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Abstract: A block-based adaptive mesh re�nement (AMR) �nite-volume scheme is proposed
and developed for solution of hyperbolic conservation laws on two-dimensional hybrid multi-block
meshes. A Godunov-type upwind �nite-volume spatial-discretization scheme, with piecewise lim-
ited linear reconstruction and Riemann-solver based �ux functions, is applied to the quadrilateral
and triangular cells of the hybrid multi-block mesh and these computational cells are embedded in
either body-�tted structured or general unstructured grid partitions or subdomains of the hybrid
grid. A hierarchical quadtree data structure is used to allow local re�nement of the individual
subdomains based on heuristic physics-based re�nement criteria. An e�cient and scalable parallel
implementation of the proposed algorithm is achieved via domain decomposition. The hybrid mesh
approach readily allows for the use of body-�tted structural mesh blocks in the vicinity of bodies
and solid surfaces, where the structured nature and orthogonality of the grid to the boundary can
provide added accuracy and solution e�ciency and the use of general unstructured partitions to �ll
the remaining computational domain and connecting the structured mesh. The use of unstructured
grid topology to connect the body-�tted blocks near solid boundaries greatly simpli�es the initial
grid generation process. The performance of the proposed parallel hybrid AMR scheme is demon-
strated through application to the solution of the Euler equations of compressible gas dynamics
for a number of �ow problems in two space dimensions. The e�ciency of the AMR procedure and
accuracy, robustness, and scalability of the hybrid mesh scheme are assessed.
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1 Introduction and Motivation

Although there have been signi�cant advances in computational �uid dynamics (CFD) in the past 20-30 year
and CFD has proven to be an important enabling technology in many areas of science and engineering, a
recent assessment of the needs for large-scale and high-performance scienti�c computing [1,2] has identi�ed
the need for greater automation of mesh generation via adaptive mesh re�nement (AMR) to reduce the
time to generate high-quality meshes and for the treatment of problems having complex geometries. At the
present time, a general rule of thumb is that the very least approximately 50% of the time to obtain a CFD
�ow solution is associated with initial mesh generation and further human intervention is required if mesh
adjustment is required to improve solution quality. Computational grids that automatically adapt to the
solution would therefore be extremely bene�cial. Given an initially coarse mesh which can be generated in
a relatively shorter period of time, an e�ective would then arrive at a re�ned high quality mesh while sig-
ni�cantly lowering the manpower requirements and computer costs usually associated with mesh generation
and the subsequent solution computation. Combining the AMR strategy with an e�cient parallel solution
strategy to produce a parallel AMR method that both reduces the overall problem size and the corresponding
time to calculate a solution would obviously be particularly bene�cial.
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(a) Base Cartesian grid (b) Patch-based AMR (c) Cell-based AMR (d) Block-based AMR

Figure 1: Illustration of (b) patch-based, (c) cell-based, and (d) block-based AMR techniques applied to a
base Cartesian mesh (a) with cells �agged for re�nement indicated by black dots.

1.1 Adaptive Mesh Re�nement on Structured Mesh

Adaptive mesh re�nement has proven to be very e�ective for treating problems with disparate length scales,
providing the required spatial resolution while minimizing memory and storage requirements. When com-
bined with Godunov-type �nite-volume schemes [3], they have proved to be particularly e�ective for the
solution of hyperbolic systems of conservation laws on structured Cartesian and body-�tted mesh and have
been developed for a wide variety of engineering problems [4�33]. To date, several distinct AMR strategies
have emerged which can be generally classi�ed into four broad categories depending on the partitioning
algorithm and/or data structure used to track mesh connectivity:

i) patch-based AMR methods;

ii) cell-based AMR methods;

iii) block-based AMR methods;

iv) hybrid block-based AMR techniques.

Figure 1(a) depicts a base Cartesian mesh with cells �agged for re�nement. Figures 1(b)�1(d) demonstrate
the subsequent re�nement of this base mesh resulting from the patch-based, cell-based, and block-based
AMR schemes.

Berger and Oliger, along with Colella, originally proposed a dynamic gridding technique for computing
time-dependent solutions to hyperbolic partial di�erential equations (PDEs) in multiple space dimensions
on regular Cartesian mesh [4�6]. This approach is now more generally referred to as patch-based AMR. The
algorithm begins with a coarse base-level Cartesian grid and, as the calculation progresses, individual grid
cells are �agged for re�nement as illustrated in Figure 1(b). The patch-based AMR strategy relies on a fairly
sophisticated algorithm to organize collections of individual computational cells into rectangular patches.
The mesh within these newly formed patches can then be further re�ned, creating additional nested patches.

