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Abstract The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers
the promise of several advantages over traditional techniques. These methods offer an extended range of
physical validity as compared with the Navier–Stokes equations and can be used for the prediction of many
non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order
nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment
equations generated through an entropy-maximization principle are particularly attractive due to their apparent
robustness; however, their application to practical situations involving viscous, heat-conducting gases has been
hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical
expense as many integrals of distribution functions must be computed numerically during the course of a
flow computation. Secondly, it has been shown that there exist physically realizable moment states for which
the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the
theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be
addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions
can be surprisingly good. The numerical results described provide significant motivations for the extension of
these ideas to the fully three-dimensional case.

Keywords Gaskinetic theory · Hyperbolic moment closures · Transition-regime gasdynamics ·
Non-equilibrium flow

1 Introduction

Hyperbolic moment closures from gaskinetic theory offer the promise of robust and accurate methods for the
prediction of viscous heat-conducting gas flows both in and out of local thermodynamic equilibrium. Such clo-
sures offer several advantages over traditional methods. An expanded solution vector allows a natural treatment
of non-equilibrium effects and thus extends the regime of validity of the resulting moment equations past con-
tinuum-regime flows. This is important as traditional fluid equations are only valid in or very near the continuum
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regime. Non-equilibrium behaviour is a characteristic of gas flows in which the scales of interest are of a similar
order as the mean free path of a gas particle. Such situations are typical of rarefied gas flows, micro-scale gas
flows or hyper-sonic gas flows. Also, the hyperbolic nature of moment equations has several mathematical and
computational advantages. Hyperbolic moment equations involve only first-order derivatives and are therefore
very well suited to solution by the class of very successful Godunov-type finite-volume schemes that make
use of adaptive mesh refinement (AMR) combined with treatments for embedded and moving boundaries and
interfaces [15,19,35,38,46–48]. This is in contrast to other transport equations that have a partially elliptic
nature and require the evaluation of second- or even higher-order derivatives. For hyperbolic systems, schemes
of this type are robust, insensitive to irregularities in the computational grids, provide accurate resolution of
discontinuities, and permit the systematic application of physically realistic boundary conditions. When cou-
pled with AMR, they permit treatment of complex and evolving flow geometries and the resolution of highly
disparate length scales while optimizing the usage of computational resources. They also have narrow stencils,
making them suitable for implementation on massively parallel computer architectures [19,35,36,38,46–48].
Also, the necessity to calculate only first derivatives means that, for a given stencil or reconstruction, numerical
schemes for the solution of moment equations can achieve one order higher spacial accuracy as compared to
the solution of traditional fluid-dynamic equations such as the Navier–Stokes equations.

Unfortunately, all of the current standard moment closures can be said to be limited for one reason or
another. For example, the original closure hierarchies due to Grad [10,17,18] result in moment equations
that are hyperbolic for near-equilibrium flows. However, these PDEs can suffer from closure breakdown and
loss of hyperbolicity, even for relatively small departures from equilibrium conditions and for physically
realizable sets of macroscopic moments [7,56,57]. More recently, Struchtrup and Torrilhon have proposed
regularized variants of the Grad moment-closure hierarchy based on a Chapman–Enskog expansion technique
applied directly to the moment equations [51–53,58]. These regularized closures have proven most successful
in providing insight into how different macroscopic moments interact for the formation of Knudsen-layer
phenomena and their regularized behaviour results in smooth transitions for shocks (a desirable feature for
high-speed applications, such as re-entry flows). However, the resulting transport equations for the moments
are of mixed type (i.e., the moment fluxes are functions of the velocity moments and their derivatives) and for-
mal hyperbolicity of the closures and all associated advantages are lost. Members of this regularized hierarchy
maintain the issues related to hyperbolicity in the Grad closure on which they are based and closure breakdown
can still be expected for larger deviations from local equilibrium. Diffusive closures constructed by applying
the regularization technique of Struchtrup and Torrilhon [52] to a more robustly hyperbolic base closure could
be constructed. This has already been investigated for expansion around the 10-moment Gaussian moment
closure with good results [37]. If they were available, robust and affordable higher-order hyperbolic moment
closures would allow similar models to be developed for more moments.

