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Abstract

A multi-velocity formulation is proposed for the solution of an Eulerian representation of an inert, disperse, and dilute
particle-phase of a gas-particle flow. Single-velocity formulations are capable of predicting regions of zero particle concen-
tration but are problematic with crossing particle trajectories or compression waves. The multi-velocity formulation
described here can account for crossing particle trajectories by splitting the particle-phase into distinct velocity families
which are transported separately in the flow. Switching of the particle families at solid boundaries and due to momentum
transfer with the gas-phase is conducted in a manner that enforces conservation of mass, momentum, and energy. This
numerical method is combined with a parallel block-based adaptive mesh refinement algorithm that is very effective in
treating problems with disparate length scales. The block-based data structure lends itself naturally to domain decompo-
sition and thereby enables efficient and scalable implementations of the algorithm on distributed-memory multi-processor
architectures. Numerical results are described to demonstrate the capabilities of the approach for predicting gas-particle
flows.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Both Lagrangian and Eulerian formulations are commonly used in the scientific community when treating
the motion of an inert (non-reacting), dilute (negligible volume fraction), and disperse (negligible particle–
particle collisions) particle-phase coupled with a fluid. As a consequence of the assumptions of an inert and
dilute particle-phase, there is no interaction between the phases due to mass transfer or volume effects.
However, interaction between the phases occurs due to momentum (drag) and heat transfer caused by the col-
lisions between the solid particles and the gas molecules. This collision process tends to relax the system into
an equilibrium state in which the two phases are of an equal velocity and temperature.
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In a Lagrangian formulation, the trajectories of individual particles are tracked (see for example the work
by Najjar et al. (2000) and Patankar and Joseph (2001a,b)). A set of ordinary differential equations is used to
track the translational and rotational motion of the particle as well as the particle’s temperature. Although
conceptually straight-forward to implement, Lagrangian methods can be prohibitively expensive since a large
number of particles is required to achieve a realistic concentration of particles with a distribution of charac-
teristics (such as mass, diameter, and specific heat). Ad hoc puff models, where simulated particles represent a
cloud of actual particles, are often employed to enable simulations with realistic concentrations.

In an Eulerian formulation the particle-phase is treated as a continuum and a set of partial differential
equations representing the conservation of mass (concentration), momentum, and energy is used to govern
the motion of the particle-phase (Saurel et al., 1994; Slater and Young, 2001; Saito et al., 2003; Igra et al.,
2004). The Eulerian framework can readily cope with particles having a distribution of sizes and characteris-
tics. This can be accomplished by considering multiple families of different particles, each with their own mass,
momentum, and energy. A set of governing equations is then required for each particle family. It has been
well-established that the set of partial differential equations governing dilute and disperse particle flow is both
hyperbolic and degenerate (Saurel et al., 1994; Slater and Young, 2001; Sauerwein and Fendell, 1965). The
degeneracy is a direct result of the assumptions that the particle volume fraction is negligible (dilute) and that
the effects of inter-particle collisions are not important (disperse). The lack of particle collisions means that
there are no normal surface forces produced by the random motion of the particles themselves and hence there
is no pressure-like term (or viscous-like term) in the particle momentum and energy equations. Physically, the
main implications of the degeneracy are twofold. First, particle vacuums can exist as there are no direct
pressure forces to drive the particles from regions of high concentrations to those with lower concentrations.
Moreover, as interactions between particles have been neglected, the paths of particles can cross. Faster
moving particles can freely over-take and pass slower moving particles without being subject to any particle–
particle interaction forces.

From a mathematical perspective, the degenerate nature of the gas-particle flow equations must be
accounted for when designing a numerical scheme for their solution. Although, Lagrangian modelling
methods can readily deal with particle trajectories that cross, Eulerian finite-volume methods can produce
inaccurate and physically incorrect numerical solutions. This is a result of insufficient characteristic fields from
which to reconstruct the solution and therefore solution information and accuracy can be lost. The solution of
the particle-phase Riemann problem proposed by Saurel et al. (1994) allows for particle vacuums and for
particle paths to cross, however, flows involving the compression of the particle-phase, such as at reflection
boundary conditions, are problematic. In their paper, Saurel et al. discussed but did not pursue a multi-
velocity treatment of the particle-phase, in which the particle-field is split up into distinct velocity families
and are advected separately in the flow. Though this method requires additional computing resources in terms
of both memory and computing time, particle compression waves are permitted and, therefore, crossing
trajectories and reflection boundary conditions can be more realistically modelled.

The design and implementation of a multi-velocity formulation of the particle-phase is the topic of the cur-
rent paper. For two-dimensional flow, the particle-phase is decomposed into four distinct velocity families,
with velocities in the four quadrants of velocity space associated with particles travelling in the north-east,
north-west, south-west, and south-east directions. Each particle family is treated separately. The flux of the
particle-phase at cell interfaces is then determined using a simplified version of the Riemann solution defined
by Saurel et al. (1994). Switching of the particle velocity families at solid boundaries and due to momentum
transfer with the gas-phase is conducted in a manner that enforces conservation of mass, momentum, and
energy.

The organization of the paper is as follows. The governing equations for an Eulerian formulation of an
inviscid gas-particle flow are reviewed in the next section and the numerical algorithm is described in the
following section. An eigenanalysis and a dispersion analysis of the one-dimensional form of the gas-particle
flow equations are conducted to gain the necessary insight into the wave structure and dynamic behaviour of
the system equations required for constructing an algorithm for their numerical solution. A cell-centred
upwind finite-volume scheme is proposed for the solution of the governing equations. Both single-velocity
and multi-velocity particle-phase formulations are discussed. The finite-volume scheme has been developed
in coordination with a block-based adaptive mesh refinement (AMR) algorithm that automatically adapts
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the computational grid to the solution of the governing equations and can be very effective in treating
problems with disparate length scales. In addition, this block-based data structure lends itself naturally to
domain decomposition and has thereby enabled efficient and scalable implementations of the algorithm on
distributed-memory multi-processor architectures. The AMR scheme and the parallel implementation are also
discussed in this section. Finally, numerical test cases are described to demonstrate the validity and capabilities
of the multi-velocity formulation.

