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A B S T R A C T

State-of-the-art predictions of the solar-wind and space weather phenomena are today largely based on the
equations of magnetohydrodynamics (MHD). Despite their sophistication and success, the forecasting potential
of global MHD models is often undermined by uncertainties in model inputs; the initial and boundary
conditions are generally not known and must be estimated. This study therefore investigates the use of
data assimilation strategies to minimize forecast errors in the context of initial-value problems of the one-
dimensional ideal MHD equations. Several canonical MHD wave propagation problems involving both smooth
and discontinuous solutions, including those having strongly non-linear behaviour with shocks, are considered
in a set of twin experiments with varying synthetic observational data sparsity. Two data assimilation strategies
are quantitatively compared, namely the Ensemble Kalman Filter (EnKF) and strong-constraint variational
data assimilation. For the latter, the necessary adjoint model is derived, summarized, and validated. The
study represents the first use of variational data assimilation applied to ideal magnetohydrodynamics and
demonstrates its potential advantages over sequential approaches. In particular, for the numerical experiments
considered herein, it is found that the variational approach consistently achieved superior performance and
stability compared to the EnKF method. In addition, two different strategies for mitigating data assimilation
induced errors associated with violation of the divergence-free property of the magnetic field are introduced
and assessed. Finally, the present study provides the technical background and quantitative justification for
future investigations of variational data assimilation aimed at enhancing three-dimensional simulations of the
solar wind and space weather processes.
1. Introduction and background

The term ‘‘space weather’’ was first coined in 1959 by Thomas
Gold of Harvard College Observatory [1]. It refers to conditions on
the Sun and in the solar wind, and in the geospace environment of the
magnetosphere, ionosphere, and thermosphere that can detrimentally
influence the performance and reliability of space-borne and ground-
based systems and adversely affect human life and health [2]. The
harmful effects of space weather include disruptions to ground-based
electric power transmission grids; increased corrosion of pipeline sys-
tems for oil, natural gas, and water; disruptions to satellite operations in
near-earth orbit; disruptions to communication and navigation systems;
and radiation hazards associated with high-energy particles for astro-
nauts and aircraft crew at high altitudes. Advances in understanding of
space weather are therefore a current high priority. Moreover, there is
also high demand for accurate and reliable space weather forecasting
capabilities so as to inform mitigation strategies in a manner analogous
to that currently possible in the atmospheric weather and climate
science communities [3].
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Over the last several decades, a tremendous amount of effort has
been dedicated to the computational modelling of space plasmas flows,
with applications to heliospheric physics, the solar wind, and space
weather science and forecasting. As with efforts in the atmospheric
weather prediction and climate modelling communities, the develop-
ment and use of improved and more accurate computational models
and tools for space weather prediction has been the primary focus
of solar wind and space weather related research effort. The space
weather forecast models that have resulted from this effort are usually
based on the equations of ideal magnetohydrodynamics (MHD) and
make use of accurate and robust discretization methods for plasma
flows with shocks, automatic mesh refinement, and impose boundary
conditions derived from magnetic field measurements of the solar
surface. The research related to space weather has focused on a range
of issues including accurate discretization strategies, treatment of the
divergence-free condition for the magnetic field, and gaining funda-
mental understanding of various physical phenomena associated with
unsteady solar wind disturbances. While the research in this area is
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far too extensive to review here, some examples of space weather
forecasting tools based on global MHD modelling include the so-called
Space Weather Modeling Framework (SWMF) developed in a series of
studies by [4–12], ENLIL, a fully three-dimensional and time-dependent
MHD model of the heliosphere developed by Odstrcil et al. [13–15], the
EUropean Heliospheric FORecasting Information Asset (EUHFORIA)
MHD-based simulation code [16,17], and the recent integrated data-
driven solar wind, coronal mass ejection (CME), numerical framework
for space weather forecasting of Narechania at al. [18]. Note that the
SWMF model was used previously to provide one of the first global
MHD simulations of a complete fully three-dimensional space weather
event, spanning the initiation of a solar wind disturbance at the Sun’s
surface to its interaction with the Earth’s magnetosphere [5].

Despite the research efforts briefly outlined above related to im-
proved computational models and tools for space weather prediction,
as well as the high level of sophistication and demonstrated efficacy of
the resulting space weather forecasting tools, the predictive potential of
global MHD-based models are currently not fully realized. In particular,
space weather forecasts often fail to match accurately measurements
and/or observations. This is largely due to poorly known values for
a range of model input parameters. Suspected important sources of
the forecast uncertainty include relatively large uncertainties in initial
conditions, boundary data, and various sub-physics model parameters.
It is noted that modern atmospheric weather and climate forecasts do
not however rely solely on accurate numerical models and solution
methods alone. They also make extensive use of data assimilation (DA)
techniques, which combine real-time measurements and observational
data from various sources with the predictions of the simulation mod-
els, effectively using the observational data to constrain the model
predictions, so as to achieve more accurate and reliable forecasts [19–
21]. DA is now a rather mature discipline in meteorological [19,21]
and oceanographic [20,21] applications. Moreover, it is recognized as
core to enabling today’s atmospheric weather and climate forecasts. In
contrast, the space weather forecasting community has only just begun
to explore the full potential of such data-driven methods [22,23].

As introduced above, DA is the mathematical discipline of com-
bining model outputs and measured data. DA strategies consider both
the observations and model predictions as arising from underlying
stochastic processes and crucial to these techniques is the appropriate
weighting of both the observational and forecast model data to ac-
count for their uncertainty. One of two categories of approaches are
usually adopted in assimilation methods: sequential or variational DA.
In sequential DA, the model state is successively updated as obser-
vations become available. In the variational approach, measurements
collected over a time window are used simultaneously to search for the
corresponding optimal initial conditions. Examples of sequential data
assimilation schemes include the Kalman filter (KF) [24], ensemble
Kalman filter (EnKF) [25,26], and their variants [27,28]. An advantage
of sequential methods is that they can often be implemented in a
black-box fashion where the data assimilation algorithm is agnostic
to the choice of model. Additionally, efficient parallel implementation
of ensemble-based methods can be rather straight-forward. Variational
methods [29–31], on the other hand, require the development of
a model-specific adjoint. Moreover, efficient parallelizations are not
readily achieved. The corresponding adjoint models of variational ap-
proaches are also often difficult to replicate and extend as they are often
derived directly from the discrete representation of the forecast model,
as opposed to a more general analytical formulation. Despite these
challenges, better performance is often reported with variational DA
techniques [32]. Additionally, variational methods allow the mapping
of information gained from observations back in time when correcting
forecasts [33]. A more complete review of the state-of-the-art of data
assimilation is provided by Carrassi et al. [34] where the relative merits
of various data assimilation strategies are discussed.

Several authors have previously conducted intercomparison studies
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between the EnKF and so-called Four-Dimensional Variational (4DVar)
methods. The EnKF approach was first examined as a possible substitute
to 4DVar for numerical weather prediction (NWP) by Lorenc [35],
who reported similar performance between both methods in medium-
range NWP systems. Additionally, high-resolution satellite data was
suspected to be more effectively assimilated by a 4DVar approach. Caya
et al. [36] compared the EnKF and 4DVar method in the assimilation of
radar data with a cloud-resolving model. Generally, better performance
was observed with 4DVar for short time periods. In contrast, over
several assimilation cycles, the EnKF yielded more accurate analyses.
Kalnay et al. [37] also performed comparative studies of the EnKF
and 4DVar for the Lorenz 1963 model and a quasi-geostrophic channel
model. For both models, the EnKF method achieved either better or
similar performance compared to 4DVar approach over short and long
assimilation windows, respectively. However, when infrequent obser-
vations were assimilated, the 4DVar method obtained higher predictive
accuracy. Several, more recent, studies comparing the EnKF and 4DVar
approaches in over various disciplines have also been conducted. For
the sake of brevity, however, they are not discussed in detail here.
Nevertheless, from an examination of the literature pertaining to com-
parative studies of the EnKF and 4DVar methods it would appear that
the preferred or optimal choice of the two strategies is not obvious
and highly dependent on the numerical model employed, the type
and availability of observations and measurement data, and the treat-
ment of model uncertainties. For instance, some authors find relatively
similar performance between both data assimilation methods [38–40],
while others report significant differences and improvements depend-
ing on the method and application [41–46]. With this perspective in
mind, it is evident that intercomparison studies of competing data
assimilation methods can provide valuable insights when introducing
data assimilation to novel areas such as the space-physics applications
considered herein.

The application of DA strategies to forecast models based on MHD
and related equations is more recent and largely limited to sequential
techniques. Sun et al. [47] previously considered a one-dimensional
(1D), two-equation, incompressible, and resistive MHD description of
the geodynamo using an optimal interpolation DA scheme. Addition-
ally, Fournier et al. [48] studied a similar 1D MHD model using a
variational DA approach. Ren et al. [49] also considered the application
of adjoint-based parameters and state estimation to a 1D Hartmann
flow MHD system. Several DA studies pertaining to MHD have also
been conducted for problems in two spatial dimensions (2D). Mendoza
et al. [50] studied the application of the EnKF method to the ideal
MHD equations for a 2D problem representative of the magnetospheric
bow-shock of Earth. Synthetic data observed at various locations within
the computational domain were used to constrain the simulations.
While this previous study does not describe how the zero divergence
condition for the magnetic field is enforced when applying the EnKF
algorithm, Teixeira et al. [51] performed a subsequent 2D study using
an equality constrained unscented Kalman filter method, allowing the
divergence-free property of the magnetic field to be strictly enforced.
Additionally, Biswas et al. [52] formulated a nudging DA scheme
for the 2D incompressible and resistive MHD equations and Hudson
et al. [53] carried out a related follow-up study that implemented
and tested the DA scheme of the previous authors [52] using syn-
thetic data. Merkin et al. [54] also examined sequential assimilation
of low-altitude magnetic observations in the near-Earth environment
with a linearized, 2D, steady-state approximation of the full MHD
equations. Lastly, Lang and Owens [33] apply variational DA to a
simplified model of the solar-wind based on the 2D inviscid Burgers
equation [55]. The simplified single-equation solar-wind model was
used due to the difficulty of obtaining an adjoint model for the full ideal
MHD equations. The assimilation of both synthetic and in situ helio-
spheric observations were considered and, as mentioned above, Lang
and Owens [33] demonstrated a strength of a variational approach

applied to the inner boundary conditions for the simplified solar wind
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model: the variational approach allowed observational data that are not
directly upstream from Earth to improve near-Earth forecasts.

A few previous studies have also considered the application of DA
methods to three-dimensional (3D) forms of the MHD equations. Li
et al. [56] examined a 3D variant of the incompressible and resistive
MHD system of the geodynamo to which a variational DA approach was
applied. For the latter, the divergence-free conditions for the magnetic
and velocity fields were handled explicitly in the definition of the cost
function. More recently, Lang et al. [57] employed a local ensemble
transform Kalman filter (LETKF) algorithm to demonstrate the first
use of data assimilation with the ideal MHD equations in a three-
dimensional setting. Lang et al. [57] utilized the previously mentioned
ENLIL global MHD forecast model [13–15] and assimilated synthetic
measurements of plasma density, temperature, and momentum at a
single location in the heliosphere. Synthetic magnetic field observations
were not included because the LETKF is not generally able to assimilate
divergence-free fields, such as the magnetic field. Better agreement to
near-Earth solar wind conditions were brought about by application of
the DA procedure based on the upstream observations; however, the
improvements diminished with time until the next set of observations
were assimilated. In addition, Jivani et al. [58] recently conducted
sensitivity analyses and uncertainty quantification for background solar
wind properties using the aforementioned SWMF global MHD model.
Although DA strategies were not considered, ensemble-based DA strate-
gies can benefit from reduced sets of solution parameters as identified
by Jivani et al. [58].

Finally, several authors have conducted research related to DA
for space weather applications that were not based on global MHD
descriptions. For example, Arge et al. [59] developed a framework
for assimilating photospheric observations with a photospheric flux
transport model for improved photospheric magnetograms. Hickmann
et al. [60] subsequently advanced the work of Arge et al. [59] by
incorporating an ensemble transform Kalman filter technique. Addi-
tionally, Innocenti et al. [61] applied a Kalman filtering technique to
an empirical solar wind model for improved solar wind forecasts and
Meadors et al. [62] used a particle filter method to determine the opti-
mal radii of the source and interface surfaces of potential magnetic field
models of the inner heliosphere that minimize discrepancies between
the predictions of a Wang-Sheeley-Arge (WSA) empirical model of the
solar wind [63,64] and solar wind observations.

2. Scope of current study

With the overarching motivation for improved space weather fore-
casting capabilities and preceding review in mind, this study considers
the data assimilation of synthetic observational data to constrain so-
lutions of 1D initial-value problems of the ideal MHD equations and
performs a systematic and quantitative comparison of EnKF and 4DVar
DA techniques. In particular, the DA methods are used is to reconstruct
the correct flow-field given noisy sparse measurements following initi-
ation with incorrect initial data for several problems including those
with strongly non-linear behaviour and shocks. A standard upwind
finite-volume spatial discretization procedure very representative of
those used in the space weather prediction frameworks described in the
introduction is used to obtain numerical solutions to the initial-value
problems. Note that, to the author’s knowledge, a direct comparison
of EnKF and 4DVar approaches have not previously been considered
for the ideal MHD equations and the application of 4DVar DA to ideal
MHD is novel. For the latter, the formulation of an easily adaptable
and implementable adjoint model for the ideal MHD equations with the
upwind finite-volume scheme is also described. In addition, challenges
associated with the assimilation of magnetic field data are also formally
considered. It is noted that the ‘‘4D’’ in ‘‘4DVar’’ here formally refers
to 3D physical space plus time. While the current study considers the
3

application of a variational approach to unsteady solutions of the 1D t
form of the ideal MHD equations, the technique is still referred to as
4DVar DA herein as seems to be the convention.

The organization of the remainder of the paper is as follows. Sec-
tion 3 presents and summarizes the governing ideal MHD equations
of interest. Section 4 then describes the upwind finite-volume spatial
discretization and time-marching schemes used to construct numerical
approximations to unsteady solutions of the ideal MHD equations on
1D domains. A probabilistic formalism of DA is then introduced in
Section 5, which is subsequently used to describe both the EnKF and
4DVar DA algorithms considered herein. This is followed in Section 6
by a description and validation of the semi-analytical adjoint model
for the discrete form of the 1D ideal MHD equations. In Section 7, mul-
tiple strategies are considered for mitigating non-zero magnetic field
divergence errors brought about by the data assimilation. Section 8
reports on the comparisons of the EnKF and 4DVar schemes applied to
several initial-value problems for the ideal MHD equations and, finally,
Section 9 provides conclusions and suggestions for future research.