In cell-based AMR, as proposed and developed for example by Powell and co-workers [9�11, 16, 18, 19],
Berger and Leveque [7], and Aftomis and co-workers [20, 28, 29], each cell may be re�ned individually as
shown in Figure 1(c) and is stored using a tree data structure (quadtree in two dimensions, and octree for
three dimensions). This cell-based tree structure is �exible and readily allows for the local re�nement of
the mesh by keeping track of the computational cell connectivity as new grid points are generated by the
re�nement process (4 new cells in two dimensions and 8 in three dimensions). Most cell-based approaches
have been applied to Cartesian meshes and, in many cases, cut cells are used to treat complex geometry.
Very e�cient AMR schemes have been devised using the latter; fully three-dimensional meshes around
extremely complex objects can be generated automatically and routinely in a matter of hours or less using
this technique [20, 28, 29]. Nevertheless, discretization of elliptic operators on Cartesian cut cells can be
challenging [16] and applications are generally restricted to hyperbolic systems.

In a block-based AMR strategy, mesh adaptation is accomplished by the dividing and coarsening of
entire solution pre-de�ned blocks or groupings of cells. Although not required, each of the groupings or
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(a) Body-�tted coarse grid (b) Re�ned body-�tted grid

Figure 2: Illustration of block-based adaptive mesh re�nement on body-�tted grid topology showing original
coarse grid (a) and re�ned grid (b).

blocks generally has an equal number of cells as shown in Figure 1(d). Tree data structures are again used
for tracking block connectivity and mesh re�nement; however, the block-based AMR strategy results in a
much lighter tree structure as compared to that of cell-based methods. While typically larger numbers of
mesh cells are created during the re�nement process (i.e., typically more than the corresponding number of
cells introduce in cell-based AMR approaches), block-based methods may more readily lend themselves to
e�cient and scalable parallel implementations via domain decomposition [13,26,27,30�33].

Applications of the e�cient and scalable parallel block-based approaches on Cartesian mesh are described
by Quirk [12], Berger [13], and by Groth et al. [26, 27, 34]. More recently, Groth and co-researchers [30�
33,35] have developed a rather �exible block-based AMR scheme allowing automatic solution-directed mesh
adaptation on multi-block body-�tted (curvilinear) meshes consisting of quadrilateral (two-dimensional, 2D,
case) and hexahedral computational cells (three-dimensional, 3D, case). This block-based approach has
been shown to enable e�cient and scalable parallel implementations for a variety of �ow problems, as well
as allow local re�nement of body-�tted mesh with anisotropic stretching. The latter aids in the treatment
of complex �ow geometry and �ows with thin boundary, shear, and mixing layers and/or discontinuities and
shocks. Extensions of the block-based body-�tted AMR approach for embedded boundaries not aligned with
the mesh [36] and with an anisotropic re�nement strategy [37] are also possible and have been developed.
Figure 2 illustrates the application of the block-based AMR technique to a body-�tted mesh.

Another AMR approach for treating more complex geometries with curved boundaries is based on com-
posite overlapping or overset grids used together with AMR. In essence, a Chimera overlapping grid technique
is combined with AMR and curvilinear grids that conform to the curved boundaries are used together in an
overlapping fashion with one or more Cartesian grids which �ll computational domain. Figure 3 illustrates
an overlapping grid consisting of two structured body-�tted grids with one annular grid and a background
Cartesian grid. Boden and Toro [38] and Henshaw et al. [39�41] have shown that AMR on overlapping
grids can provide an e�cient approach for solving problems with multiple space and time scales for complex
geometry. Challenges for this AMR approach are associated with determining and/or re-evaluating grid
block connectivity as well as grid blocks hidden by re�ned grids following mesh re�nement (this informa-
tion must be re-computed and stored) and interpolation of solution quantities between di�erent base grids
and/or between grids with di�erent levels to ensure that accurate results. Global conservation properties of
the solution method are also di�cult or impossible to enforce discretely with the overlapping grid approach.

Finally, hybrid block-based AMR approaches have also been considered. Holst and Keppens [42] applied
a hybrid approach to general curvilinear coordinate systems, modifying the full tree data structure to allow
for incomplete block re�nement and incorporate ideas from patch-based strategies. The proposed hybrid
AMR strategy requires two means to traverse the grid hierarchy, e.g., there is a doubly linked list of grid
pointers per level in addition to the tree data structure. Thus, the mixed data structure further complicates
the neighbour search algorithm in three-dimensions. Holst and Keppens [42] compared the three AMR
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Figure 3: Illustration of overlapping grid topology consisting of two structured body-�tted component grids.

strategies, i.e., a patch-based, a tree block-based, and a hybrid block-based, for a smooth two-dimensional
advection test problem on a doubly periodic domain with a second order numerical scheme, and found that
the block-based AMR approach is the most e�cient in terms of the execution speed for the same accuracy.