Alternative moment-closure techniques have been proposed based on the assumption that the approxi-
mate form for the distribution function corresponds to that of the maximum-entropy distribution [32,41].
The maximum-entropy distribution is defined to be the distribution that maximizes the physical entropy sub-
ject to the constraint that it be consistent with a given finite set of velocity moments. Moment closures
obtained in this manner have many desirable mathematical properties including hyperbolicity, realizability
of moments, and a definable entropy relation [32,41]. The lowest-order members of this hierarchy are the
Maxwellian and Gaussian closures, both of which yield strictly hyperbolic moment equations and physically
realizable moments. The Maxwellian closure leads to the well-known Euler equations governing inviscid
adiabatic gas flow, while the Gaussian closure leads to a set of ten hyperbolic PDEs governing viscous adia-
batic gas flow. Numerical solutions of the Gaussian closure using Godunov-type finite-volume schemes have
been considered by Brown et al. [8,9], Le Tallec and Perlat [55], Suzuki and van Leer [54] and McDon-
ald and Groth [19,35]. Numerical solution of these closures in a Discontinuous-Galerkin context has also
been explored by Barth [4]. These early studies clearly illustrate some of the computational and modelling
advantages of having a strictly hyperbolic and physically realizable treatment. Unfortunately, the simplic-
ity and robustness of the two lowest-order members of this maximum-entropy hierarchy does not extend
to higher-order closures. In fact, Junk has shown that any closure in this hierarchy that has moments of
sufficiently high order to allow a treatment for heat transfer suffers from a region of non-realizability in
moment space [29,30]. This result is particularly devastating as local equilibrium solutions can be shown
to always lie on the boundary in moment space separating the valid region for the closure from the invalid
region [30].

Recently, Schneider [22,49] has proposed an approach to dealing with the realizability of maximum-
entropy closures. In this approach, regions of non-realizability are handled by relaxing the equality constraint
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on some of the moment values. A maximum-entropy distribution function can then be found for a subset of
the moments of interest. When Schneider’s technique is followed, global hyperbolicity and realizability are
recovered. Hauck et al. [22] have subsequently carried out a thorough mathematical analysis of this alternate
approach to modifying maximum-entropy closures.

Alternately, hyperbolic moment closures that are not based on a maximum-entropy concept have been
recently proposed by Torrilhon [57]. These closures are based on a Pearson-IV distribution function. Work in
this area remains preliminary; it remains to be seen whether the resulting closures are truly globally hyperbolic
and the quality of flow solutions produced by the resulting moment equations requires further study.

1.1 Scope of current study

This paper begins with a review of the derivation and relevant mathematical properties of maximum-entropy
moment closures. Issues related to the use of higher-order maximum-entropy closures are also presented. It is
then shown that the realizability issue associated with higher-order maximum-entropy closures can be removed
through the use of a windowing technique. Hyperbolicity of the resulting moment equations can be maintained
over a large region of moment space. Resulting flow simulations show that the predictions obtained from
this technique can be remarkably good, especially for the prediction of shock-wave profiles. Shock profiles
predicted using the resulting moment equations are shown to be far better than what should be expected by
moment closures constructed in a way to ensure hyperbolicity but are not based on a physical principle such as
entropy maximization. This work concludes with a presentation of a fitting technique for the one-dimensional,
5-moment, maximum-entropy system that leads to affordable moment equations with no noticeable loss of
accuracy.

2 Gaskinetic theory and moment closures

Moment-closure techniques follow from the field of gaskinetic theory. In this theory, the microscopic particle
nature of a gas is considered. A monatomic gas is represented by probability-density functions, F(xi , vi , t)
that describe the number of particles at a given location, xi , and time, t , having a particular gas velocity, vi .
Macroscopic properties of the gas are obtained by taking velocity moments of the distribution functions,

M(xi , t) = 〈mV (vi )F(xi , vi , t)〉 =
∞∫

−∞

∞∫

−∞

∞∫

−∞
mV (vi )F(xi , vi , t)d3v, (1)

where M(xi , t) is the macroscopic moment corresponding to the velocity weight V (vi ) and m is the gas-particle
mass. Typically, velocity weights are chosen to be monomials. Some commonly used lower-order moments
include:

ρ = 〈mF〉,
ui = 〈mviF〉

ρ
, ci = vi − ui ,

ρui u j + Pi j = 〈
mviv jF

〉
, Pi j = 〈

mci c jF
〉
,

ρui u j uk + ui Pjk + Qi jk = 〈
mviv jvkF

〉
, Qi jk = 〈

mci c j ckF
〉
,

where ρ is the mass density, ui is the bulk velocity, ci is the random component of the gas-particle velocity,
Pi j is an anisotropic pressure tensor, and Qi jk is the generalized heat-flux tensor. The pressure and heat-flux
tensors are related to the more familiar thermodynamic pressure and heat-flux vector through the contrac-
tions p = 1

3 Pii and qi = 1
2 Qi j j . Also, the deviatoric fluid-stress tensor is related to the pressure tensor as

τi j = δi j p − Pi j . Following this method, moments of arbitrarily high order can be taken; however, as the order
of a moment becomes higher, its physical significance can becomes less and less intuitively obvious.

