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Abstract A highly-scalable and efficient parallel high-order finite-volume method

with local solution-dependent adaptive mesh refinement (AMR) is described for

the solution of steady plasma flows governed by the equations of ideal magne-

tohydrodyamics (MHD) on three-dimensional multi-block body-fitted hexahedral

meshes, including cubed-sphere grids based on cubic-gnomonic projections. The

approach combines a family of robust and accurate high-order central essen-

tially non-oscillatory (CENO) spatial discretization schemes with a block-based

anisotropic AMR scheme. The CENO scheme is a hybrid approach that avoids

some of the complexities associated with essentially non-oscillatory (ENO) and

weighted ENO schemes and is therefore well suited for application to meshes having

irregular and unstructured topologies. The anisotropic AMR method uses a binary

tree and hierarchical data structure to permit local refinement of the grid in preferred

directions as directed by appropriately selected refinement criteria. Applications will

be discussed for several steady MHD problems and the computational performance

of the proposed high-order method for the efficient and accurate simulation of a

range of plasma flows is demonstrated.

1 Introduction and Motivation

Physics-based space weather modeling [6, 7, 14] is a challenging problem that

requires accurate numerical modeling for both disparate spatial and temporal scales.

Accurate solutions can be achieved by using either high-order schemes or an

adaptive mesh refinement (AMR) technique. A combination of both approaches

would appear to be particularly desirable [15].
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344 L. Freret et al.

The high-order central essentially non-oscillatory (CENO) finite-volume scheme

from Ivan et al. [16, 18] uses a hybrid reconstruction approach based on a fixed

central stencil. An unlimited high-order k-exact reconstruction is performed in

the cells where the solution is well resolved while the scheme reverts to a low-

order limited linear approach for cells with under-resolved/discontinuous solution

content. Switching in the hybrid procedure is determined by a smoothness indicator.

The CENO high-order scheme has been successfully applied to a broad range of

flows on multi-block body-fitted meshes including non-viscous flows [18], viscous

flows [16], large-eddy simulation (LES) of turbulent premixed flames [24] and

magnetohydrodyamics (MHD) problems [18, 23]. The efficiency of the CENO

scheme has also been assessed on cubed-sphere meshes [18] and extended to

unstructured meshes for laminar viscous flows [5] and turbulent reactive flows [4].

Block-based AMR approaches [2, 3, 14, 21] are very attractive since they are

naturally suitable for parallel implementation and lead to highly scalable methods

while requiring an overall light data structure to compute the block connectivity. The

multi-block AMR scheme considered here is based on the previous work by Gao and

Groth [11] for reacting flows with isotropic refinement. This numerical scheme has

also been applied to the solution of complex flow problems such as non-premixed

laminar and turbulent flames [10, 12, 20] as well as turbulent multi-phase rocket

core flows [22], MHD simulations [17, 18, 23], and micron-scale flows [13, 19]. The

isotropic AMR scheme was originally extended to allow for anisotropic refinement

by Williamschen and Groth [26] for non-viscous flows. More recently, Freret and

Groth [9] reformulated the anisotropic AMR scheme using a non-uniform treatment

of the cells (both interior and ghost or halo cells) within a given block. It directly

makes use of the neighboring cells as the ghost cells, even those at different levels

of refinement as found at grid resolution changes. The resulting anisotropic AMR

multi-block scheme is better suited for high-order finite-volume schemes.

The focus of this study is the extension of the enhanced anisotropic AMR

algorithm of Freret and Groth [9] for use in conjunction with the fourth-order

CENO finite-volume scheme (the former permits the use of efficient high-order

solution transfer operators) and the subsequent application of the combined method

to the prediction of steady-state solutions of the ideal MHD equations. For this

application, the solenoidal constraint on the magnetic field is controlled using the

generalized Lagrange multiplier (GLM) proposed by Dedner et al. [8, 18, 23].