1.2 Adaptive Mesh Re�nement on Unstructured Mesh

The use of unstructured mesh with �nite-volume discretization strategies has received much attention in the
past and a review of this literature is beyond the scope of the present paper. However, while AMR has been
widely adapted and implemented in a variety of applications with structured grids, the majority of which are
Cartesian mesh approaches, AMR is still an active area of research and under development for unstructured
grids. Due to the inherit unstructured nature of such grid, current AMR approaches for unstructured
meshes are mostly cell-based methods [43�45]. Refer to Figure 4 for illustration of cell-based AMR applied
to a two-dimensional unstructured mesh. In this case, cell information, including neighbour connectivity,
is stored in linked lists and there can be signi�cant computational overhead due to indirect addressing of
solution data. While formal block-based AMR methods are rather uncommon, parallel implementation of
solution methods for unstructured grids via domain decomposition has been achieved and rather e�cient
dynamic mesh repartitioning algorithms have been devised based on graph partitioning and space-�lling
curve techniques. The multi-level graph partitioning algorithm called Metis, developed by Karypis and
Kumar [46, 47], is currently used quite extensively in many CFD applications for partitioning unstructured
mesh into multi-block elements containing a speci�ed number of sub-blocks. However, recent studies (see
for example, Harlacher et al. [48] have shown that memory requirements and message passing associated
with the creation and use of all-to-all communicators can severely limit the scalability of Metis to large
numbers of processors, providing additional impetus for the consideration of block-based AMR strategies for
unstructured mesh. The latter would require only local re-partitioning of the mesh rather than a complete
global re-partitioning of the mesh following mesh re�nement.

1.3 Hybrid Mesh and Adaptive Mesh Re�nement

Hybrid meshing techniques have received considerable interest in recent years for providing greater �exibility
in meshing complex geometries in applications ranging from aerodynamic to reservoir �ow simulations [49�
58]. They permit the use of body-�tted structured mesh blocks in the vicinity of boundaries and solid body
surfaces, where the structured nature and orthogonality of the grid to the boundary can provide added
accuracy and solution e�ciency. Conversely, general unstructured grid topology can be used to �ll the
remaining computational domain and connecting the structured regions of the mesh, thereby reducing the
level of human intervention required to generate the mesh, allowing for greater automation of the mesh
generation process, and potentially reducing the overall time for mesh generation. As with unstructured
meshes, AMR strategies for hybrid mesh approaches have for the most part been limited to cell-based
re�nement techniques [49�51] although, as noted above for structured mesh, block-based approaches may
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(a) Division of triangular computa-
tional cells

(b) Re�ned 2D unstructured
mesh

Figure 4: Illustration of cell-based AMR applied to a two-dimensional unstructured mesh showing (a) division
of triangular computational cell into four sub-elements and (b) a grouping of triangular cells following uniform
re�nement of the triangular elements showing newly added elements in red.

(a) Structured Mesh (b) Unstructured Mesh

(c) Hybrid Mesh

Figure 5: Comparison of the di�erent mesh topologies of (a) structured, (b) unstructured, and (c) hybrid
meshing techniques applied to two-dimensional channel �ow with a bump.

o�er advantages in the context of parallel implementation of solution methods on massively parallel computer
architectures. As a comparison, examples of structured, unstructured, and hybrid meshes generated for the
same two-dimensional channel �ow geometry with a bump are depicted in Figure 5.

1.4 Scope of Present Study

The development of an AMR strategy for hybrid meshes is considered in the present work. A block-based
AMR �nite-volume scheme is proposed for the solution of hyperbolic conservation laws on two-dimensional
hybrid multi-block meshes. A Godunov-type upwind �nite-volume spatial-discretization scheme, with piece-
wise limited linear reconstruction and Riemann-solver based �ux functions, is applied to the quadrilateral
and triangular cells of the hybrid multi-block mesh and these computational cells are embedded in either
body-�tted structured or general unstructured grid partitions or subdomains of the hybrid grid. A hierarchi-
cal quadtree data structure is used to allow local re�nement of the individual subdomains based on heuristic
physics-based re�nement criteria. The data structure permits an e�cient and scalable parallel implementa-
tion of the proposed algorithm via domain decomposition. In addition, the nature of the structured blocks is
exploited to reduce computational overhead and storage. The performance of the proposed parallel hybrid
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AMR scheme is demonstrated through application to the solution of the Euler equations of compressible gas
dynamics for a number of �ow con�gurations and regimes in two space dimensions. The e�ciency of the
AMR procedure and accuracy, robustness, and scalability of the hybrid mesh scheme are assessed.