2. Governing equations of motion

2.1. Governing equations of motion

The equations used herein to describe the motion of a coupled gas-particle flow are now reviewed (Marble,
1970; Rudinger, 1980). The compressible Euler equations are used to model the motion of the calorically
perfect gas-phase and an Eulerian formulation is used to govern the behaviour of the inert, dilute, and disperse
particle-phase that is presented here for N particle families. Each particle family can have distinct sizes and
characteristics and has its own mass, momentum, and energy. The conservation of mass (continuity equation)
for the gas and particle-phases are given by
oq
ot
þr � ðq~vÞ ¼ 0; ð1Þ

orpi

ot
þr � ðrpi

~uiÞ ¼ 0 for i ¼ 1; . . . ;N ; ð2Þ
where q and~v are the gas-phase density and velocity, and rpi
and~ui are the particle-phase concentration and

velocity for the ith particle family.
A strong interaction can exist between the relatively heavy solid particles and the gas due to momentum

transfer (drag) between the two phases. The conservation of momentum for the gas and particle phases are
given by
o

ot
ðq~vÞ þ r � ðq~v~vþ p~IÞ ¼ �

XN

i¼1

rpi

svi

ð~v�~viÞ; ð3Þ

o

ot
ðrpi

~uiÞ þ r � ðrpi
~ui~uiÞ ¼

rpi

svi

ð~v�~viÞ for i ¼ 1; . . . ;N ; ð4Þ
where~I is the unit dyad and p is the gas-phase pressure. The momentum (drag) transfer term has been written
in terms of a relaxation time, sv given by
sv ¼
mpG

3pdplf ðRepÞ
; ð5Þ
where the particles are assumed to be spherical and rigid. Particle–particle interactions on drag are neglected.
The function f(Rep) is a non-linear correction that extends Stokes drag law, for which f(Rep) = 1, for single
particles to higher slip Reynolds numbers. The drag law can be written as
CD ¼
24

Rep
f ðRepÞ ¼

24

Rep
1þ d1Red2

p þ
Rep

24

d3

1þ d4=Red5
p

 !
; ð6Þ
where the coefficients for five drag laws are listed in Table 1. The first set of coefficients correspond to Stokes
drag, which is valid for very low slip Reynolds numbers. The Klyachko–Putnam drag law extends Stokes
drag to moderate slip Reynolds numbers (Rudinger, 1980). The Turton and Levenspiel (1986) and Haider
and Levenspiel (1989) drag laws are valid for slip Reynolds numbers up to one-hundred thousand, Rep < 105.

If the particle size is small or comparable to the mean free path of the fluid, k, then the assumption of a
continuum flow around the particle is invalid. In this regime, the drag laws will over predict the drag force
on the particle. A correction factor, known as the Cunningham correction, G, is included in Eq. (5) to account
for this effect (Rudinger, 1980) as is given by



Table 1
Coefficients for various drag laws

d1 d2 d3 d4 d5

Stokes (Rudinger, 1980) 0 0 0 0 0
Oseen (Rudinger, 1980) 3/16 1 0 0 0
Klyachko–Putnam (Rudinger, 1980) 1/6 2/3 0 0 0
Turton and Levenspiel (1986) 0.173 0.657 0.413 16300 1.09
Haider and Levenspiel (1989) 0.1806 0.6459 0.4251 6880.95 1
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G ¼ 1þ Kn 2:492þ 0:84 exp � 1:74

Kn

� �� �
; ð7Þ
where Kn is the Knudsen number which is defined as Kn = k/dp. This correction factor increases the momen-
tum transfer relaxation time which leads to a decreased drag force.

The gas-phase is taken to be calorically perfect and the total energies of the two phases are given by
E ¼ p
ðc� 1Þ þ

1

2
q~v �~v ¼ qcvT þ

1

2
q~v �~v; ð8Þ

Epi
¼ rpi

cmi T pi
þ 1

2
rpi
~ui �~ui; ð9Þ
where c = cp/cv is the ratio of the specific heats for the gas, p is the gas-phase pressure, cmi is the specific heat of
ith particle family, and T pi

is the ith particle-phase temperature. The ideal gas law provides a relationship be-
tween the gas pressure, p, and temperature, T, p = qRT = qa2/c where a ¼

ffiffiffiffiffiffiffiffiffi
cRT
p

is the sound speed and R is
the gas constant. The conservation of energy for the gas and solid particle-phases can be expressed in terms of
their total energies per unit mass by
oE
ot
þr � ½~vðE þ pÞ� ¼ �

XN

i¼1

rpi

svi

ð~v�~uiÞ �~ui þ
rpi

cp

sT i

ðT � T pi
Þ

� �
; ð10Þ

oEpi

ot
þr � ð~uiEpi

Þ ¼ rpi

svi

ð~v�~uiÞ �~ui þ
rpi

cp

sT i

ðT � T pi
Þ for i ¼ 1; . . . ;N : ð11Þ
The rate of heat transfer between the phases depends on the instantaneous temperature difference (Rudinger,
1980). Igra et al. (2004) observed that due to the lack of the pressure-like term in the particle-phase, the
particle-phase total energy equation can be simplified into a thermal energy equation while maintaining a con-
servative form by subtracting the particle-phase continuity and momentum equations from it. The particle-
phase thermal energy equation is
o�pi

ot
þr � ð~u�pi

Þ ¼ rpi
cp

sT i

ðT � T pi
Þ for i ¼ 1; . . . ;N ; ð12Þ
where �pi
¼ rpi

cmi T pi
is the particle-phase total thermal energy for the ith family.