The ideal MHD equations and the GLM formulation are described in Sect. 2. In

Sect. 3, a brief outline of the high-order CENO scheme is provided. The proposed

anisotropic AMR block-based method is reviewed in Sect. 4 with the necessary

extension for use with the high-order spatial discretization scheme. Finally, three-

dimensional (3D) numerical results are presented in Sect. 5, including an accuracy

demonstration of the high-order CENO reconstruction procedure for a known

function and numerical results for two steady-state flow problems on cubed-sphere

grids. Numerical results for both non-magnetized and magnetized flows are used

to evaluate the grid convergence of the proposed fourth-order CENO scheme

for uniformly and anisotropically refined meshes and compare the convergence

behavior to that of the second-order limited method described by Ivan et al. [17].
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The latter was originally developed for use with the isotropic AMR of Gao and

Groth [11] and has been extended for the purpose of this study to non-uniform

block-based anisotropic AMR.

2 Ideal Magnetohydrodynamics Equations

Solution of the hyperbolic system of ideal MHD equations is considered here using

a high-order Godunov-type finite-volume scheme with a GLM formulation [8]

which couples the divergence constraint, r � B D 0, with the induction equation

through the introduction of the potential,  . The system of conservation laws

for which numerical solutions are sought may be expressed in weak conservation

form as

@U
@t

C r � F D S C Q ; (1)

where U is the vector of conserved variables, F is the solution flux dyad, and S and

Q are volumetric source terms. The solution vector, U, has the form

U D Œ �; �V; B; �e;  �T ; (2)

where � is the plasma density, V the velocity field, B the magnetic field, �e is

the total energy and  is the so-called generalized Lagrange multiplier variable

associated with the GLM r � B treatment. The flux dyad, F, is given by

F D

2
666666664

�V

�VV C . p C B � B
2
/I � BB

VB � BV C  I

.�e C p C B � B
2
/V � .V � B/B

c2hB

3
777777775

: (3)

The specific total plasma energy is e D p=.�.� � 1// C V2=2 C B2=.2�/, where

p is the molecular pressure, V is the magnitude of the fluid velocity, and B is the

magnitude of the magnetic field. The numerical source term, S, is due to the GLM-

MHD formulation and has the form

S D Œ0; 0; 0; 0;�c2h
c2p
 �T ; (4)

in which the coefficients cp and ch control the relative rates of dissipation and

transport of  , as well as the corresponding advection speed of the r � B cleaning
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mechanism, respectively. The ideal gas equation of state, p D �RT, is assumed,

where T is the gas temperature and R D 1=� is the gas constant. For a polytropic

gas (thermally and calorically perfect), the ratio of plasma specific heats, � , is a

constant, and the specific heats are given by Cv D 1=.� � 1/ and Cp D �=.� � 1/.

The source vector, Q, appearing in Eq. (1) generally represents different volumetric

sources arising from the physical modelling of various space plasma flows, such as

gravitational forces.

2.1 Semi-Discrete Finite-Volume Formulation

The semi-discrete form of the preceding upwind finite-volume scheme applied to

Eq. (1) for hexahedral computational cell .i; j; k/ of a three-dimensional grid is

dUijk

dt
D � 1

Vijk

6X

f D1

NgX

mD1
. Q!F � n/i;j;k;f ;m C .S/ijk C .Q/ijk D .R/ijk.U/ ; (5)

where Ng is the number of Gauss quadrature points and n is the local normal of

the face f at each of the Ng Gauss quadrature points. The hexahedral cells are

contained within logically Cartesian blocks that form a multi-block body-fitted

mesh with general unstructured connectivity between blocks. The total number of

Gauss integration points, Ng, at which the numerical flux is evaluated is chosen

as the minimum required to preserve the targeted rate of convergence for solution

accuracy. In this work, standard tensor-product quadrature consisting of four Gauss

quadrature points are used for the cell faces, providing a fourth-order accurate

spatial discretization. The latter is the target accuracy for the high-order scheme

considered here.