2 Equations of Compressible Gas Dynamics

For the development of the proposed AMR algorithm for hybrid mesh, solutions of the Euler equations
governing compressible inviscid �ows of polytropic gases in two space dimensions are considered. For 2D
planar �ows, the conservative form of the Euler equations re�ecting the conservation of mass, momentum,
and energy can be summarized as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 (1)

where U is the conserved variable solution vector given by

U =
[
ρ, ρu, ρv, ρe

]T
, (2)

x and y are the spatial coordinates, t is time, ρ is the gas density, u and v are the velocity components in
the x- and y-coordinate directions, e = p/(ρ(γ − 1)) + (u2 + v2)/2 is the speci�c total energy, p = ρRT is
the pressure, T is the gas temperature, R is the gas constant, γ is the speci�c heat ratio, and F and G are
x- and y-direction solution �ux vectors given by

F =


ρu

ρu2 + p
ρuv

u
(
ρe+ p

)
 , G =


ρv
ρuv

ρv2 + p
v
(
ρe+ p

)
 . (3)

For a polytropic gas (thermally and calorically perfect gas), the ratio of speci�c heats, γ, is a constant and
the speci�c heats are given by Cv = R/(γ − 1) and Cp = γR/(γ − 1).

3 Godunov-Type Finite-Volume Scheme

The preceding Euler equations have a hyperbolic nature. The proposed AMR algorithm therefore makes
use of a cell-centred Godunov-type upwind �nite-volume spatial discretization procedure [3] in conjunction
with limited linear solution reconstruction and Riemann-solver based �ux functions to solve the conservation
form of these PDEs on multi-block mesh composed of either quadrilateral or triangular computational cells.
The semi-discrete form of this �nite-volume formulation applied to any cell, i, is given by

dUi

dt
= − 1

Ai

∑
k

(
~F · ~n ∆`

)
i,k

= Ri(U) , (4)

where Ui is the area-averaged conserved solution for cell i, ~F = (F,G) is the �ux dyad, Ai is the area of the
cell, and ∆` and ~n are the length of the cell face and unit vector normal to the cell face or edge, respectively.
Refer to Figure 6 for illustrations of quadrilateral and triangular computational cell con�gurations, cell faces,
normals. The vector, R, is referred to as the residual vector. The numerical �uxes at the faces, k, of each
cell, ~F · ~n, are determined from the solution of a Riemann problem. Given the left and right solution states,
Ul and Ur, at the cell interfaces, the numerical �ux is given by

~F · ~n = F(Ul,Ur, ~n) , (5)

where the numerical �ux F is evaluated by solving a Riemann problem in a direction de�ned by the normal
to the face with initial data Ul and Ur. The left and right solution states are determined via a least-squares
piece-wise limited linear solution reconstruction procedure in conjunction with either the Barth-Jesperson
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(a) Quadrilateral computational cell (b) Triangular computational cell

Figure 6: Schematic diagram of (a) quadrilateral and (b) triangular computational cells making up compu-
tational domain of 2D multi-block computational grid.

or Venkatakrishnan limiters [59,60]. In the present algorithm, both exact and approximate Riemann solvers
can be used to solve the Riemann problem and evaluate the numerical �ux. The Roe linearized Riemann
solver [61], HLLE and modi�ed HLLE �ux function due to Linde [62�64], the HLLC �ux function [65], and
the exact Riemann solver of Gottlieb and Groth [66] have all been implemented and may be used.

Solutions of the semi-discrete form of the governing equations given in Eq. (4), represented by the area-
averaged solution quantities within each computational cell, Ui, is obtained herein by applying a standard
second-order accurate, Runge-Kutta, explicit time-marching scheme to the resulting coupled non-linear or-
dinary di�erential equations (ODEs). Steady-state solutions are obtained by advancing the solution in time
until a converged time-invariant solution is achieved. While the latter is certainly non-optimal, it is su�cient
for the purposes of the present work.

4 Multi-Block Hybrid Mesh

The computational triangular and quadrilateral computational cells described above are embedded in either
fully structured or fully unstructured grid blocks, respectively. The structured body-�tted grid blocks are
taken to consist of Ncells = Ni × Nj cells, where Ni and Nj are even, but not necessarily equal integers,
representing the number of cells in each logical coordinate direction of the body-�tted mesh block. Refer to
Figure 7(a). The unstructured grid blocks are also each taken to consist of Ncells computational cells, but in
this case of triangular topology. An example of a multi-block unstructured mesh is depicted in Figure 8(a).

Solution data associated with each structured grid block are stored in indexed two-dimensional array
data structures and it is therefore straightforward to obtain solution information from neighbouring cells
within the blocks. Solution data within each of the corresponding unstructured grid blocks are stored in
an edge-based, link-list, data structure [59]. The data structure contains both cell-centred solution data
and the cell vertices. The connectivity of the cell faces and vertices is stored in a quadruple for each edge
that consists of pointers to the two vertices de�ning the interface as well as pointers to two cells that share
that the edge. One obvious advantage of this type of data structure is that it allows for straightforward
traversal of each cell face during integration of the solution �uxes. It also a�ords a means for retrieval of
cell connectivity.

