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A Maximum Entropy-Inspired Interpolative Closure for the
Prediction of Radiative Heat Transfer in Laminar Co-Flow
Diffusion Flames
J. A. R. Sarra, C. P. T. Grotha, and J. C. T. Hub

aInstitute for Aerospace Studies, University of Toronto, Toronto, Ontario, Canada; bPratt & Whitney Canada
(P&WC), Mississauga, Ontario, Canada

ABSTRACT
An interpolative-based first-order maximum entropy (M1) moment clo-
sure for providing approximate solutions to the equation of radiative
transfer in non-gray participating media is proposed and described. This
newly developed non-gray moment closure technique results in signifi-
cant computational savings compared to an approach that makes use of
the direct numerical solution of the optimization problem for entropy
maximization. Its predictive capabilities are also assessed by comparing its
solutions to those of the more commonly adopted first-order spherical
harmonics (P1) moment closure technique, as well as the popular discrete
ordinates method (DOM), which is used as a benchmark for the model
comparisons. The evaluations are performed for sooting co-flow laminar
diffusion flames for blends of ethanol and methane fuels at atmospheric
as well as at elevated pressures and include comparisons to available
experimental data for soot volume fraction and flame temperature. The
strong spectral dependence exhibitedby the absorption coefficient of real
gases is treated herein using the statistical narrow-band correlated-
k method, and the chemical kinetics of the underlying species are mod-
eled using a reduced mechanism for methane and ethanol fuels.
Theoretical details of the proposed interpolative M1, along with
a description of the proposedGodunov-type finite-volume scheme devel-
oped for the numerical solution of the resulting system of hyperbolic
moment equations are briefly discussed. The finite-volume method
makes use of limited second-order solution reconstruction, multi-block
body-fitted quadrilateral meshes with anisotropic adaptive mesh refine-
ment (AMR), and an efficient Newton–Krylov–Schwarz (NKS) iterative
method for solution of the resulting nonlinear algebraic equations arising
from the finite-volume discretization procedure. The numerical results for
laminar co-flow flames show that the flame solutions and predictions of
soot formation of the non-gray M1 maximum-entropy moment closure
are very promising and in very good agreement with those of both the
DOM and P1 spherical harmonics model, while offering a substantial
reduction in the number of dependent solution variables, compared to
the DOM.
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Introduction and motivation

Energy production and transportation systems in today’s society still rely heavily on the
combustion of hydrocarbons. However, this process is generally incomplete, thereby
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producing unburnt products, such as very small-sized carbonaceous particulate matter
(PM) or soot. The latter has been identified as a serious health hazard, on top of being an
important factor of global warming and air pollution (Perera 2016). In an effort to develop
more efficient and environmentally friendly combustion devices for transportation sys-
tems as well as industrial energy production, significant effort has been directed toward
understanding the formation of combustion generated particles.

In order to obtain accurate predictions of pollutants such as soot at realistic engine
operating conditions, a consistent combustion model must include all the relevant under-
lying phenomena such as fluid flow, chemical kinetics, heat and mass transfer, turbulence.
Among the three different modes of heat transfer, namely conduction, convection and
radiation, the latter can be dominant in flames due to its strong dependence on tempera-
ture. As such, accurate radiation modeling is therefore required in order to obtain accurate
predictions of soot in combustion devices.

The transport of radiation in a participating media is governed by the radiative transfer
equation (RTE) (Modest 2013). The latter is a complex integro-differential equation with
high dimensionality, since the distribution of radiation is a function of seven independent
variables. There exists no general analytical solution to the RTE, and approximate
numerical solution procedures are generally sought.

The discrete ordinates method (DOM) (Fiveland 1984) is one of the most widely used
models for providing approximate solutions of the RTE. Solutions of the DOM are
generally obtained using space marching techniques, which are known to be very efficient
for problems with relatively simple geometry and simplified physics (e.g., non-scattering
media). However, space marching techniques can lose their effectiveness in cases with
complex geometries and realistic physics (Charest, Groth, Gülder 2012), as is the case in
many practical applications. The method of moments (Grad 1949) provides a hierarchy of
models allowing a possible reduction in the numerical costs associated with solving the
RTE. Such an approach replaces the representation of the angular dependence of the
radiative distribution by a finite set of angular integrals or moments of the latter. However,
closure is required for moment models since there are more unknowns than equations.
The spherical harmonics approximation (PN , where N refers to the order of the approx-
imation), in particular the P1 approximation, has been extensively used to model radiation
heat transfer in combustion systems (Gupta, Modest, Haworth 2009; Li and Modest 2003;
Mazumder and Modest 1999; Modest and Mehta 2006), but is generally only accurate in
media with near-isotropic distribution. More recently, maximum-entropy-based closures
(Dubroca and Feugeas 1999) have received particular attention in the field of radiation
modeling due to their ability to accurately capture a wide range of optical conditions (both
equilibrium and non-equilibrium regimes). Moreover, they have many desirable proper-
ties and take the most likely form of the distribution among all the possible ones for
a given finite set of moments (Jaynes 1957). However, unlike the PN moment closures for
which analytic expressions for the closure relation exist for any order of approximation, N,
for the MN closures, analytic expression for the closure relation only exists for the gray M1

closure, and, as such, the corresponding optimization problem for entropy maximization
must be solved numerically, whenever an update of the radiation solution is required for
higher-order closures and/or non-gray applications. In order to take advantage of the
desirable properties of the MN closures, an efficient alternative to the prohibitive
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computational costs associated with the repeated solution of the optimization problem for
entropy maximization is needed.

A tabulated, multigroup, non-gray M1 closure was developed previously by Turpault
(2002, 2005). In this approach, the Eddington factor, which is the only unknown in the
Eddington tensor, was evaluated numerically by solving the optimization problem for
entropy maximization for given sets of band-averaged angular moments. As mentioned
previously, the repeated solution of the optimization problem for entropy maximization is
however undesirable, since it can be prohibitively expensive for practical computations. In
the context of reactive flows in either laminar or turbulent regimes, where the radiative
properties of reacting gases, in particular the absorption coefficients of carbon dioxide
(CO2), water vapor (H2O), and carbon monoxide (CO) strongly depend on wavenumber,
such an approach would be prohibitively expensive, even with the current state-of-the-art
spectral techniques (Liu, Smallwood, & Gülder, 2000a; Modest and Zhang 2002) for
radiation calculations in non-gray participating media.