The evolution of the distribution function, F , is described by the well-known Boltzmann equation [10,11,
17,41,51],

∂F
∂t

+ vi
∂F
∂xi

= δF
δt

, (2)
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shown here in the absence of external acceleration fields. The term on the right-hand side of Eq. (2) is the
collision integral and represents the time rate of change of the distribution function produced by inter-particle
collisions. By taking moments of this distribution function, equations describing the evolution of macroscopic
moments can be obtained. The result is known as Maxwell’s equation of change,

∂

∂t
〈mV (vi )F〉 + ∂

∂xi
〈vi V (vi )F〉 =

〈
mV (vi )

δF
δt

〉
. (3)

Typically, the evolution of several macroscopic moments is deemed important for a situation. A vector
containing these moments, U , is therefore defined with a corresponding vector of velocity weights, V , such
that

U = 〈mVF〉. (4)

Substituting the vector V into Eq. (3) results in a system of moment equations,

∂

∂t
〈mVF〉 + ∂

∂xi
〈mvi VF〉 = ∂U

∂t
+ ∂ Fi

∂xi
=

〈
mV

δF
δt

〉
, (5)

where Fi is the flux dyad corresponding to the conserved moments contained in U . Unfortunately, this system
is not closed. The time rate of change of each moment in U is dependent on the spacial divergence of a moment
of one order higher in velocity, that moment’s flux. In general, the flux of the highest-order moments in U is
therefore not known. The term on the right-hand side, the effect of inter-particle collisions on the moments of
interest, is also not known in general. As it is the modelling of the left-hand side that is of primary interest in
the present work, a simplified relaxation-time model will later be adopted for the collision operator that results
in closed-form expressions.

2.1 Moment closure

The technique of moment closure involves adopting an assumed form for the distribution function, F , in
terms of a limited number of free parameters, or closure coefficients, α. These coefficients are then set such
that Eq. (4) is satisfied. The number of free parameters must therefore be equal to the number of entries in
U . In this way, all higher-order moments become a function of the known lower-order moments, and the
system of moment equations is closed. In general, it is not known exactly which moments are required to
properly describe a particular non-equilibrium process. Work has been done to study the order of magnitude
of terms in moment equations in terms of the Knudsen number by Müller et al. through their “consistent order
extended thermodynamics” [40] and later by Struchtrup with his “order of magnitude method” [50]. Clearly,
employing more moments provides additional freedom to more accurately represent higher-Knudsen-number
non-equilibrium behaviour.

The most well-known assumed form for the distribution function is the Grad-type polynomial series expan-
sions [18] having the form

F = M [
αTV

]
, (6)

where the expansion is performed about the equilibrium solution or Maxwellian distribution function, M,
given by

M = ρ

m (2πp/ρ)3/2 e

(
− 1

2
ρci ci

p

)
, (7)

Originally, Grad considered both 13- and 20-moment closures. Subsequently, extensions to many moments
have been considered by others [41,51]. It should be noted Grad expressed the polynomial in Eq. (6), αTV, as a
sum of Hermite polynomials. This decouples the dependence of the closure coefficients and greatly simplifies
the derivation. This technique is common practice.

It is an unfortunate fact that members of the Grad hierarchy suffer from several problems. Firstly, the
distribution function defined in Eq. (6) is not always positive. It is therefore not a properly defined probabil-
ity-density function. Secondly, for modest departures from local equilibrium, it is possible for the resulting
moment equations to become non-hyperbolic [7,56,57]. As a consequence, the moment equations may no
longer be well posed for initial-value problems.
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3 Maximum-entropy moment closures

An alternative approach to obtaining closure of the moment equations is to assume the distribution function is
such that it has the maximum physical entropy while remaining consistent with the macroscopic moments in
U [12,32,41,51]. For classical gases, for which the entropy density is know to be 〈F ln F〉, this assumption
leads to distribution functions of the form