The numerical fluxes, F � n, at each Gauss quadrature point on each face of a cell

.i; j; k/ are determined from the solution of a Riemann problem. Given the left and

right interface solution values, Ul and Ur, an upwind numerical flux is evaluated

by solving a Riemann problem in the direction defined by the normal to the face.

The values of Ul and Ur are determined by performing the CENO reconstruction as

detailed in the next section. The contributions of the volumetric sources Sijk; Qijk are

evaluated to fourth-order accuracy by again using a standard tensor-product Gauss

quadrature with twenty-seven points for the volumetric integration. In the present

computational studies, the Lax-Friedrichs approximate Riemann solver and fourth-

order accurate Runge-Kutta explicit time-marching scheme have been used. Steady-

state solutions are obtained using the latter by integrating the solution forward in

time until a steady result is achieved.
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3 High-Order CENO Finite-Volume Scheme

The hybrid CENO finite-volume method for conservation laws originally proposed

by Ivan and Groth [16] is used to discretize the governing equations on a hexahe-

dral computational grid. The hybrid CENO procedure uses the multidimensional

unlimited k-exact reconstruction of Barth [1] in smooth regions and reverts to a

limited piecewise-linear reconstruction algorithm in regions deemed as non-smooth

or under-resolved by a solution smoothness indicator, thus providing monotone

solutions near discontinuities.

In the present study, only smooth flows are considered reducing the CENO

procedure to an unlimited fourth-order reconstruction. The Kth-order Taylor series

polynomial expansion of the spatial distribution of a scalar solution quantity, Uijk,

within a cell with index ijk about the cell-centroid .xijk; yijk:zijk/ can be expressed as:

Uijk.x; y; z/ D
KX

p1D0

KX

p2D0

KX

p3D0
. p1Cp2Cp3�K/

.x � xijk/
p1 .y � yijk/

p2 .z � zijk/
p3Dp1p2p3 : (6)

The coefficients, Dp1p2p3 , of the Taylor polynomials are referred to as the unknown

derivatives and their number is equal to 20 for the target fourth-order accurate

(K D 3 piecewise cubic) reconstruction. They are obtained by solving a constrained

least-squares problem as detailed in Ivan et al. [16]. In order to obtain an exactly

determined or overdetermined set of linear equations, a stencil including the two

nearest rings of neighbours is used whatever is the mesh discretization size in the

neighbouring cells. In particular, 5 � 5 � 5 cells are used in a region with uniform

resolution, and for regions with resolution changes or where the grid connectivity is

irregular (such as at cubed-sphere sector edges), more or less numbers of cells may

be used.

Both Householder QR factorization and singular value orthogonal decomposition

(SVD) can be used to solve the weighted least-squares problem associated with the

CENO reconstruction [16]. The latter is exploited here. The SVD approach permits

the computation of a pseudo-inverse matrix after which the solution of the least-

squares problem is then given by a simple matrix-vector product. The use of a single

fixed stencil, the same for all dependent variables, allows the pseudo-inverse matrix

to be stored and re-used in the reconstruction of all variables, thereby avoiding the

repeated evaluation of the pseudo inverse. This was found to reduce significantly

the computational costs of performing the CENO reconstruction without requiring

substantial additional storage [16]. Additionally, there are conventionally issues

with k-exact reconstruction related to conditioning and/or invertibility that generally

increase with the order of the scheme as well as can be very dependent on

mesh features, such as cell size, aspect ratio, and topology. However, a rather

simple column-scaling procedure is applied here to the least-squares problem which

significantly improves the conditioning, makes it virtually independent of the mesh,

and affords robust and reliable solutions to the least-squares problem [16].
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4 Parallel Anisotropic Block-Based AMR

A flexible block-based hierarchical binary tree data structure is used in conjunction

with the spatial discretization procedure described in Sect. 2 to facilitate automatic

solution-directed anisotropic mesh adaptation on body-fitted multi-block mesh.