Various techniques are used to generate the initial (unre�ned) body-�tted structured mesh blocks for
the hybrid mesh considered in this study. The initial unstructured mesh is generated here using the Gmsh
software developed by Geuzaine and Remacle [67]. Domain decomposition or partitioning of the initial
unstructured grid into multiple grid blocks is obtained using the Metis mesh partitioning software [46,
47]. Metis creates mesh partitions that are approximately of the same size (i.e., number of cells) while
minimizing the number of faces residing on boundaries of the partitions, two desirable features when parallel
implementation of the solution method is considered. The connectivity of the resulting hybrid grid blocks is
stored directly in a hierarchical quadtree data structure that is described below. As an example, the block
topology for a two-dimensional multi-block hybrid mesh consisting of both structured and unstructured grid
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(a) Structured multi-block mesh (b) Re�ned of solution blocks (c) Quadtree data structure

Figure 7: Multi-block body-�tted structured quadrilateral mesh of block-based hybrid AMR algorithm
illustrating (a) the structured mesh blocks and layers of overlapping ghost cells, (b) re�ned solution blocks
arising from four levels of re�nement applied to a single initial block, and (c) the associated hierarchical
quadtree data structure.

(a) Unstructured multi-block mesh (b) Re�ned of solution blocks (c) Quadtree data structure

Figure 8: Multi-block unstructured triangular mesh of block-based hybrid AMR algorithm illustrating (a)
the structured mesh blocks, (b) re�ned solution blocks arising from two levels of re�nement applied to a
single initial block, and (c) the associated hierarchical quadtree data structure.

blocks for �ow past two circular cylinders in a channel is given in Figure 9.

5 Block-Based Adaptive Mesh Re�nement for Hybrid Mesh

As noted above, rather �exible block-based AMR schemes allowing automatic solution-directed mesh adapta-
tion on multi-block body-�tted meshes consisting of quadrilateral and hexahedral computational cells have
been developed Groth and co-researchers [30�33, 35]. These block-based approaches have been shown to
enable e�cient and scalable parallel implementations for a variety of �ow problems, as well as allow local
re�nement of body-�tted mesh with anisotropic stretching according to physics-based re�nement criteria.
The anisotropic stretching permits the use of anisotropic mesh for resolving thin solution layers, such as
boundary and free shear layers. Note that although the proposed block-based AMR approach is somewhat
less �exible and incurs some ine�ciencies in solution resolution as compared to a cell-based approaches (i.e.,
for the same solution accuracy, generally more computational cells are introduced in the adapted grid), the
block-based method can o�er many advantages over cell-based techniques when computational performance
and parallel implementation of the solution algorithm is considered.

In the proposed AMR algorithm for multi-block hybrid mesh, the block-based AMR algorithm of Groth
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Figure 9: Illustration of block topology for a two-dimensional multi-block hybrid mesh consisting of both
structured and unstructured grid blocks for �ow past two circular cylinders in a channel.

and co-researchers [30�33,35] is applied directly to the structured grid blocks and further extended to allow
local re�nement of the unstructured grid blocks. In what follows, the proposed AMR scheme for hybrid
mesh is described, with particular emphasis on the required extensions for the treatment of the unstructured
mesh blocks.

5.1 Re�nement and Coarsening of Multi-Block Mesh

Mesh adaptation of the multi-block hybrid mesh is accomplished by the dividing and coarsening of appro-
priate solution blocks. In regions requiring increased cell resolution, a �parent� block is re�ned by dividing
itself into four �children� or �o�spring�. Each of the four quadrants or sectors of a parent block becomes
a new block having the same number of cells as the parent and thereby doubling the cell resolution in the
region of interest. This process can be reversed in regions that are deemed over-resolved and four children
are coarsened into a single parent block. Note however that no regions of the mesh can be made coarser
than it was originally and the mesh re�nement is constrained such that resolution changes of only a factor
of two is permitted between adjacent or neighbouring blocks.

For the structured body-�tted solution blocks, the generation of the mesh points in the re�ned grid
blocks is obtained from the initially coarser mesh block by making use of the grid metrics of the body-�tted
(curvilinear) parent mesh [32]. Use of the grid metrics in determining the grid points of the re�ned grid blocks
is very e�ective in preserving the original mesh point clustering in the body-�tted mesh and maintaining
the smoothness and locations of the grid lines in the mesh. Standard restriction and prolongation operators
are used to evaluate the solution on all blocks created by the coarsening and division processes, respectively.
Figure 7(b) illustrates the re�nement and coarsening of the structured blocks of the hybrid mesh.

For the unstructured grid blocks, an isotropic re�nement procedure is is applied to each triangular cell
of the parent block in which the new nodes or vertices of the re�ned blocks are de�ned simply by using
the original vertices and mid-points of the faces of the parent-block triangular cells connecting the adjacent
newly de�ned nodes as shown in Figure 4(b). Partitioning of the re�ned grid into the four children blocks
is then accomplished by using Metis applied now only to the re�ned cells of the original parent block. In
this way local re�nement procedure for grid blocks is straightforwardly extended to the unstructured blocks.
Note also that the parallel scalability limitations of Metis [48] for large numbers of processors and hence
partitions is avoided in this block-based approach. Metis is only used to partition each re�ned parent block
individually into a small number of partitions (four).

