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The hypersonic impulse tunnel of the University of Toronto Institute for Aerospace Studies (UTIAS) and Rycrson Polytech- 
nical Institute (RPI) is a short-duration blow-down experimental wind tunnel capable of producing high-Mach-number flows 
(Ma = 8). A generalized quasi-one-dimensional nonstationary flow analysis and associated total-variation-diminishing (TVD) 
finite-difference solution schemes, including aproximate Riemann solvers, are presented for predicting the high-temperature 
flows in such facilities. The analysis is used to investigate the operation of the UTIAS-RPI facility and produce performance 
data that are not always easily determined or available from experimental measurements. The thermodynamic state of the 
nozzle-exit flow and high-temperature or real-gas effects are assessed for this facility under various operating conditions. 
Numerical results, coupled with additional comparisons with available experimental data. demonstrate the range of test-section 
flows that may be achieved. They also illustrate that for typical operating conditions, the air (working gas used in UTIAS- 
RPI facility) fbeezes in the nozzle very close to the throat and results in test-section flows with considerable energy bound in 
the vibrational modes of the nitrogen (NZ) and oxygen (02) molecules. In particular, the test-section temperatures associated 
with thc vibrational modes of NZ are only marginally less than barrel-end stagnation temperatures, whereas the vibrational 
temperatures of O,, although lower than stagnation temperatures, are still much higher than the predicted translational-rota- 
tional temperatures. 

Le tunnel hypersonique a impulsions de 1'Institut d'Ctudes aerospatiales de 1'UniversitC de ~ o & n t o  (UTIAS) et de I'Institut 
polytechnique Ryerson (RPI) est une soufflerie expCrimentale a rafales de courte durke, capable de produire des Ccoulements 
a 1:ombre de Mach ClevC (Ma = 8). On prCsente une analyse genkraliske d'CcouIcment non stationnaire quasi unidimensionnel, 
ainsi que des mCthodes de solution par diffkrences finies avec diminution de la valeur totale, incluant des resolveurs de Rieman 
approximatifs, afin de faire des prCdictions pour les Ccoule~nents a haute temperature dans de telles installations. On utilise 
cette analyse pour Ctudier le fonctionnement de la soufflerie UTIAS-RPI et rkcueillir des donnCes sur sa performance, laquelle 
n'est pas toujours facile determiner ou disponible a partir de mesures expCrimentales. L'Ctat thermodynamique de I'Ccou- 
lement 5 la sortie de la tuyere et les effets de haute temperature ou de gaz rCel sont Ctablis pour diffkrentes conditions de 
fonctionnement de I'installation. Les rCsultats numCriques, couplCs h des comparaisons additionnelles avec les donnCes expC- 
rimentales disponibles, indiquent quelIe est la gamme d'ecoulement qu'on peut obtenir pour les essais. Ils montrent aussi que 
dans des conditions typiques de fonctionnement, I'air (gaz utilise dans la soufflerie UTIAS-RDI) gdle dans la tuyere, pres de 
la partie la plus Ctroite, ce qui donne dans la section des tests des Ccoulements avec une Cnergie considerable liee aux modes 
vibrationnels des molCcules d'azote (N,) et d'oxygene (0,). En particulier, les temperatures de la section des tests associCes 
aux modes vibrationnels de NZ ne sont que marginalement infkrieures aux temperatures de stagnation a I'extrCmitC du tunnel, 
alors que les tempCratures vibrationnelles de OZ, bien qu'ellcs soient infkrieures aux temperatures de stagnation, sont encore 
beaucoup plus dlevCcs que les tempkratures de translation-rotation prCdites. 

[Traduit par la redaction] 

1. Introduction 
Recently, there has been a renewed interest in hypersonic 

aerodynamics. The increased research activity in this area was 
stimulated primarily by a number of major initiatives such as 
the National Aerospace Plane (NASP) and Aeroassisted Orbital 
Transfer Vehicle (AOTV) projects in the United States, as well 
as the European Hermes project. The concept of a viable trans- 
atmospheric vehicle for commercial use has also added to this 
interest. 

The physics of hypersonic flow is significantly different from 
that of the subsonic, transonic, and supersonic tlow regimes. 
Very high temperatures are one characteristic of the hypersonic 
flow environment. The presence of strong normal shock waves 
in the stagnation regions of hypersonic flows and the extreme 
viscous dissipation that occurs within hypersonic boundary lay- 
ers can create very high temperatures. For example, atmos- 
pheric re-entry temperatures can reach 1 1  000 K .  Such tem- 
peratures are severe enough to excite vibrational energy modes, 
cause dissociation, and even ionize the air molecules. For air, 
vibrational excitation typically becomes important at tempcr- 
atures above 800 K ,  dissociation of oxygen molecules begins 

peratures exceed 8 0 0 0 s  (1-3). The occurrence of any or all 
of these so-called higl~itenzperatur-e or r-eal-gas effects brings 
about a dramatic departure in the thermodynamic behaviour of 
the gas from that of the ideal. They must be considered in the 
design of any advanced hypersonic transportation system, if the 
problen~s of surface heating and aerodynamic loading are to be 
properly addressed. 

Flow-scaling or similitude arguments dictate that the vehicle 
scale must be duplicated as well as the velocity and altitude, in 
any simulation of hypersonic flow undergoing nonequilibrium 
chemistry (4, 5 ) .  This is not possible in existing ground-based 
experimental facilities and full-scale flight tests are required in 
many cases. Consequently, computational fluid dynamics 
(CFD) has become a particularly important design tool in 
hypersonic aerodynan~ics, much more so than for conventional 
aircraft design. However, experimental hypersonic research 
programs are still necessary to provide a reliable experimental 
data base encompassing a variety of  flow conditions for vali- 
dation of the CFD computer codes. Furthermore, practical 
design information can often be obtained by combining exper- 
imental results from several different test facilities. 

The so-called irnpulse, gun,  and (or) free-piston shock tun- 
at about 2000 K ,  and ionization becomes significant once tern- nels (4, 6-9) are representative of a class of experimental facil- 
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FIG. 1. UTIAS hypersonic impulse tunnel. (o) Schematic diagram 
of facility, (b) x-r diagram of tunnel operation. 

ities that have been used successfully to simulate various aspects 
of hypersonic flight in the laboratory (primarily Mach number 
and to some extent Reynolds number). A facility of this sort 
has been recently refurbished and brought into operation by the 
University of Toronto Institute for Aerospace Studies (UTIAS) 
and Ryerson Polytechnical Institute (RPI) (10). In this impulse 
tunnel, a high-pressure driver gas is used to accelerate a piston. 
This accelerating piston compresses and heats the working gas 
(air) by means of a multiple-shock nonisentropic process for 
subsequent expansion through a contoured nozzle to a high 
Mach number. The use of the piston to separate the driver and 
working gases is what differentiates the impulse tunnel from 
shock tutztzels (4, 9, 1 1-1 3) ,  another related class of hypersonic 
test facility. Note that impulse tunnels offer several advantages. 
They generally have relatively longer run times than alternate 
intermittent devices such as shock tunnels and are considerably 
less costly than continuous or steady-state operating facilities. 

The determination of stagnation pressure, stagnation enthalpy 
or total temperature (a useful measure of the thermodynamic 
state of the test-section flow), thermodynamic processes in the 
nozzle of the impulse tunel, and test-section flow properties are 
all required for accurate interpretation of experimental data; 
however, many of these facility characteristics are difficult to 
measure directly. Furthermore, a thorough understanding of the 
tunnel operation is required to explore various aven;es for 
extending the range of flow conditions that may be simulated. 
Previous studies have generally employed simplified analytic 
techniques to investigate various aspects of tunnel performance 
(see, for example, refs. 14-20). More recently, a simplified 
quasi-one-dimensional numerical model has been proposed for 
the starting process in the nozzle of a free-piston shock tunnel 
(21). This paper presents a fairly sophisticated quasi-one- 
dimensional nonstationary compressible flow analysis and 
related numerical solution algorithm that have been develo~ed 

L. 

for predicting the complete unsteady performance and opera- 
tion of the UTIAS-RPI hypersonic impulse tunnel. The analysis 
is capable of predicting barrel stagnation and test-section flow 
properties, unsteady piston motion, run times, as well as the 
high-temperature effects associated with the impulse tunnel 
flows. Modeling and algorithm details, comparisons with 
experimental data, and predictions of tunnel performance are 
all described. 