More recently, Pichard et al. (2016) developed an analytical approximation of the M1

closure relation in the case of the Bolztmann entropy, based on pre-computed solutions of the
optimization problem for entropy maximization, by writing the Eddington factor as a convex
combination of its known exact analytical expressions on the boundaries of the realizability
domain for moments up to first order. Additionally, in other previous work, Sarr, Groth, Hu
(2019) developed a realizable and hyperbolic interpolative-based analytical approximation of
the non-gray M1 closure in the case of the entropy of radiation based on Bose-Einstein
statistics. The latter is based on an approximation of the Eddington factor as a convex
combination of its known exact analytic expressions in the isotropic and the free-streaming
limits, and approximates pre-computed solutions of the optimization problem for entropy
maximization. The implementation of this interpolative-based M1 closure in the context of
existing state-of-the-art spectral techniques, in particular the statistical narrow-band corre-
lated-k (SNBCK)model, was also considered and its predictive capabilities were examined for
several tests problems involving radiative heat transfer between parallel plates and within
rectangular enclosures. For all the cases considered by Sarr, Groth, Hu (2019), the newly
developed interpolative-based M1 closure was observed to provide more accurate solutions
than the P1 closure while also providing extra computational robustness and incurring only
a rather modest or minor increase in computational costs relative to the P1 closure.

While both the discrete ordinates method and the spherical harmonics moment
closures have been extensively used to provide approximate radiation solutions in numer-
ical simulations of reactive flows (Gupta, Modest, Haworth 2009; Li and Modest 2003;
Mazumder and Modest 1999; Modest and Mehta 2006), whether laminar or turbulent, to
the authors knowledge, there has not been any previous studies related to the direct
application of non-gray maximum entropy moment closures to reactive flows simulation.
In this study, the assessment of the predictive capabilities of the newly developed non-
gray M1 closure of Sarr, Groth, Hu (2019) is extended to the case of laminar reacting
flows. More specifically, the interpolative-based M1 closure is used in the computational
framework developed by Charest, Groth, Gülder (2010) for predicting laminar reactive
flows with soot formation in various methane-air and ethanol-methane-air flames. The
steady-state solutions of laminar co-flow diffusion flames obtained using the different
radiation models, i.e., the M1 and P1 moment closures and the DOM, are then compared.
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The SNBCK method was again used to quantify gas band absorption. At present, a rather
simple semi-empirical two-equation model is used to predict the nucleation, growth, and
oxidation of soot particles. The framework is applied to two laminar co-flow diffusion
flames which were previously studied numerically and experimentally. Both a sooting
methane-air flame and a sooting ethanol-methane-air flame are considered for validation
purposes. Numerical predictions for these flames are verified with published experimental
results. The newly developed M1 closure was observed to yield reasonable agreement with
experimental measurements for both flames for predictions of flame height, temperature
and soot volume fraction.

Governing equations

Gas-phase multicomponent combusting flows can generally be described by a set of
equations consisting of the conservation of total mass, individual species mass, mixture
momentum, and mixture (Charest, Groth, Gülder 2010; Kuo 2005). In addition to those
conservation equations, modeling soot formation and destruction in gaseous combustion
also requires tracking an additional solid phase and capturing the interactions that occur
between phases. The approach used in this work is similar to the empirical models
developed by Leung, Lindstedt, and Jones (1991) and Fairweather, Jones, and Lindstedt
(1992). In this approach, the soot particle size distribution is approximated by an average
size that varied via surface reactions and coagulation, the representation of which requires
only two additional transport equations for soot mass and number.

The conservation of global mass, momentum, energy, individual species mass, soot
mass, and particle number, under the assumption of a Newtonian flow, can be summar-
ized as

@ρ

@t
þr � ðρvÞ ¼ 0 (1)

@

@t
ðρvÞ þ r � ðρvv þ pIÞ ¼ r � τ þ ρg (2)

@

@t
ðρeÞ þ r � ρv eþ p

ρ

� �� �
¼ r � ðv � τÞ � r � qþ ρg � v (3)

@

@t
ðρYkÞ þ r � ρYkðv þ VkÞ½ � ¼ _ωk; k ¼ 1; . . . ;N (4)

@

@t
ðρYsÞ þ r � ρYsðv þ VYÞ½ � ¼ SY (5)

@

@t
ðρNsÞ þ r � ρNsðv þ VNÞ½ � ¼ SN (6)

where t is the time, ρ is the mixture density, p is the total mixture pressure, v is the mixture
velocity vector, e is the total mixture energy, Yk is the mass fraction of species k, Ys is the
mass fraction of soot, Ns is the soot number density (number of particles per unit mass of
mixture), Vk is the diffusion velocity of gas species k, VY is the diffusion velocity related to
soot mass, VN is the diffusion velocity related to soot number, _ωk is the time rate of change of
the kth species mass, SY is the time rate of change of the soot mass, SN is the time rate of
change of the soot number, τ is the fluid stress tensor, g is the acceleration vector due to
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gravity, N is the number of gaseous species in the mixture, and q is the heat flux vector. The
latter contains contributions from conduction, diffusion, and radiation, and is given by

q ¼ �κrT þ ρ
XNþ1

k¼1

hkYkVk þ qrad (7)

where κ is the mixture thermal conductivity, hk is the individual species enthalpy, and qrad is
the radiative heat flux, the determination of which is of particular interest in this study. In
Eq. 7, and throughout this work, the ðN þ 1Þth species refers to soot, the enthalpy of which
was approximated using the properties of graphite. The time rate of change of gaseous
species includes contributions from both gas-phase chemistry and soot surface reactions.

In the computational framework developed by Charest, Groth, Gülder (2010) for the
prediction of laminar flames, soot formation and destruction was modeled using the
simplified soot kinetics described by Liu et al. (2002). This model is based on the reduced
soot mechanisms of Leung, Lindstedt, and Jones (1991) and Fairweather, Jones, and
Lindstedt (1992) which describe the evolution of soot through basic steps for nucleation,
surface growth, coagulation, and oxidation. Acetylene is assumed to be the only precursor
responsible for the presence of soot. Multi-species diffusion was modeled using the first-
order Hirschfelder and Curtiss approximation (Hirschfelder, Curtiss, Byrd 1969) while
soot was assumed to diffuse primarily by thermophoresis using a model based on the limit
of free-molecular flow (Smooke et al. 1999). In addition to contributions from thermo-
phoresis, a small Fickian diffusive flux was included in the soot particle transport equa-
tions. This procedure, which is similar to the one adopted by Kennedy, Kollmann, and
Chen (1990), was required to enhance numerical stability even though the transport of
soot via Brownian motion is generally negligible.