The relaxation time associated with the heat transfer, sT, is given by
sT ¼
mpcp

2pdpjNu
; ð13Þ
where j is the thermal conductivity of the gas and Nu is the Nusselt number which accounts for increase in
heat transfer due to convection (Rudinger, 1980). For a single particle, the Nusselt number can be expressed
in terms of the slip Reynolds number and the Prandtl number, Pr = lcp/j, as
Nu ¼ 1þ 0:3Pr1=3Re1=2
p : ð14Þ
Note that the ratio of the relaxation times, Eqs. (5) and (13), can be related to the Prandtl number, Pr, by
sT=sv ¼ 3

2
Pr when the non-linear drag correction, Cunningham correction, and convective heat transfer are

ignored.
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2.2. Eigenanalysis

Eqs. (2), (4) and (12) provide an Eulerian description for the particle-phase and are very similar to the Euler
equations for inviscid, compressible gases with the exception of a pressure-like term in the particle-phase
momentum or energy equations. This feature is a direct result of the assumption that the particle-phase is dis-
perse. The lack of particle–particle collisions means that there are no normal surface forces produced by the
random motion of the particles themselves and hence there are no pressure-like term (or viscous-like term) in
the particle momentum and energy equations. The eigenstructure of the one-dimensional form of the preced-
ing two-phase flow equations is now considered in order to gain an understanding of the influence that the
absence of a particle pressure has on the unsteady wave structure of this system of equations before pursuing
a numerical solution.

The one-dimensional, weak conservation form of the governing equations in the case of a single-family
mono-sized particle-phase can be summarized by
oU

ot
þ o

ox
FðUÞ ¼ PðUÞ; ð15Þ
where U = [q,qv,E,rp,rpu,�p]T is the one-dimensional flow state vector of conserved variables, F(U) is the flux
vector, and P(U) is the phase-interaction source vector. In the ‘‘frozen’’ limit, the characteristic times scales of
the particle drag and heat transfer, sv and sT, are assumed to be large relative to the propagation times asso-
ciated with the unsteady wave motion such that the phase-interaction terms can be neglected. In this limit, the
equations governing the gas and particle-phases decouple. An eigenanalysis of the system in the frozen limit
yields the set of real eigenvalues, kk,
k1 ¼ v� a; k2 ¼ v; k3 ¼ vþ a; k4;5;6 ¼ u ð16Þ
indicating the hyperbolic nature of the equations. The first three eigenvalues correspond to the well known
acoustic and convective eigenvalues of the Euler equations. The last three repeated eigenvalues are associated
with the particle-phase. The right eigenvectors corresponding to the frozen-limit eigenvalues are
ð~r1;~r2;~r3;~r4;~r5Þ ¼

1 1 1 0 0

�a=q 0 a=q 0 0

a2 0 a2 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

2
666666664

3
777777775
: ð17Þ
This is an incomplete set of eigenvectors as only five linearly independent eigenvectors can be found for the six
characteristic fields. One eigenvector associated with the k = u eigenvalue is missing. Because of this degener-
acy in the eigensystem, the set of hyperbolic conservation equations governing disperse gas-particle flows is
said to form a degenerate hyperbolic set, a result confirmed in the literature (Saurel et al., 1994; Slater and
Young, 2001; Sauerwein and Fendell, 1965). The degeneracy is a direct result of the assumptions that the
particle volume fraction is negligible (dilute) and that the effects of inter-particle collisions are not important
(disperse). Physically, the main implications of the degeneracy are twofold. First, particle vacuums can exist as
there are no direct pressure forces to drive the particles from regions of high concentrations to those with
lower concentrations. Moreover, as interactions between particles have been neglected, the paths of particles
can cross. Faster moving particles can freely over-take and pass slower moving particles without being subject
to any particle–particle interaction forces.

2.3. Dispersion analysis

A linear dispersion analysis for initial value problems can be used to provide a better understanding of the
dynamic behaviour and wave structure of the coupled gas-particle flow equations. In particular, an analysis of
initial value problems for the linearized one-dimensional form of these equations is considered here. Marble
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conducted a linear dispersion analysis of the boundary value problem for the same system of equations
(Marble, 1970). The analysis of the equilibrium, frozen, and non-equilibrium dispersion relationships follows
the procedure outlined by Groth et al. (1995).

The dispersive wave properties of the one-dimensional form of the gas-particle flow equations given by (15)
can be assessed by considering the linearized primitive form of these equations given by
oW

ot
þ A0

oW

ox
¼ Q0W; ð18Þ
where W = [q,v,T,rp,u,Tp]T is the primitive solution vector and the matrices A0 and Q0 are the linearized
coefficient matrices of the flux and phase-interaction source vectors determined by linearizing the primitive
form of the equations about a quiescent (stationary) equilibrium state W0 ¼ ½q0; 0; T 0; rp0

; 0; T 0�T. For initial
value problems having solutions of the form W = exp[i(xt � nx)], the differential wave operator for the line-
arized equations is defined by the eigenvalue problem given by [ixI � inA0 � Q0]W = 0 where the temporal
frequency, x, can have real and imaginary components, x = xR + ixI, whereas the spatial frequency, n, is
restricted to be real valued. The parameter, n, defines the frequency content of the linearized solution, which
varies from the low frequencies for near equilibrium solutions to high frequencies for non-equilibrium
solutions approaching the frozen limit. The condition for the stability of the solutions is xI > 0.

In the equilibrium limit (sv,sT! 0), the particles and gas are driven by the drag forces and heat transfer to
move with the same velocity ð~u ¼~vÞ and have the same temperature (Tp = T). An equilibrium density can be
defined by setting �q ¼ qþ rp ¼ qð1þ vÞ where v = rp/q is the particle loading factor and is constant for uni-
formly distributed particles. The system of equations in the equilibrium limit can then be reduced to three vari-
ables, in terms of the primitive variables �q, v, and T. In this case, the linearized non-dimensional coefficient
matrix is given by
A0 ¼
0 1 0

R0T 0=a2
0 0 R0T 0=a2

0

0 R0=cv0
0

2
64

3
75; ð19Þ
where T0 is the temperature of the quiescent equilibrium state, a0 ¼
ffiffiffiffiffiffiffiffiffiffi
cRT 0

p
is the sound-speed of the quiescent

equilibrium state and is used as a reference velocity in the dispersion analysis, the equilibrium gas constant and
specific heat ratios are given by R0 ¼ cp0

� cv0
¼ R=ð1þ v0Þ, cv0

¼ ðcv þ v0cmÞ=ð1þ v0Þ,
cp0
¼ ðcp þ v0cmÞ=ð1þ v0Þ, and c0 ¼ cp0

=cv0
. The parameter v0 is the loading ratio of the reference equilibrium

state. The solution of the eigenvalue problem, with k = x/n, provides the equilibrium dispersion relationship
�k½k2 � �a2=a2
0� ¼ 0; ð20Þ
where �a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0R0T 0

p
is the mixture sound-speed. Determination of the roots of this polynomial gives the

following non-dimensional equilibrium wave speeds
k1 ¼ ��a=a0 ¼ �
ffiffiffiffiffiffiffiffiffi
c0=c

p
; k2 ¼ 0; k3 ¼ �a=a0 ¼

ffiffiffiffiffiffiffiffiffi
c0=c

p
: ð21Þ
In the equilibrium limit, the imaginary part of the wave-speed is zero, kI = 0, which corresponds to non-
dissipative, coherent wave propagation.