3. Ideal magnetohydrodynamics (MHD) equations

The equations of ideal MHD describe a perfectly electrically con-
ducting inviscid plasma [65]. The mixture of ion and electron species
are treated as a fully-ionized, quasi-neutral, single fluid having a
Maxwellian particle distribution described by a single plasma tempera-
ture. Despite the many assumptions, the ideal MHD description remains
a useful and self-consistent approximation for many astrophysical,
space-physics, and engineering phenomena. In their non-dimensional
and 1D form, the ideal MHD equations are a coupled hyperbolic system
of non-linear partial differential equations that may be written as

𝜕𝐔
𝜕𝑡

+ 𝜕𝐅
𝜕𝑥

= 𝟎 , (1)

where 𝐔 is the conserved variable solution vector, and 𝐅 is the system
flux dyad. The conserved variable solution vector is given by

𝐔 = [𝜌, 𝜌𝑢, �⃗�, 𝐸]⊺ , (2)

where 𝜌 is the plasma density, 𝑢 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]⊺ is the velocity field, 𝐸 is
the total energy and �⃗� = [𝐵𝑥, 𝐵𝑦, 𝐵𝑧]⊺ is the magnetic field. Although
only 1D problems are considered herein, all components of the velocity
and magnetic field are accounted for here and allowed to vary along
a single spatial dimension. Accordingly, the solution flux dyad is given
by

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑢

𝜌𝑢𝑢 − �⃗��⃗� + (𝑝 + �⃗�⋅�⃗�
2 ) ⃗⃗𝐼

�⃗�𝑢 − 𝑢�⃗�

𝑢(𝐸 + 𝑝 + �⃗�⋅�⃗�
2 ) − �⃗�(𝑢 ⋅ �⃗�)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where 𝑝 is the plasma pressure and ⃗⃗𝐼 is the identity dyad. A polytropic
(thermally and calorically perfect) approximation is assumed for de-
scribing the thermodynamic behaviour of the plasma and thus the total
energy and plasma pressure are related according to

𝐸 =
𝑝

𝛾 − 1
+

𝜌𝑢 ⋅ 𝑢
2

+ �⃗� ⋅ �⃗�
2

, (4)

where 𝛾 is the corresponding assumed constant ratio of specific heat
capacities. The ideal gas equation of state, 𝑇 = 𝛾𝑝∕𝜌, is also assumed,
where 𝑇 is the non-dimensional plasma temperature. The solutions
of Eq. (1) are also subject to the divergence-free constraint on the
magnetic field, ∇⃗ ⋅ �⃗� = 0. In the 1D setting of interest here, this reduces
o 𝜕𝐵 ∕𝜕𝑥 = 0 or 𝐵 = constant.
𝑥 𝑥
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4. Upwind finite-volume solution procedure without �⃗� ⋅ 𝑩 = 𝟎
treatment

A Godunov-type, upwind, finite-volume scheme [66] is considered
for the numerical solution of the hyperbolic system of Eq. (1). Finite-
volume methods of this type have proven to be very effective for the
solution of hyperbolic partial differential equations, including the ideal
MHD equations, and are a key component of many of the space weather
forecasting tools based on global MHD modelling. The latter includes
the SWMF [4–12], EUHFORIA [16,17], and framework of Narechania
at al. [18] discussed previously. For example, the upwind scheme of
Powell et al. [4] is the basis for the solution of the MHD equations in
the SWMF simulation code and both second- and high-order, upwind,
finite-volume variants [67–73] can be used within the simulation tool
of Narechania at al. [18].

In this study, a limited, second-order, MUSCL-type, upwind, finite-
olume scheme [74,75] is considered as the representative scheme for
he numerical solution of Eq. (1) on uniform 1D mesh. It is very similar
o the multidimensional second-order scheme with limiting used in
he discretization of the ideal MHD equations by Ivan et al. [67]. In
he 1D case for which the ∇⃗ ⋅ �⃗� = 0 constraint is explicitly strictly
nforced based on the given initial data, application of this upwind
patial discretization procedure to the governing equations for the 𝑖th
omputational cell of the 1D grid results in the following semi-discrete
orm of the MHD equations given by
𝑑𝐔𝑖
𝑑𝑡

= − 1
𝛥𝑥

(F𝑖+1∕2 −F𝑖−1∕2) ≡ 𝐑𝑖(𝐔) , (5)

where F𝑖±1∕2 are the upwind values of the solution fluxes evaluated
t the 𝑖 ± 1∕2 cell boundary or interface, 𝐔𝑖 is the cell-averaged value
f the conserved solution vector within cell 𝑖, and 𝐑𝑖 is defined to be
he steady residual for cell 𝑖. The numerical fluxes are evaluated via the
olution of Riemann problems defined in terms of the primitive solution
alues, 𝐖𝐿 and 𝐖𝑅, to the left and right of the interface, respectively,
ith 𝐖 = [𝜌, 𝑢, �⃗�, 𝑝]⊺, such that F𝑖±1∕2 = F𝑖±1∕2(𝐖𝐿,𝑖±1∕2,𝐖𝑅,𝑖±1∕2). The

approximate Riemann solver of Powell [4,76] is used herein to evaluate
the numerical fluxes and second-order spatial accuracy is achieved via
piece-wise limited linear reconstruction of the primitive solution vector,
𝐖, at the left and right cell interfaces according to

𝐖𝐿,𝑖±1∕2 = 𝐖𝑖−1∕2±1∕2 + 𝝓𝑖−1∕2±1∕2◦
𝜕𝐖𝑖−1∕2±1∕2

𝜕𝑥
𝛥𝑥
2

, (6)

𝑅,𝑖±1∕2 = 𝐖𝑖+1∕2±1∕2 − 𝝓𝑖+1∕2±1∕2◦
𝜕𝐖𝑖+1∕2±1∕2

𝜕𝑥
𝛥𝑥
2

, (7)

here ◦ here denotes an element-wise product, and 𝝓 is the Van Leer
lope limiter [74]. The solution gradient, 𝜕𝐖∕𝜕𝑥, is specified by the
ethod of least squares and is given by

𝜕𝐖𝑖
𝜕𝑥

=
𝛥𝐖𝑖𝛥𝑥𝑖 − ∇𝐖𝑖∇𝑥𝑖
(𝛥𝑥𝑖)2 + (∇𝑥𝑖)2

, (8)

here 𝛥𝑥𝑖 and ∇𝑥𝑖 denote forward and backwards differences respec-
ively.

For the unsteady initial-value problems of interest here, the semi-
iscrete form of Eq. (1) is solved by adopting a method-of-lines ap-
roach and applying a Runge–Kutta time-marching scheme. Second-
rder temporal accuracy is achieved here by using a strong stability pre-
erving (SSP), second-order, Runge–Kutta, time-marching scheme [77,
8] given by
̃𝑛+1 = 𝐔𝑛 + 𝛥𝑡𝐑(𝐔𝑛) , (9)
𝑛+1 = 1

2
(𝐔𝑛 + �̃�𝑛+1 + 𝛥𝑡𝐑(�̃�𝑛+1)) , (10)

where 𝐔𝑛 stores the cell-averaged conserved solution vectors for the
entire grid at the 𝑛th time step. The SSP time-marching scheme en-
sures monotone solutions for an appropriately restrictive choice of
the global time step, 𝛥𝑡, satisfying the usual Courant–Friedrichs–Lewy
criteria [79]. Similar to the steady residual, 𝐑, we define the unsteady
residual, 𝐑∗, by rearranging Eqs. (9) and (10), yielding

𝐑∗ ≡ 𝐔𝑛+1 − 𝐔𝑛
−

𝐑(𝐔𝑛) + 𝐑(�̃�𝑛+1)
= 0 . (11)
4

𝛥𝑡 2
. Data assimilation (DA) without �⃗� ⋅ 𝑩 = 𝟎 treatment

Data assimilation of sparse measured data associated with the time
volution of the solution for a general physical system is now con-
idered. Given separate estimates of a physical system, namely a dy-
amical model, , and the measured data, 𝐝, an optimal trajectory of

the system solution or state, 𝐔, is sought that utilizes the model, data,
and the associated uncertainties associated with both. The focus of this
study is on fully discrete dynamical models of the form

𝐔𝑛+1 = (𝐔𝑛) + 𝜼𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1 , (12)

with initial conditions

𝐔0 = 𝐔0
truth + 𝜻 , (13)

and observations

𝐝𝑛 = (𝐔𝑛
truth) + 𝝃𝑛 , 1 ≤ 𝑛 ≤ 𝑁 , (14)

where 𝐔𝑛+1 and 𝐔𝑛 represents the solution or state at time levels
𝑛 + 1 and 𝑛, respectively, 𝑁 is the total number of discrete time
levels of interest, and 𝜼𝑛, 𝜻 , and 𝝃𝑛 are stochastic error terms with
known distributions corresponding to the model, initial condition, and
measurements, respectively. The observation operator,  ∶ R𝑁𝐔 →
𝑁𝐝 , maps the state space to the observation space, and 𝐔𝑛

truth is a
discretization of the true state at the 𝑛th time step. Errors in the model,
𝜼𝑛, may be due to discretization errors, missing physics, or inaccurate
parameters for example. Similarly, errors in the initial condition, 𝜻 ,
arise from incomplete or unreliable knowledge of the initial state.
Additionally, both instrument noise and the restricted representation
of the system state on a computational grid contribute to observational
errors, 𝝃𝑛. In the present study, the mathematical model errors, 𝜼𝑛, are
ot considered. The errors in the initial condition and observations
re assumed to be Gaussian with zero mean and known covariance
atrices, 𝜮0

𝐔 and 𝜮𝐝, respectively, such that

𝜻 ∼  (𝟎,𝜮0
𝐔) , (15)

𝑛 ∼  (𝟎,𝜮𝑛
𝐝) . (16)

n addition, observations are linearly related to the model state and
hus the observation operator, , may be replaced by an observation
atrix, 𝐇.

The system state and observations are treated as random vari-
bles with the a priori probability density 𝑓 (𝐔0,… ,𝐔𝑁 ), and likelihood
(𝐝1,… ,𝐝𝑁 |𝐔0,… ,𝐔𝑁 ). Following Van Leeuwen and Evensen [80],

he posterior distribution of the system trajectory, given the data, can
e expressed through Bayes’ theorem as

(𝐔0,… ,𝐔𝑁
|𝐝1,… ,𝐝𝑁 ) ∝ 𝑓 (𝐔0,… ,𝐔𝑁 )𝑓 (𝐝1,… ,𝐝𝑁 |𝐔0,… ,𝐔𝑁 ) . (17)

The proportionality constant is omitted as it is simply a normalizing
constant and does not affect the Bayesian estimation problem. Although
the computation of Eq. (17) is not feasible, one is generally interested
in the related moments rather than the probability density function
itself. In fact, the optimal trajectory can be determined by finding the
value of 𝐔0,… ,𝐔𝑁 that maximizes 𝑓 (𝐔0,… ,𝐔𝑁

|𝐝1,… ,𝐝𝑁 ), known as
the maximum a posteriori estimate. In addition, the minimum-variance
estimate is equal to the maximum a posteriori estimate when the
variables follow a Gaussian distribution.

Data assimilation methods can readily be interpreted by examining
how Eq. (17) above is treated. In the following subsections, the EnKF
and 4DVar are introduced by first making modifications to Eq. (17).

5.1. Ensemble Kalman filter (EnKF) technique

Adopting the same probabilistic formalism used to derive Eq. (17),
one may obtain a general Bayesian filter [81] given by

𝑛 1 𝑛 𝑛 1 𝑛−1 𝑛 𝑛
𝑓 (𝐔 |𝐝 ,… ,𝐝 ) ∝ 𝑓 (𝐔 |𝐝 ,… ,𝐝 )𝑓 (𝐝 |𝐔 ) . (18)
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Three assumptions are needed in the derivation of this general filter,
namely (i) the model evolution is a first-order Markov process, i.e.,

𝑓 (𝐔𝑛
|𝐔0,… ,𝐔𝑛−1) = 𝑓 (𝐔𝑛

|𝐔𝑛−1) ; (19)

ii) the data is temporally independent, i.e.,

(𝐝1,… ,𝐝𝑁 |𝐔0,… ,𝐔𝑁 ) =
∏𝑁

𝑛=1 𝑓 (𝐝
𝑛
|𝐔0,… ,𝐔𝑁 ) ; (20)

nd (iii) data at time step, 𝑛, only depends on the state at the same time
tep, i.e.,

(𝐝𝑛|𝐔0,… ,𝐔𝑁 ) = 𝑓 (𝐝𝑛|𝐔𝑛) . (21)

ompared with Eq. (17), the Bayesian filter seeks the optimal value of
he state at time, 𝑡𝑛, from knowledge of the prior data assimilation and
ime integration steps, as well as the data at time, 𝑡𝑛. This process is
pplied sequentially.

When the error statistics are Gaussian and the dynamical model
s linear, the original KF method [24] provides an estimate, �̂�𝑛, that
aximizes the probability density of Eq. (18). An important limitation

f the KF is that it cannot be employed with non-linear dynamics,
ven suboptimally. The EnKF method, on the other hand, uses an
nsemble representation of the prior probability densities which allows
or the non-linear integration of each ensemble member. In the limit
f an infinite ensemble size and linear dynamics, the EnKF approach
s equivalent to the KF method. However, the posterior probability
ensity does not remain Gaussian when the model is non-linear, even
ith Gaussian priors. Consequently, the minimum-variance estimate
roduced by the EnKF is not equivalent to the maximum a posteri-
ri estimate. Nonetheless, the EnKF remains a suitable and effective
lgorithm for many problems.