Radiation model

Detailed treatment of thermal radiation for the prediction of the divergence of the
radiative heat flux, Eqs. (3) and (7), is necessary for accurate prediction of the flame
structure, species concentrations, and formation of soot (Viskanta and Mengüç 1987).
This require however the solution of a complex integro-differential equation describing
the transport of radiant energy in physical space ~x and time t, in a given direction
represented by the unit vector, ~s, at a given wavenumber η. This so-called radiative
transfer equation (RTE) has the form (Modest 2013)

1
c

@Iη
@t

þ~s: ~rIη ¼ κηIbη � ðκη þ σsηÞIη þ
σsη
4π

ð
4π
Iηð~s 0ÞΦηð~s 0;~sÞdΩ0; (8)

where κη ¼ κηð~x; tÞ and σsη ¼ σsηð~x; tÞ represent the spectral absorption and scattering
coefficients of the participating media, respectively, c is the speed of light in a vacuum,
Iη ¼ Iηð~x;~s; tÞ is the spectral radiative intensity, Ibη ¼ IbηðTÞ (where T ¼ Tð~x; tÞ is the

temperature field) is the spectral Planck function or blackbody intensity, Ω denotes
solid angle, and Φηð~s 0;~sÞ is the scattering phase function. The latter describes the
probability that a ray traveling in direction~s 0 will be scattered into direction~s and is
also a function of location in space and time. The subscript, η, indicates a spectrally
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varying quantity. The RTE, as illustrated in Eq. (8), is a complex equation with high
dimensionality (7 independent variables) for which there exists no general exact
analytical solution. As such, one must therefore rely on techniques based on approx-
imate treatments of the independent variables. The temporal and spatial dependencies
can be treated using standard finite-volume techniques for hyperbolic equations. The
spectral dependence of the radiative properties of real gases, which is a rather strong
one, will be treated using the statistical narrow-band correlated-k (SNBCK) method
(Liu, Smallwood, Gülder 2000a). For the treatment of the angular dependence of the
radiative intensity distribution, different approximate models will be considered,
including the discrete ordinates method, the spherical harmonics and the maximum
entropy moment closures.

Discrete ordinates methods

The discrete ordinates method (Fiveland 1984) is used to transform the equation of
radiative transfer into a set of PDEs with only spatial and temporal dependence. This
angular discretization technique makes use of the assumption that the radiation is
transported only along a finite set of discrete directions, instead of the effectively infinite
number of directions allowed in Eq. (8) by a continuous representation of the solid angle.
In other words, the solid angle is divided into a finite number, M, of discrete directions (or
ordinates) ~sm, m ¼ 0; . . . ;M. In this way, the RTE is transformed into a system of M
coupled equations given by

1
c

@Iη;m
@t

þ~sm: ~rIη;m ¼ κηIbη � ðκη þ σsηÞIη;m þ σsη
4π

XM
n¼1

wnIη;nΦηð~sn;~smÞ; (9)

where Iη;m is the intensity in the mth direction and wm is the quadrature weight associated
with the discrete direction~sm. Several quadrature rules have been developed for the DOM,
including the SN schemes of Lathrop and Carlson (1965) and the TN schemes of
Thurgood, Pollard, Becker (1995). Similar to Charest, Groth, Gülder (2010), the T3

quadrature scheme is used in this study for the DOM simulations.

Moment closure methods for solution of the RTE

An alternative approach to the treatment of the angular dependence of the radiative
intensity distribution consists of solving directly for the angular integrals of the latter.
These so-called angular moments are taken with respect to angular weights
~s n ¼~s� . . .n �~s, n ¼ 0; . . .1, whose entries form a monomial basis, and have the form

IðnÞη ð~x; tÞ ¼ h~s nIηð~x;~s; tÞi ¼
ð
4π
~s nIηð~x;~s; tÞ dΩ ¼

ð2π
0

ðπ
0
~s nIηð~x;~s; tÞ sin θdθdψ: (10)

Taking angular integrals of the RTE, Eq. (8), results in a system of infinite moment
equations characterizing uniquely an arbitrary distribution. Solving such an infinite
system of equations is however unfeasible from a numerical point of view. Instead, one
generally solves transport equations for a finite set of moments. The system of
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equations for a finite set of moments can not be readily solved since the transport
equation for a given moment always involves the next higher-order moment. An
additional expression, relating the highest-order moment in the unclosed system of
moment equations to the lower-order moments must be provided for closure. This so-
called closing relation is usually obtained by approximating the underlying positive
distribution in terms of the known finite set of moments. However, there exists a wide
range of possible approximate forms for a positive distribution with known finite set of
moments. The choice of the approximate form is generally dictated by the properties of
the resulting closed system of moment equations, namely realizability of moments,
hyperbolicity. A set of moments is said to be realizable if there exists a positive
distribution reproducing those moments. The set of all realizable moments up to
a given order n is called realizability domain and is denoted as Rn and is generally
described by a set of inequalities on the moments called realizability conditions. In this
study, approximate forms for the distribution obtained from the spherical harmonics
approximation, as well as the principle of maximization of entropy, will be considered
and the extension of the latter to the non-gray case is the primary focus.

Another problem that arises from the truncation to a finite set of moments is the
number of moments required to reconstruct the approximated intensity distribution. In
general, only the zeroth- and first-order moments, namely the radiative energy density Ið0Þη

and the radiative heat flux Ið1Þη , respectively, are of interest in engineering applications.
However, the more angular moments are used to reconstruct the distribution, the wider
the range of optical conditions that can be captured accurately.

Spherical harmonics PN moment closures
In the spherical harmonics moment closure approximation (Jeans 1917), the radiative inten-
sity distribution is expressed in terms of a series of spherical harmonics as (Modest 2013)

Iηð~x;~s; tÞ ¼
XN
n¼0

Xn
m¼�n

Imη;nð~x; tÞYm
n ð~sÞ; (11)

where N is the order of the highest moment in the closed system, Imη;nð~x; tÞ are location-
dependent coefficients, which can be directly related to the know finite set of moments,
and Ym

n ð~sÞ is a spherical harmonic function of degree n and order m, and has the form

Ym
n ð~sÞ ¼

cosðmψÞPm
n ðcos θÞ; for m � 0;

sinðmψÞPm
n ðcos θÞ; for m < 0;

�
(12)

where Pm
n ðcos θÞ is the associated Legendre polynomial.

The first-order P1 spherical harmonics approximation provides closure to the system of

transport equations for the zeroth- and first-order moments, Ið0Þη and Ið1Þη , respectively, by
approximating the distribution Eq. (11) with N ¼ 1 in terms of those lower-order moments.

