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ABSTRACT ARTICLE HISTORY

The accurate numerical prediction of soot formation in practical combus- Received 19 January 2019
tion devices remains a challenge. Several new quadrature-based moment Revised 30 September 2019
closures based on fractional-order moments of soot particle volume are Accepted 2 October 2019
proposed for the prediction of soot formation in laminar diffusion flames KEYWORDS

at atmospheric and elevated pressures. Both univariate Quadrature Soot; soot modeling;
Method of Moments (QMOM) models based on a classical particle volume method of moments;
formulation and bivariate Conditional Quadrature Method of Moments QBMM; CQMOM; CQMOM-
(CQMOM) models based on a new particle volume/primary particle num- Radau; ethanol; laminar
ber formulation are proposed. The soot models include detailed gas- diffusion flames

phase chemistry along with nucleation, surface growth, oxidation, and

coalescence/coagulation soot chemistry source terms. Initial comparisons

to predictions of a sectional method for space homogeneous simulations

illustrate well the improved predictions of soot number density and

volume fraction are provided by the fractional-order moment closures

compared to integer-order moment approaches. Furthermore, additional

comparisons of soot prediction of methane/ethanol laminar diffusion

flames at elevated pressures indicate that the proposed bivariate

CQMOM, with a specified soot inception size, offer significantly improved

results when compared to the other variants and available experimental

data.

Introduction and motivation

Soot particle formation results from the incomplete combustion of hydrocarbon fuels in
various combustion devices such as aircraft gas turbines, diesel engines, and industrial
furnaces. Unfortunately, the emission of fine particulate matter can have detrimental
effects on both human health and the environment (Pope et al. 2002). Notably, on one
hand soot particles are carcinogens and can cause respiratory problems (Kennedy 2007)
while on the other hand soot particles contribute to the reduction of arctic ice albedos
(Clarke et al. 1967), in addition to possibly induce temperature and precipitation changes
(Menon et al. 2002). From this perspective, the accurate prediction of soot formation via
numerical modeling is important to designing the next generation of low emission, more
environmental friendly, and combustion systems.

Unfortunately, the accurate numerical prediction of soot formation is difficult because of the
polydisperse nature of the soot aggregates and the complexity of the chemistry involved.
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Notably, the evolution of soot particle size distribution (PSD), which can in many cases be bi- or
multi-modal in nature (Zhao et al. 2005), is governed by a high-dimensional integro-difterential
population balance equation (PBE). Solution techniques of varying complexity and accuracy
have been developed to solve this equation in previous studies. For example, stochastic
approaches (Balthasar and Kraft 2003; Celnik et al. 2007; Goodson and Kraft 2002; Patterson
et al. 2006) represent the soot population by a large number of representative particles, whereas
sectional methods (Bhatt and Lindstedt 2009; Blacha et al. 2012; D’Anna and Kent 2006;
Smooke et al. 2005; Zhang et al. 2008) involve the solution of transport equations for each of
the discrete sections of a discretized size distribution. However, stochastic approaches are
generally limited to elementary or academic cases while sectional methods, despite being
somewhat less costly, can still be very expensive computationally for practical turbulent flame
simulations because of the relatively large number of sections required. Alternatively, the
method of moments (Frenklach 2002; Frenklach and Harris 1987; Marchisio et al. 2003;
McGraw 1997; Mueller, Blanquart, Pitsch 2009; Salenbauch et al. 2015; Sung et al. 2014; Wick
et al. 2017), which requires the solution of only a few transport equations for moments of the
distribution function are potentially better suited to practical flame simulations for engineering
applications.

The method of moments is gaining in popularity and many different methods have been
introduced, such as the Method of Moments with Interpolative Closure (MOMIC) (Frenklach
2002; Frenklach and Harris 1987), the Quadrature Method of Moments (QMOM) (Marchisio
et al. 2003; McGraw 1997), the Extended Quadrature Method of Moments (EQMOM)
(Chalons, Fox, Massot 2010; Madadi-Kandjani and Passalacqua 2015; Yuan, Laurent, Fox
2012), and the Conditional Method of Moments (CQMOM) (Buffo, Vanni, Marchisio 2012;
Yuan and Fox 2011). While several of these moment methods have been used for soot
prediction (Frenklach 2002; Frenklach and Harris 1987; Salenbauch et al. 2015; Wick et al.
2017; Zucca et al. 2006), comparisons of the predictive capabilities of the various moment
techniques to each other and other methods is lacking. Furthermore, the relative importance
of fractional-order moments (McGraw and Wright 2003; Wright, McGraw, Rosner 2001) has
not been considered for soot prediction.