Figure 1 shows the resulting binary tree after several refinements of an initial mesh

consisting of a single block. A binary tree is used rather than the usual octree

used in isotropic methods, as the refinement decisions are made separately for each

coordinate direction in the anisotropic AMR approach applied herein [9, 26].

The anisotropic AMR framework of Freret and Groth [9], based on extensions

to the previous work by Williamschen and Groth [26], is well suited and readily

allows the use of high-order spatial discretization by adopting a non-uniform

representation of the cells within each block. An example of a non-uniform block

obtained from a multi-block structure is shown in Fig. 2. In this treatment, the

neighboring cells are used directly as the ghost cells, even those at different levels of

refinement as found at grid resolution changes. This non-uniform treatment presents

many advantages as outlined by Freret and Groth [9]. In particular, high-order

Fig. 1 3D binary tree and the corresponding blocks after several anisotropic refinements

Fig. 2 Example of a non-uniform structured mesh block (right) obtained from a block-based

anisotropic AMR grid mesh (left). This block is called non-uniform because its ghost cells may

have different resolution from the interior cells
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restriction and prolongation operators are not required to evaluate the solution

within ghost cells.

Mesh adaptation is accomplished by refining and coarsening grid blocks. Each

refinement produces new blocks called “children” from a “parent” block and the

children can be refined further. This refinement process can be reversed in regions

that are deemed over-resolved and two, four or eight children can coarsen or merge

into a single parent block. In the present work we use a refinement criteria based on

the gradient of a given quantity. This quantity can be a test function as in Sect. 5.1

or the fluid density as used in Sects. 5.2 and 5.3. The refinement criteria is a three-

component vector such that the mesh can be refined in an anisotropic way.

A high-order accurate solution transfer from the coarse cell to the fine cells is

required to distribute the average solution quantity among offspring with high-order

accuracy. The high-order reconstruction polynomials of all solution variables on

the coarse cell are readily integrated over the domain of each new fine cell having

a volume, Vfine, and the resulting integrated average values of a solution quantity

within the fine cells, Nufine, is given by

Nufine D 1

Vfine

ZZZ

Vfine

ucoarse.X/dV D 1

Vfine

NgX

mD1
!m ucoarse.Xm/ ; (7)

where the volume integral is computed exactly for the reconstruction polynomial

with an appropriate-order tensor-product Gauss quadrature volumetric integration

technique (Ng D 27 quadrature points are used for fourth-order spatial accu-

racy [16]). Here, !m and Xm are the fine-cell Gauss weights and quadrature points.

5 Numerical Results

To validate the proposed fourth-order CENO finite-volume method for use in combi-

nation with the anisotropic AMR strategy outlined in Sect. 4, 3D numerical results

are now considered, including a demonstration of the accuracy of the high-order

CENO scheme for reconstruction of a known function and numerical predictions

for steady-state flow problems on cubed-sphere grids. For the latter, numerical

results for both non-magnetized and magnetized flows are used to evaluate the grid

convergence of the CENO method when anisotropic AMR is applied. Additionally,

the computational efficiency of the fourth-order CENO method is also compared to

that of the second-order method described previously by Ivan et al. [17] and also

extended herein for use in conjunction with the anisotropic AMR scheme.

5.1 Function Reconstruction on a Cubed-Sphere Grid

To demonstrate the accuracy of the CENO reconstruction applied in conjunction

with anisotropic AMR, numerical results for the reconstruction of a smooth
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Fig. 3 (left) Contours of the test function f , (right) L1, L2, L1 error norms for the fourth-order

CENO scheme with anisotropic AMR (dashed lines) compared to the error norms with fourth-order

scheme with uniform refinements (solid lines)

continuous function are examined. This initial numerical test proceeds by first

computing accurate cell averages for the function to be reconstructed and then

using these cell averages to compute high-order polynomial reconstructions in

the cells and finally computing the error between the original function and the

polynomial reconstruction by high-accuracy numerical integration over each cell.