The second-order moment Ið2Þη involved in the transport equation for Ið1Þη can then be directly
expressed in terms of those lower-order moments, therefore providing closure.
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Maximum-entropy MN moment closures
Maximum-entropy moment closures approximate the radiative intensity distribution by
a distribution that maximizes the radiative entropy

HRðIηÞ ¼ hhRi ¼
ð
4π
hRðIηÞdΩ; (13)

and has a known finite set of moments EðnÞ
η , n ¼ 0; . . . ;N, where N is the order of the

highest moment in the closed system of moment equations. In Eq. (13), hR is the radiative
entropy density, which corresponds to the entropy for Bose–Einstein statistics in this case
and is given by

hRðIηÞ ¼ 2kη2

c
½ðnþ 1Þ lnðnþ 1Þ � n lnðnÞ�; n ¼ Iη

2hcη3
; (14)

and where n is the occupation number, h and k are the Planck and Boltzmann constants,
respectively. The problem of finding a distribution that maximizes the radiative entropy
given by Eq. (13) and (14) and subject to the constraints that a finite set of its angular

moments, EðnÞ
η , n ¼ 0; . . . ;N, are known can be reformulated as an optimization problem

of the form

Iη ¼ argmax
Iη

HRðIηÞ

s:t: h~s ðnÞIηi ¼ EðnÞη ; n ¼ 0; . . . ;N:

(15)

The Lagrangian of this optimization problem is

LðIη; αÞ ¼ HRðIηÞ � αTð mð~sÞIη
� �� EηÞ; (16)

where Eη is a vector containing all the independent entries of EðnÞ
η , n ¼ 0; . . . ;N, mð~sÞ is

a vector containing all the independent entries of~s ðnÞ, n ¼ 0; . . . ;N, and α is the vector of
Lagrange multipliers associated with the moment constraints. The entropy maximizing
distribution, which satisfies @LðIη; λÞ=@Iη ¼ 0, then takes the form (Dubroca and Feugeas
1999)

Iηðα; mÞ ¼ 2hcη3 exp
c2hη
k

αTmð~s Þ
� �

� 1

� ��1

(17)

In Eq. (17), the radiative intensity distribution is expressed in terms of the Lagrange
multipliers, α, which depend on the angular moments of the distribution Eη. With the
exception of the gray M1 model (Dubroca and Feugeas 1999), there exist no analytical
expression for the Lagrange multipliers in terms of the angular moments, and the former
must therefore be determined numerically in terms of the latter by solving the Lagrangian
dual optimization problem

max
α

fL�ðαÞg; (18)
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where L�ðαÞ is the Legendre transform of LðIη; αÞ and has the form

L�ðαÞ ¼ 2kη2

c
log exp

c2hη
k

αTmð~s Þ
� �

� 1

� �	 

� αTEη (19)

For any given wavenumber, η, a more convenient form of the optimization problem,
Eq. (18), which would allow to solve the latter independently of frequency, can be
obtained by a change of variables of the form β ¼ ðc2hηÞα=k, such that

L�ðβÞ ¼ log exp βTmð~s Þ� �� 1
 �� �� βTEη=ðC1η

3=πÞ; L�ðαÞ ¼ 2ckη2L�ðβÞ (20)

where C1 ¼ 2πhc2 is the so-called first radiation constant. It is clear from Eq. (20) that, for
constant values of the Eη=η3, maximizing L�ðαÞ is equivalent to maximizing L�ðβÞ.

First-order M1 maximum-entropy moment closure for non-gray gas

In the system of moment equations up to first-order, the second-order moment
appearing in the transport equation for the first-order moment must be expressed in
terms of the lower-order moments in order to provide closure. The M1 model assumes an
entropy-maximizing distribution with known angular moments up to first order, which
can then be used to provide a closure to the first-order system of moment equations.
However, unlike the case for a gray gas, for a non-gray gas, an analytical expression for the
closure relation cannot be obtained, and the optimization problem Eq. (20) must be solved
for any given realizable set of moments in order to obtain the corresponding Lagrange
multipliers and consequently the highest-order moment in the unclosed system of equa-

tions (Ið2Þη in this context) by an appropriate integration of the assumed distribution. In
order to avoid such expensive repeated solution of the optimization problem whenever an
update of the radiation solutions is required, an approximation of the closure relation has
been developed by Sarr and Groth (Sarr, Groth, Hu 2019), based on pre-computed
solutions of the maximum entropy problem interpolated throughout the full realizable
space, and is presented in this section. The newly developed closure appears to be
realizable and hyperbolic, and therefore retains all the desirable properties of the
original M1 closure.

The M1 system of moment equations up to first order is represented by a set of four

transport equations, since the zeroth-order moment, Ið0Þη , is a scalar and the first-order

moment, Ið1Þη , is a three-component vector in three dimensional space. As such, an
interpolation of the closure relation in terms of the lower-order moments would require
a four-dimensional interpolation. However, for first-order moment closures, the first-
order angular moment is the only moment available for describing departures from
equilibrium, such that, for any distribution reconstructed in terms of the moments up

to first order, all the anisotropy lies in the direction of Ið1Þη . In such situations, the radiative

intensity distribution is symmetric with respect to the direction of Ið1Þη . Using this
property, Levermore (1984) derived an expression for the M1 closure in multiple space
dimensions, which has the form
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Nð2Þ ¼ 1� χ2
2

~~I þ 3χ2 � 1
2

~n�~n; (21)

where ~~I is the identity matrix, ~n ¼ Nð1Þ= k Nð1Þ k is a unit vector in the direction of the
first-order normalized moment Nð1Þ, and χ2 is the so-called Eddington factor for which
there exists no exact analytical expression, except for a gray gas. For the non-gray M1

model, which is of interest in the current study, Sarr, Groth, Hu (2019) developed an
interpolative-based analytical approximation of χ2, obtained using pre-computed solutions

of Eq. (20) for sets of moments up to first order, Eη ¼ fIð0Þη ; Ið1Þη g, spanning the full

realizable space R1, the latter being defined as follows

R1 ¼ fðIð0Þη ; Ið1Þη Þ s:t: Ið0Þη >0 and jjNð1Þjj � 1g (22)

where NðiÞ ¼ IðiÞη =Ið0Þη is the ith-order normalized moment. On the boundaries of R1,
denoted here by @R1 and defined as

@R1 ¼ fðIð0Þη ; Ið1Þη Þ s:t: Ið0Þη ! 0 or Ið0Þη ! 1 or jjNð1Þjj ¼ 1g; (23)

the optimization problem given by Eq. (20) cannot be solved since the corresponding entropy
maximizing distribution Eq. (17) becomes singular with respect to one of its angular
moments. More specifically, on @R1, the radiative intensity distribution is either uniquely

determined by a Dirac-delta distribution (for k Nð1Þ k¼ 1), or tends toward a particular

form in the limit where Ið0Þη ! 0 or Ið0Þη ! 1. In fact, for Ið0Þη ! 0 (corresponding to the so-
called hyperbolic limit), the exponential term in Eq. (17) becomes very large, in which case

the subtracted term can be neglected. On the other hand, for Ið0Þη ! 1 (referred to as the
logarithmic limit), the exponential term in Eq. (17) becomes small, in which case the
exponential can be expanded in a first-order Taylor series (Cernohorsky and Bludman
1994). Based on the above, pre-computed maximum-entropy solutions throughout the full
realizable spaceR1 ¼ intR1 [ @R1 can be obtained by solving the optimization problem for
entropy maximization corresponding to the appropriate form of the distribution in intR1

and @R1. Pre-computed values of the Eddington factor, for 100 values of r equally dis-

tributed between ½0; 1� and 100 values of k Nð1Þ k equally distributed between ½0; 1�, where
rðIð0Þη Þ ¼ Ið0Þη =ðIð0Þη þ C1η3Þ is a normalization parameter for the radiative energy density,