A first goal of the current study is therefore to validate and compare the accuracy of various
Quadrature-Based Method of Moments (QBMM) methods, including QMOM, QMOM-
Radau, EQMOM, CQMOM, and CQMOM-Radau methods, to a sectional method for space-
homogeneous problems for both integer-order and fractional-order moments. The resulting
fractional-order quadrature-based moments methods are subsequently applied to the prediction
of soot formation in a laminar diffusion flames and their predictions compared to the by now
almost standard two-equation semi-empirical model for soot transport and formation (Leung,
Lindstedst, Jones 1991; Liu et al. 2002). The discussion includes theoretical descriptions of the
various moment closures considered along with comparisons of the predictions of soot forma-
tion in methane/ethanol laminar diffusion flames at elevated pressures. The latter are obtained
by making use of the computational framework for the prediction of soot formation in laminar
flames originally developed by Charest, Groth, Giilder (2010).

Soot aerosol modeling

As mentioned in the introduction, the evolution of the soot particle density number,
n(X;€), is governed by a PBE given by
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on(x;§) 0 - 0 on(¥;€)
BT + ox, ((u] + Vi )n(X; s)) o (DS o,
_ dn(%¥) 0
dt nuc+agg+sg+cond+ox

where € are parameters (e.g. particle volume, V') characterizing the soot particles, ; is the flow
velocity, D; is the soot diffusion coefficient, and Vr is the thermophoretic velocity of the
particles. The right-hand side of Eq. (1) represents various source terms which notably include
the effects of nucleation (nuc), agglomeration (agg), surface growth (sg), condensation (cond),
and oxidation (ox). A brief review of common solution techniques for this PBE, including
section and moment closure methods, will now be described in what follows below.

Sectional method

In this study, a univariate volume-based (€ = V) sectional method is used to provide
reference numerical solutions to the balance equation of Eq. (1) for space homogeneous
problems. In the univariate case, the soot particles are assumed to be spherical in shape
with V = 47r® /3 where r is the particle radius. For the sectional method implemented in
this study, a fixed discrete sectional method is used to discretize the soot PSD function and
thereby allowing the description of polydisperse spherical aerosol. Each section, i, has
a fixed representative volume, V;, with a specified spacing factor, f;, such that

Vi+l :fSVﬁ (2)

with i = 1,2..., N, where N is the number of sections. Typically, N; must be large (ie.,
N;>100) to ensure high accuracy and, even for more practical simulations, values of
N; = 20-40 are still required to ensure reasonable accuracy for engineering accuracy (Bhatt
and Lindstedt 2009; Blacha et al. 2012; D’Anna and Kent 2006; Smooke et al. 2005; Zhang et al.
2008).

The fixed boundary between any two sections, i and i + 1, is given by

1
Vi = 5 (Vi+ Vip). (3)

A discrete total density number, Nj, is assigned to each section volume, V;, resulting in
a piecewise Dirac representation of the distribution function. The average density number
per section is then given by

N;

= — . (4)
Vi1 — Vb,

n;
The various component of the source term of the discrete density number for each

section, i, can be treated individually and expressed as

dN;
dt

dN;
dt

agg

dN;
dt

dN;
dt

dNi o le

3 =ar * ®

g

+

cond

nuc+agg-+sg+cond-+ox nuc 0x



COMBUSTION SCIENCE AND TECHNOLOGY e 25

The evaluation of each of these source terms is discussed in more detail below.

Nucleation
The soot particles are assumed here to nucleate at a single inception size, V;, such that

dN,

= Thuc,
dt nuc

(6)
where 7, is the prescribed rate of nucleation.