F = eαTV (8)

This distribution function is positive valued, and, through careful selection of the generating velocity weights
in V , it can be assured that the distribution remains finite [32]. Moreover, the hyperbolicity of the resulting
moment equations can be demonstrated [12,32,41,51]. This can be done by defining density and flux potentials
as

h(α) =
〈
meαTV

〉
, fi (α) =

〈
mvi e

αTV
〉
. (9)

The conserved moments and fluxes can then be expressed as

h,α = ∂h

∂α
=

〈
mVeαTV

〉
, fi,α = ∂ fi

∂α
=

〈
mvi VeαTV

〉
, (10)

and the moment equations of Eq. (5) can then be written as

∂

∂t

(
h,α

) + ∂

∂xi
fi,α = S(α), (11)

where S(α) = 〈VδF/δt〉 is the source term associated with collisional processes. The terms h,α and fi,α can
be differentiated again to give

h,αα =
〈
mVVTeα

TV
〉
, (12)

and

fi,αα =
〈
mvi VVTeα

TV
〉
. (13)

The moment equations above can then be re-expressed as

h,αα
∂α

∂t
+ fi,αα

∂α

∂xi
= S(α). (14)

Equation (14) describes the time evolution of the closure coefficients for a maximum-entropy distribution.
Hyperbolicity of this system is assured by the symmetry of fi,αα and symmetric positive definiteness of
h,αα [14,16,32]. The positive definiteness of h,αα is known because for any vector w,

wTh,ααw =
〈
wTVVTweα

TV
〉
=

〈(
wTV

)2
eα

TV
〉
≥ 0. (15)

and hence h,αα is both symmetric and positive definite.
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3.1 Members of the maximum-entropy hierarchy

The lowest-order member of the maximum-entropy hierarchy is generated using the velocity-weight vector
V = [1, vi , vivi ]T. This leads to the well-known Euler equations for compressible gas flow, a 5-moment model.
The next-lowest-order member of the hierarchy is generated using the vector V = [1, vi , viv j ]T. This choice
leads to a system of ten moment equations known as the Gaussian moment closure. It provides a treatment
for fluid stresses through the definition of an anisotropic pressure tensor. The Gaussian distribution appears to
have been first derived in early work by Maxwell [34] and then re-discovered in subsequent but independent
research by both Schlüter [42,23] and Holway [24–27]. Numerical computations have demonstrated that this
model can be very successful for continuum and transition-regime flows for which heat transfer is not impor-
tant [4,8,9,19,35,54,55]. The closure’s inability to predict heat-transfer phenomena is due to the fact that the
Gaussian closure always predicts zero heat flux by construction.

Higher-order members of the maximum-entropy hierarchy do provide a treatment for heat transfer; how-
ever, there is a problem. When the polynomial in the exponential of Eq. (8) contains super-quadratic terms,
closed-form expressions for the integrals of the distribution function are not possible. This means expressions
for the closure coefficients such that Eq. (4) is satisfied cannot be found. The closing fluxes can therefore not
be expressed as a closed-form expression of the conserved moments.

It is, however, possible to relate the moments and closure coefficients through an iterative procedure [32,55].
This is done by first defining a function

J (α) =
〈
eαTV

〉
− αTU . (16)

This function has an extremum when

∂

∂α
J (α) =

〈
VeαTV

〉
− U = 0. (17)

This is exactly the condition of consistency from Eq. (4). Moreover, the Hessian of J (α) is equal to the Hessian
of the density potential, h(α), as shown in Eq. (12); this has already been shown to be positive definite. The
function, J (α), therefore, has at most one extremum that is obtained when α and U are consistent. This
convex optimization problem can be solved using a Newton-like technique; however, in the course of this
synchronization, the moments of the distribution function must be calculated numerically for the construction
of the gradient and Hessian of J (α). The computational domain for these integrations stretches to infinity in
all directions of velocity space, adding obvious numerical difficulties and expense.

There is a somewhat more subtle issue that arises in the use of higher-order, maximum-entropy moment
closures. Junk has shown that for all generating vectors, V , containing super-quadratic velocity weights,
there exist physically realizable moment states for which the entropy-maximization problem does not have a
solution [29,30]. In these regions, the entire framework of maximum-entropy moment closure breaks down.
Seemingly more devastating, the equilibrium distribution function always lies on the boundary separating the
realizable and non-realizable regions.