Now consider the linearized equations in the high-frequency or frozen limit. The linearized and non-
dimensionalized coefficient and source Jacobians are
A0 ¼

0 1 0 0 0 0

RT 0=a2
0 0 RT 0=a2

0 0 0 0

0 R=cv 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; Q0 ¼

t0

sT

0 0 0 0 0 0

0 � 3
2
v0Pr 0 0 3

2
v0Pr 0

0 0 �cv0 0 0 cv0

0 0 0 0 0 0

0 3
2
Pr 0 0 � 3

2
Pr 0

0 0 cp=cm 0 0 �cp=cm

2
666666664

3
777777775
:

ð22Þ
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In the frozen limit, the characteristic time scales of the viscous drag and heat transfer terms, sv and sT, are
assumed to be large relative to the differences in velocity and temperature such that the source matrix Q0

can be neglected. The dispersion relationship in the frozen limit is found by solving
detðkI� A0Þ ¼ �k4½k2 � 1� ¼ 0; ð23Þ
where k = x/n. The solution of this polynomial equation yields the non-dimensional frozen wave speeds
k1 ¼ �1; k2;4;5;6 ¼ 0; k3 ¼ 1: ð24Þ
As in the near-equilibrium limit, the wave-speeds in the frozen limit show non-dissipative, coherent wave prop-
agation since kI = 0 for each wave, including the four convective waves (three associated with the particle-
phase) and two acoustic waves (associated with the gas-phase).

The dispersion relationship for the general non-equilibrium system can be determined by solving the eigen-
value problem for the characteristic wave-speeds, [ixI � inA0 � Q0]W = 0. The resulting dispersion relation-
ship is
k2ðk4 � ic3k
3 � c2k

2 þ ic1kþ c0Þ ¼ 0; ð25Þ
where k = x/n. The spatial frequency, n, can be expressed as n = 2px0/L = a0t0/a0s = t0/s, where t0 is a refer-
ence time scale and L = a0s is the wavelength of the solution. The frozen and equilibrium limits are defined by
high and low frequency solution limits (i.e., s! 0 and s!1, respectively). The coefficients c3, c2, c1, and c0

are given by
c3 ¼ ~sð1þ v0Þ c
cv0

cm
þ 3

2
Pr

� �
;

c2 ¼ 1þ ~s2 3

2
Prcð1þ v0Þ

2 cv0

cm

� �
;

c1 ¼ ~s
3

2
Pr þ ð1þ v0Þ

cp0

cm

� �
;

c0 ¼ ~s2 3

2
Prð1þ v0Þ

cp0

cm

� �
;

where ~s ¼ s=sT is a non-dimensional relaxation time-scale. In the general non-equilibrium case, the
non-dimensional wave speeds, k, can have real and imaginary components, k = kR + ikI, characteristic of dis-
persive wave propagation. Analytic expressions for the non-dimensional wave speeds cannot be found; how-
ever, it is instructive to investigate the dispersion relationship for the non-equilibrium system by numerically
calculating the waves speeds as a function of the solution frequency as controlled by ~s. The coefficients of the
non-equilibrium dispersion relationship are functions of various non-dimensional numbers: Pr; v0; c; cp0

=cm,
and cv0

=cm. The ratio of the equilibrium specific heat at constant pressure and volume with respect to the spe-
cific heat of the non-reacting particle, cp0

=cm and cv0
=cm, are dependent on the gas-type, particle material, and

the particle loading factor of the quiescent equilibrium state whereas the ratio of the gas-phase specific heats is
dependent only on the gas. For the purpose of the current analysis, calorically perfect air, (c,cp) = (1.4,
1004.72 J/kg K) at a density and temperature of 1.0 kg/m3 and 300 K, respectively, and glass beads,
cm = 840 J/kg K, were chosen to represent the physical properties of the gas and particle-phases. The effect
of the frequency content of the linearized solution on the dispersive wave behaviour was then investigated
for various loading factors, v0 and Prandtl numbers, Pr.

Three loading factors were chosen for this analysis: v0 = 0.1, 0.5, and 1. The particle volume fraction at the
maximum loading factor is 4.2 · 10�4 which corresponds to an equilibrium sound speed of 65% of the frozen
sound speed. The assumptions of negligible particle volume fraction (dilute) and particle–particle collisions
(disperse) begin to breakdown in the vicinity of this loading factor. The Prandtl number controls the relative
equilibrium of the two phases between the momentum and heat transfer rates. A unit Prandtl number
indicates that momentum and heat transfer occurs at similar rates. Small Prandtl numbers corresponds to
a system that will reach temperature equilibrium much quicker than that of momentum. Conversely, a large
Prandtl number corresponds to a system that will reach momentum equilibrium much quicker than that of
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temperature. Therefore, the dispersion relationships were calculated for each of the loading factors listed
above for Prandtl numbers of Pr = 1, Pr = 10�3, and Pr = 103 and are plotted in Figs. 1(a), 2(a) and (b),
respectively. The arrows indicate the direction of change from the frozen limit (high frequency) to the equi-
librium limit (low frequency).