The EnKF can be divided into two steps: the forecast and analysis
teps. In the former, the ensemble is propagated forward in time by
pplying Eq. (12) to each of the 𝑆 ensemble members. In the present
tudy, the dynamical model, , represents the ideal MHD solution
cheme of Eq. (10), and each ensemble member, 𝐔𝑛,𝑠, represents a
ossible realization of the conserved quantities in the MHD flow. The
nalysis step involves the addition of a linear correction term to each
nsemble member, i.e.,

̂ 𝑛,𝑠 = 𝐔𝑛,𝑠 +𝐊𝑛(𝐝𝑛,𝑠 −𝐇𝑛𝐔𝑛,𝑠), ∀𝑠 ∈ {1,… , 𝑆} , (22)

here an ensemble of observations is constructed according to
𝑛,𝑠 = 𝐝𝑛 + 𝝃𝑛,𝑠 , (23)

nd the Kalman gain, 𝐊𝑛, is given by
𝑛 = 𝜮𝑛

𝐔𝐇
𝑛⊺(𝐇𝑛𝜮𝑛

𝐔𝐇
𝑛⊺ +𝜮𝑛

𝐝)
−1 . (24)

As a reminder, the matrices, 𝜮𝑛
𝐔 and 𝜮𝑛

𝐝, are the covariance matrices
f the model and data respectively. While 𝜮𝑛

𝐝 is known apriori, 𝜮𝑛
𝐔 is

stimated by the sample covariance

𝑛
𝐔 = 𝐀𝑛𝐀𝑛⊺

𝑆 − 1
, (25)

ith

𝐔𝑛 = 1
𝑆

𝑆
∑

𝑠=1
𝐔𝑛,𝑠, 𝐀𝑛 = [𝐔𝑛,1 − 𝐔𝑛,… ,𝐔𝑛,𝑆 − 𝐔𝑛] . (26)

ue to the small number of ensemble members, the sample covariance
ften produces spurious correlations between distant grid-points. To
educe or dampen these erroneous correlations, a so-called localization
atrix, 𝐋, is used to multiply element-wise the sample covariance to

rrive at a localized covariance matrix given by

𝜮𝑛
𝐔)localized = 𝐋◦𝜮𝑛

𝐔 . (27)

he localization matrix, 𝐋, is constructed such that variances remain
nchanged, and covariances approach zero with increasing distance. In
5

he present work, the second-order autoregressive distribution is used
o specify 𝐋. Accordingly, the localization matrix is given by

(𝑖, 𝑗) =
(

1 +
|𝑖 − 𝑗|𝛥𝑥

𝐷𝐿

)

exp
(

−|𝑖 − 𝑗|𝛥𝑥
𝐷𝐿

)

, (28)

where 𝐷𝐿 is the localization length scale.

5.2. Four-dimensional variational (4DVar) technique

The so-called strong-constraint 4DVar method seeks optimal initial
data, 𝐔0, for cases in which the model errors, 𝜼, are ignored. Under
these conditions, Eq. (17) reduces to

𝑓 (𝐔0
|𝐝1,… ,𝐝𝑁 ) ∝ 𝑓 (𝐔0)𝑓 (𝐝1,… ,𝐝𝑁 |𝐔0) ∝ exp(−𝐽 (𝐔0)) . (29)

The 4DVar approach thus calculates the maximum a posteriori estimate
of the initial condition. In the case of a linear model, this optimal
choice for the initial data provides the most-likely estimate of 𝐔 as time
evolves. For a non-linear model, the optimal initial solution does not
ensure the most-likely estimates for 𝐔 over the time window of interest
and, for this reason, like the EnKF approach the 4DVar method does
not produce a strictly optimal non-linear model trajectory. Despite this
limitation, the 4DVar technique remains a useful tool for practical data
assimilation.

For the 4DVar approach, it can be shown that the posterior prob-
ability density is maximized by minimizing the cost-function, 𝐽 (𝐔0),
given by

𝐽 (𝐔0) = 1
2
(𝐔0−𝐔𝑏)⊺(𝜮0

𝐔)
−1(𝐔0−𝐔𝑏)+ 1

2

𝑁
∑

𝑛=1
(𝐇𝑛𝐔𝑛−𝐝𝑛)⊺(𝜮𝑛

𝐝)
−1(𝐇𝑛𝐔𝑛−𝐝𝑛) ,

(30)

hile simultaneously constrained by the model, 𝐔𝑛+1 = (𝐔𝑛). Here,
𝑏 denotes the background (a priori) estimate of the initial condition.
ne may interpret 𝐽 as a measure of two competing quantities. The

irst term measures the squared difference between the posterior and
rior initial conditions, weighed by the precision of the model. The
emaining terms measure the squared difference between the model
nd the data, weighed by the precision of the data. In the context of
he finite-volume solution scheme of Section 4, the 4DVar estimate can
e expressed as the solution of the following minimization problem

inimize
𝐔0

𝐽 (𝐔0) , (31a)

ubject to 𝐑∗ = 𝟎 . (31b)

ather than solving the constrained problem directly, Lagrange mul-
ipliers, often termed adjoint variables, are introduced to define the
agrangian, , given by

(𝐔0,… ,𝐔𝑁+1,𝝀1,… ,𝝀𝑁+1) = 𝐽 +
𝑁
∑

𝑛=0
(𝝀𝑛+1)⊺𝐑∗(𝐔𝑛+1,𝐔𝑛) , (32)

s a function of all solution variables, 𝐔𝑛, and all adjoint variables, 𝝀𝑛.
olutions to the constrained problem may be obtained by finding the
tationary points of the Lagrangian. For this, the derivatives of  with
espect to each of the 𝑁+2 solution variables and 𝑁+1 adjoint variables
ust vanish. Before enforcing these conditions on the derivatives of ,

t is instructive to note that the unsteady residual may be written as
∗(𝐔𝑛+1,𝐔𝑛) = 𝐔𝑛+1 −(𝐔𝑛) , (33)

here (𝐔𝑛) is given by the right hand of Eq. (10). In this form,
acobians of 𝐑∗ can trivially be written as

𝜕𝐑∗(𝐔𝑚+1,𝐔𝑚)
𝜕𝐔𝑛 = 𝟎, ∀𝑚 ∉ {𝑛, 𝑛 − 1} , (34)

𝜕𝐑∗(𝐔𝑛+1,𝐔𝑛)
= −

𝜕(𝐔𝑛)
,

𝜕𝐑∗(𝐔𝑛,𝐔𝑛−1)
= 𝐈 . (35)
𝜕𝐔𝑛 𝜕𝐔𝑛 𝜕𝐔𝑛
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Now, derivatives of  may be written as
𝜕
𝜕𝝀𝑛 = 𝐑∗(𝐔𝑛+1,𝐔𝑛), ∀𝑛 ∈ {1,… , 𝑁}, (36)

𝜕
𝜕𝐔𝑁+1

= 𝝀𝑁+1 , (37)

𝜕
𝜕𝐔𝑛 = 𝐇𝑛⊺(𝜮𝑛

𝐝)
−1(𝐇𝑛𝐔𝑛 − 𝐝𝑛) −

[

𝜕
𝜕𝐔𝑛

]⊺

𝝀𝑛+1 + 𝝀𝑛, ∀𝑛 ∈ {1,… , 𝑁} ,

(38)
𝜕
𝜕𝐔0

= (𝜮0
𝐔)

−1(𝐔0 − 𝐔𝑏) −
[

𝜕
𝜕𝐔0

]⊺

𝝀1

= (𝜮0
𝐔)

−1(𝐔0 − 𝐔𝑏) − 𝝀0 , (39)

here the extra variable, 𝝀0, has been introduced for convenience.
etting Eqs. (36)–(39) all to zero yields the coupled system of Euler–
agrange equations
∗(𝐔𝑛,𝐔𝑛−1) = 𝟎, ∀𝑛 ∈ {1,… , 𝑁} , (40)
𝑁+1 = 𝟎 , (41)

𝑛 =
[

𝜕
𝜕𝐔𝑛

]⊺

𝝀𝑛+1 −𝐇𝑛⊺(𝜮𝑛
𝐝)

−1(𝐇𝑛𝐔𝑛 − 𝐝𝑛) , ∀𝑛 ∈ {1,… , 𝑁} , (42)

0 = (𝜮𝐔)−1(𝐔0 − 𝐔𝑏) . (43)

qs. (41)–(42) are known as the adjoint equations and form a two-
oint boundary-value problem. Noticeably, the fully discrete ideal MHD
quations are recovered via Eq. (40). In practice, rather than solving the
wo-point boundary-value problem directly, the cost-function gradient,
𝐽∕𝜕𝐔0, is calculated by use of Eq. (39) given that 𝜕∕𝜕𝐔𝑛 = 𝟎 and
∕𝜕𝝀𝑛 = 𝟎 are satisfied exactly for all time steps. These conditions are
nsured by the integration of the adjoint equations and fully discrete
deal MHD equations, allowing one to write
𝜕𝐽
𝜕𝐔0

= 𝜕
𝜕𝐔0

|

|

|

|

𝜕
𝜕𝐔𝑛 =

𝜕
𝜕𝝀𝑛 =𝟎

= (𝜮0
𝐔)

−1(𝐔0 − 𝐔𝑏) − 𝝀0 . (44)

With knowledge of the gradient, 𝜕𝐽∕𝜕𝐔0, the cost-function can be
iteratively minimized by a gradient based optimization algorithm until
Eq. (43) is satisfied. The limited-memory variant of the Broyden–
Fletcher–Goldfarb– Shanno (L-BFGS) algorithm [82], a limited-memory
quasi-Newton method, is used in the present study to drive the mini-
mization process. Faster convergence is achieved by preconditioning
the problem as outlined in Appendix A.

5.3. Summary of data assimilation (DA) algorithms

Summaries of both the EnKF and 4DVar DA algorithms formulated
and described above and applied herein to the ideal MHD initial-value
problems of interest are given in Table 1.

6. Formulation of discrete adjoint model without �⃗� ⋅ 𝑩 = 𝟎 treat-
ment

A common difficulty with the implementation of any 4DVar ap-
proach is the formulation of the transpose of the linearized model,
[𝜕∕𝜕𝐔𝑛]⊺, appearing in the adjoint equations of Eq. (42). This term,
often referred to as the discrete adjoint model, can be both involved
and challenging to evaluate. In particular, for discrete models of the
physical system as considered here, the derivatives of the functions
defined in every line of computer code must be evaluated and trans-
posed. Various strategies are possible for the evaluation of the discrete
adjoint model, including direct (i.e., by hand) analytical differentiation,
the use of finite-difference approximations, the complex-step deriva-
tive approximation, and the use of various automatic differentiation
libraries [83–85]. It is important to note that adjoint-based techniques
are used extensively in many other optimal control applications ranging
from aerodynamic shape and multidisciplinary design optimization to
output-based error estimation for directing mesh adaptation. See, for
6

I

example, the previous research by Pironneau [86], Jameson [87], Ne-
mec and Zingg [88,89], Truong et al. [90], and Hicken and Zingg [91]
related to design optimization and the previous studies of Becker and
Rannacher [92,93], Becker et al. [94], Heuveline and Rannacher [95],
Venditti and Darmofoal [96–98], Nemec and Aftosmis [99,100], and
Ceze and Fidkowski [101]. For conducting gaseous flows, Marta and
Alonso [102–104] developed discrete adjoint solution methods for the
ideal MHD and low-magnetic Reynolds-number regimes in order to
perform sensitivity analysis and optimize hypersonic vehicle designs
while accounting for magnetic effects on locally ionized flows. More
recently, Narechania [105] developed a discrete adjoint method for
steady ideal MHD flow for use in the first application of output-
based error estimation with anisotropic, block-based, adaptive mesh
refinement (AMR) to plasma flows.

A hybrid approach is adopted here for the evaluation of the discrete
adjoint model associated with the 1D form of the ideal MHD equations.
In particular, the finite-volume solution scheme of Section 4 is differen-
tiated and transposed analytically with the exception of the numerical
flux function, F . In the case of the latter, derivatives of F are then
computed using the ADEPT automatic differentiation library [85]. With
this hybrid approach, the adjoint model is easily adaptable to variations
in the scheme and even in the governing equations. In addition, by
presenting and evaluating the discrete adjoint model in proposed form,
it is readily replicated in possible follow-on studies.

To begin the formulation of the discrete adjoint model, the focus
will first be on the temporal discretization. Differentiation of the time
marching scheme is independent of the spatial discretization strategy,
allowing for modularity in the schemes of choice. Differentiating the
second-order SSP Runge–Kutta scheme of Eqs. (9) and (10) yields

�̃�
𝑛
= 𝝀𝑛+1 + 𝛥𝑡

[

𝜕𝐑(�̃�𝑛+1)
𝜕�̃�𝑛+1

]⊺

𝝀𝑛+1, (45)
[

𝜕
𝜕𝐔𝑛

]⊺

𝝀𝑛+1 = 1
2

(

𝝀𝑛+1 + �̃�
𝑛
+ 𝛥𝑡

[

𝜕𝐑(𝐔𝑛)
𝜕𝐔𝑛

]⊺

�̃�
𝑛
)

, (46)

which takes a familiar predictor–corrector structure. The derivation of
Eqs. (45) and (46) is provided in Appendix B. In the above, the adjoint
model is now written solely in terms of the Jacobian of the steady
residual, 𝜕𝐑∕𝜕𝐔. To evaluate this Jacobian, three vectors are intro-
uced. The first vector, F = [F1∕2,… ,F𝑖−1∕2,… ,F𝑀+1∕2]⊺, contains
he numerical fluxes at the 𝑀 + 1 cell interfaces. The elements of the
econd and third vectors, 𝐖𝐿 = [𝐖𝐿,1∕2,… ,𝐖𝐿,𝑖−1∕2,… ,𝐖𝐿,𝑀+1∕2]⊺,
nd 𝐖𝑅 = [𝐖𝑅,1∕2,… ,𝐖𝑅,𝑖−1∕2,… ,𝐖𝑅,𝑀+1∕2]⊺, are the reconstructed

primitive solution variables associated with the left and right cell
interfaces, respectively. The steady residual may now be written as a
function of F , i.e.,

𝐑𝑛 = 𝐑(F (𝐖𝑛
𝐿,𝐖

𝑛
𝑅)) , (47)

where F is in turn dependent on the conserved solution variables via

𝑛
𝐿 = 𝐖𝐿(𝐖(𝐔𝑛)), 𝐖𝑛

𝑅 = 𝐖𝑅(𝐖(𝐔𝑛)) . (48)

ith these preliminaries, and after successive application of the chain
ule, one may write

𝜕𝐑𝑛

𝜕𝐔𝑛 = 𝜕𝐑𝑛

𝜕F𝑛

(

𝜕F𝑛

𝜕𝐖𝑛
𝐿

𝜕𝐖𝑛
𝐿

𝜕𝐖𝑛 + 𝜕F𝑛

𝜕𝐖𝑛
𝑅

𝜕𝐖𝑛
𝑅

𝜕𝐖𝑛

)

𝜕𝐖𝑛

𝜕𝐔𝑛 . (49)

With the exception of 𝜕F𝑛∕𝜕𝐖𝑛
𝐿 and 𝜕F𝑛∕𝜕𝐖𝑛

𝑅, each of the Jacobian
atrices are evaluated analytically, and the relevant expressions are

iven in Appendix B. Taking the transpose of Eq. (49), and noting that
F𝑛∕𝜕𝐖𝑛

𝐿 and 𝜕F𝑛∕𝜕𝐖𝑛
𝑅 are block diagonal quantities, the Jacobian-

ranspose-vector products appearing in Eqs. (45) and (46) may be
valuated directly without the full storage of these large matrices.