Ið0Þη , such that r 2 ½0; 1� for Ið0Þη 2 ½0; 1�, are illustrated in Figures 1 and 2.
The approximate form of χ was chosen as a convex interpolation between the isotropic

limit ( k Nð1Þ k¼ 0) and the free streaming limit ( k Nð1Þ k¼ 1) having the form

χ2ðIð0Þη ; k Nð1Þ kÞ ¼ 1
3
þ 2
3
f ðrðIð0Þη Þ; k Nð1Þ kÞ; (24)

where f ðrðIð0Þη Þ; k Nð1Þ kÞ represents the convex interpolant. The latter is defined such that

χ2ðIð0Þη ; k Nð1Þ kÞ is exact in the isotropic and free-streaming limits, i.e., χ2ðIð0Þη ; 0Þ ¼ 1=3

and χ2ðIð0Þη ; 1Þ ¼ 1, and reproduces pre-computed values obtained by solving Eq. (20) for
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Figure 1. Eddington factor corresponding to non-gray first-order maximum entropy (M1) moment

closure for all realizable sets of moments fIð0Þη ; Ið1Þη g.

Figure 2. Eddington factor corresponding to non-gray first-order maximum entropy (M1) moment

closure for all realizable sets of moments fIð0Þη ; Ið1Þη g.
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sets of moments spanning R1. Moreover, in order to guarantee realizability of the

approximated χ2ðIð0Þη ; k Nð1Þ kÞ, we also choose f ðrðIð0Þη Þ; k Nð1Þ kÞ such that the derivatives
of the Eddington factor in the free-streaming limit are exactly reproduced. In fact, as can
be seen in Figure 4, in the free-streaming limit, the upper and lower boundaries of the
realizability domain for χ2 approach one another, and, therefore, the margin for the error
of the approximation of χ2 becomes smaller. Computing the derivatives of χ with respect

to k Nð1Þ k in the free-streaming limit yields the following results

@χ

@ k Nð1Þ k ¼ 1 for Ið0Þη ! 0

2 for Ið0Þη ! 1

(
(25)

Based on the above requirements, the following expression for f ðr; k Nð1Þ kÞ is chosen

f ðr; k Nð1Þ kÞ ¼k Nð1Þkθðr;kNð1ÞkÞ; (26)

where θðr; k Nð1Þ kÞ is a polynomial expression of the form

θðr; k Nð1Þ kÞ ¼
Xni
i¼0

Xnj
j¼0

ri k Nð1Þk2jDij (27)

and where Dij, i ¼ 0; . . . ; ni, j ¼ 0; . . . ; nj, are some coefficients that are determined such
that the proposed approximation of the Eddington factor, Eq. (24), exactly reproduces the
derivatives in the free-streaming limit, given in Eq. (25), and approximates pre-computed

Figure 3. Realizability contours for the non-gray M1 closure for sets of moments fIð0Þη ; Ið1Þη g spanning
the whole realizability domain.
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values in the interior of the domain via curve fitting. The maximum error between the
proposed interpolative-based M1 closure of (Sarr, Groth, Hu 2019), Eq. (24), and the pre-
computed values of χ is 7:38	 10�3 for ni ¼ 5 and nj ¼ 4.

The behavior of the approximation, which consists of an approximation in the hyper-
bolic and logarithmic limits, followed by an approximation through the whole range of
possible values for r (r from 0 to 1), is illustrated in Table 1.

The realizability of the newly developed interpolative closure for sets of moments

fIð0Þη ; Ið1Þη g spanning the whole realizability domain R1, which constraints the Eddington
factor, χ, as follows

k Nð1Þk2< χ2ðIð0Þη ; k Nð1Þ kÞ< 1; (28)

is assessed by computing the parameter

f ¼ χ2ðIð0Þη ; k Nð1Þ kÞ� k Nð1Þk2
1� k Nð1Þk2 ; (29)

for sets of moments fIð0Þη ; Ið1Þη g spanning R1. As illustrated in Figure 3, it would appear
that the newly developed interpolative approximation of the non-gray M1 closure, Eq.
(24), is realizable, i.e., satisfies Eq. (28), since 0 � f � 1 everywhere in R1.

Figure 4. Eddington factor corresponding to non-gray first-order maximum entropy (M1) moment

closure for all realizable sets of moments fIð0Þη ; Ið1Þη g.
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Implementation using narrow-band correlated-k absorption model

The RTE, as defined in Eq. (8), represents the transport of radiation for a single wavenumber.
In reactive flows, however, the radiative properties of participating gases, in particular the
absorption coefficient, varies strongly throughout the spectrum. The statistical narrow-band
correlated-k (SNBCK) model is employed in this study in order to treat such strong spectral
dependence. In the SNBCK model, the spectral domain is divided into bands of frequencies
of size Δη. The size of the bands is chosen to be sufficiently small such that the Planck
function, Ibη, can be assumed to be constant within each band. A cumulative distribution

function for the absorption coefficient, gðkÞ, which can be interpreted as a dimensionless
wavenumber coordinate varying between 0 and 1, is then introduced. This cumulative
distribution function allows for the reordering of the strongly spectrally varying absorption
coefficient into a monotonic function, such that the number of evaluations of the RTE, Eq.
(8), that is required for accurate integration over each narrow-band is substantially reduced
in comparison to classical line-by-line calculations. Assuming a non-scattering medium, the
RTE, Eq. (8), integrated over each narrow band, yields

ð1
0

1
c

@Ig
@t

dg þ
ð1
0
~s: ~rIgdg ¼

ð1
0
kðgÞðIbηc � IgÞdg; (30)

where

Ig ¼

ð
Δη
Iηδðk� κηÞdηð

Δη
δðk� κηÞdη

(31)

and where Ibηc is the Planck function evaluated at the wavenumber corresponding to the
band center, denoted herein by ηc.