The order of convergence of this error measures the order of accuracy of the CENO

reconstruction. For the particularly case of interest, reconstruction of the function

f .x; y; z/ D .1 � R C R2/exCyCz ; (8)

is considered on the spherical computational domain defined by two concentric

spheres with inner and outer radius Ri D 1 and Ro D 3, where R denotes the

radius. As depicted in Fig. 3-left, this function exhibits a large smooth variation

spanning several orders of magnitude that is oriented along the line connecting

two diametrically-opposed cubed-sphere corners, where the function maximum and

minimum occur. The computational meshes used in this grid convergence study

range in size from 786,432 to 50,331,648 cells using from 96 to 6144 solution

blocks. As shown in Fig. 3-right, the L1, L2, and L1 error norms obtained for

the reconstruction procedure show that the CENO scheme achieves the theoretical

fourth-order convergence accuracy when uniform refinements are applied (solid

lines). The improved accuracy exhibited by the use of the anisotropic AMR

translates into significant savings in terms of computational cell number for a

targeted solution error. For example, to achieve L1 D 10�3 solution error, the

fourth-order CENO method requires about 5,832,000 cells which is more than 5

times the mesh requirements when anisotropic AMR is applied. Moreover it is

worth mentioning that the refinement criteria is based on the gradient of f defined

groth@utias.utoronto.ca



A Parallel High-Order CENO Scheme with AMR for 3D Ideal MHD flows 351

in Eq. (8) and user-defined thresholds for refinement and coarsening. Refinement

strategies based on estimated solution error [25] are not applied here and therefore

the mesh refinement does not guarantee a specific target solution accuracy. For this

reason, the slopes of the error norms with AMR vary between 13 and 30, as shown

in Fig. 3-right.

5.2 Steady Supersonic Outflow of Non-Magnetized Plasma

To assess the accuracy of the finite-volume scheme on cubed-sphere grids, numer-

ical convergence studies for a spherically symmetric expanding supersonic non-

magnetized plasma flow have been performed and are considered next. The accuracy

of the fourth-order CENO scheme for a series of uniform and anisotropic refined

AMR meshes was determined and is compared here to similar results obtained

using the corresponding second-order scheme [17]. The computational domain of

the steady supersonic outflow of interest is defined by inner and outer spheres of

radius Ri D 1 and Ro D 4 respectively. For boundary data, the exact solution is

imposed on the inner sphere: �i D 10, Vr;i D 4:5, Vjj;iD0 and pi D 26. An outflow

supersonic boundary condition is imposed at Ro. As described by Ivan et al. [17],

the analytical solution of this flow problem can be obtained in spherical coordinates

as the solution of the equation

C3 � 1

r2Vr

h
.C2 � V2

R/
1

��1
i D 0 ; (9)

where C2 and C3 are constants depending on the inflow conditions.

The L1, L2 and L1 norms of the error in the predicted solution density obtained

on a series of grids are given in Fig. 4. These convergence results show that

|E
| 1

, |
E

| 2
, |

E
| ∞

 

10–3

10–2

10–1

100

6.5
4.0

19.2.0

150 200 250

N1/3

|E
| 1

, |
E

| 2
, |

E
| ∞

 

10–3

10–4

10–2

10–1

100 150 200 250

N1/3

|E| 1  2nd order Aniso AMR
|E| 2  2nd order Aniso AMR
|E| ∞ 2nd order Aniso AMR
|E| 1 2nd order Uniform ref
|E| 2 2nd order Uniform ref
|E| ∞ 2nd order Uniform ref

|E| 1 4th order Aniso AMR
|E| 2  4th order Aniso AMR
|E| ∞ 4th order Aniso AMR
|E| 1  4th order Uniform ref
|E| 2 4th order Uniform ref
|E| ∞ 4th order Uniform ref