̂ ⊺
nstead, the 𝑖th element of 𝝀 = [𝜕𝐑∕𝜕𝐔] 𝝀 is computed according to
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Table 1
Comparison of data assimilation algorithms studied herein.
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∇
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n

̂ 𝑖 =
1
𝛥𝑥

[

𝜕𝐖𝑖
𝜕𝐔𝑖

]⊺ 1
∑

𝑗=−1

[ 𝜕𝐖𝐿,𝑖+𝑗+1∕2

𝜕𝐖𝑖

]⊺[ 𝜕F𝑖+𝑗+1∕2

𝜕𝐖𝐿,𝑖+𝑗+1∕2

]⊺

𝛥𝝀𝑖+𝑗

+
[ 𝜕𝐖𝑅,𝑖+𝑗−1∕2

𝜕𝐖𝑖

]⊺[ 𝜕F𝑖+𝑗−1∕2

𝜕𝐖𝑅,𝑖+𝑗−1∕2

]⊺

∇𝝀𝑖+𝑗 ,

(50)

here 𝛥𝝀𝑖+𝑗 and ∇𝝀𝑖+𝑗 denote the forward and backwards differences of
𝑖+𝑗 . The Jacobian-transpose-vector products involving the numerical
luxes, F , appearing in Eq. (50) are evaluated via ADEPT’s reverse-
ode automatic differentiation [85]. With the above defined, Eq. (42),

ogether with Eqs. (45), (46), and (50), can then be used to integrate
he discrete adjoint equations backwards in time thereby obtaining the
djoint solution at each discrete time step of a numerical simulation.

.1. Validation of discrete adjoint model

To verify the correctness of discrete adjoint model formulation, a
o-called gradient test was performed here. As described by Navon
t al. [106], the accuracy of the gradient computed by the adjoint
odel can be assessed by considering a Taylor-expansion of the cost

unction given by

(𝐔0 + 𝛼𝜹𝐔) = 𝐽 (𝐔0) + 𝛼𝜹𝐔⊺ 𝜕𝐽
𝜕𝐔0

+ (𝛼2) , (51)

here 𝛼 is a small scalar, and 𝜹𝐔 is a unit vector. Re-writing the above
xpression, one may define the function, 𝛽(𝛼), in terms of 𝛼 as follows

(𝛼) =
|

|

|

|

𝐽 (𝐔0 + 𝛼𝜹𝐔) − 𝐽 (𝐔0)
𝛼𝜹𝐔⊺ 𝜕𝐽

𝜕𝐔0

− 1
|

|

|

|

= (𝛼) , (52)

hich then quantifies the error in the gradient, 𝜕𝐽∕𝜕𝐔0. If the discrete
djoint model is formulated correctly, 𝛽 should be small for a small

and converge to 0 with an error of order one. Choosing 𝜹𝐔 =
𝜕𝐽∕𝜕𝐔0]∕‖𝜕𝐽∕𝜕𝐔0

‖, the computed value of 𝛽 is depicted in Fig. 1 for
he present adjoint model as a function of 𝛼. The error is shown to
e small and converges with order one, thus validating the adjoint
odel formulation adopted herein. Note that, for very small values of
(i.e., 𝛼 < 10−10), the value of 𝛽 can be observed to increase again as

inite-precision, numerical, round-off errors dominate and negate the
ccuracy of the validation strategy in these cases.
7

s

Fig. 1. Verification of the discrete adjoint model via the gradient test approach. 𝛽
quantifies the error in the adjoint-based gradient evaluation given the step size, 𝛼.

. Strategies for enforcement of �⃗� ⋅ 𝑩 = 𝟎 constraint with data
ssimilation

In space plasma physics as in many plasma applications, the mag-
etic field plays a crucial role. Its assimilation is therefore paramount
or successful space plasma DA frameworks. One of the primary chal-
enges in MHD-based simulations for space weather forecasting is the
nforcement of Gauss’ law for magnetism which may be written as

⃗ ⋅ �⃗� = 0 , (53)

hich is effectively a constraint on solutions of the magnetic field
hich must be satisfied for all time and negates the possibility for
agnetic monopoles. In the continuous setting, given initial and bound-

ry data which satisfy ∇⃗ ⋅ �⃗� = 0, the ideal MHD equations ensure
divergence-free evolution of the magnetic field. However, when a

articular combination of spatial and temporal discretization is applied
o the ideal MHD equations in more than one dimension, unphysical
on-zero ∇⃗ ⋅ �⃗� errors can emerge and pollute the solution. Numerical
chemes designed to minimize these ∇⃗ ⋅ �⃗� errors typically fall under
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three categories: magnetic field projection [107]; divergence transport
strategies [76,108]; and constrained transport schemes [109]. The first
and second categories are used to remove small ∇⃗ ⋅ �⃗� errors that arise
rom the non-zero discrete divergence of the discrete curl operator —
property that holds true in the continuous case. The third category,

n the other hand, ensures ∇⃗ ⋅ �⃗� = 0 to machine accuracy for
the specific discretization provided that the magnetic field is initially
divergence-free for the same discretization procedure.

Standard one-dimensional solutions of the ideal MHD equations
do not suffer from ∇⃗ ⋅ �⃗� errors as the flux of the 𝐵𝑥 component of
he magnetic field is necessarily zero, resulting in a constant value
or 𝐵𝑥 which therefore satisfies the one-dimensional divergence-free
roperty, provided that 𝐵𝑥 = constant is also satisfied by the initial
ata. However, in the context of data assimilation, ∇⃗ ⋅ �⃗� errors can
rise from the updates to the initial data inherent to the assimilation
rocedure. These errors go beyond those associated with the particular
iscretization scheme applied to the ideal MHD equations and occur
egardless of the number of spatial dimensions for the problem. For
nstance, consider the EnKF analysis of Eq. (22) restricted to the three
omponents of the magnetic field given by

̂ 𝑛,𝑠 = 𝐁𝑛,𝑠 +𝐊𝑛
𝐁(𝐝

𝑛,𝑠
𝐁 −𝐇𝑛

𝐁𝐁
𝑛,𝑠) , (54)

s well as the preconditioned 4DVar update of the initial magnetic field
iven by

0 = 𝐁𝑏 +
√

𝛴0
𝐁𝐕𝐁 , (55)

where the 𝐁 subscripts indicate a restriction to the magnetic field
components only. The resulting assimilated magnetic fields will not be
divergence free as both

div𝐊𝑛
𝐁(𝐝

𝑛,𝑠
𝐁 −𝐇𝑛

𝐁𝐁
𝑛,𝑠) = 𝟎 (56)

and

div
√

𝛴0
𝐁𝐕𝐁 = 𝟎 (57)

do not generally hold. Here, ‘‘div’’ denotes the discrete divergence oper-
ator evaluated at each cell. As a consequence, data assimilation induced
∇⃗ ⋅ �⃗� errors can become considerably large, resulting in unphysical
magnetic fields and negative mass or pressure values (i.e., physically
non-realizable solutions) which can prevent practical simulations in
many cases. Effective ∇⃗ ⋅ �⃗� treatments for data assimilation with global

HD models remains an open question and, for this reason, observa-
ional magnetic field data are therefore often disregarded to circumvent
uch problems in practical simulations. See for example, numerical DA
xperiments reported by Lang et al. [57].

To enable the assimilation of magnetic field data while systemati-
ally addressing the solenoidal constraint associated with the magnetic
ield, this study examines and quantitatively compares two strategies
dapted from the numerical MHD literature. These techniques are
urther described in the subsections that follow, and numerical experi-
ents are conducted in Section 8.5. Both magnetic field projection and
ivergence transport are employed to mitigate ∇⃗ ⋅ �⃗� errors introduced
uring data assimilation. The former entails a moderately expensive
dditional correction step after each assimilation update, while the
atter necessitates a modification to the ideal MHD numerical solution
rocedure. The constrained transport approach is excluded from this
tudy due to its inability to correct initially unphysical magnetic fields.

In addition to the projection and divergence transport techniques,
he large assimilation induced ∇⃗ ⋅ �⃗� errors can be widely reduced

in the variational approach by a judicious choice of the background
covariance matrix. In particular, if the background covariance for the
magnetic field is designed to have divergence-free sample paths, then
Eq. (57) holds with some numerical noise [110], after which the projec-
tion or divergence transport techniques can more effectively minimize
the remaining ∇⃗ ⋅ �⃗� errors. The same approach is not effective with the
8

EnKF, in large part, due to covariance localization and the finite size
of the ensemble.

7.1. Divergence transport of data assimilation induced errors

The main idea behind divergence transport strategies is to remove
via transport any non-zero ∇⃗ ⋅ �⃗� errors that arise from the discretiza-
tion of the ideal MHD equations within the computational domain. A
straightforward means to deal with data assimilation induced ∇⃗ ⋅ �⃗�
rrors is to rely on the same divergence transport strategy. Although di-
ergence transport was not originally intended for this application, this
imple approach offers an effective baseline technique. Indeed, many
deal MHD codes already incorporate divergence transport, requiring
o additional modifications.

Powell’s 8-wave formulation [76] is considered here for divergence
ransport due to its prevalence in many ideal MHD codes as well as its
elative simplicity. In Powell’s method, the ideal MHD equations are
ritten in symmetrizable form while retaining terms proportional to

⃗ ⋅ �⃗� , and are given by
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝐅 = 𝐒 , (58)

where 𝐔 and 𝐅 remain unchanged, and the ‘source term’ vector, 𝐒, is
given by

𝐒 = −∇ ⋅ �⃗�

⎡

⎢

⎢

⎢

⎢

⎣

0
�⃗�
𝑢

𝑢 ⋅ �⃗�

⎤

⎥

⎥

⎥

⎥

⎦

. (59)

Consequently, the semi-discrete form of the upwind finite-volume for-
mulation applied to the 𝑖th computational cell is supplemented by a
numerical source term and is given by

𝑑𝐔𝑖
𝑑𝑡

= − 1
𝛥𝑥

(F𝑖+1∕2 −F𝑖−1∕2) −
𝐵𝑥,𝑖+1 − 𝐵𝑥,𝑖−1

2𝛥𝑥

⎡

⎢

⎢

⎢

⎢

⎣

0
�⃗�
𝑢

𝑢 ⋅ �⃗�

⎤

⎥

⎥

⎥

⎥

⎦𝑖

. (60)

In order to account for the numerical source term, the discrete adjoint
equations must also be appropriately modified. Direct differentiation
followed by application of the transpose operator to the discretized
Powell source vector, 𝐒, yields the following expression given by
1
∑

𝑗=−1

[ 𝜕𝐒𝑖+𝑗
𝜕𝐔𝑖

]⊺

𝝀𝑖+𝑗 , (61)

which must be added to Eq. (50) for �̂�𝑖 given above. The corresponding
expressions for each of the Jacobian matrices, 𝜕𝐒𝑖+𝑗∕𝜕𝐔𝑖, are provided
in Appendix C.

7.2. Divergence-free projection of magnetic field data

The so-called projection method, first introduced for MHD calcu-
lations by Brackbill and Barnes [107], is used to project numerically
approximated magnetic fields with non-zero divergence to the space
of divergence- free vector fields. The method is based on Helmholtz
decomposition, which states that a vector field can be split into ir-
rotational and solenoidal components under fairly weak conditions.
Application of Helmholtz decomposition to a numerically approximated
magnetic field, �⃗�∗, yields

�⃗�∗ = ∇⃗ × 𝐴 + ∇⃗𝜙 , (62)

where the first term is solenoidal, and the second is irrotational. Taking
the divergence of �⃗�∗ results in the following Poisson equation for 𝜙,

∇2𝜙 = ∇⃗ ⋅ �⃗�∗ . (63)
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After solving, a purely solenoidal magnetic field, �⃗�, can be obtained by
subtracting the irrotational component, yielding

�⃗� = �⃗�∗ − ∇⃗𝜙. (64)

In the context of the data assimilation for ideal MHD considered
erein, the projection method is applied to every ensemble member
fter each analysis step in the EnKF, or to each initial magnetic
ield iterate obtained during the 4DVar optimization procedure. The
nKF method therefore incurs a significantly larger computational cost
enalty by employing the projection method compared to 4DVar ap-
roach. To maintain consistent gradient evaluations in the variational
pproach, a discrete adjoint of the Poisson solver associated with the
agnetic field must also be implemented in the case of multidimen-

ional computations. However, for the one-dimensional problems of
nterest herein, a simplified one-dimensional analog of the projection
ethod can be formulated. It can be shown that the divergence-

ree projection of Eq. (64) is equivalent to solving the following
inimization problem [111]

inimize
�⃗�

‖�⃗� − �⃗�∗
‖

2 , (65a)

ubject to ∇⃗ ⋅ �⃗� = 0 . (65b)

eplacing the constraint, ∇⃗ ⋅ �⃗� = 0, with its one-dimensional equiv-
lent, 𝜕𝐵𝑥∕𝜕𝑥 = 0, yields the following exact solution to the above
inimization problem

𝑥 = 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝐵∗
𝑥𝑑𝑥 , (66)

here 𝑎 and 𝑏 are the spatial domain boundaries. It becomes immedi-
tely clear that the one-dimensional analog of the projection method is
imply the average of the non-solenoidal component of the magnetic
ield. Similar to the multidimensional setting, the one-dimensional
rojection is also a global operation and to account for the projection
n the 4DVar gradient evaluation, the 𝐵𝑥 entries of 𝝀0 can be merely
eplaced by their corresponding average.

. Data assimilation (DA) numerical experiments

Several numerical experiments are now described to demonstrate
nd compare the efficacy of the EnKF and 4DVar data assimilation
lgorithms presented in Sections 5 and 6 above. So-called twin exper-
ments are considered for which synthetic observations were gathered
rom a reference simulation. To recover the reference simulation, the
ynthetic observations were assimilated with an erroneously initialized
odel. These types of numerical experiments are very standard in
ata assimilation studies as they allow for a controlled verification and
omparison of the data assimilation algorithms of interest.