Coagulation

Coagulation is treated in this study with the fixed pivot technique (FPT) of Kumar and
Ramkrishna (Kumar and Ramkrishna 1996) that allows the conservation of both total
density number and total mass (or volume) with

k<j<i 5. M
= Z (1 - ]7> 1P, NiNk — N; Z Bi 1Nk (7)

agg m 1 <Vi+Vi<Vig k=1

dN;
dt

where §; is the Kronecker delta tensor and f; (or §; ) is the agglomeration frequency.
The parameter, #, is introduced in order to conserve both total density number and total
volume, and is given by the expression

VitV oy 4y < Vit
9 — k= 1
’1 { 1 J ! (8)

Vit +Vi
VoWtV oy <V 4 Ve < VL

Surface growth, condensation, oxidation

Soot surface growth, condensation, and oxidation are treated herein with a second-order
finite-volume method (FVM) (Qamar et al. 2006) adapted to a discrete formulation. For
surface growth, the source term can be written as

dN; . Si+Si
= —fy (2+1> [ +0.5¢,(ni — ni1)]

dt
S+ S
+ rsg (1121> [ni—l + 0'5¢i71(ni_1 - ni—Z)}

)

where 7, is the specific surface growth rate and §; is the sectional surface area. The slope
limiter function, ¢, given by

. (1 2
¢, = max{O,mln [2qi,mm<g—l—§q;,2>} }, (10)

is used for computational robustness with

niy1 — N+ €
= 11
T it (1)
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where ¢ is a small value (107!?) used to avoid division by 0. Condensation and oxidation
are treated in similar fashions.

QMOM/QMOM-Radau closure

Various quadrature-based moment closure techniques are now considered. In QMOM
(Marchisio et al. 2003; McGraw 1997) closures, rather than solving directly the PBE for
n(€), the distribution function is represented as a sum of Dirac delta functions with
quadrature weight and point (volume abscissa) such that closure of the source terms
can then be achieved by direct numerical quadrature. For a univariate description with
€ =V, the soot is represented as a polydisperse aerosol of spherical particles and the
corresponding approximate distribution is defined by

Ny
n(V) = N&(V - V), (12)
i=1
and the k"-order volume moment is then given by
Ny
My => NiVf, (13)
i=1

where Ny is the number of volume Dirac function, N; are the weights, and V; are the
volume abscissa. The weights and abscissa of the Dirac functions defining the approxi-
mated distribution for soot particle size can be evaluated directly from a set of 2Ny known
moments via a moment-inversion algorithm such as the Product-Difference (PD)
(Gordon 1968) or Wheeler (Wheeler 1974) algorithms. The main idea in such solution
approaches is to use orthogonal polynomials to construct a Jacobi matrix of the form

_aom i
Vb ar Vb,

- N/ S . (14)

. . \/ bN‘,,l
L \V bNV—l aNy—1

The abscissa, V;, and weights, N;, are then given respectively by the eigenvalues and
eigenvectors of the preceding Jacobi matrix, J.

The PD and Wheeler moment inversion algorithms require integer-order moments;
however, QMOM methods can be generalized to fractional-order moments by introducing
a variable change such that the moments are alternatively defined by

NV NV
ks g
M =My, = > NVTE =3 NV, (15)
i=1 i=1

where x are the corresponding integer moments orders, k are the fractional moments orders,
and k; is the fraction denominator. The general formulation of Eq. (15) reduces to integer-
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order formulation when k.= 1. Typically, the number of quadrature points, Ny, is chosen to
Ny =2-6 for space homogeneous problems and Ny = 2-3 for multidimensional flow
problems. The influence of Ny will be explored for space homogeneous problems in this
study. A variation of the QMOM method, with one fixed quadrature at the inception size Vj,
is known as a QMOM-Radau method (Salenbauch et al. 2015) and is also considered here.
The number of moments to be solved in this case is then equal to 2Ny — 1. In this study,
implementations of both QMOM and QMOM-Radau univariate closures are considered
which account for nucleation, surface growth, oxidation, and agglomeration.

EQMOM closure

Rather than representing the distribution function as a sum of Dirac delta functions, an
alternative approximate approach is to make use of presumed kernel functions for the
density distribution of the soot particles. This so-called EQMOM approach was first
introduced by Chalons, Fox, Massot (2010) where Gaussian kernel functions were used.
Yuan, Laurent, Fox (2012) have further developed the EQMOM approach for both
gamma and beta kernel functions while Madadi-Kandjani and Passalacqua (Madadi-
Kandjani and Passalacqua 2015) extended the method for log-normal distributions. In
the EQMOM approach, the distribution function for a monovariate case, n(€¢ = V), is
therefore given by

Nz
n(V) =Y NF(Viy,o0), (16)

i=1

where N is the total number of kernel functions (typically, Ny = 2-5) and F(V;y;, 0) is
the assumed shape of kernel functions. The weights, Nj, the size parameter, x;, and the
shape parameter, o, of the kernel functions are computed from 2Nz+ 1 known (com-
puted) moments. The source terms are then closed from the resulting distribution func-
tion by a secondary quadrature procedure. In order to continue to exploit the PD or
Wheeler algorithm for the solution of the moment inversion problem in a EQMOM
approach, a transformation is again required.
In this study, log-normal kernel functions, of the form

exp <_ M) (17)