Due to the symmetry of the pair of acoustic modes in the imaginary axis, only one of the acoustic modes are
shown in the dispersion relationship figures. As indicated previously in Eq. (24), four zero wave-speeds and
two acoustic modes exist in the frozen limit. Two of the zero wave-speed modes remain undamped for all
solution frequencies and are associated with convective transport of the gas and particle-phase densities.
The other two zero wave-speed modes are also convective modes associated with the transport of differences
in the velocities and temperatures of the two phases. These two modes are undamped in the frozen limit but
are highly attenuated in the equilibrium limit. This is confirmed by the equilibrium wave solution determined
previously, Eq. (21), where the gas and solid phases achieve equal velocity and temperature. The attenuation
rates for the two damped and acoustic modes as a function of the solution wave length are plotted in Fig. 1(b)
for a unit Prandtl number. This plot shows that the two purely damped modes quickly become highly damped
as the wavelength increases (frequency decreases). The acoustic modes have finite damping for more interme-
diate solution frequencies and become undamped once again as the non-equilibrium frozen limit is reached.
The zero damping of the acoustic modes in both the equilibrium and frozen limit is clearly depicted in
Fig. 1. (a) Dispersion relationship and (b) attenuation rates for a Prandtl number of unity, Pr, with various loading factors.

Fig. 2. Dispersion relationships for Prandtl numbers of (a) Pr = 10�3 and (b) Pr = 103 with various loading factors.
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Fig. 1(b) for a unit Prandtl number. It is seen in Fig. 2(a) for a system nearly in temperature equilibrium that
an intermediate temperature equilibrium value of the acoustic wavespeed (with finite damping) occurs before
the system reaches full equilibrium. Similarly, as shown in Fig. 2(b) for a system nearly in momentum equi-
librium an intermediate momentum equilibrium value of the acoustic wavespeed (with finite damping) occurs
before the system reaches full equilibrium.

The preceding dispersion analysis provides a complete description of how the two-phase flow equations
progress from a degenerate hyperbolic system in the frozen limit to a strictly hyperbolic system in the equilib-
rium limit. This more complete picture of the degenerate nature of the Eulerian description was helpful in
formulating the numerical approach described in the next section that alleviates issues associated with the
degeneracy. Note also the interleaving of the non-equilibrium acoustic wave speeds between the frozen and
equilibrium limits. This ensures that the frozen acoustic wavespeeds are the maximum attainable wavespeed.
Therefore, in spite of the existence of the degeneracy in the non-equilibrium limit, stable solutions of the
two-phase flow equations using upwind numerical schemes are attainable.

3. Numerical algorithm

3.1. Finite-volume scheme

In a finite-volume approach, the governing equations are solved in integral form over a domain discretized
into computational cells and, therefore, naturally enforce conservation of the required solution quantities,
such as mass, momentum, and energy. Upwind finite-volume schemes for the equations of compressible gas-
dynamics were originally introduced by Godunov (1959). Application and development of these schemes for
the gas dynamic equations has been well documented in literature. Refer to the recent textbooks by Hirsch
(1990), Laney (1998), and Toro (1999) for a further details.

An explicit higher-order Godunov-type finite-volume scheme is used to solve the gas-particle equations of
interest here (Sachdev et al. (2005a)). In this work, the governing equations are integrated over quadrilateral
cells of a structured multi-block quadrilateral mesh. The preceding finite-volume procedure applied to cell (i, j)
results in the following system of semi-discrete ordinary differential equations:
dU

dt

����
ij

¼ � 1

Aij

X
k

~Fijk
� n̂kDlk þ Pij; ð26Þ
where Aij is the area of cell (i, j), Dlk is the length of the cell face k, and n̂k is the unit vector normal to the cell
face k. The vector U represents the cell-averaged conserved variable solution vector,
U ¼ ½q; qvx; qvy ;E; rp; rpux; rpuy ; �p�T; ð27Þ

where vx and vy are the Cartesian components of the gas velocity~v and ux and uy are the Cartesian components
of the particle velocity ~u. The dyadic quantity ~F ¼ ½Fx;Fy � is the flux dyad with components in the ı̂ and |̂
directions
Fx ¼ ½qvx; qv2
x þ p; qvxvy ; vxðE þ pÞ; rpux; rpu2

x ; rpuxuy ; ux�p�T; ð28Þ
Fy ¼ ½qvy ;qvxvy ; qv2

y þ p; vyðE þ pÞ; rpuy ; rpuxuy ; rpu2
y ; uy�p�T; ð29Þ
and the vector P contains the gas-particle interaction source terms,
P ¼ 0;� rp

sv
ðvx � uxÞ;�

rp

sv
ðvy � uyÞ;�

rp

sv
ð~v�~uÞ �~u� rpcp

sT
ðT � T pÞ;

�

0;
rp

sv
ðvx � uxÞ;

rp

sv
ðvy � uyÞ;

rpcp

sT
ðT � T pÞ

�T

: ð30Þ
The inviscid numerical fluxes at the faces of each cell are determined from the solution of a Riemann problem.
Given the left and right initial conditions, Ul and Ur, at the cell interfaces, the numerical flux is given by
~F � n̂ ¼FðUl;Ur; n̂Þ; ð31Þ
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where F is evaluated by solving a Riemann problem in a direction defined by the normal to the face, n̂. The
left and right initial states are determined using the least squares piece-wise limited linear solution reconstruc-
tion procedure of Barth (1993). The modified limiter of Venkatakrishnan (1993) has also been implemented.

Frozen flow conditions are assumed for the solution of the Riemann problem. In the frozen flow limit the
phase interactions terms vanish and the gas and particle-phases fully decouple. Hence, separate Riemann
problems and solutions can be formulated for the two phases. For the gas-phase, the efficient exact Riemann
solver of Gottlieb and Groth (1988), the approximate Riemann solver of Roe (1981), and various average-
state approximate Riemann solvers (Einfeldt (1988), Toro et al. (1994), Linde (2002)) have all been imple-
mented. Solvers for the solution of the particle-phase Riemann problem, both single- and multi-velocity
formulations are discussed in the next sub-section.

For time-accurate calculations, predictor–corrector time-marching methods are used to integrate the set of
ordinary differential equations that result from the spatial discretization of the governing equations. The
optimally smoothing multi-stage schemes developed by van Leer et al. (1989) are adopted for steady-state
calculations. An estimation of the maximum allowable time-step is given by
Dt ¼ min b min
Dy
jvxj þ a

;
Dx
jvy j þ a

;
Dy
juxj

;
Dx
juy j

� �
; bp minðsT ; svÞ

� �
; ð32Þ
where b is the CFL-number used to ensure stability of the time-stepping scheme and bp is used to restrict the
time-step to be a multiple of the particle-relaxation time-scale.
3.2. Particle-phase Riemann problem

3.2.1. Single-velocity formulation

Determination of the flux values at cell interfaces for the particle-phase is complicated by the degeneracy of
the governing flow equations described above. A particle-phase Riemann solver for a single-velocity formu-
lation was proposed by Saurel et al. (1994). This flux function is now briefly reviewed and its limitations
discussed.