Three initial-value problems (IVPs) associated with the 1D ideal
HD equations are considered herein and, for each case, the sparsity

f observations was varied. Twin experiment simulation results of
radially expanding plasma are first examined in Section 8.1. The

anonical, MHD, shock-tube, problem of Brio and Wu [112] is then
onsidered in Section 8.2, noting that this IVP is commonly used in the
ssessment, verification, and validation of shock-capturing, numerical,
olution methods for ideal MHD. A third and final IVP, inspired by
hu and Osher’s shock-tube problem [113,114] and mimicking shock-
urbulence interaction, is also investigated in Section 8.3. For each IVP,
he numerical solution was taken to be the ‘‘true’’ model evolution.
ynthetic observations were then generated by sparsely sampling the
onserved quantities and adding Gaussian noise. The background initial
onditions were also iterated in time in order to quantify the effects of
ata assimilation in the reduction of errors compared to a simulation
ith no data assimilation. For the remainder of this paper, the term

background’ is used to refer both to the a priori initial conditions, as
ell as the unsteady solution quantities obtained by starting from these
9

nitial conditions. Note however that the first set of assimilation results
resented in Sections 8.1–8.3 do not include synthetic observations
or the 𝑥-component of the magnetic field, 𝐵𝑥; this component of

the solution did not participate in the assimilation process as any
data-induced deviation in 𝐵𝑥 from a constant value could potentially
violate the solenoidal property of the magnetic field and introduce
MHD solution errors without careful treatment. Additional numerical
experiments of the proposed ∇⃗ ⋅ �⃗� treatment strategies described in
Section 7 are subsequently presented and discussed in Section 8.5 for
which the sequential and variational data assimilation strategies are
applied to all MHD variables, including 𝐵𝑥. Additional data assimilation
results are provided in Section 8.4 which assess the sensitivity of the
data assimilation procedures to the total number of model evaluations.

It should be noted that several simulations suffered from stability
issues due to the occurrence of both negative values of the plasma
mass and pressure brought about by the assimilated updates arising
from the EnKF approach. These physically non-realizable solutions
were largely mitigated by forcing all unphysical density and pressure
values to be equal to minimum thresholds of 0.005. This ad-hoc tech-
nique was sufficient for performing the simulations in most situations;
however, stability issues of this type were unavoidable in certain cases
as described in the discussions to follow. Similar stability issues were
not observed in the 4DVar results and the corresponding physical
realizability corrections were not required. Not unexpectedly, the direct
use of the numerical solution as represented by the discretized form of
the ideal MHD equations within the constrained minimization problem
for the initial data leads to more robust assimilated results that respect
the physical realizability of the solutions (i.e., positivity of the plasma
density and pressure) for the non-linear IVPs of interest here.

In an actual operational space weather forecasting setting, the
background initial conditions, 𝐔𝑏, would be provided by previous
simulations and/or assimilation and would be consistent with the
 (𝐔0

truth,𝜮
0
𝐔) Gaussian distribution. Additionally, the specification of

the model error covariance, 𝜮0
𝐔, would be an important endeavor in its

own right. Nevertheless, in the idealized twin experiments of Cases I,
II, and III considered herein, 𝜮0

𝐔 was specified directly and was formed
n terms of a sample covariance of random curves as described by
vensen [25]. The background initial condition was then prescribed by
random sample drawn from  (𝐔0

truth,𝜮
0
𝐔). This procedure permitted

he direct comparison and evaluation of the EnKF and 4DVar data
ssimilation strategies in a consistent fashion. The observation error
ovariance matrix, 𝜮𝑛

𝐝, was simply specified as a diagonal matrix
ontaining the noise variance of the synthetic observations. In the EnKF
xperiments, an ensemble of 80 members was generated by sampling
rom  (𝐔𝑏,𝜮0

𝐔). The mean of the ensemble corresponds exactly to
he background initial conditions used in the 4DVar simulations. This
llowed both data assimilation methods to be compared in an equal
nd fair manner. To keep the number of model evaluations equal in the
wo data assimilation strategies, the 4DVar scheme was limited here to
0 iterations of the optimization procedure. The resulting assimilated
olutions were then assessed in terms of the root-mean-square (RMS)
rror at time step 𝑛, 𝜖𝑛, given by

𝑛 =

√

√

√

√

𝑀
∑

𝑖=1

‖

‖

‖

(𝐔𝑛
𝑖 )truth − 𝐔𝑛

𝑖
‖

‖

‖

2
. (67)

where 𝑀 is the total number of cells within the 1D computa-
tional mesh. The latter is a measure of the discrepancy between the
assimilated and true solutions of each IVP.

8.1. Case I : Plasma-expansion initial-value problem

An IVP associated with a plasma expansion process with fully
differentiable initial conditions is first considered. This case, referred to
as Case I, involves hyperbolic non-linear wave transport with different
components of the solution propagating at rather widely different
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p
a

velocities and consists of two symmetric rarefaction waves moving
supersonically in opposite directions. The initial velocity field is given
by

𝑢𝑥 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

− 2
𝛾 , 𝑥 ≤ − 3

2 ,

− 1
𝛾

(

1 − tanh 𝑥+1
1∕4−(𝑥+1)2

)

, − 3
2 < 𝑥 < − 1

2 ,

0, − 1
2 ≤ 𝑥 ≤ 1

2 ,
1
𝛾

(

1 + tanh 𝑥−1
1∕4−(𝑥−1)2

)

, 1
2 < 𝑥 < 3

2 ,
2
𝛾 , 𝑥 ≥ 3

2 ,

(68)

𝑢𝑦 = 𝑢𝑧 = 0, (69)

ith 𝛾 = 2. The sound speed, 𝑎, is specified according to

𝑥 −
2

𝛾 − 1
𝑎 = − 2

𝛾 − 1
, 𝑥 ≤ 0 , (70)

𝑢𝑥 +
2

𝛾 − 1
𝑎 = 2

𝛾 − 1
, 𝑥 > 0 . (71)

The remaining hydrodynamic quantities are obtained using

𝜌 = 𝛾𝑎
2

𝛾−1 , (72)

𝑝 =
𝜌𝑎2

𝛾
, (73)

which corresponding to the usual isentropic flow relations. Finally, the
following initial magnetic field is imposed

𝐵𝑦 =

{

1
2 (cos(2𝜋(𝑥 + 1)) + 1), 1

2 < |𝑥| < 3
2 ,

0 , otherwise ,
(74)

𝑥 = 1
2
, (75)

𝐵𝑧 = 0 . (76)

The initial distributions of the density, 𝑥 momentum, and 𝑦 mag-
netic field component corresponding to the true and background
solutions for the Case I plasma-expansion IVP are given in Fig. 2.
Numerical simulations were performed for this case using a 1D domain,
−4𝜋 ≤ 𝑥 ≤ 4𝜋, with a grid consisting of 1000 uniform computational
cells. A localization length of 4 was used for the EnKF assimilations.
The numerical time integration was performed in two phases: a data
assimilation phase; and a forecast phase. The assimilation phase takes
place from 𝑡 = 0 to 𝑡 = 5 with 𝑁 = 1250 constant time steps. During this
time window, the synthetic data was assimilated using all of the MHD
solution variables except for the 𝑥-component of the magnetic field, 𝐵𝑥,
which was assumed constant and equal to the exact value of 1/2. As a
first step, this avoided the creation of ∇⃗ ⋅ �⃗� = 0 constraint errors arising
from the sequential and variational data assimilation procedures. The
subsequent forecast phase takes place from 𝑡 = 5 to 𝑡 = 10 and also
consists of 1250 constant time steps. In this phase, data is no longer
ingested in the simulation. The assimilated solutions at the end of the
previous phase are merely used as initial conditions during the forecast
phase.

Synthetic observations are generated along the path of a fictitious
observer with 𝑘 ‘‘orbits’’ of the physical space domain, 𝑥. For example,
the space–time locations of the observer corresponding to 5 orbits are
depicted in Fig. 3(a). Observations corresponding to 𝑘 = 5, 10, 20, and
40 were examined. Additionally, observations from two stationary ob-
servers were also generated and assimilated. Each stationary observer
measured an eighth of the spatial domain near the ends of the channel.
The space–time locations of the stationary observers are shown in
Fig. 3(b). The conserved quantities were sampled from the true solution
at the observer’s space–time locations and Gaussian noise was added
such that most of the noise (three standard deviations) was within 5%
of the maximum value of the quantity. As the solution variables 𝜌𝑢𝑧 and
𝐵𝑧 have constant zero values, the noise statistics corresponding to 𝜌𝑢𝑥
and 𝐵 were used for 𝜌𝑢 and 𝐵 , respectively. The standard deviations
10

𝑦 𝑧 𝑧 s
Table 2
Standard deviation of the components of solution noise used in synthetic observations
for the Case I plasma-expansion initial-value problem.

𝜌 𝜌𝑢𝑥 𝜌𝑢𝑦 𝜌𝑢𝑧 𝐵𝑦 𝐵𝑧 𝐸

SD 0.033 0.014 0.005 0.005 0.017 0.017 0.019

of the added noise corresponding to each conserved solution quantity
are summarized in Table 2.

The temporal evolution of the RMS error of the background and
assimilated solutions is shown in Fig. 4. Additionally, a summary of the
error reduction for each of the observation systems is summarized in
Table 3. Both the EnKF and 4DVar assimilation techniques significantly
reduced the error at the end of the assimilation window and the cumu-
lative error in the forecast phase, with the 4DVar scheme outperforming
the EnKF method. The assimilation involving observations near the
domain boundaries indicates a substantial difference in the perfor-
mance of the data assimilation algorithms. While the 4DVar DA method
reduced the cumulative RMS error to 16.18% of the background error,
the EnKF technique was only able to reduce the cumulative error to
53.24%. This large discrepancy is due to the hyperbolic nature of
the governing ideal MHD equations and the resulting transport via
wave motion associated with the ideal MHD description. With the
EnKF approach, improvements brought about by the assimilation of
observations only remain and propagate outwards with the rest of the
solution content and rapidly leave the domain. Information is thus not
able to be carried back into the middle of the domain for this IVP and
the assimilated solution errors remain high. However, with the 4DVar
scheme on the other hand, the adjoint equations allow information
from observations in the outer portions of the 1D solution domain to
be transmitted inwards towards the domain interior as dictated by the
domain of dependence. As shown in the solution profiles of Fig. 5 and 𝑥-

density error plots of Fig. 6, while the EnKF solution recovers the true
olution in the outer portions of the domain where the data assimilation
s applied, the EnKF solution is very similar to the original background
olution in the inner portions of the domain and the resulting RMS error
s high. In contrast, the 4DVar assimilation procedure provides a clearly
uperior estimate that is very close to the true solution over the entire
patial domain with a far more uniform distribution of the RMS error.

The difficulties observed with the EnKF method considered here
ould potentially be alleviated through the use of both an ensemble
alman smoother (EnKS) [81] and more sophisticated localization
trategies. These techniques can help mitigate the rapid escape of state
pdates via wave transport phenomena. However, such methods were
ot considered here and the performance of these techniques is not
xpected to match that of 4DVar in the context of MHD outflows. In an
deal setting, observations would be localized both in space and time
round characteristic lines intersecting with an analysis point [21]. For
he complex and non-linear characteristics pertaining to the ideal MHD
quations, the design of an EnKF or EnKS localization scheme that
aintains these properties is a formidable challenge. In contrast, the

djoint equations of a 4DVar approach respect the inherent transport
ia wave propagation features of the underlying partial differential
quations and naturally propagate information along the characteristic
ines, allowing observations to correct the state in manner that respects
heir domain of dependence. This intrinsic feature of the 4DVar ap-
roach makes it particularly well-suited for handling the observation
ystems and flow physics relevant in many space plasmas applications.

.2. Case II : Brio-Wu shock-tube initial-value problem

The second IVP, Case II, is the well-known Brio-Wu shock-tube
roblem [112] which consists of a high-density, high-pressure plasma
nd a low-density, low-pressure plasma of opposite polarity initially

eparated by a thin membrane. Once the membrane is removed at
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Fig. 2. Comparison of the mass density (left panel), 𝑥 direction momentum (middle panel), and 𝑦 direction magnetic field (right panel) corresponding to the true and background
initial conditions for the Case I plasma-expansion initial-value problem.

Fig. 3. Observation locations corresponding to (a) the orbiting observer with 𝑘 = 5 orbits, and (b) the stationary observers, both for the Case I plasma-expansion initial-value
problem. The observation locations are coloured by the true value of density. Observation-absent regions are denoted by the black contour plot of the space–time mas density
profile.

Fig. 4. Comparison of the RMS error, 𝜖, in the background and assimilated estimates corresponding to the EnKF and 4DVar as a function of time, 𝑡, for the Case I plasma-expansion
initial-value problem. The left half of the domain, shaded in grey, denotes the assimilation window. The forecast window corresponds to the right side. The RMS error is given
for estimates corresponding to 𝑘 = 5 , 10 , 20 , and 40 orbits of a synthetic observer, as well as stationary observers located near the boundaries of the 1D spatial domain.
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Fig. 5. Predicted profiles of density (first row), 𝑥 momentum (second row), 𝑦 magnetic field (third row), and energy (fourth row) at the end of the assimilation phase (first
column) and the forecast phase (second column) for the Case I plasma-expansion initial-value problem. The assimilated results correspond to the case with stationary observers.

Fig. 6. Predicted errors in the flow density for the background (left panel), EnKF (middle panel), and 4DVar (right panel) solutions as a function of position, 𝑥, and time, 𝑡, for
the Case I plasma-expansion initial-value problem with observation from the stationary observers. Errors are computed according to |𝜌𝑡 − 𝜌|∕𝜌𝑡, where 𝜌𝑡 is the true density. The
assimilation and forecast time windows are separated by the horizontal line in the EnKF and 4DVar DA plots.
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Fig. 7. Comparison of mass density (left panel), 𝑦 direction magnetic field (middle panel), and energy (right panel) corresponding to the true and background initial conditions
for the Case II Brio-Wu shock-tube initial-value problem.
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Table 3
Relative computational error measured in terms of the RMS error at the end of the
assimilation (2nd column) and sum of the RMS error in the forecast phase (3rd column)
for the Case I plasma-expansion initial-value problem. Both error metrics are given as
a percentage of the error in the background solution.

Observation system 𝜖𝑁
/

𝜖𝑁background
∑2𝑁

𝑛=𝑁+1 𝜖
𝑛/∑2𝑁

𝑛=𝑁+1 𝜖
𝑛
background

EnKF 4DVar EnKF 4DVar

𝑘 = 5 10.31% 3.54% 12.22% 4.21%
𝑘 = 10 7.31% 3.92% 9.30% 4.42%
𝑘 = 20 6.57% 3.25% 6.90% 3.56%
𝑘 = 40 5.51% 3.14% 6.45% 3.62%
Stationary 44.11% 17.69% 53.24% 16.18%

Table 4
Standard deviation of the components of solution noise used in synthetic observations
for Case II Brio-Wu shock-tube initial-value problem.

𝜌 𝜌𝑢𝑥 𝜌𝑢𝑦 𝜌𝑢𝑧 𝐵𝑦 𝐵𝑧 𝐸

SD 0.017 0.007 0.018 0.007 0.017 0.017 0.032

Table 5
Relative computational error measured in terms of the RMS error at the end of the
assimilation (2nd column) and sum of the RMS error in the forecast phase (3rd column)
for Case II Brio-Wu shock-tube initial-value problem. Both error metrics are given as a
percentage of the error in the background solution.