L(V;x;0) =

202

1
Vov2n

are used. The log-normal distribution is defined on the interval [0,908[ and in order to
avoid particle distribution of zero size, the log-normal distributions are shifted by the
value of Vj as in (Salenbauch et al. 2015). The resulting 2N+ 1 moments are given by

k
My = Z(’;)Mk_r(—voy, (18)

r=0
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where
Nr 2.2
k
- S nvtenD) )
i=1 2
with V; = exp(y;). The transformed moments, M}, are then given by
M; = N;V, 20
kT exp( k202 /2) Z g (20)

where the shape parameter, o, is computed iteratively through a root-finding approach.
Because of the binomial theorem used for the moment translation, fractional-order
moments have not been considered herein for the log-normal EQMOM approach.
Nevertheless, the current implementation of the EQMOM closures account for nucleation,
surface growth, oxidation, and agglomeration.

CQMOM/CQMOM-Radau closure

A multivariate moment closure description allows for a more realistic representation of soot
aerosols as polydisperse aggregates instead of treating the soot as a simple collection of spherical
particles. The fractal-like aggregate nature of soot particulate matter arising from combustion
processes, consisting of linked chain-like structures of primary particles, has been well estab-
lished experimentally (Koylii et al. 1995). While volume and surface area have been previously
suggested to define the related macroscopic moments of soot aggregates (Mueller, Blanquart,
Pitsch 2009; Salenbauch et al. 2015; Sung et al. 2014), the current study proposes the use of the
volume, V, representing the size of the primary particles in the aggregates and the number of
primary particles, n,, making up the soot aggregates (the latter are assumed to consist of
multiple primary particles). As such, the current multivariate description uses € = [V, n,]. It
should be noted that, although primary particle number was used as secondary variable by
Frenklach (Frenklach 2002), the pseudo-bivariate MOMIC method described therein can only
treat pure moments. Conversely, the proposed multivariate QMOM approaches allow for the
description of mixed moments and can better represent the complex nature of soot particles.
Nevertheless, direct inversion of the moments to recover the corresponding weights and abscissa
can be difficult in multivariate QMOM methods. The moment inversion problem for the
multivariate case can however be simplified by applying a so-called CQMOM closure approach
(Buffo, Vanni, Marchisio 2012; Yuan and Fox 2011), which represents the multivariate density
distribution as a product of conditional density functions.

The form of the approximate distribution function in the proposed bivariate CQMOM
and CQMOM-Radau closure is then given by

n(V,n,) = szz”l’:N i0(V = Vi)é(ny, — ny,)

i=1 j=
Ny np

—ZZW,W,] (V= V)d(n, npiJ), (21)

i=1 j=
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while the corresponding known moments sets, My ¢, are defined by

Ny Nuy y Ny Ni y
My = E E N;Vin, = E wiwVin, (22)
i=1 j=1 i=1 j=1

where Ny is the number of Dirac functions for primary particle volume and N, is the
number of Dirac functions for primary particle number. The total number of Dirac
functions, Np, is then NyNy,, with typically Ny = 2-3 and Ny, =1-2 for multidimen-
sional flow problems. Also, Nj; represents the quadrature density number, w; are the
volume quadrature weight, w;; are the conditional primary particle quadrature weight, V;
are the primary particle volume abscissa, and 7, are the conditional primary particle
number. A total of 2Ny + NV(ZN,,P — 1) known moments are then considered with 2Ny
pure moments defined in a QMOM closure using

Ny
Mkﬁ() = Z WIVIk (23)
i

This allows one to find the volume nodes, V;, and volume weights, w;. The conditional
primary particle node information can then be determined from

Ny Nuy Ny
_ k € __ kN
Mye = Z Z Wiw"jVi nPi.j - Z wiV; NPi,C' (24)
i=1 j=1 i=1

By solving the system given by Eq. (24), the values of Nm can be computed by using

M()Af 1 1 . 1 w1 I:Vpl_e
ML( V1 V2 e W) P
. = . : (25)
' Ny—1  {Ny—1 TNyl ’ o
My, 1.c vyt v W, Np o

with N,,, = 1. Once the values of Npi,f are known, it is possible to used the PD or Wheeler
algorithm for each volume node to evaluate the value of w;; and n,, using the relation