2. Description of impulse tunnel 
The UTIAS-RPI hypersonic impulse tunnel is a blow-down 

or short-duration test facility in which the high stagnation tem- 
peratures for the nozzle flows are generated by a shock 
compression process. A schematic of the experimental facility 
is depicted in Fig. l a .  The tunnel consists of a 5.6 m long res- 
ervoir or driver with an internal radius of 152.4 mm and a 6.4 m 
long barrel with an internal radius of 38.1 mm that are sepa- 
rated by an isolating ball valve and a double diaphragm. A 
relatively light aluminum piston weighing approximately 95 g 
is free to move in the barrel. Various convergent-divergent 
nozzles may be connected to the barrel at the nozzle breech. A 
1.54 m long nozzle with throat and exit radii of 6.35 and 
108.87 mm, respectively, is currently employed. This nozzle 
has a design Mach number of 8.33. The nozzle projects into a 
0.6 1 m long test section with a rectangular cross section of 0.6 1 
x 0.64 m'. which is in turn connected bv a diffuser to a rel- 
atively large dump tank with a volume of approximately 
2.85 m" The initial pressure of the driver gas (currently air) in 
the reservoir is normally maintained at 20.5 MPa and initial 
barrel pressure for the working gas (again this is usually air) 
ranges between 200 and 800 kPa. A small Lexan plug is placed 
in the throat of the nozzle 'so that the test section can be evac- 
uated down to pressures nearing 50 Pa. 

During tunnel operation, the double diaphragm is burst and 
the high-pressure driver gas rapidly accelerates the piston along 
the barrel. The accelerating piston creates a series of multiple 
shock reflections in the barrel that heat and compress the work- 
ing gas. The nozzle throat plug is expelled by the first reflected 
shock and the working gas then flows through the convergent- 
divergent nozzle and on through the test section. The piston 
eventually comes to rest at the end of the barrel when the work- 
ing gas is depleted. Typical run times for this facility are 
between 10-30 ms. The impulse tunnel operation is illustrated 
in the x-t wave diagram of Fig. lb.  The primary shock and 
rarefaction wave patterns characterizing the nonstationary yave 
Lnteraction processes occurring in the tunnel, indicated by S and 
R ,  respectively, are shown in this figure. Note that a more 
complete description of the UTIAS-RPI hypersonic impulse 
tunnel, which includes details of tunnel instrumentation and 
calibration, may be found in ref. 10. 

- - 
< .  

3. Equations of motion 
The complex unsteady flow of the driver and working gases 

in the reservoir, barrel,-and nozzle behind and in front of the 
accelerating piston are modeled by solving the equations of 
motion (continuity, momentum, and energy) for generalized 
one-dimensional nonstationary compressible flows in ducts. 
The eauations include inhomogeneous source terms associated " 
with the flow driving potentials of area change, friction, heat 
transfer, and head loss and are well documented in many text- 
books (see, for example, ref. 22). They have been used suc- 
cessfully in previous studies to predict nonstationary flows in 
other experimental facilities such as blast-wave simulators and 
two-stage light-gas hypervelocity launchers (23-25). The 
weakly conservative forms of these partial differential equa- 
tions h a y  be expressed as 

a a 
[ l ]  - (U) + - [F(U)] = A(U) + S(U) 

at ax 

where the multicomponent solution and flux column vectors U 
and F are given by 
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GROTH ET AL. 

the source flux column vectors A and S are defined by 

F w a l l  + Floss 

Qwa~l + Qzero 

and the symbols p, u, p, and e denote the gas density, velocity, pressure, and total specific internal energy, and .r and t are position 
and time. The variable A is the local cross-sectional area of the duct, which is taken to be a known function of x. The other terms 
appearing in column vectors A and S represent the effects of area change, boundary-layer friction, wall heat transfer, and other 
flow pressure or head losses. F,,,, is an equivalent body force per unit volume to account for viscous or frictional losses in the 
boundary layer near the wall of the duct flow. Floss is a similar body force per unit volume that iricludes additional pressure losses 
for flows through area changes and over diaphragm remnants. The variable Q,,,, denotes the heat transfer rate per unit volume 
from the duct walls to the gas and the variable Qzero represents the time rate of change in the zero-point energy of the gas resulting 
from chemical reactions. This latter term is required when modeling finite-rate reaction processes. 

The body force due to boundary layer friction can be expressed in the form 

where f is the Darcy-Weisbach friction factor and Dh is the local hydraulic diameter of the duct (D, = 2 n r  for pipes where r is 
the radius). In this study, the friction factor is obtained by using 

for which Re = plulD,/p is the local Reynolds number, p is the gas viscosity, and 6 denotes the absolute roughness of the wall 
surface. The previous relationships are taken from steady pipe flow theory. The first expression is the well-known theoretical 
result from Hagen-Poiseuille flow, which describes the friction factor in the laminar regime (0 < Re < 2000), the third is an 
explicit empirical expression developed by Jain (26) valid in the fully turbulent regime (Re > 4000), and the other expression 
provides estimates for the friction factor in the transitional regime (2000 S Re S 4000). Note that A is a compressibility correction 
factor. It is calculated from the semi-empirical relation 

as suggested by Liepmann and Goddard (27), where y is the specific heat ratio of the gas, Ma is the local flow Mach number, 
and fl is the recovery factor. This last parameter can be approximated by (Pr)"' for laminar flows and (Pr)'13 for turbulent flows 
where P r  is the Prandtl number for the gas. 

Similarly, the body forces due to pressure or head losses in the flow can be written as 

where K is the head-loss coefficient and L is the finite duct length over which the losses are distributed (L = 20,  in this study). 
Although these losses are usually small, values for K can range between 0-10 depending on the flow obstructions. 
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The rate of heat transfer to the gas from the wall per unit 
volume of the flow Q,,,, is prescribed by employing the semi- 
empirical form of Reynolds' analogy for compressible pipe flow 
suggested by Colburn (28). The heat transfer rate is thus given 
by 

where Nu, k, and C,, T ,  and T,, are the gas Nusselt number, 
thermal conductivity, specific heat at constant pressure, tem- 
perature, and adiabatic wall temperature, respectively, and T ,  
is the local duct wall temperature. Note that the Prandtl number 
is defined by 

and the effects of compressibility appear in [7] via the friction 
factor f and correction factor A.  

The piston of the UTIAS-RPI hypersonic impulse tunnel is 
basically a thick aluminum disc with a trailing tapered skirt that 
provides stability during motion. Holes are machined through 
the skirt to reduce weight. To model the piston motion in the 
barrel, it is assumed that the piston is a rigid cylinder of length 
L, and radius r,. Newton's law is then applied with pressure, 
inertial, and viscous-drag forces all taken into account. This 
results in a differential equation for the piston motion, which 
can be written as 

where Vp is the piston velocity, p ,  and p,  are the front and back 
face pressures exerted on the piston by the high-pressure gases, 
Fp is the frictional force acting on the piston, and m, is the 
piston mass. The friction force is determined by assuming that 
a quasi-steady Couette flow exists between the exterior surface 
of the piston and the tunnel walls and a Reynolds number cor- 
relation similar to those for fully developed pipe flow is used 
to determine the frictional shear stress at the piston surface. F, 
can then be approximated by 

wheref, is the piston friction factor having the form 

and 

pV,,(r - r,) 
Re, = 

P 

is the piston Reynolds number; c and n are constants. The var- 
iable a (0 S a < 1) is the porosity of the piston skirt. 

4. Thermodynamic models for air 
At the present time, air is used almost exclusively as the 

driver and working gas in the UTIAS-RPI hypersonic impulse 
tunnel. Thermodynamic and caloric models are required to 

interrelate the various intensive properties of air, such as pres- 
sure, temperature, and internal energy, and thereby complete 
or close the governing set of equations given by [I]-[7]. In this 
study, three different models are employed to describe the ther- 
modynamic and transport properties of air. They are the per- 
fect-gas model (polytropic or thermally and calorically perfect 
gas), an equilibrium real-gas model, and a nonequilibrium 
(vibrationally relaxing and chemically reacting) high-temper- 
ature model. The three different thermodynamic models are 
very helpful in assessing the magnitude of the high-temperature 
effects in the impulse tunnel flows and the departure of the 
working gas behaviour from the ideal. 