5.2 Block Connectivity and Quadtree Data Structure

A hierarchical quadtree data structure with multiple �roots�, multiple �trees�, and additional interconnects
between the �leaves� of the trees is used to keep track of mesh re�nement and the connectivity between grid
blocks in the hybrid mesh. For the structured grid blocks, this quadtee data structure is depicted in Figure
7(c). Each grid block corresponds to a node of the quadtree structure. The blocks of the initial mesh are the

9



(a) Ghost cells of unstructured grid blocks (b) Flux corrections at resolution
changes

Figure 10: (a) Ghost cells of multi-block unstructured triangular mesh used to facilitate the exchange
of solution information between blocks and (b) schematic illustrating the application of conservative �ux
corrections.

roots of the tree structure. Associated with each root is a separate quadtree data structure that contains all
of the blocks making up the leaves of the tree created during mesh re�nement. The proposed data structure
allows for fully unstructured connectivity of the root blocks of the multi-block mesh. For the structured
blocks, the connectivity and orientation of the root blocks are computed directly from the grid geometry
information [32].

The proposed quadtree data structure is su�ciently general to handle mesh re�nement and coarsening
of the unstructured grid blocks and store information associated with grid block connectivity as shown in
Figure 8(c). Of particular importance is the modi�cation of the unstructured root block connectivity to
handle the unstructured grid blocks.

Traversal of the quadtree structure by recursively visiting the parents and children of solution blocks can
be used to determine block connectivity. However, in order to reduce overhead associated with accessing
solution information from adjacent blocks, the neighbours of each block are computed and stored, providing
direct interconnects between blocks of the hierarchical data structure that are neighbours in physical space.
One of the advantages of the hierarchical quadtree data structure is that it readily permits local mesh
re�nement. Local modi�cations to the multi-block mesh can be performed without re-gridding the entire
mesh and re-calculating all grid block connectivities.

5.3 Exchange of Solution Data and Ghostcells

In order that the �nite-volume scheme may be applied to all blocks in a more independent manner, some
solution information is shared between adjacent blocks having common interfaces. For the structured grid
blocks, this information is stored in an additional layers of overlapping �ghost� cells associated with each
block as shown in Figure 7(a). Transformation matrices and o�sets are used to facilitate the communication
between neighboring blocks and deal with the general unstructured block connectivity introduced at the
roots [32]. At interfaces between blocks of equal resolution, these ghost cells are simply assigned the solution
values associated with the appropriate interior cells of the adjacent blocks. At resolution changes, restriction
and prolongation operators, similar to those used in block coarsening and division, are employed to evaluate
ghost cell solution values. Additional inter-block communication is also required at interfaces with resolution
changes to strictly enforce the �ux conservation properties of the �nite-volume scheme [4, 6]. In particular,
the interface �uxes computed on more re�ned blocks are used to correct the interface �uxes computed on
coarser neighbouring blocks and ensure the solution �uxes are conserved across block interfaces.

For the unstructured grid blocks, ghost cells also introduced at unstructured block boundaries to facilitate
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exchange of inter-block solution information as depicted in Figure 10(a) and interface �ux corrections applied
as in structured block case. See Figure 10(b).

5.4 Mesh Re�nement Criteria

Although several approaches are possible, for this study, the coarsening and division of blocks are directed
using multiple physics-based re�nement criteria [9]. Re�nement criteria, ε, based on a combination of the
density gradient, and divergence and curl of the velocity provide reliable detection of �ow features such as
shocks, contact surfaces, stagnation points, and shear layers. Mathematically, these criteria can be written
as

ε1 ∝ ~∇ρ , ε2 ∝ ~∇ · ~u , ε3 ∝ ~∇× ~u . (6)

These re�nement criteria are used for both the structured and unstructured grid blocks of the hybrid mesh.

5.5 Parallel Implementation

By design, the proposed multi-block AMR scheme for hybrid mesh is well suited to parallel implementation
on distributed-memory multi-processor architectures. A parallel implementation of the block-based AMR
scheme has been developed using the C++ programming language and the MPI (message passing interface)
library. For homogeneous architectures with multiple processors all of equal speed, the self-similar nature of
the solution blocks is exploited and parallel implementation is carried out via domain decomposition where
the solution blocks are simply distributed equally among the available processors, with more than one block
permitted on each processor. A simple stack is used to keep track of available (open or unused) processors.
For heterogeneous machines, such as a computational grids, a weighted distribution of the blocks can be
adopted to preferentially place more blocks on the faster processors and less blocks on the slower processors.