NP:‘,« = Z Wij”g,-j' (26)
1

As with the QMOM approach, the CQMOM moment closures can be extended to
fractional-order moments by introducing a variable change and expressing the moments
of interest as

Ny Na Ny

'p N"I’
i I /ks /eS — \7x>
Mie =My e = YD NgViFmle =" "NV, (27)
i=1 j=1 i=1 j=1
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where x and y are integer-order moments, k and € are fractional-order moments, k; and €
are the fraction denominators. Again, the general formulation of Eq. (27) reduces to
integer-order formulation when k= 1 and €= 1. Also similar to the QMOM-Radau
closures described previously, it is possible to fix one volume quadrature point at the
inception size, Vj. Such a variant is also considered here and will be referred to as
CQMOM-Radau closure. The number of moments to be considered in the closure is
then reduced and is equal to 2Ny — 1+ (Ny — 1)(2N,, — 1) in this case. As with the
other moment closures considered here, all of the CQMOM/CQMOM-Radau method
implementations of this study consider the effects of nucleation, surface growth, oxidation,
and aggregation.

Numerical results and discussion

Numerical results obtained with both the integer- and fractional-order QBMMs proposed
here are first validated for a space-homogeneous problem and their predictive capabilities are
compared to those of the present sectional method. The proposed fractional-order moment
QBMMs are subsequently applied to the prediction of soot formation in methane/ethanol
laminar diffusion flames at elevated pressures, for which the numerical predictions are
compared to available experimental data (Griffin, Christensen, Giilder 2018), as well as to
the predictions of standard two-equation empirical models for soot formation.

Space-homogeneous problem

Numerical solutions of a space-homogeneous aerosol problem that includes the effects of
nucleation, agglomeration, and surface growth were determined numerically for the
univariate QMOM, EQMOM, and QMOM-Radau with integer-order moments and for
the univariate QMOM and QMOM-Radau with fractional-order moments. The para-
meters used for the evaluation of the various source terms are indicated in Table 1. The
QBMM results are compared to those obtained using the univariate sectional method with
N; = 400 sections and a spacing factor of 1.045. Since no analytical solution exist for this
example case, the sectional method results with a high value for N; serve as a reference
solution for comparison of the various quadrature-based moment closures.

The computed evolution of the density number and volume fraction with time for t = 0-4 ms
are shown in Figures 1 and 2 for integer-order moments and fractional-order moments,
respectively. The number of moments considered ranged from 4 to 12 for QMOM and 5 to 11
for EQMOM and QMOM-Radau. For the fractional-order moments, k, = 3 was used, which
basically converts the volume-based formulation into a diameter-based formulation. In compar-
ing the moment closure and sectional method results, Figure 1 indicates that significant
improvements in the prediction of the evolution of the density number are achieved by the
QMOM-Radau methods relative to the QMOM approaches for integer-order moments, while
only marginal improvement is observed with EQMOM methods. Additionally, Figure 2 indi-
cates that the evolution of density number and volume fraction are both predicted much more
accurately with fractional-order moments for both QMOM and QMOM-Radau, with the
differences between the two being rather small.



COMBUSTION SCIENCE AND TECHNOLOGY e 31

Table 1. Soot chemistry parameters for the space-homogeneous
case.
Nucleation

Inue = 20 - 100057

Vo = 500 - 107¥m?

rsg = 2000 - 102m=25~"
dVeg = 25-107%m3

Surface growth

Coagulation Harmonic mean collision kernel with n = 1.0
T=1800 K
P =101,325 Pa
g 10" QMOM , x10Y QMOM-Radau g x10%7 EQMOM
= —~6 = -QMOM-Radau (3-Dirac) s
o L) -QMOM-Radau (4-Dirac) 0
Ee Eg -QMOM-Radau (5-Dirac) Ee6
> o, QMOM-Radau (6-Dirac) >
& G 2 = Sectional (400) G
(=4 c c
o 4 ] o 4
o - 03 o
c - --QMOM (2-Dirac) c C ---EQMOM (2-In)
g |l |- QMOM (3-Dirac) g, 8. EQMOM (3-In)
€2 - QMOM (4-Dirac) £ €2 - EQMOM (4-In)
3 QMOM (5-Dirac),,,. 2, = EQMOM (5-In) |,
= Sectional (400) muan = Sectional (400) nusn
0 0 0
0 1 2 3 4 0 i 2 3 4 0 1 2 3 4
time (s) %103 time (s) x1073 time (s) %1073
(a) Density number
5 «10°® QMOM-Radau : %1073 EQMOM
-QMOM-Radau (3-Dirac) ---EQMOM (2-In)
4 QMOM-Radau (4-Dirac) 0.8
=2 = MOM-Radau (5-Dirac) 7l
o 2 QMOM-Radau (6-Dirac) o
k] U3 Sectional (400) T 0.6
£ e £
o v o
E E2 E04
S S )
e 1 >0.2
0
0 1 2 3 4 0