Observation system 𝜖𝑁
/

𝜖𝑁background
∑2𝑁

𝑛=𝑁+1 𝜖
𝑛/∑2𝑁

𝑛=𝑁+1 𝜖
𝑛
background

EnKF 4DVar EnKF 4DVar

𝑘 = 5 7.34% 3.23% 7.25% 3.85%
𝑘 = 10 5.04% 2.72% 5.31% 3.36%
𝑘 = 20 3.51% 2.53% 4.82% 2.99%
𝑘 = 40 3.00% 2.50% 2.88% 2.86%

𝑡 = 0, the solution consists of a number of strong non-linear propagating
waves and discontinuities representing a range of MHD phenomena. A
fast magnetosonic rarefaction wave, a slow compound wave, a contact
discontinuity, a slow magnetosonic shock wave, and a fast magne-
tosonic rarefaction wave all result which propagate throughout the
domain. The initial conditions for the Brio-Wu IVP is given by

𝐖 =

{

[1, 0, 0, 0, 34 , 1, 0, 1]
⊺ 𝑥 ≤ 0

[ 18 , 0, 0, 0,
3
4 ,−1, 0,

1
10 ]

⊺ 𝑥 > 0
, (77)

with 𝛾 = 2. The true density, 𝑦 magnetic field component, and energy
re shown in Fig. 7 alongside the background initial condition. Both the
rue and background initial conditions were specified on a 1D domain,
13
−1 ≤ 𝑥 ≤ 1, with a grid consisting of 800 uniform computational cells. A
ocalization length of 0.15 was used for the EnKF assimilations. For the
ase II IVP, both the assimilation and forecast phases of the simulation
ach consisted of 𝑁 = 2500 constant time steps and 0.4 units of time.

As in Case I, synthetic observations were generated along the paths
f a fictitious observer with 𝑘 = 5, 10, 20, and 40 orbits. Synthetic noise

was added to the observations according to the same methodology de-
scribed for the Case I IVP. The standard deviations of the measurement
noise are summarized in Table 4 for the Case II IVP. To avoid ∇⃗ ⋅ �⃗� = 0
constraint errors, the data assimilation was again applied using the
synthetic data for all of the MHD variables except for the 𝑥-component
of the magnetic field, 𝐵𝑥, which was assumed constant and equal to the
exact value of 3/4.

A comparison of the true, background, EnKF, and 4DVar predicted
solutions at the end of the assimilation and forecast phases is shown in
Fig. 8. The EnKF and 4DVar solution estimates are difficult to view as
they lie extremely close to the truth or target solution. In order to better
appreciate the errors in the assimilated solutions, the relative error in
the density for the 𝑘 = 5 Case II is given in Fig. 9 as a function of time, 𝑡.
It is evident that both the EnKF and 4DVar methods significantly reduce
the errors in the solution. The sequential nature of the EnKF can be
seen by the sudden error reduction that takes place after the passage
of the observer. In contrast, the error in the 4DVar solution estimate is
initially low and remains so. It does not drastically change throughout
the assimilation or forecast phase.

The results depicted in Fig. 9 correspond to the case with the
fewest number of observations. As expected, further error reduction is
achieved when a larger number of observations are assimilated as part
of the simulation. The temporal evolution of the RMS solution error
as a function of the spatial position with varying observer orbits, 𝑘,
is provided in Fig. 10. Both the EnKF and 4DVar techniques signifi-
cantly reduce the RMS error, with the 4DVar scheme showing overall
better relative performance. Compared to the background simulation
(i.e., foregoing data assimilation), the EnKF and 4DVar schemes re-
duced errors by up to 97% and 97.5% respectively. A detailed summary
of the error reduction at the end of the assimilation window and
cumulatively in the forecast phase is provided in Table 5. It can be
seen that the errors remain low throughout the forecast phase, demon-
strating the benefits of data assimilation for MHD-based forecasting.
Notably, the 4DVar errors remain tightly bound despite the sparsity of
observations, whereas the EnKF solution errors exhibit greater variance
across the different observer configurations. Note that the errors in
both the EnKF and 4DVar estimates exhibit sudden reductions in error
at approximately 𝑡 = 0.7. By comparing Figs. 9 and 10, it is evident
that much of the predicted solution error is associated with the right-
propagating fast rarefaction wave. Once this wave structure leaves the
domain at 𝑡 ≈ 0.7, this source of error is no longer present and the

overall RMS error is suddenly reduced.
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Fig. 8. Predicted profiles of density (first row), 𝑥 momentum (second row), 𝑦 magnetic field (third row), and energy (fourth row) at the end of the assimilation phase (first
column) and the forecast phase (second column) for Case II Brio-Wu shock-tube initial-value problem. The assimilated results correspond to the observation system with 5 orbits.

Fig. 9. Predicted errors in the flow density for the background (left panel), EnKF (middle panel), and 4DVar (right panel) solutions as a function of position, 𝑥, and time, 𝑡, for
the Case II Brio-Wu, shock-tube initial-value problem with the 𝑘 = 5 observation system. Errors are computed according to |𝜌𝑡 − 𝜌|∕𝜌𝑡, where 𝜌𝑡 is the true density. The assimilation
and forecast time windows are separated by the horizontal line in the EnKF and 4DVar DA plots.
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Fig. 10. Comparison of the RMS error, 𝜖, in the background and assimilated estimates corresponding to the EnKF and 4DVar as a function of time, 𝑡, for the Case II Brio-Wu
shock-tube initial-value problem. The left half of the domain, shaded in grey, denotes the assimilation window. The forecast window corresponds to the right side. The RMS error
is given for estimates corresponding to 𝑘 = 5 , 10 , 20 , and 40 orbits of a synthetic observer.
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.3. Case III: Shu-Osher inspired shock-turbulence interaction initial-value
roblem

The third and final IVP, Case III, consists of a shock-wave impinging
pon a plasma with density fluctuations resulting in the formation of
oth magnetoacoustic and entropy waves downstream of the shock.
his problem can be thought of as an idealization of highly non-

inear shock-turbulence interactions, which can arise, for instance, in
nterplanetary shocks. A similar IVP was first suggested by Shu and
sher [113] to test high-order numerical schemes for gas dynamics and
as later adapted by Susanto [114] for ideal MHD. Here, the IVP is
ildly modified so that the density fluctuations drift towards the shock
ave rather than remaining stationary. The initial conditions for Case

II are thus given by

=

{

[3.5, 0, 0, 0, 1, 3.6359, 0, 42.0267]⊺ 𝑥 ≤ 1
[𝜌𝑅,−5.8846,−1.1198, 0, 1, 1, 0, 1]⊺ 𝑥 > 1

, (78)

here,

𝑅 = 1 + 0.2 sin(5𝑥) , (79)

nd 𝛾 = 5
3 . The initial conditions of the true and background density, 𝑦

omentum, and 𝑦 magnetic field component corresponding to the Case
II IVP are given in Fig. 11. Numerical calculations were performed on

1D domain, −4.5 ≤ 𝑥 ≤ 4.5, with a grid consisting of 800 uniform
omputational cells. Due to the highly non-linear and discontinuous
ature of the plasma flow, a relatively short localization length of
.1 was used for the EnKF assimilations. Moreover, stability issues
ere encountered with higher correlation lengths. The assimilation and

orecast phases each consisted of 𝑁 = 750 constant time steps and 0.6
nits of time, respectively.

In contrast with the numerical experiments of Case I and II, the
trong non-linear features of the modified Shu and Osher IVP for
deal MHD presented a significant challenge for the EnKF approach. In
articular, the possible locations of synthetic observations were signifi-
antly restricted due to unphysical negative density and pressure values
rising from the EnKF assimilation of these observations near the shock
ave. These problems were caused by spurious correlations, as well
s large magnitude differences, between pre- and post-shock quantities
15
able 6
tandard deviation of the components of solution noise used in synthetic observations
or Case III shock-turbulence interaction initial-value problem.

𝜌 𝜌𝑢𝑥 𝜌𝑢𝑦 𝜌𝑢𝑧 𝐵𝑦 𝐵𝑧 𝐸

SD 0.073 0.12 0.1 0.017 0.066 0.017 1.36

even when employing very small correlation lengths. As a result, the
current EnKF method was rendered untenable for the assimilation of
observations in close proximity to the shock-wave. In order to fairly
compare the sequential and variational methods, synthetic observations
were therefore located along the path of a fictitious observer that
lagged the shock front by 1 unit in space, and measured a width of
0.1 units, as depicted in Fig. 12. Additionally, the standard deviations
of the synthetic measurement noise are summarized in Table 6 for the
Case III IVP. As for Cases I and II, the data assimilation was applied
here using the synthetic data for all of the MHD variables except for
the 𝑥-component of the magnetic field, 𝐵𝑥, which was assumed constant
and equal to the exact value of 1, thus avoiding the creation of ∇⃗ ⋅ �⃗�
constraint errors.

Selected data assimilated solutions obtained using the EnKF and
4DVar methods are depicted in Fig. 13 alongside the true and back-
ground states. In addition, the temporal evolution of the RMS error for
the assimilated and background simulations are provided in Fig. 14,
and summarized in Table 7. The RMS error at the end of the assim-
ilation phase was reduced by 4.13% and 38.86% compared to the
background state RMS error with the EnKF and 4DVar approaches,
respectively. However, in the early stages of the forecast phase–when
observations are no longer available for assimilation–the RMS error in
the EnKF solution surpasses the RMS error in the background state,
while RMS errors in the 4DVar analysis remain small. Correspondingly,
upon completion of the forecast phase, the RMS error achieved with
the EnKF method increased by 88.56% compared to the background,
while a similar error reduction of 35.95% was maintained in the 4DVar
forecast.

The deteriorated performance of the EnKF method can be appre-
ciated by inspection of Fig. 13. At the end of the assimilation phase
(𝑡 = 0.6), plasma quantities generally match the true solution, with the
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Fig. 11. Comparison of mass density (left panel), 𝑦 direction momentum (middle panel), and 𝑦 direction magnetic field (right panel) corresponding to the true and background
initial conditions for the Case III shock-turbulence interaction initial-value problem.
Fig. 12. Space–time locations of synthetic observations assimilated in the numerical
experiments of the Case III shock-turbulence interaction initial-value problem. The
observation locations are coloured by the true value of density. Observation-absent
regions are denoted by the black contour plot of the space–time density profile.

Table 7
Relative computational error measured in terms of the RMS error at the end of the
assimilation (2nd row) and sum of the RMS error in the forecast phase (3rd row) for
Case III shock-turbulence interaction initial-value problem. Both error metrics are given
as a percentage of the error in the background solution.

Error metric EnKF 4DVar

𝜖𝑁
/

𝜖𝑁background 95.87% 61.14%
∑2𝑁

𝑛=𝑁+1 𝜖
𝑛/∑2𝑁

𝑛=𝑁+1 𝜖
𝑛
background 188.56% 64.05%

exception of large errors introduced in the region spanned by entropy
waves (the high-frequency fluctuations downstream of the shock). By
contrast, significant errors are present throughout the domain at the
end of the forecast phase (𝑡 = 1.2) due, in part, to a considerable
underprediction of wave speeds. For instance, both the shock-wave and
induced magnetoacoustic waves are significantly delayed compared
to the true solution. These errors are brought about by the limited
coverage of synthetic data, the short correlation length needed to
maintain positive density and pressure, as well as the highly non-linear
nature of the ideal MHD equations.

8.4. Sensitivity to the number of model evaluations

In the preceding DA simulation results, the ensemble size and
maximum number of iterations were set to 80 as an upper limit to the
number of model evaluations that can practically be considered in large
scale calculations. The effect of a smaller limit on the number of model
evaluations is now also examined here. The RMS error in the estimates
of the solution at the end of the assimilation window as a percentage
of the background RMS error for the three IVPs examined above is
16
shown in Fig. 15 as a function of the number of MHD model evalu-
ations. The RMS errors reported in Fig. 15 correspond to observation
systems with 40 orbits of the observer for both Case I and Case II. For
Case III, RMS errors corresponding to the shock following observation
system are reported instead. The number of model evaluations was
incremented by 10, starting with 20 and ending with 80. However,
the minimum number of ensemble members in the EnKF was limited
by the occurrence of highly unphysical solution content. Successful
simulations could not be obtained with an ensemble size below 40,
30, and 75 in Case I, Case II, and Case III respectively. Additionally,
if less data is ingested (as in the 𝑘 = 5, 10, or 20 observation systems) a
higher ensemble size was generally needed. When the ensemble was too
small the statistics of the model were poorly estimated which in turn
lead to unstable assimilation. On the other hand, while reducing the
number of 4DVar iterations results in less optimal assimilation results,
the estimated solutions always remained stable and physical.

As can be seen in Fig. 15, the RMS error for the 4DVar and EnKF
DA methods are comparable when 60 or more model evaluations
are used for the Case II, Brio-Wu IVP. In cases where fewer than
60 model evaluations are used, the 4DVar assimilations significantly
outperformed the EnKF. For the Case I plasma-expansion IVP, and Case
III shock-turbulence interaction IVP, the 4DVar technique achieved
substantially greater error reduction than the EnKF approach for all
values of the number of model evaluations considered. Unexpectedly
however, in Case III, the RMS error increased with the number of model
evaluations after 50 iterates, which is suggestive of an excessively long
assimilation window for the 4DVar approach. As the number of model
evaluations can be used here as a proxy for the overall computational
cost of the DA procedure and the results of Fig. 15 suggest that, for
the same computational cost, higher error reduction was achieved
using the 4DVar approach compared to the EnKF method. However, it
should be noted that parallel implementation of the EnKF DA method
(not considered here) is rather trivially achieved, whereas parallel
implementation of the 4DVar approach is generally more involved.
Parallel implementation of the assimilation procedures can potentially
reduce the time to solution considerably.

8.5. Data assimilation with all magnetic field components and ∇⃗ ⋅ �⃗� = 0
enforcement

The preceding numerical experiments presented in Sections 8.1, 8.2,
and 8.3 do not involve the direct assimilation of synthetic data for
the 𝑥-component of the magnetic field, 𝐵𝑥. This was to avoid possible
non-zero ∇⃗ ⋅ �⃗� errors introduced by the data assimilation corrections.
Additional twin experiments are now considered for the same three

IVPs outlined in Sections 8.1, 8.2, and 8.3 above; however, in these
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Fig. 13. Predicted profiles of density (first row), 𝑥 momentum (second row), 𝑦 magnetic field (third row), and energy (fourth row) at the end of the assimilation phase (first
column) and the forecast phase (second column) for Case III shock-turbulence interaction initial-value problem.