In the context of the statistical narrow-band correlated-k model considered herein, the
cumulative distribution function, gðkÞ, is obtained by taking the inverse Laplace transfor-
mation of the statistical narrow-band transmissivity (Lacis and Oinas 1991), the construc-
tion of which is based on the narrow-band data of Soufiani and Taine (Soufiani and Taine
1997) for H2O, CO2, and CO. In order to achieve computational savings, the three
radiating gases are approximated by a single gas with effective narrow-band parameters
based on the optically thin limit (Liu, Smallwood, Gülder 2000a). In addition, the band
lumping procedure described by Liu et al. (Liu, Smallwood, Gülder 2000b) was adopted,
whereby several bands are combined to form wide bands. A total of nine non-uniformly

Table 1. Non-gray M1 closure
approximation.
Boundary Fit Error

r ! 0 5:43	 10�4

r ! 1 4:49	 10�4

r 2 ½0; 1� 7:38	 10�3
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spaced wide bands were then employed based on the recommendation of Goutiere,
Charette, Kiss (2002).

The integration over the narrow-bands is performed by means of Gauss-Legendre
quadrature, such that the spectrally integrated intensity for each band is computed as

IΔη ¼
XNg

i¼1

wiIðgiÞ; (32)

where Ng is the umber of Gauss quadrature points and wi are the weights. Liu, Small-
wood, & Gülder, (2000a) found that four Gauss quadrature points provide a good balance
between accuracy and computational costs. The divergence of the radiative heat flux, also
referred to as the radiative source term, is then evaluated as

r:qrad 

XNb

j¼1

XNg

i¼1

wiκðgiÞð4πIbηcj � hIðgiÞiÞΔηj (33)

where Nb is the number of narrow bands, Δηj is the width of the jth narrow-band, and
hIðgiÞi represents the angular integral (see Eq. (10)) of the intensity distribution obtained
by solving the RTE at quadrature point gi. An estimate of the underlying intensity
distribution or its angular moments in this context can be easily obtained using either
the DOM or the PN moment closures. However, for the newly developed non-gray M1

closure, for which we proposed an interpolative-based analytical approximation of the
Eddington factor, Eq. (24), coupling with the SNBCK represents additional challenges due
to the explicit wavenumber dependence of the resulting Eddington factor. However,
a close inspection of the entropy maximizing distribution, Eq. (17), shows that it has
the same form as the Planck function, the only difference being to the Lagrange multi-
pliers in the exponential terms which allow departures from equilibrium (or the Planck
function distribution or isotropic distribution). As such, similar to how the Planck
function is assumed to be essentially constant within a narrow-band, it would also seem
reasonable to assume that the entropy maximizing distribution is also constant and can be
evaluated at the wavenumber corresponding to the band center.

For the sooting flames of interest, the absorption due to soot particulate matter must
also be accounted for. The spectral absorption coefficient of soot, which is determined in
the Rayleigh limit for small spherical particles (Modest 2013), is used here and given by

κη;soot ¼ Cfvη; (34)

where fv is the soot volume fraction and C is an empirical constant, which is taken to be
5:5, similar to the value used by Liu et al. (Liu et al. 2002).

Finite-volume method

Similar to the more common PN spherical harmonics moment closures, the newly devel-
oped non-gray M1 closure is hyperbolic, since its eigenvalues are real everywhere in R1.
This important property of the M1 closure makes the corresponding closed system of
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moment equations very well suited for solution by the now standard family of upwind
finite-volume (FVM) techniques originally developed by Godunov (Godunov 1959) for
hyperbolic systems of conservation laws. More specifically, similar to the conservation
equations in the computational framework for laminar reactive flows developed by
Charest, Groth, Gülder (2010), the conservation equations for the M1 closure are solved
using the parallel, implicit, upwind Godunov-type finite-volume scheme described by
Groth and coworkers (Gao, Northrup, Groth 2011; Sachdev, Groth, Gottlieb 2005). The
scheme solves the conservation form of the moment equations on body-fitted, multi-
block, quadrilateral meshes by discretizing the physical domain into finite-sized quad-
rilateral-shaped computational cells. The integral forms of conservation laws are then
applied to each individual cell, thereby resulting in a coupled system of nonlinear ordinary
differential equations (ODEs) for cell-averaged solution quantities. The numerical fluxes at
the cell interfaces are evaluated using the Harten, Lax, Van Leer – Einfeldt (HLLE)
(Einfeldt 1988; Harten 1983) approximate Riemann solver. Finally, steady-state solutions
were obtained using an implicit Newton–Krylov Schwarz (NKS) iterative algorithm with
General Minimal Residual (GMRES) method for the associated linear system, the imple-
mentation of which has been developed previously by Groth and Northrup (2005) as well
as Charest, Groth, Gülder (2010, 2012) for computations on large multi-processor parallel
clusters.

Numerical results for laminar co-flow diffusion flames

In an effort to further assess the predictive capabilities of the proposed interpolative-based
analytical approximation of the non-gray M1 maximum-entropy moment closure, com-
parisons of its solutions in numerical simulations of laminar diffusion flames to those
obtained using the P1 moment closure and the DOM were performed. Two different types
of flames were considered: the methane-air co-flow diffusion flames and the ethanol-
methane flames for pressures up to 4 atm of Griffin, Christensen, Gülder (2018). The
computational framework used here for predicting soot formation in laminar reactive
flows was previously developed by Charest, Groth, Gülder (2010). The latter has been
previously used to predict soot formation in elevated pressure laminar diffusion flames for
a variety of fuels ranging from ethylene (Charest et al. 2011), methane (Charest, Groth,
Gülder 2011), and biogas (Charest, Gülder, Groth 2014). As described above, the statistical
narrow-band correlated-k (SNBCK) model (Liu, Smallwood, Gülder 2000a) was used for
the treatment of the spectral dependence of absorbing gases. Additionally, the reduced
Princeton mechanism (Akih-Kumgeh 2013) was used to model the chemical kinetics for
the fuels of interest as it provides a good balance between accuracy and computational
expenses. The configuration of the burner, which was used for both types of flames, is first
described, followed by the details of the calculations, and finally the numerical results
obtained for the cases of interest are presented and discussed.

High-pressure co-flow burner configuration

The laboratory-scale, high-pressure axisymmetric burner for laminar co-flow flames (Joo
and Gülder 2009) considered in this study consists of a central fuel tube with 3 mm inner
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diameter and a concentric tube of 25:4 mm inner diameter that supplies the co-flow air, as
illustrated in Figure 5. In order to minimize the formation of wakes behind the tube walls
and improve overall flame stability, the outer surface of the fuel nozzle was tapered.
Moreover, a sintered metal foam was inserted in both the fuel and air nozzles so as to
straighten the flow and provide a more uniform velocity profile at the nozzle exit.
Experimental measurements of temperature and soot for mixtures of ethanol and methane
at different pressures were previously performed by (Griffin, Christensen, Gülder 2018) for
pressures of 1, 2, 4, and 6 atm. The temperature of the fuel and air supplied to the burner
was assumed to be equal to 473K and the air mass flow rate was kept constant at 340 mg/s
for all cases. For all the flames, the mass flow rates of methane and ethanol were chosen
such that a constant carbon mass flow rate of 0.914 mg/s was maintained.