Given the left and right particle-phase initial conditions defined by Wl ¼ ½rpl
; ul; T pl

�T and Wr ¼ ½rpr
; ur; T pr

�T
three particle expansion wave configurations (ul < ur) and three particle compression wave configurations
(ul > ur) were identified by Saurel et al. and used to construct solutions to the Riemann problem. Refer to
Fig. 3. For the expansion configuration, if ul,ur > 0 then the interface solution provided by the solution of
Fig. 3. The six possible wave patterns for the solution of the particle-phase Riemann problem (Saurel et al., 1994).
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the Riemann problem is simply the left state. If ul,ur < 0 then the interface solution state is given by the right
state. A strong expansion occurs when ul < 0 and ur > 0. In this case, the particles of the left and right states are
moving apart in opposite directions, leaving a vacuum state at the interface.

For the compressive configurations (ul > ur), if ul,ur > 0 then the interface solution for the Riemann
problem is the left state and if ul,ur < 0 the solution state is the right state. A strong compression of the par-
ticles occurs when ul > 0 and ur < 0. In the proposed Riemann solver of Saurel et al., the solution state in this
last case is taken by r�p ¼ rpl

þ rpr
, u� ¼ ðrpl

ul þ rpr
urÞ=r�p, and T �p ¼ ðrpl

T pl
þ rpr

T pr
Þ=r�p.

In all three of the compressive cases, the interface solution compromises the actual physics of the particle
motions. For the mildly compressive cases where one solution state is catching up with the other, the solution
information carried by the overtaken particles is partially lost. In reality, this solution information should be
retained. For the more strongly compressive case, the two waves (populations of particles) should simply pass
through each other. Instead, the particle concentrations are directly summed and density weighted averages
are assigned to the particle velocity and temperature. An example of two crossing particle jets predicted using
this single-velocity formulation is shown in Fig. 4(a). The particle jets are crossing at an angle of 45�. Vacuum
conditions are assumed to exist in the channel and so the phase-interaction terms can be neglected. Although
this averaging procedure provides the correct average state for the combined left and right moving particle
populations, it fails to recognize the presence of the two oppositely moving populations and solution content
is lost and not retained in the numerical approximation of the solution. A single particle jet is formed with no
transverse momentum. This loss of information can lead to the unphysical results and difficulties near solid
boundaries as described by Saurel et al. and by Slater and Young (2001) and is a basic limitation of any
single-velocity particle-phase Eulerian formulation.
3.2.2. Multi-velocity formulation

To alleviate the issues involved with compression waves that occur when using a single-velocity formulation
a multi-velocity treatment of the particle-phase is proposed in which the particle-field is split up into distinct
velocity families and are advected separately in the flow. For two-dimensional flow, the particle-phase is
decomposed into four distinct velocity families, with velocities in the north-east (ux > 0,uy P 0), north-west
(ux 6 0,uy > 0), south-west (ux < 0,uy 6 0), and south-east (ux P 0,uy < 0) directions of velocity space. Eight
velocity families would be required for three-dimensional flow.

Each family of particles are assigned their own mass, momentum, and energy and, therefore, are governed
by their own equations of motion. The flux at cell interfaces is determined individually for each particle-family
using a simplified version of the single-velocity formulation particle-phase Riemann solver of Saurel et al.
Crossing particle trajectories are inherently accounted for in this approach as seen by the particle-phase
streak-lines in Fig. 4(b) for two-impinging jets (interaction with the gas-phase is neglected). Moreover,
reflection boundary conditions can be realistically modelled by simply reflecting the particle-phase to the
appropriate particle family. For example, as shown in Fig. 4(b), a particle-wave travelling in the south-east
direction perfectly reflects at the solid lower boundary and continues travelling in the north-east direction
Fig. 4. Numerical prediction of the particle-phase concentration contours and streak-lines for two impinging particle jets in a vacuum
using single-velocity (a) and multi-velocity (b) formulations.
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without losing mass, momentum, or energy. It should be noted that the particle concentration contours plot-
ted in Fig. 4(b) are for the total concentration found by summing the concentrations of all four two-dimen-
sional flow particle velocity families.

Switching of the particle-phase velocity family can also be required due to the momentum phase interaction
with the gas-phase as the system tends towards equilibrium. In this case, a particle-wave travelling in a differ-
ent direction than the gas-phase may eventually be pulled into a different velocity family. To allow for this, the
particle state for each family is averaged into the appropriate family in every computational cell of the mesh
after each stage of the time-stepping scheme as required. A mass average is used, thereby enforcing conserva-
tion of mass, momentum, and energy. However, it should be noted that some solution content can be lost in
the averaging process. An illustration of the change of velocity family due to momentum transfer is provided
in Fig. 5 for a one-dimensional problem which involves two velocity families (left and right travelling).
Initially, at t0 a sine-squared particle-wave is travelling at uniform velocity in the opposite direction of the
gas-phase which is travelling to the right at Mach 0.5 and is contained in the left-travelling velocity family.
Due to drag, the system will relax into an equilibrium state in which both phases have the same momentum.
At t1 it is seen that the particle wave has slowed down but is still associated with the left-travelling velocity
family. As soon as the velocity of the particle wave switches from negative to positive, approximately at t2

the particle state is mass-averaged into the right-travelling velocity family and the left-travelling velocity fam-
ily is deleted. The particle-wave then continues to relax into an equilibrium state as seen from times t3 and t4.