4.1. Polytropic model 
For polytropic gases, the pressure and temperature can be 

related to the density and total specific internal energy using 
the well-known ideal-gas equation of state 

where y is the specific heat ratio, R is the gas constant, and 

In the case of air, the values of y and R are taken to be 1.40 
and 287.06 Pa m3 (kg K)-  I ,  respectively. The sound speed a 
can also be related to the other intensive properties by the 
expressions 

The polytropic model is completed by employing semi-empir- 
ical expressions for the dynamic viscosity and Prandtl number. 
An empirical extension of Sutherland's law of the form 

is used, where c , ,  c,, c3, and c, are constants and equal to 
5.2192 x lo-', -3.31132, 0.865351, and 2365.27, respec- 
tively, for air. ~ h e p r a n d t l  number for air depends primarily 
on the specific heat ratio. A modified form of Euken's formula 
is used herein to prescribe the Prandtl number. The formula is 
based on some ideas of Chapman and Cowling (29) and given 
by 

which is in good agreement with experimental data. 

4.2. Equilibrium model 
The curve fits of Srinivasan, et a1. (30) and Srinivasan and 

Tannehill (31) are used to represent the equilibrium thermo- 
dynamic and transport properties of air. These curve fits are 
constructed from bicubic polynomials and Grabau-type tran- 
sition functions to model the thermodynamic properties in a 
piecewise manner. They are valid for temperatures up to 
25 000 K. The correlations for the pressure p, temperature T, 
sound speed a, viscosity IJ., Prandtl number Pr ,  and thermal 
conductivity k = p.C,IPr in the form 
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GROTH ET AL. 90 1 

P P(P? e),  T = T(p, e) ,  a = a(p, e) 

are all employed. Note that if the equation of state has the form 

then the sound speed can be related to the pressure, density, 
and internal energy by the relationship 

where s is the entropy. 

4.3. Nonequilibritrm model 
The thermodynamics of the nonequilibrium air is modeled 

by treating it as a chemically reactive mixture of thermally per- 
fect gases for which the thermal state can be described by the 
following separate and independent temperatures (or internal 
energies): a translational-rotational temperature and the vibra- 
tional temperatures of the polyatomic species. The transla- 
tional-rotational temperature represents the contribution to the 
internal energy by the translational and rotational modes of all 
molecules and atoms in the mixture. These modes are assumed 
to be in equilibrium, which is a reasonable approximation for 
most continuum flow studies ( I ) .  Each vibrational temperature 
represents the contribution to the internal energy by the vibra- 
tional modes of the corresponding polyatomic species. Inter- 
molecular forces, electronic excitation, and ionization effects 
are all neglected. 

Additional equations for species mass and vibrational energy 
are necessary for describing the one-dimensional flow of a 
nonequilibrium mixture. They may be written as (32) 

where the column vectors Wand Q are defined by 

and where c, = p, /p is the mass fraction of species s with C, c, 
= 1, p, is the density of species s, e,, is the specific vibrational 
energy of species s, e, = C, c,e,, is the total specific vibrational 
energy of the mixture, and N is total number of species in the 

mixture. The variable w, represents the time rate of change of 
the concentration of the species s brought about by the chemical 
reactions. The variable q, represents the time rate of change of 
the vibrational energy of the species s brought about by relax- 
ation to its equilibrium value. Finally, the term p,w,e,,, appear- 
ing in [15] and [I61 is related to the change in the vibrational 
energy of species s per unit volume of the mixture due to the 
chemical reactions. The quantity P, is an empirical value greater 
than or equal to unity. It is introduced to reflect the observed 
preference of higher than average vibrationally excited mole- 
cules to dissociate and the tendency of atoms to combine and 
form higher than average vibrationally excited molecules (32). 

The total specific internal energy of the thermally perfect 
gaseous mixture is the sum of translational-rotational and 
vibrational energies and given by 

where e,, is the translational-rotational energy. The mixture 
pressure may then be expressed in terms of the translational- 
rotational temperature T and (or) energy e,, and the various mix- 
ture properties by employing.the ideal equation of state for each 
thermally perfect species and applying Dalton's law of partial 
pressure. The resulting equation of state for the mixture is 

where 

is the specific gas constant of the mixture, % is the universal 
gas constant, A, is the molecular weight of species, s, R, = 
%/A, is the specific gas constant of species s, and 

is defined to be the frozen specific heat ratio of the mixture. 
The variable y, represents the frozen specific heat ratio of spe- 
cies s (i.e., the specifi2heat ratio species in the absence vibra- 
tional excitation). It i$also+possible to define a frozen sound 
speed for the mixture. This intensive property may be related 
to the other mixture properties by the expression 

where a is the frozen sound speed. 
In this work, a five-species (N,, 0 2 ,  NO, N, and 0 )  four- 

temperature (i.e., translational-rotational temperature T, and 
vibrational temperatures TYN2, Tv02, and T,,,) nonequilibrium 
thermodynamic model of alr is employed. The model is valid 
for temperatures up to 8000 K and pressures above 1 kPa. In 
his model, the dissociation-recombination reaction mechanism 
of air is represented by the elementary reactions 
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where M is a collision partner; it can be any of the five species. Collision theory is used to describe the finite-rate reaction processes 
from which empirical expressions for the time rate of change of the species concentrations may be obtained. These expressions 
have the form (1-3) 

where u:,, and u:,,. are the stoichiometric coefficients of the reactant and product species s for the reaction r, and kf and k: are the 
forward and backward reaction rates of reaction r. The variable N, represents the total number of elementary reactions. The 
reaction rates are assumed to be functions of the rotational-translational temperature and are described by modified forms of the 
Arrhenius equation. They are given by 

The reaction rate coefficients Cf, C:, nt, n/b, Ef, and E: of [22] are taken from the data set compiled by Dunn and Kang (33). 
The finite-rate vibrational relaxation of the diatomic molecules is represented in the five-species four-temperature nonequilibrium 

model of air by assuming that the vibrationally excited molecules behave as ideal harmonic oscillators. It is further assumed that 
the relaxation process from an excited nonequilibrium state to a state of thermodynamic equilibrium (i.e., T = TVNZ = Tv02 = 

TvNo) occurs only through translational-vibrational collisions. Under these assumptions, it is possible to prescribe the time rate 
of change of the vibrational energy of the species s by (1-3) 

0 - 0  

where e;t: is the local equilibrium temperature given by 

and T, is the characteristic relaxation time. The characteristic vibrational temperatures OvN , OvO , and OvNO are taken to be 3353, 
2239, and 2699 K, respectively. The semi-empirical correlations of Millikan and White (345 based on modifications to the Landau- 
Teller equation are used to determine T,. These correlations have the form 

~ e x p { d , [ T - ' "  - 0.015 ( A, "'"" + A,, )'"I - 18.42) 

[25] 7, = P C 2  \ '  S 

-z 

and d N 2 ,  d o 2 ,  and d,, are assumed to have values of 220, 129, and 168, respectively. 
Using the preceding relations, it is possible to prescribe the source term Q,,,, of [ l ]  that represents the total change in the zero- 

point energy of the mixture resulting from the chemical reactions by the expression 

where Ah!5 is the heat of formation of species s evaluated at a temperature of 0 K. The heats of formation for the five species 
were taken to be Ahk2 = 0, Ah:O2 = 0, Ahk, = 2991.89 kJ kg-',  Ahk = 33 613.91 kJ kg- ' ,  and Ah:, = 15 424.95 kJ kg-'.  
Note that Q,,,, is identically zero for the polytropic and equilibrium models. Note additionally that the effect of the preferential 
dissociation of vibrationally excited diatomic molecules is not included herein and P, is taken to be unity in this work. 

Finally, transport properties of nonequilibrum air required for the determination of the boundary-layer friction F,,,, and heat 
transfer Q,,,, in [I]-[3] are computed as follows. The mixture specific heat and Prandtl number are approximated by the frozen 
flow (i.e., polytropic-gas equivalent) relations 
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GKOTH ET AL. 903 

respectively. The viscosity of each species p.s is defined in terms of the translational-rotational temperature T by using the semi- 
empirical correlations of Blottner et a / .  (35) given by 

[27] p,q = 0.10 exp [(b, , In T + b, ) In T + b,,] 
-I 

and the mixture or total viscosity is calculated by employing the semi-empirical mixing rule of Wilke (36) as follows: 

where 

The curve fits of [27] are appropriate for temperatures up to 10 000 K and the constant coefficients b , , .  11, , and b,, for each 
species are taken from ref. 35. 