time (s) %103

(b) Volume fraction

Figure 1. Prediction of the evolution of the (a) density number (b) and volume fraction with integer
order moment QBMM for the space-homogenous problem.

Convergence of the final density number and volume fraction at the maximum time
of t = 4 ms with number of moments are shown in Figure 3. The results indicate that
rather slow convergence is observed with the number of integer-order moment for the
prediction of the density number while the convergence is significantly improved with
increasing fractional-order moments. This is explained by the fact that with higher-
order moments, the Dirac quadrature distribution is biased toward the tail of the
distribution. Hence, with integer-order moment, QMOM-RADAU methods show sig-
nificant improvement relative to the QMOM closures as they explicitly assign one
quadrature node to the inception size while, for fractional-order moments, the improve-
ment due to an additional quadrature at the inception size is somewhat more limited.
This is confirmed by the additional results in Figures 4 and 5. The sectional method
results predict a bimodal distribution with a inception mode that is not captured
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Figure 2. Prediction of the evolution of the (a) density number (b) and volume fraction with fractional
order moment QBMM for the space-homogenous problem.

appropriately by any node of the integer-order moments QMOM approaches, while the
fractional-order moment QMOM approaches result in some portion of the quadrature
points in the vicinity of the inception size, which lead to improved solution quality. The
importance of the inception mode for soot modeling is explained by the large range of
size covered by soot particles from incipient particle of about 107*"m? to large aggregate
of about 1072 m? which corresponds to a volume-equivalent diameter of a few hun-
dreds of nm. Hence, with an integer-order moment formulation, the contribution of the
quadrature points representing the small particle size is eclipsed by numerical rounding
errors in the determination of higher-order moments. Consequently, adding more
quadrature points in an integer-order moment formulation does not significantly
improve the quality of the predictions for cases with a bimodal distribution.
Application of fractional-order moments for soot modeling is thus of significant impor-
tance, particularly as experiments (Zhao et al. 2005) indicate that soot particle distribu-
tion can have a bimodal structure.
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Figure 4. Size distributions for QBMMs with integer-order moment (k;= 1) for the space-homogeneous

case at time t = 4 ms.

UTIAS high-pressure laminar coflow burner

Charest, Groth, Giilder (2010) previously developed a computational framework for the
prediction of soot formation in laminar diffusion flames. In this framework, the Navier-
Stokes equations for laminar flows of a multicomponent gas with complex chemistry are
discretized by a FVM using a second-order piecewise limited reconstruction for the
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Figure 5. Size distributions for QBMMs with fractional-order moment (k;= 3) for the space-
homogeneous case at time t = 4 ms.

evaluation of inviscid fluxes while a diamond path is used for the evaluation of the viscous
fluxes. Low-Mach preconditioning is introduced in order to reduce excessive numerical
dissipation and numerical stiffness. Steady-state solutions of the discrete solutions are
obtained by an inexact Newton-Krylov-Schwarz (NKS) algorithm while radiative heat
transfer is solved with discrete-ordinate-method (DOM) for a non-gray media. The
computational framework of Charest, Groth, Giilder (2010) has been previously used to
predict soot formation in elevated pressure laminar diffusion flames for a variety of fuels
ranging from ethylene (Charest et al. 2011), methane (Charest, Groth, Giilder 2011), and
biogas (Charest, Giilder, Groth 2014). For this study, the original soot prediction cap-
abilities (two-equation empirical soot model) have been expanded to include the proposed
fractional-order QBMM models for Ny= 3 and N,, = 1. Note that the results of the
numerical study for the space-homogeneous problem described previously indicate that
this number of quadrature points offers a good compromise between computational cost
and numerical accuracy. The corresponding sets of macroscopic moments considered in
the various closures are indicated in Table 2.