A limitation of the multi-velocity treatment and the averaging approach described above is that although
crossing particle trajectories can be accurately modelled, weakly compressive particle-phase flows with one
particle-wave overtaking a slower particle-wave will produce one average wave, as found in the single-velocity
formulation. This method also requires some additional computing resources in terms of both memory and
computing time. However, stronger particle compression waves are easily reproduced and, therefore, crossing
trajectories and reflection boundary conditions can be realistically handled.
3.3. Parallel adaptive mesh refinement

Adaptive mesh refinement (AMR) techniques which automatically adapt the computational grid to the
solution of the governing partial differential equations can be very effective in treating problems with disparate
length scales. A description of the block-based approach used here was provided by Sachdev et al. (2005a) and
has been successfully applied to laminar and turbulent diffusion flames (Northrup and Groth, 2005; Gao and
Groth, 2006), micron-scale flows (McDonald and Groth, 2005), and multi-phase rocket motor core flows
(Sachdev et al., 2005a,b).

In this work, the governing equations are integrated to obtain area-averaged solution quantities within
quadrilateral computational cells and these cells are embedded in structured blocks consisting of Nx · Ny cells,
where Nx and Ny are even, but not necessarily equal integers. Solution data associated with each block are
stored in indexed array data structures and it is therefore straightforward to obtain solution information from
neighbouring cells within blocks. Mesh adaptation is accomplished by the dividing and coarsening of
Fig. 5. Illustration of the change in velocity families due to momentum transfer between the two phases for a particle-wave with a sine-
squared concentration distribution. The particle-wave is initially moving in the opposite direction of the gas-phase.
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appropriate solution blocks. In regions requiring increased cell resolution, a ‘‘parent’’ block is refined by
dividing itself into four ‘‘children’’ or ‘‘offspring’’. Each of the four quadrants or sectors of a parent block
becomes a new block having the same number of cells as the parent and thereby doubling the cell resolution
in the region of interest. This process can be reversed in regions that are deemed over-resolved and four
children are coarsened into a single parent block. The mesh refinement is constrained such that the grid
resolution changes by only a factor of two between adjacent blocks and the minimum resolution is not less
than that of the initial mesh. Standard multi-grid-type restriction and prolongation operators are used to
evaluate the solution on all blocks created by the coarsening and division processes, respectively. In our
previous work, the coarsening and division of blocks are directed using multiple physics-based refinement
criteria. In this work, blocks containing disparate particle concentrations (areas of zero concentration or
peaks) are flagged for division and blocks with constant particle concentration are flagged for coarsening. This
refinement criteria allows for computational blocks to be clustered at areas of interest with respect to the
particle-phase. An example of the application of the parallel AMR scheme to a gas-particle flow is described
in Section 4.2.

A hierarchical tree-like data structure with multiple ‘‘roots’’, multiple ‘‘trees’’, and additional interconnects
between the ‘‘leaves’’ of the trees is used to keep track of mesh refinement and the connectivity between solu-
tion blocks. This interconnected ‘‘forest’’ data structure is depicted in Fig. 6. The blocks of the initial mesh are
the roots of the forest which are stored in an indexed array data structure. Associated with each root is a
separate ‘‘quadtree’’ data structure that contains all of the blocks making up the leaves of the tree created from
the original parent blocks during mesh refinement. One of the advantages of the hierarchical quadtree data
structure is that it readily permits local mesh refinement. Local modifications to the multi-block mesh can
be performed without re-gridding the entire mesh and re-calculating solution block connectivity.

Although the block-based AMR approach described above is somewhat less flexible and incurs some
inefficiencies in solution resolution as compared to a cell-based approaches (i.e., for the same solution accu-
racy, generally more computational cells are introduced in the adapted grid), the block-based method offers
many advantages over cell-based techniques when parallel implementation of the solution algorithm is consid-
ered and computational performance issues are taken into account. In particular, the multi-block quadrilateral
mesh and quadtree data structure lends itself naturally to domain decomposition and thereby enables efficient
and scalable implementations of the solution algorithm for the multi-phase flow equations on distributed-
memory multi-processor architectures. A description of the parallel implementation of the algorithm was
given by Sachdev et al. (2005a). An estimate of the relative parallel speed-up and efficiency of the algorithm
is given in Fig. 7 for a fixed size problem involving the crossing particle jets discussed in the previous sub-
section which is performed gain in the next section with phase-interaction. It can be seen that the algorithm
is nearly 100% efficient over 64 processors.
Fig. 6. Solution blocks of a computational mesh with four refinement levels originating from one initial block and the associated
hierarchical quadtree data structure. Interconnects to neighbours are not shown.



Fig. 7. Relative parallel speed-up, Sp = (t1/tp)p, and efficiency, Ep = Sp/p, for a fixed-size problem with 64 blocks and 55,296 cells (36 · 24)
using up to 64 processors.
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4. Numerical examples

4.1. Crossing particle jets

In Section 3.2 a problem involving two impinging particle jets was used to demonstrate the ability of the
multi-velocity formulation to accurately predict such flows. Here, the same problem is considered while
including the effects of the phase-interaction terms. Initially, the channel contains a uniform quiescent gas
at atmospheric conditions with zero particle concentration. As done previously, the particle jets enter at
the top and bottom of the channel at a 45� angle from the walls at a speed of 80% of the gas-phase sound
speed, j~uj ¼ 0:8a. Reflective boundary conditions are applied at the top and bottom surfaces of the channel
walls. Fixed and constant extrapolation boundary conditions are used at the left and right boundaries of
the domain, respectively. The computation is performed using both the single- and multi-velocity formulations
and the results are plotted in Figs. 8 and 9 at 16.5 ms and 43 ms, respectively. Particle-phase concentration
contours and streamlines are shown.

As shown in Fig. 8, the prediction of the the particle-phase concentration by both formulations is nearly
identical soon after the collision of the particle-jets. However, the multi-velocity formulation demonstrates
Fig. 8. Numerical prediction of the particle-phase concentration contours and streak-lines for two impinging particle jets in a quiescent
gas at t = 16.5 ms using single-velocity (a) and multi-velocity (b) formulations.



