are virtually equivalent
to those of the TVD limited least-squares spatial scheme coupled with the SSP RK2 time marching method with respect
to their shock-capturing capability. In particular, the predicted density profiles captured by the high-order schemes are
almost indistinguishable on all meshes considered and are very similar to those of the second-order SSP RK2 results.
It should be noted that the Sod problem largely involves a sequence of shocks or discontinuities separated by regions
with constant solution values and hence the improvements offered by the high-order spatial accuracy of the CENO
finite-volume scheme and BDF4 and ESDIRK4 time marching schemes are not expected to be significant as the smooth-
ness indicator and limiter will be active near the shocks and discontinuities to enforce solution monotonicity and the
constant flow regions are of course well captured by standard lower order scheme. Nevertheless, the numerical results for
this case provide evidence for the reliable shock-capturing properties of the proposed high-order implicit schemes, at least
for modest time steps, and the feasibility of the inner nonlinear solvers similar to those of the ESDIRK4 method coupled
with the fourth-order CENO spatial discretization scheme for handling problems with shocks and contact discontinuities.

5.6 Numerical validation 6: Ideal MHD version of 1D Shu–Osher problem

To further investigate the application of the proposed high-order implicit methods for problems involving shocks, we also
consider the application of the implicit schemes to an extended version of the 1D initial value problem proposed by Shu
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F I G U R E 13 Numerical validation 6: Predicted density profiles for the 1D Shu–Osher ideal MHD problem at simulation time
t = 679.74 obtained on a 1D mesh size of 768 cells in the x-coordinate direction using the second-order limited linear least-squares scheme in
space with the explicit RK2 time integrator (LLLS-RK2); the fourth-order CENO scheme in space with the implicit BDF4 time integrator
(CENO4-BDF4); the fourth-order CENO scheme in space with the explicit RK4 time integrator (CENO4-RK4); and the fourth-order CENO
scheme in space with the implicit ESDIKR4 time integrator (CENO4-SDIRK4). The predicted solutions are also compared with a reference
solution for the Shu–Osher problem obtained using the combined second-order limited linear least-squares finite-volume and RK2 time
marching schemes (LLLS-RK2) using 4048 computational cells [Colour figure can be viewed at wileyonlinelibrary.com]

and Osher62 to the ideal MHD equations as considered previously by Susanto et al.40 For this case, a sinusoidal density
perturbation is added downstream of a purely advecting superfast shock wave. The interaction of the shock wave with
the sinusoidal varying density field gives rise to fast oscillations and complex flow features downstream of the shock.
For 𝛾 = 5∕3, the unperturbed initial conditions (in terms of vector field components along and perpendicular to the x
coordinate direction of the one-dimensional initial value problem) are given by:40

(𝜌, v,B, p) =

{
(1, 0, (1, 1, 0), 1) for x < 0,
(3.5, (−5.8846, 1.1198, 0), (1, 3.6359, 0), 42.0267) for x > 0,

(79)

and a sinusoidal density perturbation, Δ𝜌, is added to the upstream portion of the density field solution according to

Δ𝜌 = 0.2 sin(5x), for x < 0. (80)

The fourth-order CENO method for spatial discretization coupled with the fourth-order RK4, ESDIRK4, and BDF4
time integrators was again applied to the solution of this problem using a one-dimensional mesh consisting of Nx = 768
uniformly spaced computational cells on x ∈ [−7.5, 7.5] and for a maximum simulated time of t = 679.74. A CFL number
of 𝜈CFL = 0.25 and local Lax–Friedrichs flux function were used in each case. For comparison, numerical predictions were
also obtained using the second-order limited least-squares spatial discretization scheme with Venkatakrishnan limiter
coupled with the SSP RK2 time marching method with a Courant number of 𝜈CFL = 0.25 for mesh sizes consisting of
768 and 4048 cells. The coarse mesh second-order solution provides a means of measuring of the relative improvement
offered by the high-order discretization methods and, as an analytical solution is not available for this case, the fine mesh
result serves as a reference “exact” solution.

A comparison of the predicted density profiles of the various high-order time marchings coupled to the fourth-order
CENO finite-volume scheme is given in Figure 13. Again, it is clear that for this relatively modest CFL number of 𝜈CFL =
0.25, the high-order time marching schemes combined with the CENO approach are stable at the shock and do not
produce spurious oscillations. Furthermore, unlike in the Sod problem for the same number of computational cells, the
fourth-order methods captures here the small-scale flow features following the shock much better than the reference SSP
second-order method. It should be noted that, as for the Sod problem, as the Courant number, 𝜈CFL, was increased for the
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Shu–Osher problem and made to approach unity the nonmonotone behavior of the BDF4 and ESDIRK4 time marching
scheme solutions becomes significant and stable physically realizable solutions could not be obtained.

6 CONCLUSION

A numerical investigation of different high-order implicit time-stepping methods, namely, the BDF4, ESDIRK4, and
Rosenbrock-type ROS34PW2 methods, coupled with the high-order, CENO, finite-volume, spatial discretization scheme
in a method of lines framework has been presented. These schemes have been applied to the simulation of a number of
unsteady CFD flow problems associated with the Euler, ideal and resistive MHD, and Navier–Stokes equations of com-
pressible gases and plasmas. It has been shown that, in case of smooth stiff problems, the implicit ESDIRK4 time integrator
is both robust and accurate and can be considerably more efficient in terms of computational costs for a comparable accu-
racy compared with the standard explicit RK4 scheme. Larger cost savings can be achieved thanks to the much larger
choice of time step sizes possible with this implicit method, which compensates for the higher costs per time step. It was
found that the Rosenbrock-type ROS34PW2 scheme appears to suffer from accuracy issues on fine grids, and it suffers
from robustness issues for stiff problems. Furthermore, while the BDF4 scheme was successfully applied for simulations
for the Euler and MHD equations, it suffered from stability issues for the Navier–Stokes simulations. Two additional
nonsmooth problems involving shocks were also considered, showing that the proposed fourth-order accurate implicit
approach maintains positivity via the fourth-order accurate CENO spatial discretization for moderate CFL numbers. The
application of implicit time stepping methods for problems with shocks while using large time steps will be the subject
of further follow-on research.
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