Although lower-order members of the maximum-entropy moment-closure hierarchy have proven very
successful [19,35,36,38], the inability to express moment fluxes in closed form and the presence of regions
of non-realizability has seriously hampered efforts to make practical use of higher-order maximum-entropy
moment closures. In what follows, a simplified one-dimensional moment system is used to investigate the
practical implications of these issues. It is shown that both issues can be handled, at least for this simplified
model and that flow predictions are surprisingly good.

4 Mathematical structure of one-dimensional moment closures

In order to examine the modelling issues associated with higher-order maximum-entropy closures, kinetic the-
ory applied to a one-dimensional gas is considered. A one-dimensional gas is defined as a gas whose molecules
can only have velocities in one space dimension. In the case of no external acceleration fields, the Boltzmann
equation for a one-dimensional gas simplifies to

∂F
∂t

+ v
∂F
∂x

= δF
δt

. (18)
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The independent variables, velocity, v, and position, x , are now scalars. Similarly, Maxwell’s equation of
change simplifies to

∂

∂t
〈mVF〉 + ∂

∂x
〈mvVF〉 =

〈
V

δF
δt

〉
. (19)

An N -moment system of moment equations corresponding to velocity weights V can be written as

∂U
∂t

+ ∂F
∂x

= S, (20)

where F is now a vector rather than a dyad and S is the local source vector arising from inter-particle collisions.
One-dimensional moment equations have some remarkable mathematical properties that can be examined

by rewriting Eq. (20) as

∂U
∂t

+ ∂F
∂U

∂U
∂x

= S. (21)

When polynomial velocity weights are used to generate the moment equations, the flux of one moment will
be a moment that is of one order higher. For this simplified one-dimensional situation, the fact that velocity is
a scalar means that there is only one moment of each order and the flux Jacobian, ∂F

∂U , has the structure of a
companion matrix having the form

∂F
∂U

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
. . .

...
0 0 0 0 · · · 1
a0 a1 a2 a3 · · · a(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

Companion matrices are interesting as their characteristic equation, p(λ), has the form

p(λ) = a0 + a1λ + a2λ
2 + a3λ

3 + · · · + a(N−1)λ
(N−1) − λN . (23)

The N roots of this equation, λn , represent the N eigenvalues of the matrix. Moreover, the matrix with right
eigenvectors as columns that corresponds to a companion matrix is a Vandermonde matrix of the form

R̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
λ0 λ1 λ2 · · · λ(N−1)

λ2
0 λ2

1 λ2
2 · · · λ2

(N−1)

λ3
0 λ3

1 λ3
2 · · · λ3

(N−1)
...

...
...

. . .
...

λ
(N−1)
0 λ

(N−1)
1 λ

(N−1)
2 · · · λ

(N−1)
(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(24)

It is known that for all hyperbolic systems, there exists a diagonal matrix, W, containing eigenvector
scalings, wi , such that systems of the form shown in Eq. (21) can be written in symmetric form as

H̄
∂α

∂t
+ J̄

∂α

∂x
= S, (25)

where H̄ = R̄W̄R̄T and J̄ = R̄W̄�̄R̄T are symmetric matrices while α are the so-called entropy variables
and � is a diagonal matrix containing the eigenvalues of the flux Jacobian [3]. Equation (14) shows that, for
maximum-entropy moment closures, the symmetrizing variables are in fact the closure coefficients. These
coefficients are also the entropy variables for the system, while H̄ and J̄ are the Hessians of the density and
flux potentials, as given earlier in Eqs. 12 and 13.
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For the one-dimensional case, both of the Hessians H̄ and J̄ are Hankel matrices whose entries are moments
of the maximum-entropy distribution function. That is, they have the form

H̄ =

⎡
⎢⎢⎢⎢⎢⎣

U0 U1 U2 · · · UN−1
U1 U2 U3 · · · UN

U2 U3 U4 · · · ...
...

...
...

. . . U2N−3
UN−1 UN · · · U2N−3 U2N−2

⎤
⎥⎥⎥⎥⎥⎦

, (26)

and

J̄ =

⎡
⎢⎢⎢⎢⎢⎣

U1 U2 U3 · · · UN
U2 U3 U4 · · · UN+1

U3 U4 U5 · · · ...
...

...
...