5. Numerical solution procedure 
General solutions to the preceding equations prescribing the flow of the impulse tunnel driver and working gases and the motion 

of the piston in the barrel and must be obtained numerically. The differential equation for the piston motion given by [8] can be 
integrated by decoupling it from the gas dynamic equations and employing the most recent flow field solutioi in a fo-rward Euler 
time-stepping procedure. This simple approach is sufficiently accurate and robust as the characteristic time scales associated with 
the piston motion are very much larger than the gas dynamic time scales. The gas dynamic equations given by [I]-(31 may then 
be solved in a separate integration procedure where, at each level or time step, the corresponding updated solution for the piston 
motion is employed. However, the numerical solution of this inhomogeneous system of hyperbolic conservation laws is made 
difficult by the presence of large solution gradients and strong shocks. It is further complicated if source terms are stiff. Classical 
first-order shock-capturing finite-difference schemes can require excessive grid refinement to resolve the complicated shock struc- 
ture, and second-order schemes can lead to spurious Gibb's oscillations or nonlinear instabilities near discontinuities. In the last 
5-10 years, solution-dependent nonlinear higher order methods have been developed, such as the total-variation-diminishing 
(TVD) finite-difference schemes of Harten (37, 38), Roe (39-41), Davis (42), Yee (43), and Chakravarthy and Osher (44, 45). 
They are very appropriate for the hyperbolic system considered here. These schemes effectively eliminate oscillations near extrema, 
limit numerical diffusion, maintain higher order accuracy wherever possible, and thereby permit the efficient resolution of weak 
solutions. 

In this study, the explicit higher order TVD upwind difference scheme of Roe (39,40,46)  is used to solve the governing partial 
differential equations of the gaseous flows when supplemented by the ancillary equations of the polytrop~c and equilibrium ther- 
modynamic models. Roe's approximate Riemann solver is used in the evaluation of the numerical fluxes for the polytropic case 
and an extension of this approximate solver proposed by Glaister (47) is employed for the equilibrium case. 

When supplemented with nonequilibrium thermodynamic model equations, the solution of [ I ]  is complicated by the additional 
species mass and vibrational energy conservation equations (151, as well as the presence of inhomogeneous source terms repre- 
senting the finite-rate vibrational relaxation and chemical reaction processes. The additional source terms are often large and can 
make the solution algorithms stiff (i.e., the time-stepping of a marching procedure is drastically constrained by stability consid- 
erations rather than by the usual accuracy concerns). In this case, the gas dynamic and thermodynamic equation sets are partially 
decoupled by employing a frozenflow approximation. Both sets of decoupled equations a& then integrated alternately in a lagged 
manner within a time-marching procedure. A semi-implicit version of the Roe's scheme is applied to each equation set. The 
inhomogeneous source terms associated with the finite-rate processes are treated implicitly in the time-stepping scheme and an 
extension of Roe's approximate Riemann solver is used to evaluate the numerical flux functions. The extended Riemann solver 
provides the eigenvalues and eigenvectors of the fully coupled system. 

Further details of these TVD shock-capturing schemes are given in the following subsections. The various algorithm extensions 
particular to this application are discussed. This includes the approximate Riemann solvers, partial-decoupling procedure, implicit 
treatment of stiff source terms, and boundary conditions. 

5.1. Solution algorithm for polytropic and equilibrium gas flows 
TVD schemes were originally developed for solving linear and nonlinear scalar homogeneous hyperbolic conservation laws in 

one space dimension. Algorithm extensions are necessary to deal with the vector nature and source terms of inhomogeneous 
systems of differential equations. In Roe's flux-differencing method, a local characteristic approach is adopted in which the 
properties of the inviscid flux Jacobians are utilized in conjunction with approximate Riemann solvers to represent the solution 
and flux vector jumps in terms of characteristic variables. A TVD algorithm is then applied to each characteristic field in a scalar 
fashion. Source terms may be treated either explicitly or implicitly depending on the nature of the equations. 

In the case of the polytropic and equilibrium thermodynamic models, Roe-method solutions of the one-dimensional three- 
component system given by (11 can be formulated as follows. Let Uy be the numerical approximation of the solution at discrete 
locations x = x, and time t = P. The solution at subsequent time levels is obtained by means of the time-stepping procedure 
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where the solution operation 3: advances the solution U through a time interval At" with 

Atl! = t"+ I - t l l  

and is defined by the two-stage difference scheme 

1 
[32] u;+-l = U ;  + Auj' = u 7  + -Atr1 ( A T  - Af! + - s18) 

2 

and where 

and U ; + '  denotes an intermediate solution state. The quantities vj'+ ,,,,, and AUj'+ ,,,,,appearing in [31] are the local average Cour- 
ant-Friedrichs-Lewy (CFL) number and solution jump vector associated with the kth elemental wave of the ith approximate 
Riemann problem posed between the ith and ith + 1 nodes of the spatial grid. They may be related to the eigenvalues and 
eigenvectors of the Jacobian of the homogeneous flux vector J = dFldU by employing Roe's approximate Riemann solver. The 
CFL numbers and solution jump vectors can be defined by 

with A x i ,  = xi+ I - xi and where A;', ,,,,, and ej'+ ,,,,, are the kth eigenvalue and eigenvector of the flux Jacobian evaluated at 
an appropriate average state U ; +  ,,,. The variable a:.', ,,,,, is the strength of the kth elemental wave. The eigenvalues of the Jacobian 
J = dFIdU are given by 

and the eigenvectors can be written as 

where a:+ ,,, is the local average state sound speed and 

p 11' 
h = e + - + -  

P 2 

is the specific enthalpy. Note that for polytropic gases, 
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GROTH ET AL. 

and therefore, 

paL - uL 
- h - -  - 

dplde 2 

Using the condition 

it is possible to relate the elemental wave strengths to the average state values of the primitive variables p:+,,,, 
u;, e;+ p;+ a:.'+ and hi.'+ and the solution jumps 

The resulting expressions are 

In deriving these wave strengths, it has been assumed that linearized approximations such as 

apply in the more general case where the solution jumps are large. 
For polytropic gases obeying the ideal equation of state, Roe (39) has constructed approximate Riemann problem solutions and 

shown that the appropriate average state U,'+ ,,, should be defined as follows: 

These averages guarantee conservation and afford the difference scheme excellent shock-capturing attributes (using the preceding 
definition of the average state, the approximate Riemann solution is exact for the case of a single discontinuity). Glaister (47) has 
since extended Roe's approximate solution to the more general case of equilibrium real-gas equations of 'state that have the form 
p = p (p, e). In this case, the preceding averages for p, u, e ,  h,  and p given by [41]-[43] are still applicable, but additional 
relations are required for determining local average-state values of the partial derivatives of the pressure with respect to the density 
and internal energy and for evaluating the average-state sound speed. Glaister's proposed averages for dpldp and dplde are 
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and a is then specified using [14] by the expression 

I / ?  

= [ $ ) ' I  

I P;+ I12 ap)" ] 
[471 a:',. I12 

,+ I,* (P:'+ 1/2)* ae ,+ I,, 

Although other averages have been proposed, see for example Liou et al. (48), this choice of averaging has been demonstrated 
to provide accurate solutions in a relatively efficient manner. 

The higher order flux-differencing scheme of Roe is a smart solution adaptive method that provides improved numerical accuracy 
and monotonic or  oscillation-free solutions by having difference coefficients that depend on the local solution at  each time step. 
The underlying constant-coefficient o r  unlimited scheme is a combination of the second-order schemes of Lax and Wendroff (49) 
(central differences) and Warming and Beam (50) (upwind differences). Flux limiters are employed to limit the magnitude of the 
second-order antidiffusive fluxes and reduce the scheme to the first-order fully upwind method of Cole and Murman (5 1) at local 
extrema of the solution. In the case of linear and nonlinear scalar homogeneous hyperbolic conservation laws and linear systems 
of homogeneous conservation laws, the resulting nonlinear scheme is T V D  (37, 38), whichguarantees that the scheme is mon- 
otonicity preserving. In the more general case of nonlinear inhomogeneous systems as  given by [ I ] ,  numerical experiments provide 
evidence that Roe's flux-limited scheme has good shock-capturing capabilities. The term "higher order" is applied to  Roe's 
method to indicate that the formal accuracy of the scheme with uniform computational domain is second order for regions where 
the solution is smooth (i.e., almost everywhere), but reduces to first order at extrema. Note that in the difference scheme of [30]- 
[32], the source terms of [ I ]  are integrated by using a second-order Runge-Kutta or  predictor corrector explicit time-stepping 
procedure. This provides second-order accuracy and makes the integration of the inhomogeneous terms consistent with the Roe- 
method time differencing of the homogeneous terms. 