Computational domain and boundary conditions

The two-dimensional computational domain used for the numerical simulations of
co-flow diffusion flames in the burner previously described is shown schematically in
Figure 6 along with the applied boundary conditions. The domain extends radially
outwards 20 mm and downstream 25 mm. It also extends 9 mm upstream into the fuel
and air tubes to account for the effects of fuel preheating (Guo et al. 2002) and better
represent the inflow velocity distribution. A simplified representation of the fuel tube
geometry was used for computational purposes, in which the chamfered edge of the fuel
tube was approximated by a tube with 0.4 mm uniformly thick walls. The three surfaces
that lie along the tube wall were modeled as adiabatic walls at 300 K with zero-slip
conditions on velocity. Reflection boundary conditions are applied along the centerline.
The far-field boundary was treated using a free-slip condition, which neglects any shear

Figure 5. Schematic of the pressure vessel combustion apparatus used in the experiments conducted
by Joo and Gülder (2009).
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imparted by the chimney walls to the co-flow air. At the outlet, temperature, velocity,
species mass fractions, and soot number density are extrapolated while pressure is held
fixed. The gas/soot mixture is specified at the inlet along with its velocity and tem-
perature while pressure is extrapolated. For the radiation solvers, all boundaries except
for the axis of symmetry (for which axisymmetric boundary conditions are prescribed)
are assumed to be black. More specifically, for the moment closure techniques, the
partial moments boundary conditions described by Sarr, Groth, Hu (2019) were used
for black surfaces, whereas the axisymmetric boundary conditions based on incoming
partial moments were used for the axis of symmetry.

The computational domain depicted in Figure 6 was subdivided into 192 cells and 16
blocks in the radial- and 320 cells and 32 blocks in the axial-direction to form a structured,
non-uniformly-spaced mesh of 60000 cells. These cells were clustered toward the burner
exit plane to capture interactions near the fuel tube walls and toward the centerline to
capture the core flow of the flame. A fixed mesh spacing of approximately 35 µm was
specified in the radial-direction between r = 0 and r = 4.8 mm. The vertical spacing
approaches 5.6 µm near the fuel tube exit plane. The resulting mesh, which was employed
for all calculations in the present study, is illustrated in Figure 7. This level of mesh
resolution, which was used previously by Charest, Groth, Gülder (2010), was shown to be
more than sufficient in order to capture the essential features of the laminar co-flow
diffusion flames associated with the high-pressure burner.

Figure 6. Computational domain and boundary conditions.
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Methane-air co-flow flames

The first set of comparisons for the M1 moment closure involves pure methane-air co-
flow flames, for which the methane mass flow rate is held at 1:221 mg/s in order to
maintain the carbon flow rate at 0:914 mg/s. Laminar diffusion flames of pure methane
were then simulated for pressures up to 4 atm, and the predicted two-dimensional
distributions of the temperature and soot volume fraction obtained in the absence of
radiative transfer (i.e., the radiative heat transfer was set to zero in the simulation) and
using the non-gray M1 maximum-entropy moment closure are both depicted for the
four flames for pressures of 1, 2, 3, and 4 atm in Figure 8, 11, 14, and 17. The predicted
two-dimensional distributions of the temperature and soot volume fraction obtained
using the P1 and DOM approaches were found to be very similar and are not shown.
Additionally, the predicted radial profiles of temperature and soot volume fraction at
different axial locations above the burner obtained using the M1 and P1 closures, as well
as the DOM, are presented in Figure 9, 10, 12, 13, 15, 16, 18, and 19 for pressures of 1,
2, 3, and 4 atm. In addition to the approximate radiation models presented in this
study, numerical results for the radial profile comparisons include results obtained for
a simulation in which radiation is neglected in order to assess the relative importance of
radiation for these flames. The experimental measurements of soot volume fraction and
temperature obtained by (Griffin, Christensen, Gülder 2018) for the 1, 2, and 4 atm
flames are also included in the radial profile comparisons.

From the simulation results of Figure 8, 11, 14, and 17, it is evident that the simulated
flames reproduce the established expected structure of the laminar co-flow flames with
increasing pressure (i.e., the flame height remains constant for constant carbon mass flow
and the flame narrows and exhibits stronger inward radial flow as the pressure is
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Figure 7. Computational grid used for all flame calculations. Block boundaries are shown in 2
designated by bold lines.

COMBUSTION SCIENCE AND TECHNOLOGY 63



increased). The expected increase in the maximum soot volume fraction is also repro-
duced with increasing pressure. Furthermore, in the absence of radiation, the predicted
temperature field is systematically overestimated, which becomes more important as
pressure increases. Moreover, the predicted soot volume fraction in the case where

Figure 8. Comparison of contours of temperature and soot volume fraction predicted by a) the case
where radiation is neglected b) the M1 closure for methane at 1 atm.

Figure 9. Radial profiles for temperature at different axial locations at 1 atm.
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radiation was neglected is also overestimated upstream and correspondingly underesti-
mated downstream of the burner. It is also evident from the results of Figure 9, 10, 12, 13,
15, 16, 18, and 19 that the predictions of the temperature and soot volume fraction radial
profiles for the interpolative-based M1 closure of Sarr, Groth, Hu (2019) is in very good

Figure 10. Radial profiles for soot volume fraction at different axial locations at 1 atm.

Figure 11. Comparison of contours of temperature and soot volume fraction predicted by a) the case
where radiation is neglected b) the M1 closure for methane at 2 atm.
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Figure 12. Radial profiles for temperature at different axial locations at 2 atm.

Figure 13. Radial profiles for soot volume fraction at different axial locations at 2 atm.
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agreement with the predictions of both the P1 closure and the DOM T3 method at all axial
locations and all pressures considered.

The comparisons of numerical results with the experimental data for the methane-air
flames show that, at low pressures closer to the burner rim, the radial profiles of soot

Figure 14. Comparison of contours of temperature and soot volume fraction predicted by a) the case
where radiation is neglected b) the M1 closure for methane at 3 atm.

Figure 15. Radial profiles for temperature at different axial locations at 3 atm.
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volume fraction as well as the radial locations where the peak soot concentrations occur
are rather well predicted by all three radiations models (M1 and P1 closures as well as
DOM); however, the peak values are significantly over-predicted. Further downstream of
the burner rim, the numerical results obtained using all three models predict similar peak

Figure 16. Radial profiles for soot volume fraction at different axial locations at 3 atm.

Figure 17. Comparison of contours of temperature and soot volume fraction predicted by (a) the case
where radiation is neglected (b) the M1 closure for methane at 4 atm.

68 J. A. R. SARR ET AL.



Figure 18. Radial profiles for temperature at different axial locations at 4 atm.