In order to carry out mesh re�nement and inter-block communication, a complete copy of the hierarchical
quadtree data structure is stored on each processor. This is possible because, unlike cell-based meshing
techniques, the block-based tree data structure is not overly large. The structure need only retain the
connectivity between the solution blocks as opposed to a complete map of the cell connectivity, as required
by general unstructured mesh solution methods. Inter-processor communication is mainly associated with
block interfaces and involves the exchange of ghost-cell solution values and conservative �ux corrections.
Message passing of the this information is performed in an asynchronous fashion with gathered wait states
and message consolidation.

5.6 AMR for Multi-Block Unstructured Mesh

To illustrate the proposed AMR scheme applied to a general unstructured multi-block mesh, consider the
results of Figure 11. The �gure shows both the grid blocks and triangular computational cells of the initial
and �nal re�ned mesh after application of three levels of re�nement. Note the increased resolution a�orded
by the local re�nement of the unstructured blocks.

6 Numerical Results

The numerical results are now described for several �ow problems to illustrate the capabilities of the proposed
solution method. Supersonic �ow past a circular cylinder and supersonic �ow past two circular cylinders in
a channel are considered. All computations were performed on a high performance parallel cluster consisting
of 3,780 Intel Xeon E5540 (2.53GHz) nodes with 16GB RAM per node. The cluster is connected with a high
speed In�niBand switched fabric communications link.

6.1 Supersonic Flow Over a Circular Cylinder, M∞=2

The �rst test case considered is that of steady state (time-invariant) supersonic �ow past a two-dimensional
circular cylinder with its axis of symmetry perpendicular to the free-stream �ow direction such that a
stationary bow shock forms about the body. The free-stream Mach number is M∞ = 2 for the case of

11



(a) Grid blocks of initial mesh (b) Computational cells of initial mesh

(c) Grid blocks of re�ned mesh (3 levels) (d) Computational cells of re�ned mesh (3 levels)

Figure 11: Illustration of AMR applied to multi-block unstructured mesh with three level of re�nement
showing both the grid blocks and triangular computational cells of the initial and �nal re�ned mesh.

interest. The cylinder �ow problem with solved using 128 grid blocks without applying the AMR procedure.
However, the relative number of structured and unstructured blocks in the hybrid mesh was varied in order
to investigate the e�ects of solution accuracy and parallel performance of the proposed solution algorithm.
In each case, the total number of computational cells in the mesh was maintained at at about 32,500. Table 1
shows the numbers of structured and unstructured blocks used in each of the simulations.

Predicted solutions for the �ve di�erent outlined in Table 1 are shown in Figure 12. It is noted that the
predicted density distributions for each of the hybrid grids have the general features: a strong bow shock is
present ahead of the cylinder with a region of high density �ow following directly behind the shock. Expansion
waves result in the rear of the cylinder and lead to low density regions downstream of the cylindrical body.
Moreover, the �ow past the cylinder is symmetrical with respect to the horizontal axis of the cylinder.

Although Figure 12 indicates that the predicted solutions on each of the hybrid mesh have many sim-
ilarities, there are some subtle di�erences in the predicted solutions. In particular, it is observed that the
structured mesh blocks tend to exhibit greater solution quality due to the orthogonality nature of the mesh
cells.

The parallel performance of the proposed AMR scheme for hybrid mesh has also been assessed for this
steady-state supersonic �ow problem. Strong scaling of the algorithm for this �xed size problem with 128
partitions was examined. The parallel performance of the proposed solution method is shown in Figure 13 for
this case. The �gure shows the parallel run time associated with the computation of the supersonic circular
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Table 1: Combinations of structured and unstructured grid blocks used in hybrid mesh for supersonic �ow
over a circular cylinder, M∞=2.

Number of Number of
Structured Blocks Unstructured Blocks

Test Case 1 (TC1) 0 128
Test Case 2 (TC2) 32 96
Test Case 3 (TC3) 64 64
Test Case 4 (TC4) 96 32
Test Case 5 (TC5) 128 0

cylinder �ow problem for the hybrid computational mesh outlined in Table 1 as a function of the number of
processor cores, from 8 up to 128 cores. It can be seen that, for all cases, as the number of processors used
to compute the problem increases the run time is correspondingly reduced with a parallel e�ciency that
is very close to unity, indicating that there is minimum parasitic performance loss due to communication
between the processors. Furthermore, the parallel is virtually una�ected by the topology of the hybrid mesh,
indicating that any additional overhead associated with the hybrid mesh capabilities is small.

6.2 Supersonic Flow Past Two Circular Cylinders in a Channel, M∞=2

Further validation of the proposed parallel AMR �nite-volume scheme for hybrid mesh is sought by con-
sidering a second test test cases involving steady-state supersonic �ow past two circular cylinders located
within a channel. The upstream Mach number in this case is again M∞ = 2 and the two cylinder are of
di�erent sizes (i.e., have di�erent radii) and are placed asymmetrically with respect to the symmetry axis of
the channel.