Following Sweby (46) the flux limiters @+ of [3 I]  are defined to be functions of the local antidiffusive flux ratios. van Leer's 
flux limiter 

is used for the k = 1 and 3 characteristic fields, and the superbee limiter of Roe 

is used for the k = 2 characteristic field. The latter more compressive limiter improves the sharpness of  contact surfaces. The 
flux ratio b:,, is given by the ratio of the antidiffusive fluxes 
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GROTH ET AL. 

where Nuk are normalization row vectors, In the present alogirthm, NUk = [ l ,  0, 01 for k = 1, 2, and 3. 
The time-marching procedure represented by 1301-[32] is conditionally stable. The CFL criterion 

[51] At" ( min A xi+ 112 

(u;l + a; 

is used to restrict the magnitude of the time increment and thereby ensure stability and convergence of the numerical solutions. 
It is also necessary to modify the finite-difference scheme near sonic points in order that the scheme be entropy-satisfying and 

converge to the correct physical solution. In particular, the inviscid flux functions associated with nonlinear characteristic fields 
I and 3 must be augmented to prevent the formation of expansion shocks. A variant of the entropy fix suggested by Roe and Pike 
(40) is employed. Consider elemental wave 1. A wave spreading parameter for this wave is defined to be 

If A;+ - 1/28;, < 0 and A f+ + 1/26 :'+ ,,, > 0 ,  then the flux limiter 4 :+ is set to zero and the first-order flux 
jump is split into two components; that is, 

is replaced by 

where 

and 

A similar procedure is required for the k = 3 nonlinear characteristic field. 

- 5.2. Solution algorithm for nonequilibrium gas flows -.. 

For the case of the nonequilibrium thermodynamic model, Roe-method solutions of 111 coupled with the additional species 
concentration and vibrational energy conservation equations of [15] are required. In this work, these two subsystems defining the 
complete solution 91 (x, t) = @(U(x, t), W(x, t)) are not integrated in a directly coupled simultaneous fashion. Instead, two 
alternate gas dynamic and thermodynamic subsystems are defined and the resulting subsystems are then integrated in a time-lagged 
decoupled manner. This marching algorithm may be defined as follows. Given a solution@(x, to) of [ I ]  and [I51 at time to, an 
approximate solution at some later time to + At, where At is a small time increment, is obtained by first solving a frozen flow 
or gas dynamic initial value problem defined by 

~ 5 8 1  D(x, to) = DWX, to)) = D(u(x, to), W(X, to)) 

and then solving a nonequilibrium thermodynamic initial value problem defined by 

[601 to) = I@(&, to + At), W(x, to)) 
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where 

1 dA 
pu- - 

A dr 1 
1 dA 

- puy- - 
A dx  

1 dA 
pue - - 

'A dr 

The approximate solution at to + At is then given by 

[@I (x, to + At) "%(x, to + At), w(X, to + At)) 

A solution for all time t > to may be obtained by repeating the preceding two-step algorithm and, in the limit of vanishing At, 
this solution should converge to the exact solution of [I]  and [15]. 

The six-component subsystem of [57] has been derived by employing a frozen flow assumption and setting the finite-rate 
thermodynamic source terms of [I]  to zero. Under this assumption, the behaviour of the gaseous mixture is essentially that of a 
polytropic (thermally and calorically perfect) gas, except that the specific heat ratio and gas constant may vary throughout the 
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GROTH ET AL. 909 

flow field and a portion of the internal energy is locked in the vibrational modes. The last three equations of the gas dynamic 
subsystem are introduced to include these effects and describe changes in the quantities y, R ,  and e,, which, in the frozen-flow 
limit, are merely convected with the flow. Note that the solution of [57] updates the mixtures gas dynamic flow properties (e.g., 
p, u ,  e ,  e,, p ,  etc. . .) but does not alter the individual species mass fractions or vibrational energies. 

The multicomponent N-species nonequilibrium thermodynamic subsystem represented by [59] has been derived by assuming 
that the velocity and density distributions are known and fixed. This set describes the time rate of change of the species mass 
fractions and vibrational energies and the total internal energy of the mixture. It includes the source terms neglected in the derivation 
of [57] .  The primitive variables, c,, e,,, and T ,  and consequently e ,  e,, p ,  and the other thermodynamic properties, are all updated 
by solving the thermodynamic subsystem. However, p and u remain unchanged. 

The preceding decoupled solution procedure is similar in spirit to the techniques put forward by Glaz, et a/ .  (52) and Ben-Artzi 
(53) ,  and the resulting subsystems resemble the decoupled equation sets that may be obtained by using the equation-partitioning 
procedure suggested by Yee and Shinn (54).  The term "partially decoupled" is applied herein to distinguish the current method 
from fully coupled algorithms, which at each level in a marching procedure solve all of the conservation equations together in a 
single step, and loosely coupled or chemistry-split techniques, which at each level decouple the gas dynamic and finite-rate 
thermodynamic equations and solve the two sets separately in a two-stage process (54).  

Unlike fully coupled methods, the present alternative provides a distinct separation of the gas dynamic and finite-rate models. 
As a consequence, one solver can be developed for [57] and used to predict the flow of many different nonequilibrium gaseous 
mixtures. Mixture-specific solvers are only required for [59].  This simplifies computer program development and can make the 
solution algorithm more versatile than many fully coupled techniques. 

The partial-decoupling approach differs from loosely coupled or chemistry-split methods because the decoupling procedure 
readily permits the use of the eigenvalues and eigenvectors of the complete system in the evaluation of the numerical fluxes of 
each subsystem. Loosely coupled methods usually employ the eigenvalues and eigenvectors of each decoupled subsystem. It is 
believed that the use of the eigenvalues and eigenvectors of the full equations enhances the koupling between the decoupled 
equation sets and thereby improves numerical solution quality (54).  

Letting@',' be the numerical approximation of the solution to [ l ]  and [15] at x = x,  and t = t " ,  the solution at subsequent time 
levels is obtained by employing the partial-decoupling procedure described above and applying explicit and semi-implicit versions 
of Roe's method to the gas dynamic and thermodynamic subsystems, respectively. The complete algorithm can be defined by 

- 
where the solution operator Y$  u j' = J&(I!$'+ I ,  q) is represented by 

- 
and the solution operator 92;; ~2':' = 4Y(@', @:'+ I )  is given by a 

4 

A- A-  - 
and where hq' = UYf ' - @, A@ = fi? - @, A @ ~  = W:" ' - w! ,  and I???, O F ,  and denote intermediate solu- 
tion states. 

The solution of the frozen-flow gas dynamic subsystem [57] is provided by the difference scheme of [66] and [67].  As 
was the case for the solution of the hyperbolic conservation laws of gases obeying the ideal and equilibrium r-eal-gas equations 
of state, the quantities vj'+ and AU;+ ,,,,, appearing in these equations are again the local average CFL numbers and so1:tion 
junmpAvectors. They are defined in terms of the eigenvalues and eigenvectors A;+ and ey+ ,,,,, of the Jacobian matrix J = 
dFldU evaluated at some average state and are given by 
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where a:'+ 112,1- are the wave strengths. It can be shown that the eigenvalues and eigenvectors of the flux Jacobian of the six- 
component subsystem represented by [57] are 

with 
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GROTH ET AL. 91 1 

An extension of Roe's approximate Riemann solver has been developed herein to specify the appropriate average state primitive 
variables and wave strengths used in the preceding equations. This extension of the approximate Riemann problem solution for 
the subsystem of [57] yields the following averages: 

[761 P:'+ = VZZT 

and wave strengths 

Note that the flux limiters $;+ ,,,,,, which provide the difference 
scheme of [66] and [67] with the desirable TVD property, are 
evaluated similarly to the limiters used in the solution for the 
polytropic and equilibrium cases. The flux limiter of van Leer 
defined by [48] is used for the k = 1 and 6 characteristic fields 
and the superbee flux limiter of [49] is used for the k = 2, 3, 
4 ,  and 5 characteristic fields. Appropriate values for the flux 
ratios and normalization row vectors are used. Finally, note 
also that the flux functions of the k = 1 and 6 nonlinear char- 
acteristic fields are modified by employing entropy fixes of the 
form given by [52]-[56]. 