Fig. 14. Comparison of the RMS error, 𝜖, in the background and assimilated estimates corresponding to the EnKF and 4DVar as a function of time, 𝑡, for the Case III shock-turbulence
interaction initial-value problem. The left half of the domain, shaded in grey, denotes the assimilation window. The forecast window corresponds to the right side.
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Fig. 15. Comparison of the 4DVar and EnKF RMS error at the end of the assimilation window as a percentage of the background RMS error. Data corresponds to the 𝑘 = 40
bservation system for both and Case I plasma-expansion (left panel) and Case II Brio-Wu shock-tube (middle panel) initial-value problems, as well as the shock following observation
ystem of the Case III shock-turbulence interaction (right panel) initial-value problem.
Table 8
Relative computational error measured in terms of the RMS error at the end of the assimilation (2nd row)
and sum of the RMS error in the forecast phase (3rd row) for the initial-value problems of Case I plasma-
expansion; Case II Brio-Wu shock-tube; and Case III shock-turbulence interaction, each with all components
of the magnetic field participating in data assimilation. Error metrics are given for the two ∇⃗ ⋅ �⃗� error
mitigation strategies considered in this paper–Powell’s 8-wave ideal MHD formulation, and divergence-free
projection of the magnetic field.

Error metric ∇⃗ ⋅ �⃗� Strategy Case I Case II Case III

EnKF 4DVar EnKF 4DVar EnKF 4DVar

𝜖𝑁
/

𝜖𝑁background
Powell 56.66% 5.89% 3.00% 2.25% 81.69% 82.64%

Projection 27.57% 5.89% 2.45% 2.25% – 92.83%

∑2𝑁
𝑛=𝑁+1 𝜖

𝑛/∑2𝑁
𝑛=𝑁+1 𝜖

𝑛
background

Powell 63.59% 3.90% 3.69% 3.06% 190.30% 69.61%

Projection 23.28% 3.90% 2.65% 3.06% – 80.40%
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additional DA simulations, all components of the magnetic field are
directly assimilated using the two strategies outlined in Section 7 so as
to mitigate data assimilation induced ∇⃗ ⋅ �⃗� errors. For these additional
cases, the background initial conditions remain essentially unchanged
except that the background solution for 𝐵𝑥 is now also drawn from
a random perturbation and is therefore not equal to the true exact
solution for 𝐵𝑥 in each case. Similarly, synthetic ensembles are now
also generated to include variations in 𝐵𝑥. It should also be noted
that a different observation system was considered for each of the
three IVPs. For the plasma-expansion IVP of Case I, an observation
system consisting of two stationary observers was used as described in
Section 8.1. An observation system with 𝑘 = 20 orbits was selected for
the Case II Brio-Wu IVP. Finally, for the shock-turbulence interaction
IVP of Case III, the shock-following observation system described in
Section 8.3 was again adopted.

The temporal evolution of the RMS error in the EnKF and 4DVar
estimates is shown in Fig. 16, alongside the background state, with each
of the two ∇⃗ ⋅ �⃗� error mitigation strategies considered here: the Powell
-wave ideal MHD formulation and divergence-free projection of the
agnetic field. In addition, crucial error metrics from each of the twin

xperiments are summarized in Table 8. The EnKF estimates for the first
wo IVPs showed higher performance when employing the projection
pproach for ∇⃗⋅�⃗� error mitigation in comparison to the Powell method.
his performance difference should be expected as the global nature
f the projection method yields a solenoidal magnetic field within
he entire computational domain, even with sparse observations. This
ehaviour is also highlighted in the results for the 𝑥-component of the
agnetic field obtained for the Case I twin experiments and depicted in

ig. 17. Use of the projection method results in an ideal MHD solution
ith a constant and steady value for 𝐵𝑥 that closely matches the ground

ruth or exact solution. In contrast, the use of Powell’s approach,
urther exacerbated by ensemble localization, produces an unsteady
18

i

nd non-constant 𝐵𝑥 profile, where the data-assimilated corrections
re effectively transported away and leave the domain. It should be
oted, however, that the use of the projection method in conjunction
ith the EnKF requires a projection operation at each observation

ime, which, in the case of large-scale multidimensional simulations,
an be computationally demanding. Unfortunately, the aforementioned
enefits of the projection method could not be realized in the case of
he third IVP due to negative pressure issues with the EnKF approach.

With regard to the 4DVar estimates, very similar performance was
chieved with both ∇⃗ ⋅ �⃗� error mitigation strategies. For the first two
VPs, virtually identical assimilations were obtained with the Powell
nd projection methods. In the third IVP, Powell’s method achieved
arginally better performance. The similarity in performance between

he Powell and projection approach can be attributed to the specifica-
ion of an appropriate background error covariance for the magnetic
ield as described in Section 7 above. By constructing the background
ovariance matrix so that magnetic field perturbations are divergence
ree, the Powell and projection approaches need only mitigate the
resence of small ∇⃗ ⋅ �⃗� errors resulting from numerical noise. The
ffects of this approach are not only numerically advantageous, but
lso physically desirable. Comparing the EnKF and 4DVar estimates,
he 4DVar predictions sustained significantly higher forecast accuracy
ompared to those of the EnKF method for the Case I and III IVPs. For
ase II with the sparse data or least observations, the EnKF approach
howed both higher and lower forecast accuracy compared to 4DVar
pproach when combined with the projection method and Powell
pproach, respectively.

. Conclusions and future research

In the present study, both sequential and variational data assim-

lation strategies have been applied to constrain the evolution of
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Fig. 16. Comparison of the RMS error, 𝜖, in the background and assimilated estimates
corresponding to the EnKF and 4DVar as a function of time, t, for the initial-value
problems of (a) Case I plasma-expansion; (b) Case II Brio-Wu shock-tube; and (c)
Case III shock-turbulence interaction, each with all components of the magnetic field
participating in data assimilation. The left half of the domain, shaded in grey, denotes
the assimilation window. The forecast window corresponds to the right side. RMS error
is given for the two ∇⃗ ⋅ �⃗� error mitigation strategies considered in this paper–Powell’s
8-wave ideal MHD formulation, and divergence-free projection of the magnetic field.
The 4DVar RMS error curves in (a) and (b) are visually indistinguishable due to close
numerical proximity. In (c), the EnKF RMS data with the projection method is not
present as a solution could not be obtained.

fully-ionized plasma flows associated with 1D initial value problems
governed by the ideal MHD equations. The latter is a mathematical
description that is commonly used in global MHD models for space
weather forecasting. Poorly known initial conditions were successfully
19
Fig. 17. Background and EnKF estimates of 𝐵𝑥 in the left half of the physical domain
for the Case I plasma-expansion initial-value problem with all components of the
magnetic field participating in data assimilation. 𝐵𝑥 profiles are given for the two
∇⃗ ⋅ �⃗� error mitigation strategies considered in this paper–Powell’s 8-wave ideal MHD
formulation, and divergence-free projection of the magnetic field. The 𝐵𝑥 estimates
obtained with the Powell ∇⃗ ⋅ �⃗� strategy is shown for several time steps throughout the
forecast phase.

corrected by the assimilation of noisy and sparse synthetic observa-
tions of the plasma flow properties. Three highly non-linear IVPs were
examined, the first involving smooth and continuous initial data, the
second involving discontinuous initial conditions, and the third involv-
ing the propagation of a strong shock-wave in the presence of entropy
fluctuations, with all three being quite representative of the class of
unsteady MHD flows arising in heliospheric, solar wind, and geospace
environment. For the three initial value problems, the locations of the
synthetic observations were varied and their influence on the assimi-
lated predictions were investigated. Careful head-to-head comparisons
and assessments of the sequential and variational method simulation
results were performed. In all situations, the 4DVar assimilation results
were observed to surpass the error reduction that was obtainable with
the corresponding EnKF approach. The most significant difference in
performance occurred with the observation systems containing sparse
data. For the observation system in which the synthetic observations
were only made available near the boundaries of the spatial 1D domain,
the EnKF solution corrections associated with the observational infor-
mation was more local in nature and could only be transported towards
the boundaries and out of the domain according to the transport of
solution content by wave motion contained in the hyperbolic governing
equations of the ideal MHD description. In contrast, via the inclusion of
the solution of the corresponding adjoint equations for the dual prob-
lem, solution corrections arising from the observational information
were also propagated inwards by the 4DVar assimilation procedure,
allowing the plasma flow field to be corrected globally to a much higher
degree. This non-local attribute of the variational approach is deemed
to be a rather significant advantage in data assimilation applied to
space weather forecasting, for which the observations are expected to
be both sparse and remote from each other and the areas of interest.
Furthermore, due to the super-magnetosonic and super-Alfvenic nature
of the solar wind, variational data assimilation would allow solution
corrections based on downstream observational data within the outer
heliosphere to be carried back to the solar surface via the adjoint
equations thereby improving the estimates of the plasma flow as also
pointed out by Lang and Owens [33].

Difficulties associated with the positivity of pressure and density
fields were also encountered with the EnKF based assimilation of ob-
servational data in proximity to strong shock-wave discontinuities, and
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thereby artificially limiting the location of observational data that could
be ingested. This problem could potentially be addressed by localizing
in a directional fashion, removing all correlations in the solution across
shock discontinuities. This idea, however, was not pursued herein. In
contrast, the same issues were not encountered with the variational
approach, even for the strongly-nonlinear IVPs examined herein. By
directly constraining the assimilated solutions to satisfy the underlying
discretized solutions of the ideal MHD equations, physical realizability
results are more readily achieved. This would appear to be an important
and key benefit of the 4DVar approach for non-linear problems and
provides further encouragement for the use of a variational approach
in future, more complex, plasma, simulations.

The effects of the ensemble size for the EnKF approach and the
maximum number of optimization iterations allowed in the 4DVar
minimization procedure were also studied and assessed here. When the
number of model evaluations was high, the EnKF and 4DVar methods
yielded comparable performance. However, when the number of model
evaluations was restricted, the errors in the EnKF assimilations were
found to be considerably larger than those of the variational method. In
addition, two strategies for the mitigation of data assimilation induced
∇⃗ ⋅ �⃗� errors were also assessed here: Powell’s 8-wave ideal MHD
formulation and a divergence-free projection strategy for the magnetic
field. In the case of the EnKF method, the projection approach was
found to be more effective as compared to Powell’s method, albeit
incurring higher computational cost and exacerbating the aforemen-
tioned stability issues present with the EnKF. On the other hand, for
the variational method, both ∇⃗ ⋅ �⃗� error handling strategies performed
uite similarly provided that the background covariance matrix is made
o respect the ∇⃗ ⋅ �⃗� = 0 condition. With these strategies in place, the
eliable assimilation of all components of magnetic field observations
as shown to be possible, thereby overcoming a major challenge in
HD-based data assimilation [57].

In spite of the preceding observed shortcomings of sequential
ethod, it is noted that the EnKF approach remains an effective al-

orithm for data assimilation with a strong potential in applications
elated to space weather forecasting. Unlike the 4DVar method, sequen-
ial methods are generally more readily implemented in parallel on
urrent and future high-performance computing architectures and can
rovide posterior error statistics. Conversely, the most significant draw-
ack of 4DVar approach is the considerable time investment required
o develop and implement the adjoint model. Nevertheless, for the
deal MHD equations of interest in the current study, this difficulty is
reatly alleviated by the derivation of the semi-analytical adjoint model
resented herein. It is also noted that the proposed adjoint model may
lso be used apart from the data assimilation application considered
ere as a sensitivity analysis tool.

The numerical experiments presented herein demonstrate the po-
ential utility of global MHD models for performing space weather
orecasts, despite the incorrect model inputs. Furthermore, the results
f the DA comparisons for the tree 1D initial value problems provide
trong encouragement to pursue variational data assimilation for more
omplex simulations of MHD flows relevant to space weather phenom-
na. In particular, the authors are currently pursuing the application
f variational data assimilation to enhance the predictions of fully 3D
HD flows. Nevertheless, some important challenges not considered

ere must first be addressed. In particular, an extension of the adjoint
odel developed herein to fully 3D simulations must be developed. To

his end, Eq. (50) must be expanded to account for all 26 neighbouring
ells in a typical second-order 3D finite volume stencil. While the
umerical-flux Jacobians can be evaluated in an identical manner,
acobians associated with spatial reconstruction will see considerable
hange compared to their 1D analogues. Additionally, further assess-
ents of mitigation strategies for data assimilation induced ∇⃗⋅�⃗� errors,
articularly in the context of 3D simulations, should be pursued. Fi-
20

ally, further desirable extensions of the current variational DA method
for the ideal MHD equations would involve the inclusion of model
parameters beyond the initial conditions in the assimilation strategy.
Examples of the latter would include DA treatments for boundary
conditions and/or empirical model parameters, such as those affecting
intrinsic magnetic fields.
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Appendix A. 4DVar preconditioning

Although Eq. (31) may be minimized in its original form, faster
convergence may be achieved by employing a change of variables
and thereby preconditioning the minimization problem. Following
Courtier [31] and Lorenc [30], a new control variable given by

𝐕 =
√

(𝜮0
𝐔)

−1(𝐔0 − 𝐔𝑏) , (A.1)

is introduced. After writing the cost function, 𝐽 , in terms of 𝐕 instead
of 𝐔0, it may be shown that the gradient of 𝐽 with respect to 𝐕 is given
by

𝜕𝐽
𝜕𝐕

= 𝐕 −
√

𝜮0
𝐔𝝀

0 . (A.2)

Minimizing with respect to 𝐕 speeds convergence in modes where the
background, 𝐔𝑏, is inaccurate [30]. In addition, employing the change
of variables removes the need to invert 𝜮𝐔0𝐔0 . However, its square-root
form is now required.
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Appendix B. Expressions in adjoint model

B.1. Differentiation of the RK2 scheme

By writing the fully discrete ideal MHD equations in terms of the
RK2 stages,

(𝐔𝑛) = 𝐔𝑛+1(𝐔𝑛, �̃�𝑛+1(𝐔𝑛)) , (B.1)

nd applying the chain-rule, one can obtain

𝜕(𝐔𝑛)
𝜕𝐔𝑛 = 𝜕𝐔𝑛+1

𝜕𝐔𝑛 + 𝜕𝐔𝑛+1

𝜕�̃�𝑛+1

𝜕�̃�𝑛+1

𝜕𝐔𝑛 , (B.2)

= 1
2
𝐈 + 1

2

[

𝐈 + 𝛥𝑡
𝜕𝐑(�̃�𝑛+1)
𝜕�̃�𝑛+1

][

𝐈 + 𝛥𝑡
𝜕𝐑(𝐔𝑛)
𝜕𝐔𝑛

]

. (B.3)

two-stage representation can then be obtained by defining

̃𝑛 =
[

𝐈 + 𝛥𝑡
𝜕𝐑(�̃�𝑛+1)
𝜕�̃�𝑛+1

]⊺

𝝀𝑛+1 , (B.4)

= 𝝀𝑛+1 + 𝛥𝑡
[

𝜕𝐑(�̃�𝑛+1)
𝜕�̃�𝑛+1

]⊺

𝝀𝑛+1 , (B.5)

hich recovers Eq. (45). Multiplying the transpose of Eq. (B.3) by 𝝀𝑛+1,
and substituting in Eq. (B.4) results in
[

𝜕
𝜕𝐔𝑛

]⊺

𝝀𝑛+1 = 1
2

(

𝝀𝑛+1 + �̃�
𝑛
+ 𝛥𝑡

[

𝜕𝐑(𝐔𝑛)
𝜕𝐔𝑛

]⊺

�̃�
𝑛
)

, (B.6)

hich recovers Eq. (46).