. . . U2N−2
UN UN+1 · · · U2N−2 U2N−1

⎤
⎥⎥⎥⎥⎥⎦

, (27)

where here Un is the nth-order conserved moment.
It is at this point that a very interesting property of one-dimensional maximum-entropy moment closures

can be demonstrated. By carrying out the matrix multiplication H̄ = R̄W̄R̄T and J̄ = R̄W̄�̄R̄T with R̄, H̄
and J̄ defined by Eqs. (24), (26) and (27), respectively, it can be seen that the conserved velocity moments can
be expressed as

Un =
(N−1)∑

i=0

wiλ
n
i for n ≤ 2N − 1. (28)

That is, the eigenvalues of the system are the N Gauss quadrature points for which the zeroth to the (2N −1)th
moments of the maximum-entropy velocity distribution function are captured exactly and the N eigenvector
scaling factors, wi , are in fact the corresponding weights for the numerical integration rule. The relationship
between the Vandermonde decomposition of a Hankel matrix and Gauss quadrature rules has been known for
some time [6,13]. However, this surprising relationship between Gauss quadrature points and the eigenvalues
of a one-dimensional maximum-entropy moment system does not seem to have been discussed elsewhere in
the published literature pertaining to moment closures for kinetic theory.

5 Navier–Stokes-like equations for a one-dimensional gas

In order to assess the advantages that the proposed hyperbolic moment closures have over traditional fluid-
dynamic equations, a one-dimensional equivalent to the Navier–Stokes equations will be examined. The
derivation of these equations for the one-dimensional gas is detailed here.

5.1 One-dimensional Maxwell–Boltzmann distribution and 3-moment equilibrium closure

The corresponding equilibrium Maxwell–Boltzmann distribution function for a one-dimensional gas can be
written as

M = ρ

m

√
ρ

2πp
exp

(
− ρ

2p
c2

)
. (29)

This distribution function has moments:
ρ = 〈mM〉,
ρu = 〈mvM〉, 0 = 〈mcM〉,
ρu2 + p = 〈

mv2M〉
, p = 〈

mc2M〉
,

ρu3 + 3up = 〈
mv3M〉

, 0 = 〈
mc3M〉

,

ρu4 + 6u2 p + 3p2

ρ
= 〈

mv4M〉
,

3p2

ρ
= 〈

mc4M〉
,

ρu5 + 10u3 p + 15u p2

ρ
= 〈

mv5M〉
, 0 = 〈

mc5M〉
.

(30)



Realizable hyperbolic moment closures 581

If this equilibrium distribution function is substituted into Maxwell’s equation of change, the result is a three
moment system that can be written as

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (31)

∂

∂t
(ρu) + ∂

∂x

(
ρu2 + p

) = 0, (32)

∂

∂t

(
ρu2 + p

) + ∂

∂x

(
ρu3 + 3up

) = 0. (33)

This 3-moment Euler system describes one-dimensional gas flow in thermodynamic equilibrium. The system
has wave speeds u + a, u and u − a with a = √

3p/ρ.

5.2 Collision operators for a one-dimensional gas

Traditionally, when moment closures are used to reduce the dimensionality of the Boltzmann equation, two
sources of error are incurred. Firstly, there is the obvious error caused by restricting the distribution function
to having a prescribed form. In practice, however, it is also usually necessary to model the collision operator
in some way. When accessing the quality of a particular moment closure, it is most prudent to separate these
two errors and study only the error directly associated with the closure. Errors caused by the collision operator
should be seen as a separate issue. To this end, the same collision operator will be used for all models in this
work, including directly computed solutions to the Boltzmann equation. A very simple and common collision
model is the BGK or relaxation collision operator [5]. This operator can be written as

δF
δt

= −F − M
τ

. (34)

It predicts that a general non-equilibrium distribution function, F , will relax towards the equilibrium distribu-
tion, M, over a timescale τ .

5.3 Chapman–Enskog expansion for a one-dimensional gas and Navier–Stokes model

The Navier–Stokes-like equations for a one-dimensional gas can be derived through a Chapman–Enskog
expansion of the moment equations. First, it is convenient to define the fourth moment

k = 〈
mc4F 〉 − 〈

mc4M〉 = 〈
mc4F 〉 − 3p

ρ
= r − 3p

ρ
, (35)

which is the deviation of the random-velocity fourth moment r = 〈mc4F〉 from its value in thermodynamic
equilibrium. Next, the third-order random-velocity heat-transfer moment q = 〈mc3F〉 and k are written as
perturbative expansions about their equilibrium value as

q = q(M) + εq(1) + ε2q(2) + ε3q(3) + · · · , (36)

k = k(M) + εk(1) + ε2k(2) + ε3k(3) + · · · . (37)