The integration of the thermodynamic subsystem [59] is 
provided by the TVD s e ~ i - i ~ p l i c i t  scheme of [68]. In [68], 1 
is the identity matrix, dQldW is the source Jacobian matrix, 
0:+ and w+ are the local average CFL number and 
solution jump vectors used in evaluating the flux functions for 
the species concentration and vibrational energy equations, and 
$;+ ,,,,, are the flux limiters. The homogeneous form of the 
subsystem given by [59] is essentialy a system of independent 
convection equations and, therefore, the numerical flux 
functions can be evaluated quite simply. The CFL number 
o;+ ,,, is given by 

where L('+ is evaluated by using [76] and [77] resulting from 
the extended approximate Riemann solver. This ensures that 
the eigenvalues and eigenvectors of the fully coupled system 

are used in the computation of the flux functions of both the 
gas dynamic and thermodynamic subsystems. The solution 
jump column vectors for the ND = 2N + 1 component ther- 
modynamic subsystem are given by 

where AH;+ ,,, = H : s  - H;, D, is a diagonal matrix for 
which the elements of ihe  diagonal are (ti,,, . . . ., 6,,, . . . ., 
?iND,)! and 6 is the usual Kronecker delta function. Finally, the 
flux l~miters $:+ ,,,,, for each component of the solution vector, 
which limit the magnitude of the antidiffusive flux in [68], are 
evaluated by employing the superbee formulation of [49]. The 
flux ratio is again defined in terms of the ratio and the antidif- 
fusive fluxes and the normalization row vector is chosen to 
recover the component of the antidiffusive flux vestor associ- 
ated with the kth component of the solution vector W .  Note that 
entropy corrections are not required i~ the solution of the ther- 
modynamic subsystem. 

The stiffness of the source terms associated with the finite- 
rate reaction and relaxation processes of [68] force the time step 
sizes of explicit schemes to be excessively small and the cor- 
responding computer times to be prohibitively large. For this 
reason, the source terms of the operator .%@ are integrated by 
using an implicit time-stepping procedure that is similar to the 
semi-implicit algorithms proposed by Bussing and Murman 
( 5 3 ,  Yee and Shinn (54), and Ben-Artzi (53) for the compu- 
tation of chemically reacting flows. These schemes treat only 
the source terms implicitly. This effectively alleviates the stiff- 
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FIG. 2. UTIAS hypersonic impulse tunnel geometry used in numer- 

ical simulations. 
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--. ,Velocity 
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---.--- Equilibrium 
- . . . . . . Nonequilibrium 
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I . ' ' c l ' s ' ' l c '  

FIG. 4. Barrel end stagnation pressure p,,. p,,, = 20.5 MPa, p,,, = 
400 kPa, Tr,, = T,,, = 293 K ,  m, = 96 g. 

! i 
. Reservoir 
- 

FIG. 3. Piston velocity V, and acceleration a,,. p,,, = 20.5 MPa, 
pbrl = 400 kPa, Tr,, = T,,, = 293 K ,  tn, = 96 g. 

- 

Nozzle 

ness associated with the finite-rate relaxation and reaction time 
scales whileAav9iding large matrix inversions. The quantity 
[I  - OAcl(dQ1dw) ','I is similar to the preconditioning matrices 
used by Bussing and Murman (55). The parameter 0 controls 
the implicit time stepping. For 0 = 0, the time differencing is 
Euler explicit. For 0 = 1, the time differencing is Euler 
implicit. This value produces the most stable scheme and is 
appropriate for problems with extremely stiff source terms. A 
value of 0 = 112 produces a trapezoidal implicit time differ- 
encing that is best suited and consistent with the explicit time- 
differencing of the homogeneous terms. Note that the time- 
marching procedure represented by [66]-[68] is conditionally 
stable. For 0 2 112, the CFL condition [51] ensures stability 
and convergence. 

5.3. Boundary conditions 
Boundary conditions are necessary for the prescription of the 

numerical solutions at the extremities of the computational 
domains. There are two types of boundary conditions required 
for the hypersonic impulse tunnel simulations. Firstly, a solid- 

Ball Valve Throat 

- 

surface reflecting boundary condition is needed for the flow 
properties at the closed end of the reservoir and the front and 
back faces of the moving piston. Secondly, an outflow bound- 
ary condition is needed for the flow properties at the exit of the 
contoured nozzle. 

Reflecting boundary conditions are applied by forcing the 
flow to have the velocity of the solid boundary or piston and 
then employing Rankine-Hugoniot and Riemann invariant 
relations across shocks and rarefaction waves to determine the 
other solution properties. For the outflow boundary condition 
at the nozzle exit, it is recognized that, except for very early in 
the tunnel operation cycle, the flow is almost always supersonic 
at this point and disturbances from the test section cannot prop- 
agate upstream. Simple constant extrapolation or transmissive 
boundary conditions (56) at the nozzle exit are therefore quite 
appropriate and are $ed here. 

- 

6. Discussion of numerical results and performance data 

Nozzle ~ h r o a t  4 - 
I , I I I I I , , , I . I .  

This section presents numerical predictions of the UTIAS- 
RPI hypersonic impulse tunnel performance obtained by 
solving the one-dimensional flow and thermodynamic model 
equations of Sects. 3 and 4 using the TVD numerical integra- 
tion schemes described in Sect. 5 .  The performance of the 
facility is first assessed by considering its operation under two 
firing states that are commonly used for much of the ongoing 
experimental hypersonic research at UTIAS. Additional 
numerical results are then presented to establish more thor- 
oughly the tunnel performance envelope and operating range. 

The UTIAS-RPI impulse tunnel is generally operated with 
initial reservoir pressure p,,, = 20.5 MPa, initial reservoir and 
barrel temperatures T,,, = T,,, = 293 K ,  and piston mass m, 
= 96 g. Different operating conditions are achieved by varying 
the initial barrel pressure p,,,. Two firing modes are employed 
in the majority of experiments. In one mode, p,,, = 400 kPa 
and in the other, p,,, = 200 kPa. Note that the firing state with 
the lower initial barrel pressure produces a higher stagnation 
enthalpy flow in the test section. 

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

08
/2

3/
23

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



I I I 

- 
< - - -  

f 

I 
- - 

1 - - -- Ideal *-"- 

Equilibrium 
....... Nonequilibrium 

I I I 

GROTH ET AL. 

10 

FIG. 5. Barrel end stagnation temperature T<,. prc, = 20.5 MPa, p,,, 
= 400 kPa, T,,, = T,,, = 295 K,  tn, = 96 g. 

For the computations of the tunnel operation in these two 
modes, and indeed for all of the predictions presented in this 
section, the unsteady motion of the driver and working gases 
is solved for the entire facility between the closed end of the 
reservoir and the nozzle exit. The cross-sectional area function 
A(x) used in the numerical simulations is illustrated in Fig. 2 
in terms of the axial position x and local tunnel radius r(x) 
where A = T?. A total of 570 spatial nodes are used to rep- 
resent the discretized computational domain. Convergence tests 
suggest that this nodal density is sufficient as numerical errors 
appear to be nominally less than 3-5% when 500-600 nodes 
are used. Boundary-layer frictional losses and heat transfer are 
included with E = 0.025 mm. These loss effects are, however, 
not included in the computation of the flow in the nozzle sec- 
tion. This is a reasonable approximation because the flow in 
this section of the tunnel is definitely not fully developed. The 
nozzle has been specifically designed to produce a relatively 
large inviscid core flow with a boundary layer that is confined, 
for the most part, to the near wall region. A value of 0.25 is 
assumed for the head-loss coefficients K of the two diaphragms 
located just downstream of the ball valve section. Note that the 
diaphragm head losses are phased in during the first 5 ms after 
diaphragm rupture using a linear-ramping function to more 
accurately simulate the developing flow situation occurring in 
the initial stages of tunnel startup. All of the computations were 
performed on a Hewlett-PackardIApollo 400s workstation. The 
simulations of the ideal and equilibrium gas cases required 
approximately 4-5 central-processing-unit hours (CPUh), 
whereas the nonequilibrium gas cases required about 13- 
14 CPUh. 

The predictions of the tunnel operation with initial barrel 
pressures of 400 and 200 kPa are presented in Figs. 3- 12. The 
first set of results for a barrel pressure of 400 kPa is given in 
Figs. 3-7, whereas the other set for a barrel pressure of 200 kPa 
is in Figs. 8-12. Note that the calculations were performed 
with the ideal, real equilibrium, and five-species four-temper- 
ature nonequilibrium gas models, and the results for these three 
different thermodynamic models are compared in these figures. 

FIG. 6. Nozzle exit Mach number Ma. pms = 20.5 MPa, p,, = 
400 kPa, Trcs = Thrl = 293 K,  m, = 96 g. 
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FIG. 7. Temperature distributions in nozzle, t = 30 ms. prc, = 
20.5 MPa,p,,, = 400 kPa, T,,> = Tbr, = 293 K,  m, = 96 g. 
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Consider first the results with p,,, = 400 kPa. The piston 
velocity V ,  and acceleration a, as a function of piston position 
in the barrel x, are given in Fig. 3. From Fig. 3, it is clear that 
the piston rapidly accelerates during ,the first metre of travel 
and then is subjected to very little acceleration until the first 
reflected shock from the barrel end causes it to decelerate. Sub- 
sequent reflections cause further deceleration and the piston 
eventually comes to rest at the end of the barrel (x, = 6.7 m). 
A maximum velocity of somewhere near 5 15 m s - ' and a peak 
acceleration approaching 760 km s -2  are predicted. Figure 3 
also clearly illustrates that high-temperature and (or) real-gas 
effects have very little effect on the predicted piston motion. 
The piston trajectories determined using the real equilibrium 
and nonequilibrium gas thermodynamic models are virtually 
identical to the trajectory obtained using the polytropic model. 
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FIG. 8. Piston velocity V ,  and acceleration a,. pr,.> = 20.5 MPa, 
pbrl = 200 kPa, T,, = T,,, = 293 K ,  m, = 96 g. 