For the current study, the UTIAS elevated-pressure methane-ethanol laminar coflow
burner with a 10% carbon mass from ethanol (Griffin, Christensen, Gulder 2018) is
considered to validate the proposed quadrature based moment closures for soot. The
burner configuration and experimental conditions used for the simulations are indicated
in Table 3. The computational domain is divided into 506 blocks with a total of 60,720
computational cells. Schematic views of the burner, along with the computational mesh
used herein, are shown in Figure 6. A reduced Dryer mechanism (29 Species, 154
reactions) (Akih-Kumgeh 2013) is used in this study to model the complex gas-phase
chemistry.

For the simulations performed herein, the soot source terms associated with the
moment closures were evaluated using an explicit time-discretization and a splitting
approach (Sung et al. 2014) in order to preserve moment realizability. Nucleation was
modeled by using a simplified acetylene-based precursor model (Liu et al. 2002), while
surface growth was modeled by using the HACA mechanism of Blanquart and Pitsch
(Blanquart and Pitsch 2009). Oxidation of the soot particulates by O, was modeled from
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Table 2. Soot moment set for QMOM, QMOM-Radau, CQMOM, CQMOM-
Radau with Ny=3 and N, = 1.

QMOM Mo, M13, Myz, M, Majz, Ms 3
QMOM-Radau Mo, M3, Mys3, My, Myy3
cQmom Mosz0r Mijz o Masz oo Mio, Majzo, Msyzo, Mot, Mijza, Mya

CQMOM-Radau Moszor Mijz00 Maszor Mao, Maszor Moa, Mjsa

Table 3. UTIAS elevated-pressure burner
configuration and experimental conditions.

Inlet length 5.0 mm
Fuel tube diameter 3.06 mm
Coflow diameter 254 mm
Fuel mass flow 1.221 mg/s
Air mass flow 0.340 g/s
Fuel temperature 473 K
Air temperature 473 K
Pressure 1, 2, 4, and 6 atm
Fuel CH4/C,H50H
2254 mm
}AY ¢14.7mm
T W 1
240 mm é' —1‘27 S~ .
i _I—‘ é ; Dl el 24.76 mm
% 3.06
Cooling |} Z é ¥ € 23.06 mm
Coil \ ] Glass 7 \
............. = é s g 86:\ 22.29 mm
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(b) Mesh

(a) Burner schematic

Figure 6. UTIAS high-pressure pressure burner showing: (a) schematic view and (b) computational mesh.

the reaction rate of the ABF model (Appel, Bockhorn, Frenklach 2000), while a collision
efficiency of 0.10 was assumed for oxidation by O and OH. The proposed soot chemistry
model used here is summarized in Table 4. The predicted numerical results for the various
laminar flames are compared to both the available experimental results as well as to results

Table 4. Soot chemistry parameters.

Liu et al. (Liu et al. 2002)

Blanquart and Pitsch (Blanquart and Pitsch 2009)
ABF (Appel, Bockhorn, Frenklach 2000)

no =0.10

Noy = 0.10

Harmonic mean collision kernel with n = 0.20

Nucleation
Surface growth
Oxidation (0,)
Oxidation (0)
Oxidation (OH)
Coagulation
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obtained using the original two-equation soot model used in the framework of Charest
et al. with both the proposed chemistry submodel and the two-equation model previously
proposed by Liu et al. (2002), respectively. The latter notably artificially neglects soot
coagulation in order to predict the evolution of the primary particles.

The predicted temperature and soot distributions obtained with the various soot models
are shown in Figures 7 and 8, respectively, for pressures of 2, 4, and 6 atm. It is evident that the
predicted flame structure is not strongly affected by the differences between the soot models,
except for the two-equation model with the chemistry submodel of Liu et al., which exhibits
a temperature difference of 10-20 K from the other results. This temperature difference is
explained by the higher soot volume fraction predicted by the latter. Comparison of peak soot
concentrations with experimental data (Griffin, Christensen, Giilder 2018) are indicated in
Table 5. The tabulated results indicate only minor differences between QMOM and QMOM-
Radau and between CQMOM and CQMOM-Radau moment closures. Hence, by fixing one
quadrature point at the inception size it is possible to achieve identical predictions using just
a few macroscopic moments. In addition, the results indicate that the two-equation model of
Liu et al., which was calibrated for ethylene flames, overestimates the peak soot concentration
for this burner configuration at all pressures. On the other hand, the results further indicate
that the QMOM/QMOM-Radau moment closures under predict the peak soot concentration
in the diffusion flames as all of these univarijate descriptions only consider pure coalescence,
which results in a underestimation of soot surface area. Table 5 also indicates that the two-
equation model with the current chemistry submodel provides better prediction of the peak
soot concentration for all pressures considered when compared to the univariate QMOM/
QMOM-Radau closures. This apparently surprising result is explained by the fact that the
monodisperse description of the two-equation model artificially overestimates the soot surface
area for a given soot volume fraction and density number. Finally, the bivariate CQMOM/
CQMOM-Radau moment closures provide better predictions of the peak soot formation than
the QMOM/QMOM-Radau approaches, as they consider soot aggregation which provides
a more correct estimation of soot surface area.