.2. Jacobian matrices of the adjoint model

Instead of working with Eq. (49), its transpose is considered, i.e.,

𝜕𝐑𝑛

𝜕𝐔𝑛

]⊺

=
[

𝜕𝐖𝑛

𝜕𝐔𝑛

]⊺([ 𝜕𝐖𝑛
𝐿

𝜕𝐖𝑛

]⊺[
𝜕F𝑛

𝜕𝐖𝑛
𝐿

]⊺

+
[ 𝜕𝐖𝑛

𝑅
𝜕𝐖𝑛

]⊺[
𝜕F𝑛

𝜕𝐖𝑛
𝑅

]⊺)[ 𝜕𝐑𝑛

𝜕F𝑛

]⊺

.

(B.7)

Each of the above matrices are sparse block matrices with 8 × 8 sized
elements corresponding to the 8 conserved variables.

The Jacobian transpose, [𝜕𝐖𝑛∕𝜕𝐔𝑛]⊺, is a diagonal matrix of size
𝑀 ×𝑀 with diagonal elements given by

[

𝜕𝐖𝑛

𝜕𝐔𝑛

]⊺

𝑖𝑖
=
[ 𝜕𝐖𝑛

𝑖

𝜕𝐔𝑛
𝑖

]⊺

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −𝑢𝑥∕𝜌 −𝑢𝑦∕𝜌 −𝑢𝑧∕𝜌 0 0 0 −𝑔𝑢 ⋅ 𝑢∕2
0 1∕𝜌 0 0 0 0 0 𝑔𝑢𝑥
0 0 1∕𝜌 0 0 0 0 𝑔𝑢𝑦
0 0 0 1∕𝜌 0 0 0 𝑔𝑢𝑧
0 0 0 0 1 0 0 𝑔𝐵𝑥

0 0 0 0 0 1 0 𝑔𝐵𝑦

0 0 0 0 0 0 1 𝑔𝐵𝑧

0 0 0 0 0 0 0 −𝑔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(B.8)

here 𝑔 = 1 − 𝛾 and variables are evaluated at the 𝑖th cell. Similarly,
𝜕𝐑𝑛∕𝜕F𝑛]⊺ is a matrix of size 𝑀 + 1 ×𝑀 given by

𝜕𝐑𝑛

𝜕F𝑛

]⊺

= 1
𝛥𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈
−𝐈 𝐈

− 𝐈 ⋱
⋱ 𝐈

−𝐈

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (B.9)

ote that the product of [𝜕𝐑𝑛∕𝜕F𝑛]⊺ with an adjoint vector, 𝝀, is
equivalent to taking the backwards difference of the elements of 𝝀, i.e.,
[

𝜕𝐑𝑛

𝜕F𝑛

]⊺

𝝀 = [𝝀1,∇𝝀2,∇𝝀3,… ,∇𝝀𝑀 ,−𝝀𝑀 ]⊺. (B.10)

This property is used in the derivation of Eq. (50).
Finally, [𝜕𝐖𝑛

𝐿∕𝜕𝐖
𝑛]⊺ and [𝜕𝐖𝑛

𝑅∕𝜕𝐖
𝑛]⊺ are each of size 𝑀 ×𝑀 + 1.
21

These matrices are block tridiagonal with an extra block column, and
are given in Box I It is easy to show that the sub-matrices may be
written in terms of derivatives of the limiters and solution gradient
according to
[ 𝜕𝐖𝐿,𝑖−1∕2

𝜕𝐖𝑖

]⊺

=
[

𝜕𝝓𝑖−1
𝜕𝐖𝑖

]⊺

◦
𝜕𝐖𝑖−1
𝜕𝑥

𝛥𝑥
2

+ 𝝓𝑖−1◦
[

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖−1
𝜕𝑥

)]⊺ 𝛥𝑥
2
(B.13)

[ 𝜕𝐖𝐿,𝑖+1∕2

𝜕𝐖𝑖

]⊺

= 𝐈 +
[

𝜕𝝓𝑖
𝜕𝐖𝑖

]⊺

◦
𝜕𝐖𝑖
𝜕𝑥

𝛥𝑥
2

+ 𝝓𝑖◦
[

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖
𝜕𝑥

)]⊺ 𝛥𝑥
2

(B.14)
[ 𝜕𝐖𝐿,𝑖+3∕2

𝜕𝐖𝑖

]⊺

=
[

𝜕𝝓𝑖+1
𝜕𝐖𝑖

]⊺

◦
𝜕𝐖𝑖+1
𝜕𝑥

𝛥𝑥
2

+ 𝝓𝑖+1◦
[

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖+1
𝜕𝑥

)]⊺ 𝛥𝑥
2
(B.15)

[ 𝜕𝐖𝑅,𝑖−3∕2

𝜕𝐖𝑖

]⊺

= −
[ 𝜕𝐖𝐿,𝑖−1∕2

𝜕𝐖𝑖

]⊺

, (B.16)
[ 𝜕𝐖𝑅,𝑖−1∕2

𝜕𝐖𝑖

]⊺

= 2𝐈 −
[ 𝜕𝐖𝐿,𝑖+1∕2

𝜕𝐖𝑖

]⊺

, (B.17)
[ 𝜕𝐖𝑅,𝑖+1∕2

𝜕𝐖𝑖

]⊺

= −
[ 𝜕𝐖𝐿,𝑖+3∕2

𝜕𝐖𝑖

]⊺

. (B.18)

The derivatives of the solution gradient appearing in the expressions
above are obtained by differentiating Eq. (8), resulting in
[

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖−1
𝜕𝑥

)]⊺

=
𝛥𝑥𝑖−1

(𝛥𝑥𝑖−1)2 + (∇𝑥𝑖−1)2
𝐈,

[

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖+1
𝜕𝑥

)]⊺

= −
∇𝑥𝑖+1

(𝛥𝑥𝑖+1)2 + (∇𝑥𝑖+1)2
𝐈 ,

(B.19)

𝜕
𝜕𝐖𝑖

(

𝜕𝐖𝑖
𝜕𝑥

)]⊺

=
∇𝑥𝑖 − 𝛥𝑥𝑖

(𝛥𝑥𝑖)2 + (∇𝑥𝑖)2
𝐈 . (B.20)

he additional derivatives of the limiter, 𝝓𝑖, are more involved to eval-
ate. As 𝝓𝑖 does not involve operations between conserved variables, 𝝓𝑖
nd its derivatives may be expressed in terms of the arbitrary variable,
𝑖. In this way, the Jacobians, [𝜕𝝓𝑗∕𝜕𝐖𝑖]

⊺, found in Eqs. (B.13)–(B.18),
ay be expressed in a diagonal form given in Box II. To proceed, the

imiter is written in its general form

𝑖(𝑤𝑖) = min(𝜙𝑖+1∕2, 𝜙𝑖−1∕2), (B.22)

here

𝑖±1∕2 =

⎧

⎪

⎨

⎪

⎩

𝜑(�̂�𝑖±1∕2) if 𝑤𝑖±1∕2 −𝑤𝑖 > 0
𝜑(�̌�𝑖±1∕2) if 𝑤𝑖±1∕2 −𝑤𝑖 < 0
1 if 𝑤𝑖±1∕2 −𝑤𝑖 = 0

, 𝑤𝑖±1∕2 = 𝑤𝑖 ±
𝜕𝑤𝑖
𝜕𝑥

𝛥𝑥
2
,

(B.23)

̂𝑖±1∕2 =
𝑤max −𝑤𝑖
𝑤𝑖±1∕2 −𝑤𝑖

�̌�𝑖±1∕2 =
𝑤min −𝑤𝑖
𝑤𝑖±1∕2 −𝑤𝑖

, (B.24)

𝑤max = max(𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1), 𝑤min = min(𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1). (B.25)

Here, 𝜑 is the limiter function of choice. Differentiating, derivatives of
𝜙𝑖(𝑤𝑖) may now be written as

𝜕𝜙𝑗

𝜕𝑤𝑖
=

⎧

⎪

⎨

⎪

⎩

𝜕𝜙𝑗+1∕2
𝜕𝑤𝑖

if 𝜙𝑗+1∕2 < 𝜙𝑗−1∕2
𝜕𝜙𝑗−1∕2
𝜕𝑤𝑖

if 𝜙𝑗−1∕2 < 𝜙𝑗+1∕2
, (B.26)

here

𝜕𝜙𝑗±1∕2

𝜕𝑤𝑖
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜑(�̂�𝑗±1∕2)
𝑑�̂�𝑗±1∕2

𝜕�̂�𝑗±1∕2
𝜕𝑤𝑖

if 𝑤𝑗±1∕2 −𝑤𝑗 > 0
𝑑𝜑(�̌�𝑗±1∕2)
𝑑�̌�𝑗±1∕2

𝜕�̌�𝑗±1∕2
𝜕𝑤𝑖

if 𝑤𝑗±1∕2 −𝑤𝑗 < 0

0 if 𝑤𝑗±1∕2 −𝑤𝑗 = 0

, (B.27)



Computers and Fluids 282 (2024) 106373J.H. Arnal and C.P.T. Groth

d
w
w

𝜑

[ 𝜕𝐖𝑛
𝐿

𝜕𝐖𝑛

]⊺

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[ 𝜕𝐖𝐿,1∕2
𝜕𝐖1

]
⊺

[ 𝜕𝐖𝐿,1+1∕2
𝜕𝐖1

]
⊺

[ 𝜕𝐖𝐿,1+3∕2
𝜕𝐖1

]
⊺

⋱ ⋱ ⋱
[ 𝜕𝐖𝐿,𝑖−1∕2

𝜕𝐖𝑖

]
⊺

[ 𝜕𝐖𝐿,𝑖+1∕2
𝜕𝐖𝑖

]
⊺

[ 𝜕𝐖𝐿,𝑖+3∕2
𝜕𝐖𝑖

]
⊺

⋱ ⋱ ⋱
[ 𝜕𝐖𝐿,𝑀−1∕2

𝜕𝐖𝑀

]
⊺

[ 𝜕𝐖𝐿,𝑀+1∕2
𝜕𝐖𝑀

]
⊺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.11)

[ 𝜕𝐖𝑛
𝑅

𝜕𝐖𝑛

]⊺

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[ 𝜕𝐖𝑅,1∕2
𝜕𝐖1

]
⊺

[ 𝜕𝐖𝑅,1+1∕2
𝜕𝐖1

]
⊺

⋱ ⋱ ⋱
[ 𝜕𝐖𝑅,𝑖−3∕2

𝜕𝐖𝑖

]
⊺

[ 𝜕𝐖𝑅,𝑖−1∕2
𝜕𝐖𝑖

]
⊺

[ 𝜕𝐖𝑅,𝑖+1∕2
𝜕𝐖𝑖

]
⊺

⋱ ⋱ ⋱
[ 𝜕𝐖𝑅,𝑀−3∕2

𝜕𝐖𝑀

]
⊺

[ 𝜕𝐖𝑅,𝑀−1∕2
𝜕𝐖𝑀

]
⊺

[ 𝜕𝐖𝑅,𝑀+1∕2
𝜕𝐖𝑀

]
⊺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.12)

Box I.
[ 𝜕𝝓𝑗 (𝐖𝑗 )
𝜕𝐖𝑖

]⊺

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜙𝑖(𝜌)
𝜕𝜌

𝜕𝜙𝑖(𝑢𝑥)
𝜕𝑢𝑥

𝜕𝜙𝑖(𝑢𝑦)
𝜕𝑢𝑦

𝜕𝜙𝑖(𝑢𝑧)
𝜕𝑢𝑧

𝜕𝜙𝑖(𝐵𝑥)
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⎤

⎥
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⎥

⎥

⎥

⎥
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Box II.
[

𝜕�̂�𝑗±1∕2
𝜕𝑤𝑖

=
±
(

𝜕𝑤max
𝜕𝑤𝑖

− 𝛿𝑖𝑗

) 𝜕𝑤𝑗

𝜕𝑥
𝛥𝑥
2

∓ (𝑤max −𝑤𝑗 )
𝜕

𝜕𝑤𝑖

( 𝜕𝑤𝑗

𝜕𝑥

)

𝛥𝑥
2

( 𝜕𝑤𝑗

𝜕𝑥
𝛥𝑥
2

)2
,
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𝜕�̌�𝑗±1∕2
𝜕𝑤𝑖

=
±
(

𝜕𝑤min
𝜕𝑤𝑖

− 𝛿𝑖𝑗

) 𝜕𝑤𝑗

𝜕𝑥
𝛥𝑥
2

∓ (𝑤min −𝑤𝑗 )
𝜕

𝜕𝑤𝑖

( 𝜕𝑤𝑗

𝜕𝑥

)

𝛥𝑥
2

( 𝜕𝑤𝑗

𝜕𝑥
𝛥𝑥
2

)2
,
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𝜕𝑤max
𝜕𝑤𝑖

=

{

1 if 𝑤max = 𝑤𝑖

0 otherwise
,

𝜕𝑤min
𝜕𝑤𝑖

=

{

1 if 𝑤min = 𝑤𝑖

0 otherwise
,

(B.30)

and 𝛿𝑖𝑗 is the Kronecker delta function. The limiter function, 𝜑, and its
erivative are left unspecified in the above equations. In the present
ork, the Vanleer Leer limiter function was used [74] which, along
ith its derivative, may be written as

(𝑟) = 2𝑟
1 + 𝑟

,
𝑑𝜑(𝑟)
𝑑𝑟

= 2
(1 + 𝑟)2

. (B.31)

The use of other limiter functions only requires swapping Eq. (B.31) by
the appropriate relations.
22
Appendix C. Jacobian matrices associated with the Powell source
term

[ 𝜕𝐒𝑖±1
𝜕𝐔𝑖

]⊺

= ± 1
2𝛥𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢 ⋅ �⃗�
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑖±1
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