FIG. 9. Barrel end stagnation pressure p,. p,,, = 20.5 MPa, phrl = 

200 kPa, T,,, = T,,, = 293 K ,  m, = 96 g. 

The predicted temporal variations of the stagnation pressure 
po and temperature To at the end of the barrel as the flow in the 
nozzle relaxes towards a steady state condition are illustrated 
in Figs. 4 and 5. The time t = 0, in these and other temporal 
distributions to follow, corresponds to the time when the first 
of the two diaphragms ruptures. The multiple shock reflections 
associated with the nonisentropic compression of the working 
gas is clearly illustrated by the successive pressure and tem- 
perature jumps in the time histories. These jumps indicate the 
passage of the reflected shocks between the piston front face 
and end of the barrel. The two sets of curves in the figures 
indicate that high-temperature phenomena are important in 
determining the nozzle flow stagnation conditions. Although 
there are only minor differences between the ideal, equilibrium, 
and nonequilibrium results for the stagnation pressures, the 
stagnation temperatures obtained with each thermodynamic 

FIG. 10. Barrel end stagnadon teniperature T<,. p,,, = 20.5 MPa, 
pbrl = 200 kPa, TrC, = T,,, = 293 K ,  tn,, = 96 g. 

model are quite different. It can be seen that the predicted stag- 
nation pressure during the period of relatively steady-state noz- 
zle flow is between 24-27 MPa for all three thermodynamic 
models. This pressure begins to drop rapidly around t = 39 ms 
when the working gas is depleted and the piston comes to rest 
at the end of the barrel. The polytropic model provides a higher 
stagnation temperature than the temperatures predicted by the 
two real-gas models, as should be expected. The predicted ideal 
stagnation temperature appears to be around 980-1000 K 
whereas the equilibrium and nonequilibrium values are around 
9 10-920 and 940-950 K ,  respectively. Note that at these stag- 
nation temperatures, vibrational excitation of the nitrogen (N,) 
and oxygen (02) diatomic molecules is significant, but disso- 
ciation of these species is small. The differences in the curves 
of Fig. 5 indicate that nonequilibrium relaxation must be con- 
sidered in order to determine the stagnation temperature -- accurately. 

As an additional Fompirison, an experimental stagnation 
pressure trace measured during a firing of the UTIAS-RPI 
facility with an initial barrel pressure of 400 kPa is also pre- 
sented in Fig. 4. It is evident from Fig. 4 that many of the 
detailed features and complicated wave structure of the non- 
stationary flow in the tunnel, such as shock strengths and times 
of arrival, are correctly reproduced by the one-dimensional 
nonstationary flow model calculations and that the numerical 
predictions are in good agreement with the experimental time- 
history data, both qualitatively and quantitatively. 

Figure 6 depicts the temporal variation of the flow Mach 
number Ma at the exit of the contoured nozzle. Figure 6 clearly 
demonstrates the establishment of steady flow in the nozzle. 
The exit Mach number initially oscillates about a mean value. 
These oscillations indicate the passage of transmitted shock 
waves through the nozzle and test section. A relatively steady- 
state nozzle flow is then achieved at about 25 ms after the first 
diaphragm has burst and is maintained until sometime just after 
the t = 40 ms mark. At this time, the piston has come to rest 
and the stagnation pressure and temperature at the nozzle 
entrance have dropped dramatically. This suggests a run time 
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FIG. l I .  Nozzle exit Mach number Ma. p,, = 20.5 MPa, p,,, = 
200 kPa, T,, = T,,, = 293 K ,  m, = 96 g. 

of somewhere between 15 and 17 ms for this particular mode 
of tunnel operation. It is interesting to note that, as mentioned 
in Sect. 2, the contoured nozzle employed in the present 
impulse tunnel configuration was built with an exit flow Mach 
number of 8.33 as one of the design specifications and that, for 
all thermodynamic models, the predicted steady-state nozzle 
exit Mach number is about 8.35-8.45. Note also that the 
numerical results show that the pressure p, temperature T, and 
specific heat ratio y of the air flow at the nozzle exit are approx- 
imately 1.6-1.7 kPa, 65-75 K,  and 1.4, respectively. 

Plots of the spatial distributions of the vibrational tempera- 
tures of the two excited diatomic species (N2 and 0 2 )  and the 
equilibrium translational and rotational temperature at time t = 
30 ms in the UTIAS-RPI tunnel from the piston front face to 
nozzle exit are also shown in Fig. 7. These numerical results 
were obtained with the nonequilibrium thermodynamic model. 
Note that the calculations performed show that in this operation 
mode dissociation/recombination effects are negligible and the 
principal nonequilibrium phenomenon that occurs at stagnation 
in the barrel is vibrational relaxation. This is as expected for 
these stagnation temperatures. It has long been known that typ- 
ically vibrationally excited air freezes when it becomes mod- 
erately supersonic ( 1  8, 20) and this seems to be the case here. 
The distributions of Fig. 7 demonstrate that the air in the nozzle 
freezes somewhere close to the nozzle throat, with the nitrogen 
freezing first near 965 K and the oxygen following at a tem- 
perature of about 620 K .  This produces a test-section flow of 
air with excited vibrational states and vibrational temperatures 
much higher than the equilibrium translational-rotational tem- 
perature of 67 K. 

Figures 8- 12 show the numerical predictions of the UTIAS- 
RPI hypersonic impulse tunnel operation with an initial barrel 
pressure of 200 kPa. The results are similar to those of the 
400 kPa simulations, except that the maximum piston velocity 
is now higher and approaches 600 m s-I, the stagnation pres- 
sure is around 24-25 MPa, the simulated stagnation tempera- 
tures are considerably higher ranging from 1070-1210 K,  and 
the duration of steady nozzle flow is now reduced to about 

I 

Vibrational Temperature N, 7 : 
- - 

Vibrational Temperature 0 7: 
- - 

Translation-Rotational Temperat 

I 

FIG. 12. Temperature distributions in nozzle, t = 20 Ins. prc, = 
20.5 MPa.p,,, = 200 kPa, T,,, = Thr,  = 293 K .  I I I , ,  = 96 g. 

FIG. 13. Barrel end stagnation pressure po. pr,, = 20.5 MPa, phrl 
= 400 kPa, T,,, = T,,, = 293 K ,  tnD = 96 g. 

9.5 ms. Figure 9 illustrates that, except for some differences 
in the later stages of the tunnel operation cycle (t > 30 ms), 
the agreement between numerical predictions and experimental 
measurements of the stagnation pressure is again good. The 
differences after t = 30 ms can be explained as follows. The 
stagnation pressure ahead of the piston drops in the numerical 
predictions. However, this characteristic pressure drop is not 
observed in the experimental signature because, in this partic- 
ular firing, the piston has passed by the transducer and sealed 
the entrance to the nozzle. Figure 12 provides further evidence 
that the air flow at the nozzle exit, and thus the air flow in the 
test section, of the UTIAS-RPI facility has considerable energy 
locked in the excited vibrational modes of the nitrogen and oxy- 
gen gas molecules. Vibrational temperatures at the nozzle exit 
of 1180 and 830 K are predicted for N, and 0 2 ,  respectively. 
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FIG. 14. Barrel end stagnation pressure T ,  as a function of initial 
barrel pressure p br,, p,,, = 20.5 MPa, T,,, = Tbr, = 293 K ,  tn, = 

96 g. 

FIG. 15. Run tlme At as a function of the initial barrel pressurephr,, 
p,,, = 20.5 MPa, TI,, = T,, = 293 K,  nz, = 96 g. 

Note that the low-amplitude oscillatory nature of the N2 tem- 
perature distribution of Fig. 12 in the region downstream of the 
throat is a consequence of the temporal variations in the stag- 
nation conditions created by the nonisentropic compression 
process occurring in the barrel. 