Figure 14 depicts the predicted distributions of the �ow density for the supersonic �ow past the two cir-
cular cylinders asymmetrically located within a channel with M∞=2. Results are shown for �ve successively
re�ned multi-block hybrid mesh. The original/initial unre�ned hybrid mesh is not shown but contained 14
solution blocks and 2988 cells. The �nest mesh after �ve levels of re�nement has 1460 blocks and 311,724
cells. It is evident the the proposed AMR scheme for hybrid mesh is able to resolve the bow shocks associated
with each cylinder, the re�ected shocks o� the channel walls, and the complex non-linear wave and shock
interactions that occur in the �ow as the mesh is re�ned. A measure of the e�ciency of the block-based
AMR scheme for this problem can be de�ned by a re�nement e�ciency parameter, α, given by

α = 1−Ncells/Nuniform (7)

where Ncells is the actual number of cells in the mesh and Nuniform is the total number of cells that would have
been created on a uniformly re�ned mesh composed of solution blocks all at the �nest level. The e�ciency
of the AMR scheme is α= 0 for the initial mesh, where all solution blocks at the same level of re�nement,
but rapidly improves as the number of re�nement levels increases. A re�nement e�ciency of α= 0.89812
is achieved on the �nest mesh, indicating the ability of the block-based AMR approach to deal with �ows
having disparate spatial scales by reducing the number of computational cells required to solve a problem
while maintaining solution resolution in areas of interest.

7 Concluding Remarks and Future Research

A block-based adaptive mesh re�nement �nite-volume scheme has been described for the solution of hy-
perbolic conservation laws on two-dimensional multi-block hybrid meshes. A Godunov-type upwind �nite-
volume spatial-discretization scheme, with piecewise limited linear reconstruction and Riemann-solver based
�ux functions, is applied to the solution of the hyperbolic PDEs on quadrilateral and triangular cells of the
hybrid multi-block mesh and these computational cells are embedded in either body-�tted structured or gen-
eral unstructured grid partitions or subdomains of the hybrid grid. A hierarchical quadtree data structure
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(a) TC1: 128 unstructured blocks (b) TC2: 96 unstructured blocks and 32 structured
blocks

(c) TC3: 64 unstructured blocks and 64 structured
blocks

(d) TC4: 32 unstructured blocks and 96 structured
blocks

(e) TC5: 128 structured blocks

Figure 12: Predicted distributions of the �ow density for supersonic �ow over a circular cylinder with M∞=2
for the �ve di�erent hybrid mesh described in Table 1

has been developed to allow local re�nement of the individual subdomains based on heuristic physics-based
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Figure 13: Parallel run time associated with the computation of supersonic �ow over a circular cylinder with
M∞ = 2 for the hybrid computational mesh outlined in Table 1 as a function of the number of processor
cores.

re�nement criteria. An e�cient and scalable parallel implementation of the proposed algorithm is achieved
via domain decomposition. The hybrid mesh approach readily allows for the use of body-�tted structural
mesh blocks in the vicinity of bodies and solid surfaces, where the structured nature and orthogonality of the
grid to the boundary can provide added accuracy and solution e�ciency and the use of general unstructured
partitions to �ll the remaining computational domain and connecting the structured mesh. The performance
of the proposed parallel hybrid AMR scheme has been demonstrated through application of the proposed
algorithm to the solution of the Euler equations. Several steady-state supersonic �ow problems in two space
dimensions with strong non-linear wave interactions were investigated. The AMR procedure for hybrid mesh
was shown to be e�ective in accurately capturing solution discontinuities while reducing the overall size of
the computational mesh. The parallel scalability of the proposed hybrid-mesh scheme was also investigated
and high parallel performance was observed for up to 128 processor cores.

The present study represents the �rst steps towards an e�ective AMR strategy for hybrid mesh. Future
follow-on research will involve further evaluation of proposed scheme, the application of error-based re�ne-
ment criteria for directing the mesh adaptation, application to the hybrid mesh algorithm to the solution of
viscous �ows, and possible extensions of the method to three-dimensional �ows.
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(a) Re�nement Level 1: 44 blocks, 8826 cells, α = 0.261546 (b) Re�nement Level 2: 110 blocks, 22512 cells, α =
0.529116

(c) Re�nement Level 3: 272 blocks, 57087 cells, α =
0.701478

(d) Re�nement Level 4: 656 blocks, 138513 cells, α =
0.81892

(e) Re�nement Level 5: 1460 blocks, 311724 cells, α =
0.89812

Figure 14: Predicted distributions of the �ow density for supersonic �ow past two circular cylinder located
within a channel with M∞ = 2 �ve successively re�ned multi-block hybrid mesh (original/initial unre�ned
hybrid mesh is not shown).
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