Fig. 9. Numerical prediction of the particle-phase concentration contours and streak-lines for two impinging particle jets in a quiescent
gas at t = 43 ms using single-velocity (a) and multi-velocity (b) formulations.
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a definite crossing of the particle-phase streamlines that is absent from the single-velocity formulation. More-
over, the inability of the single-velocity formulation to allow the particle-phase streamlines to cross leads to an
instability in the computation that is seen in Fig. 9. This instability is related to the mathematical properties of
the Eulerian description and the numerical solution scheme. It has similarities to a Kelvin–Helinholtz insta-
bility in fluid dynamics. It is experienced only when using a higher-order scheme and is a result of the
higher-order reconstruction in areas with strong shear layers in the particle-phase. The multi-velocity formu-
lation does not experience this instability since shear layers for each velocity family are avoided and the
impinging jets simply pass through each other, thereby providing a symmetric solution. It should be noted that
the multi-velocity formulation requires some additional computing resources in terms of both memory (12
additional variables) and approximately one-and-a-half times the computing time of the single-velocity
formulation.
4.2. Solid propellant rocket motor flow

Predictions of solid propellant rocket motor operation for a configuration typical of a CRV-7 rocket system
are now described to demonstrate the viability and capability of the proposed multi-velocity formulation for
computing practical multi-phase flows. The CRV-7 rocket system contains a non-aluminized propellant
composed of 80% oxidizer (ammonium perchlorate, AP) and 20% fuel (hydroxyl terminated polybutadiene,
HTPB). As is typical in some tactical rocketry, inert aluminium oxide particles account for 3% of the solid
propellant by mass. Therefore, the modelling of burning particles, particle–particle collision processes (such
as agglomeration), and the transport of smoke are not required for the present work. In addition, the propel-
lant ignition is assumed to be instantaneous and the burning rate dependent only on the local pressure as given
by the empirical St. Robert relation (Kuo and Summerfield, 1986), rbs = 0.5[p(kPa)]0.33 mm/s. The burning of
the solid propellant and production of the propellant gases at the surface of the propellant grain is specified
through the solution of a Riemann problem as described by Sachdev et al. (2005a). The treatment of the burn-
ing propellant boundary is very similar in spirit to the methods proposed by Gottlieb and Groth (1999) for
imposing boundary data at a variety of flow boundaries based on the solution of Riemann problems.

Rocket motor predictions using the multi-velocity formulation are presented in Figs. 10–12 for a cylindrical
grain rocket motor with a 40 mm internal radius, a nozzle throat radius of 10 mm, and an internal port radius
of 20 mm. The propellant and particle characteristics are given in Table 2. The solution procedure involved
time-stepping the conservation equations to steady-state then refining the mesh and computing again. This
is repeated for four mesh refinements. The initial and final grid configurations are shown in Fig. 10 in the
upper and lower panel of the figure, respectively. Note that only the nozzle end of the rocket is shown.
The burning of the solid propellant leads to a head end pressure in excess of 2.8 MPa and produces sonic flow
conditions at the nozzle throat and supersonic outflow in the rocket nozzle with the Mach number approach-
ing 3.35. The particle-phase concentration contours through the converging-diverging nozzle computed using
the multi-velocity formulation are depicted in Fig. 11 for the initial and final meshes in the upper and lower



Fig. 10. Multi-block grid structure for a cylindrical grain rocket motor. The initial grid (upper panel) contains seven blocks and 2688 cells
(24 · 16) and the final grid (lower panel) after four refinements contains 556 blocks and 213,504 cells. Entire rocket not shown.

Fig. 11. Predicted particle-phase concentration contours for a cylindrical grain rocket motor calculated on the initial grid (upper panel)
and the grid after four mesh refinements (lower panel).
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portions of the figures, respectively. A comparison of the propellant gas and inert particle axial velocity com-
ponents is in shown in Fig. 12.

It is clear from Fig. 12 that the particle-phase velocity lag relative to the gas-phase velocity after the rapid
acceleration through the nozzle is represented in this figure. The particles are unable to expand in the nozzle
due to their relative high mass, resulting in a region of zero particle concentration in the diverging section of
the nozzle as shown in Fig. 11. Before the nozzle throat, the particles are unable to negotiate the curvature of
the converging section of the nozzle and impact the nozzle at a high velocity and can lead to erosion of the
nozzle material. The particles become entrained with the gas and are pulled through the nozzle throat into
the diverging section where a dense stream of particles can be seen. Similar results are found when using a
single-velocity formulation for the particle-phase, however, with artificially higher peak concentrations pre-
dicted at the nozzle and the axis of symmetry due to issues associated with the degeneracy of the Eulerian for-
mulation. The computations of Vuillot et al. (1997) and York et al. (2001) show similar patterns in the particle
concentration contours. It can be seen in Fig. 11 that the application of the block-based mesh refinement algo-
rithm has successfully clustered computational blocks at areas of interest. In particular, accurate resolution of
the interface between zero and non-zero particle concentrations has been achieved.



Fig. 12. Axial velocity component for the propellant gas-phase (upper panel) and inert particle-phase (lower panel) for a cylindrical grain
rocket motor.

Table 2
Characteristics of the rocket propellant and the propellant combustion products

Propellant Combustion products

Density (qs) 1740 kg/m3 Specific gas constant (R) 318 J/kg K
Specific heat (cs) 1510 J/kg K Gas ratio of specific heats (c) 1.21
Flame temperature (Tf) 3060 K Gas absolute viscosity (l) 8.19 · 10�5 kg/ms
Surface temperature (Ts) 1130 K Gas thermal conductivity (j) 0.184 W/m K

Average particle diameter (dp) 10 lm
Particle solid density (qp) 2700 kg/m3

Particle specific heat (cm) 900 J/kg K
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5. Discussion and concluding remarks

A multi-velocity Eulerian formulation for predicting inert, disperse, and dilute gas-particle flow has been
described. Though this method requires some additional computing resources in terms of both memory
and computing time than single-velocity formulations, particle compression waves are permitted and, there-
fore, crossing trajectories and reflection boundary conditions can be modelled more realistically. In addition,
this improved Eulerian formulation provides some advantages over a Lagrangian approach in terms of mem-
ory usage and ease of parallelization. Use of the block-based adaptive mesh refinement scheme in conjunction
with the multi-velocity formulation for the particle-phase allows for accurate resolution of the flow structure
of the particle-phase while minimizing computational resources and provides a natural domain decomposition
for efficient parallel implementation. Future work will include application of this approach to the prediction of
more realistic three-dimensional turbulent multi-phase rocket motor core flows.
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