The predicted radial profiles of the soot volume fraction are also given in Figures 9-11 for
the laminar flames of interest at pressures of 2, 4, and 6 atm. The two-equation model with
the chemistry submodel of Liu et al. calibrated to predict peak soot concentration of atmo-
spheric pressure ethylene flames, systematically overpredits soot volume fraction at all
pressures and axial locations, but seems to better predict the centerline soot concentrations
than the other methods. However, this is more likely due to an artifact from the over-
prediction of soot peak concentrations. Moreover, the two-equation model of Liu et al., does
not predict well the variations in the soot radial profiles. These findings highlight some of the
limitations of semi-empirical two-equation models when applied to different flames other
than those used in their original calibration. On the other hand, all of the soot models with
the proposed chemistry submodel, including the two-equation model, predict relatively well
the shape of soot volume fraction distributions except at the centerline. The significant
underprediction of soot formation near the centerline for all of the models can be explained
by the simplified non-PAH-based acetylene mechanism used as the soot precursor. The
current comparisons of the radials profiles however also clearly illustrate the superior
performance of the CQMOM-Radau moment closure over the other approaches in predict-
ing the radial distributions of soot volume fraction for the cases considered here.
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Figure 7. Predicted temperatures distributions for methane/ethanol diffusions flames at (a) 2 atm, (b)
4 atm, and (c) 6 atm.
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Figure 8. Predicted soot distributions for methane/ethanol diffusion flames at (a) 2 atm, (b) 4 atm, and
(c) 6 atm.
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Table 5. Experimental and numerical peak soot concentration of elevated
pressure methane/ethanol diffusion flames.

Peak soot concentration (ppm)

2 atm 4 atm 6 atm
Experimental 2.1 10.0 21.0
Two-Equation (Liu et al. 2002) 3.17 13.0 24.0
Two-Equation (proposed) 0.84 5.34 11.1
QMOM 0.55 3.58 7.58
QMOM-Radau 0.55 3.62 7.67
cQMom 1.06 6.83 13.7
CQMOM-Radau 1.07 6.84 13.7
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Figure 9. Comparison of numerical and experimental soot volume fraction radial profiles for a coflow
methane/ethanol diffusion flame at 2 atm.

Conclusions

The present numerical study has considered the application of quadrature-based moment
closure techniques to the prediction of soot formation for a space homogeneous problem
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Figure 10. Comparison of numerical and experimental soot volume fraction radial profiles for a coflow
methane/ethanol diffusion flame at 4 atm.

and in laminar diffusion flames and shown the importance of using fractional-order
moments for the accurate prediction of soot in space-homogeneous problem with
a volume-based formulation for soot transport modeling. Notably, the inception mode
is not represented appropriately by QMOM approaches when using integer-order
moments, unless one quadrature node is explicitly assigned to the inception size as in
the QMOM-Radau type closures. This finding is of significant importance as many
moment methods make use of integer-order moments (in particular, MOMIC method
interpolates unknown moments from integer-order moments). The results for the laminar
diffusion flames indicate further that the CQMOM/CQMOM-Radau with Ny = 3 and
N,, = 1 provide better predictions of peak soot formation than the two-equation model or
the QMOM/QMOM-Radau approaches, with equivalent soot chemistry, and may be well
suited for the prediction of soot formation in practical engineering devices. However, the
predicted centerline soot concentrations were found to be significantly underpredicted
because of the non-PAH-based acetylene mechanism applied here. Future research will
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Figure 11. Comparison of numerical and experimental soot volume fraction radial profiles for a coflow
methane/ethanol diffusion flame at 6 atm.

consider chemical mechanism containing PAH, PAH-based nucleation, and PAH con-
densation in order to achieve improved predictions of the centerline soot concentration.
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