Fig. 4 L1, L2, L1 error norms for second-order (left) and fourth-order CENO schemes (right)
with anisotropic AMR (dashed lines) compared to successive uniform refinements (solid lines)
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the expected second-order (Fig. 4-left) and fourth-order (Fig. 4-right) theoretical

accuracies are achieved in all error norms as the mesh is uniformly refined (solid

lines). For anisotropic refinement of the mesh via the AMR strategy, the effective

convergence rate approaches 6.5 for the second-order scheme and 19 for the CENO

fourth-order scheme. As noted previously [9, 26], the solution varies only along the

radial direction and the anisotropic AMR exploits this feature by refining only in the

radial direction, thus avoiding the introduction of an unnecessary large number of

computational cells. When the CENO scheme is used (Fig. 4-right), for an error

target of L1 D 10�4, the memory requirement of the anisotropic AMR is only

12% of the memory requirement of the uniform refinements. For the second-order

scheme (Fig. 4-left), for an error target L1 D 3 � 10�3, the mesh saving of the

anisotropic AMR strategy is around 73% compared to the uniform refinements.

Finally, the mesh saving between second-order and fourth-order schemes with

uniform refinements is about 90% for a target error of L1 D 10�3.

5.3 Steady Supersonic Outflow of Magnetized Plasma

As a final example, steady supersonic outflow of a magnetized plasma on a spherical

domain is considered. The exact solution for this case is given by

U.x; y; z/ D
"

r� 5
2 ;

xp
r
;

yp
r
;

zp
r

C #r
5
2 ;

x

r3
;

y

r3
;

z

r3
C #; r� 5

2

#T

; (10)

where # D 0:017 is a perturbation parameter chosen such that the solution has

significant latitudinal variation [17]. In Eq. (1), the source term Q can be written as

Q D

2
666666664

0
1
2
xr� 5

2 .r�1 � 5r�2 � #z/
1
2
yr� 5

2 .r�1 � 5r�2 � #z/
1
2
zr� 5

2 .r�1 � 5r�2 � #z/C 5
2
r� 1

2 #.1C #rz/C #r� 1
2

0
1
2
r�2 C #z.3:5r�1 C 2#z/C .#r/2

2
.7C 5#rz/

3
777777775

:

The computational domain used for the outflowing plasma flow problem is defined

by inner and outer spheres of radius Ri D 2 and Ro D 3:5. The inflow boundary

conditions are specified at Ri based on the exact solution and outflow boundary

conditions are applied at Ro.

The L1, L2 and L1 norms of the error in the predicted solution density at cells

centroids were obtained on a series of grids and are given in Fig. 5. As the mesh is

uniformly refined, the theoretical fourth-order accuracy is achieved for the CENO

scheme. When anisotropic AMR is applied the slopes of the L1, L2 and L1 norms
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|E| 1  Anisotropic AMR
|E| 2 Anisotropic AMR
|E| ∞ Anisotropic AMR
|E| 1 Uniform mesh
|E| 2 Uniform mesh
|E| ∞  Uniform mesh
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E
| ∞

 

10–6

10–5
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Fig. 5 L1, L2, L1 error norms of the solution density for the fourth-order CENO scheme with

anisotropic AMR (dashed lines) compared to successive uniform refinements (solid lines)

are close to the value of 11. In terms of mesh size reduction, to achieve the error

norm L1 D 10�6, the anisotropic AMR scheme uses only 9.2% of the number of

cells of the uniform CENO scheme.

6 Conclusions

A fourth-order CENO finite-volume scheme has been extended for use with an

efficient anisotropic block-based AMR method. High-order solutions on adapted

anisotropic AMR grids have been obtained for three test problems on 3D cubed-

sphere grids. The predicted results have been compared to those obtained using

the high-order solution with uniform refinement as well as those of the associated

second-order scheme, in order to assess the efficiency of the proposed approach. It is

shown that high accurate solutions have been obtained with a reduced computational

effort and significant reductions in mesh size. A natural future extension will be

to consider the application to 3D unsteady MHD flows with both smooth solution

content and shocks.
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