Figure 19. Radial profiles for soot volume fraction at different axial locations at 4 atm.
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values for the soot volume fraction to that observed in the experiments, even though the
radial location of the peak is predicted at a larger radius. As pressure increases, many of
the experimentally observed trends are still predicted by the models; however, all of the
models still over-predict the values of peak soot volume fraction closer to the rim, while,
further downstream, an under-prediction of the peak values is observed. Moreover, the
radial locations at which the peaks occur are shifted radially inward.

Methane-ethanol-air co-flow flames with 10% carbon flow contribution from
ethanol

Comparisons are now considered for high-pressure laminar co-flow flames for
a mixture of ethanol, methane, and air. The fuel mixture is such that 10% of the total
carbon flow is contributed by ethanol. As such, the methane and ethanol mass flow rates
were held at 1:099 and 0:175 mg/s, respectively, in order to match the target carbon mass
flow rate of 0:914 mg/s. The predicted contours of the flame temperature and soot
volume fraction for the ethanol-methane co-flow flames at pressures from 1 to 4 atm
are given in Figure 20, 23, 26, and 29. As for the pure methane fuel flames, results are
given for the M1 moment closure and for the case with no radiative heat transfer.
Furthermore, Figure 21, 22, 24, 25, 27, 28, 30, and 31 provide comparisons of the
predicted radial profiles of temperature and soot volume fraction at different axial
location above the burner, both in the presence and the absence of radiation. Results
for all three radiation models are shown in the radial profiles. Additionally, the experi-
mental measurements of soot volume fraction and temperature obtained previously by
Griffin et al. (Griffin, Christensen, Gülder 2018) for the ethanol-methane flames are also
provided for reference comparisons.

Similar to the findings for the pure methane-air flames, the overall co-flow flame
structure as a function of pressure is well reproduced by the simulations obtained using

Figure 20. Comparison of contours of temperature and soot volume fraction predicted by (a) the case
where radiation is neglected (b) the M1 closure for a mixture of methane and ethanol at 1 atm.
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Figure 21. Radial profiles for temperature at different axial locations at 1 atm.

Figure 22. Radial profiles for soot volume fraction at different axial locations at 1 atm.
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the M1 moment closure. Furthermore, as should be expected, the numerical results
obtained with radiative heat transfer afford significantly better predictions compared to
those obtained without radiation, while the predictions of soot volume fraction and
temperature obtained using the three different approximate models for radiative heat

Figure 23. Comparison of contours of temperature and soot volume fraction predicted by (a) the case
where radiation is neglected (b) the M1 closure for a mixture of methane and ethanol at 2 atm.

Figure 24. Radial profiles for temperature at different axial locations at 2 atm.
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transfer considered here (M1 and P1 closures as well as DOM) are again in very good
agreement with each other. The three radiation models again also all over-predict the
values corresponding to the peak soot volume fraction closer to the burner rim and
underpredict those quantities further downstream of the burner. At the lower flame

Figure 25. Radial profiles for soot volume fraction at different axial locations at 2 atm.

Figure 26. Comparison of contours of temperature and soot volume fraction predicted by (a) the case
where radiation is neglected (b) the M1 closure for a mixture of methane and ethanol at 3 atm.
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Figure 27. Radial profiles for temperature at different axial locations at 3 atm.

Figure 28. Radial profiles for soot volume fraction at different axial locations at 3 atm.
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pressures, predictions of radial locations at which the peak soot concentrations occur are
in good agreement with experimental data closer to the rim, while, at elevated pressures,
the location of the peak is shifted radially-inward. In all cases, the location of the peak is
shifted toward the centerline downstream of the burner.

Figure 29. Comparison of contours of temperature and soot volume fraction predicted by (a) the case
where radiation is neglected (b) the M1 closure for a mixture of methane and ethanol at 4 atm.

Figure 30. Radial profiles for temperature at different axial locations at 4 atm.
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Conclusions

A new interpolative-based approximation of the non-gray first-order M1 maximum-entropy
moment closure for predicting radiative heat transfer in non-gray participating media has
been developed. This newly developed analytical moment closure technique, in addition to
accurately approximating pre-computed values obtained from the numerical solution of the
optimization problem for entropy maximization, is also realizable and hyperbolic. Its
predictive capabilities have been assessed by direct comparisons of its solutions of laminar
diffusion flames simulations to those of the more popular first-order P1 spherical harmonics
moment closure and the discrete ordinates method, where the latter method was used as
a benchmark for comparisons. Two families of laminar diffusion flames, in particular pure
methane-air and ethanol-methane-air flames, were both considered. Steady-state numerical
solutions of the moment equations for all cases considered were obtained using standard
upwind finite-volume method with adaptive mesh refinement and a Newton Krylov–
Schwarz iterative technique using a previously developed computational framework for
laminar reactive flows with soot formation. For this relatively small, laboratory scale burner,
both the non-gray M1 and P1 moment closures provided temperature and soot volume
fraction solutions that were in very good agreement with each other and also with those
obtained using the standard DOM. However, for more realistic, large scale geometries with
relatively large optical thicknesses, which will be the subject of future studies, the newly
developed non-gray M1 closure would be expected to provide improved predictions and

Figure 31. Radial profiles for soot volume fraction at different axial locations at 4 atm.
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additional computational robustness at the expense of only a rather modest increase in
computational costs relative to the conventional P1 closure. Furthermore, the total number
of transport equations that must be solved is reduced by a factor of 14 in comparison to the
two-dimensional DOM approach considered here. This reduction in the number of inde-
pendent variables would make the newly developed M1 closure a very good candidate for
radiation calculations in reactive flows, especially in the context of turbulent flows with more
realistic, complex geometries, where the space marching techniques generally used to solve
the DOM equations would become rather inefficient. In such types of reactive flows, which
will also be the subject of future follow-on studies, time averaging, or spatial filtering of the
system of moment equations for the M1 closure will result in an additional closure problem
due to the nonlinearity of the Eddington tensor in terms of the lower-order moments.
A special treatment of the latter will be required in order to obtain closed description of the
radiative heat transfer. Development of interpolative approximations of higher-order max-
imum-entropy moment closures, in particular the second-order M2 approximation in this
hierarchy of closure techniques, will also be considered in future studies. Finally, imple-
mentation of the newly developed interpolative-based non-gray maximum entropy closures
will be considered in the context of the full spectrum correlated-k (FSCK) model (Modest
and Zhang 2002). The FSCK method is in fact expected to provide more efficient approx-
imate radiation solvers since it solves directly for spectrally integrated quantities by directly
reordering the spectral absorption coefficient into a monotonic function throughout the full
spectrum, such that the total number of quadrature points required for integration over the
full range of wavenumbers is reduced compared to the SNBCK approach adopted herein.
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