Before continuing, it is worth mentioning that the influence 
of boundary-layer friction and heat transfer, included in the 
present analysis, are important and cannot be neglected if 
accurate predictions of stagnation, nozzle, and test-section flow 
properties are desired. This is illustrated in Fig. 13 where two 
predictions of the ideal-gas stagnation pressure p, are depicted. 
In one case the stagnation pressure is computed with the bound- 
ary-layer losses included and in the other these effects have 
been omitted. It is apparent that the times of arrival and 
strengths of nonstationary shocks, as well as the resulting 
steady-state stagnation pressure, are very different for these two 
cases. To obtain the level of quantitative agreement between 
numerical predictions and experimental measurements found in 
Fig. 4 and 9,  the incorporation of boundary-layer effects into 
the analysis seems to be required. 

t -+ ldeal 
1C Equilibrium 

Ma + Nonequilibriurn I 

FIG. 16. Nozzle exit Mach number Ma as a function of initial barrel 
pressure p ,,,, p,,, = 20.5 MPa, T,,, = Thr, = 293 K,  tn, = 96 g. 

It should also be noted-that the time scales associated with 
the finite-rate source terms in the preceding nonequilibrium 
computations were approximaely 500-10 000 times smaller 
than the gas dynamic time scales. The semi-implicit solver of 
[65]-[68] effectively removed the stability constraints imposed 
by the finite-rate times scales and permitted the computations 
to be performed with the numerical time steps controlled only 
by the gas dynamic time scales. 

The performance characteristics of the UTIAS-RPI hyper- 
sonic impulse tunnel are further illustrated by the numerical 
results depicted in Figs. 14-19. In these figures, the computed 
barrel end stagnation pressure To, facility run time At, nozzle 
exit flow Mach number Ma. and nozzle exit flow Revnolds 
number per unit length ReIL are given as functions of the initial 
barrel pressure p,,,, piston mass, m,, and initial barrel 
temperature T,,,. The results are again given for all three 
thermodynamic models. 

In Figs. 14-17, the effects of varying the initial barrel pres- 
sure from 100 to 800 kPa with p,, = 20.5 MPa, T,, = T,,, 
= 293 K ,  and m, = 96 g all fixed are explored. Figure 14 
shows that by redudng the barrel pressure higher stagnation 
temperatures approzching 1500 K are possible. However, 
Fig. 15 shows that these moderate increases in stagnation 
enthalpy are offset by a corresponding decrease in the facility 
run time, which may be detrimental to experiments in many 
cases. Note that the run times are virtually the same for all three 
thermodynamic models. Figure 16 illustrates that the test-sec- 
tion flow Mach number is rather insensitive to the initial barrel 
pressure. This should be expected for it depends primarily on 
the exit to throat area ratio. Although not shown, the stagnation 
pressure was also found to be insensitive to initial barrel pres- 
sure. Values for p, were found to be around 24-27 MPa for all 
of the operating conditions considered. Finally, Fig. 17 pre- 
sents the range of nozzle-exit or test-section flow Reynolds 
number per unit length that may be achieved with the UTIAS- 
RPI tunnel. The Reynolds number varies from lo7 to 
5 X lo7 m - ' ,  which suggests that, depending on the model 
size and orientation in the test section, fully laminar, transi- 
tional, and even fully turbulent boundary-layers may be 
obtained. 

For many experimental programs, higher test-section stag- 
nation temperatures are desired. Two of the possible and more 

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

08
/2

3/
23

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



CAN. J. PHYS. VOL. 69. 1991 

FIG.  17. Nozzle exit Reynolds number per unit length ReIL as a 
function of the initial barrel pressure p,,,, prC, = 20.5 MPa, T,,, = 
Thr, = 293 K ,  rn, = 96 g. 

50 

40 

Re/L 
(1 o6 rn") 

30 

20 

10 

practical avenues for achieving higher temperatures are to rede- 
sign and reduce the piston mass by employing lightweight high 
strength materials or to preheat the working gas in the barrel 
before diaphragm rupture. The effects of varying the piston 
weight and initial barrel temperature with p,,, = 20.5 MPa, 
T,,, = 293 K ,  and p,,, = 200 and 400 kPa are shown in 
Figs. 18 and 19. It should be obvious from Fig. 18 that chang- 
ing the piston mass has little effect. Even the reduction of the 
piston mass by as much as 75% provides a corresponding 
increase in the predicted stagnation temperatures of only 40 K. 
On the other hand, Fig. 19 shows that preheating the barrel 
gases is more worthwhile. An increase in the initial barrel tem- 
perature of 200 K can provide a corresponding increase in the 
stagnation pressure of up to 400 K. It should, however, be noted 
that preheating the working gas does reduce the run time. With 
p,,, = 200 kPa, the run time At was found to decrease almost 
linearly with temperature from about 10 ms at T,,, = 293 K 
down to 5 ms at T,,, = 750 K .  

. . . , . . . , . . . , . . . , . . .  

- 

. 
- 

- -- ldeal 
- + Equilibrium 

.+. Nonequilibriurn 

- , . , , , , . , , , . , , , . , , , , - 

7. Concluding remarks 
A quasi-one-dimensional unsteady flow analysis and TVD 

finite-difference solution algorithm with new numerical fea- 
tures have been presented for the prediction of the UTIAS-RPI 
hypersonic impulse tunnel operation and performance. Unlike 
previous studies which have generally employed quasi-steady 
and mostly analytic techniques, modem CFD methods are used 
to predict for the first time the complete unsteady behaviour of 
the impulse tunnel from initial startup to blow down. Further- 
more, the use of polytropic gas, real equilibrium gas, and four- 
temperature five-species nonequilibrium gas thermodynamic 
models in the analysis has permitted the evaluation of high tem- 
perature effects for this experimental facility. Numerical results 
and comparisons to available experimental data have demon- 
strated the capabilities and usefulness of these modeling 
techniques. 

Under typical operating conditions, the numerical predic- 
tions have shown that the run time for the UTIAS-RPI impulse 
tunnel is about 15-20 ms and that the stagnation pressure and 
temperature are 24-27 MPa and 1000- 1200 K ,  respectively. 
Test section flow Mach and Reynolds numbers of 8.35-8.45 
and lo7 to 5 x lo7 m-  were found. In addition, the static 

I ~ " ' l ' r " l ~ ~ r '  

- - 

p,, = 200 kPa 

-+ Ideal p,, = 400 kPa 
+ Equilibrium 

- -+ Nonequilibriurn - 
I , . . . I . . . ,  I . , . .  

FIG.  18. Barrel end stagnation pressure T,, as a function of the piston 
mass m,, pm, = 20.5 MPa, phrl = 200 and 400 kPa, T,, = Th,, = 
293 K .  

--fk- ldeal 
- -4- Equilibrium 

2500 + Nonequilibriurn 
T o  
(K) 

2000 - 

1500 - 

1000 - 

F I G .  19. Barrel end stagnation pressure To as a function of ~nitial 
barrel temperature Tbr,, p~ = 20.5 MPa, PhrI = 200 and 400 kPa, 
T,,, = 293 K ,  mp = 96 6 - 

pressure and temperature in the test section were determined to 
be about 1.6- 1.7 kPa and 65-75 K respectively. For the pre- 
dicted stagnation enthalpies, it was shown that in most cases 
the primary high-temperature phenomenon occurring in the tun- 
nel was vibrational excitation. The degrees of dissociation of 
N2 and 0, were found not to exceed 112 and 2%, respectively, 
even in the extreme cases considered where stagnation tem- 
peratures neared 2000 K. It was also demonstrated that vibra- 
tional excitation must be treated as a finite-rate process to obtain 
accurate predictions of the tunnel stagnation conditions. 

Vibrational relaxation effects were also found to be of impor- 
tance in the hypersonic nozzle flows of the UTIAS-RPI facil- 
ity. It was shown that the air typically freezes downstream but 
very close to the nozzle throat and results in test-section flows 
with nitrogen and oxygen species having vibrational tempera- 
tures of 960-1200 K and 620-830 K ,  respectively. These tem- 
peratures are much higher than the predicted test-section trans- 
lational-rotational temperatures and may be important in the 
assessment of tunnel experimental data. 
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One  of the limitations of the UTIAS-RPI facility seems to 
be the rather low stagnation enthalpies that can be obtained. 
The present performance assessment of the impulse tunnel indi- 
cates a possible technique for extending the range of flow con- 
ditions that can be achieved in the test section. Reducing the 
piston weight proves to be fruitless; however, preheating of the 
working gas can lead to substantially higher stagnation tem- 
peratures and feasible preheating mechanisms could be exam- 
ined in the future. 
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