The moment equation for the second-order moment 〈mv2F〉 can be written for a general distribution function
as

∂

∂t

(
ρu2 + p

) + ∂

∂x

(
ρu3 + 3up + q

) = 0. (38)

It is the moment q that corresponds to the heat flux and is not present in the equilibrium Euler equations for
a one-dimensional gas [Eqs. (31)–(33)]. The moment equation that describes the evolution of q can then be
written with a scaled BGK collision term as

∂q

∂t
+ 4q

∂u

∂x
+ u

∂q

∂x
+ 3p

∂

∂x

(
p

ρ

)
+ ∂k

∂x
= − q

ετ
. (39)
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Here, the smallness parameter ε on the right-hand side of the equations signifies an assumption that any devia-
tion from equilibrium is attenuated very rapidly by collisional processes. The expansions for q and k, Eqs. (36)
and (37), are now inserted and terms of equal order in ε are gathered. Once this is done, it can be seen that the
zeroth-order terms lead to the equations

q(M) = 0, (40)

and

k(M) = 0, (41)

as required. By collecting first-order terms, the approximation to the heat-flux moment is then found to be

q(1) = −3pτ
∂

∂x

(
p

ρ

)
. (42)

This expression can then be combined with Eq. (38) to yield the one-dimensional Navier–Stokes-like equa-
tions that will be used as a representative continuum-regime model for comparison in this work. The resulting
transport equations can be summarized as follows:

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (43)

∂

∂t
(ρu) + ∂

∂x

(
ρu2 + p

) = 0, (44)

∂

∂t

(
ρu2 + p

) + ∂

∂x

(
ρu3 + 3up

) − ∂

∂x

(
3pτ

∂

∂x

(
p

ρ

))
= 0. (45)

6 A 5-moment one-dimensional maximum-entropy moment closure

The lowest-order member of the Levermore hierarchy for a one-dimensional gas that provides a treatment for
heat transfer is a 5-moment system. The vector of generating weights is V = [1, v, v2, v3, v4]T; the resulting
maximum-entropy distribution function is

F = e(α0+α1v+α2v
2+α3v

3+α4v
4), (46)

and the corresponding moment equations are

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (47)

∂

∂t
(ρu) + ∂

∂x

(
ρu2 + p

) = 0, (48)

∂

∂t

(
ρu2 + p

) + ∂

∂x

(
ρu3 + 3up + q

) = 0, (49)

∂

∂t

(
ρu3 + 3up + q

) + ∂

∂x

(
ρu4 + 6u2 p + 4uq + r

) = −q

τ
, (50)

∂

∂t

(
ρu4 + 6u2 p + 4uq + r

) + ∂

∂x

(
ρu5 + 10u3 p + 10u2q + 5ur + s

)

= −1

τ

(
4uq + r − 3

p2

ρ

)
. (51)
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It is the fifth-order random-velocity moment s = 〈mc5F〉 that is not a member of the solution vector and must
therefore be determined from a closure relation. As explained earlier, the standard BGK relaxation operator is
used to represent the collision terms.

The distribution function of Eq. (46) has been studied previously in the field of probability [1,33,43,44].
It is known that moments of this distribution function, 〈mvnF〉, cannot be expressed as a closed-form function
of the closure coefficients. This means that the closing flux cannot be expressed as an explicit function of the
lower-order moments that are present in the solution vector. It is for this reason that the entropy-maximization
problem must be solved numerically at every time a flux is needed in any numerical-solution procedure for
the moment equations.

Again, this is not the only hindrance to the use of such closures. As with all higher-order maximum-entropy
closures, Junk has shown that there exist physically realizable moment states for this system for which the
entropy-maximization problem has no solution. In these regions, the entire mathematical framework of the
maximum-entropy moment closure breaks down [29,30].

7 Moment realizability

The term moment realizability refers to the existence of a function with certain specified properties that cor-
respond to a given set of moments. Although a finite set of velocity moments cannot in general be used to
uniquely specify a distribution function and multiple distributions that share the same N moments can usually
be defined, in assessing moment realizability the question is asked whether any distribution function with
specified properties can correspond to the given set of moments.

7.1 Physical realizability

The question of physical realizability is a question of whether a positive probability-density function exists that
corresponds to certain prescribed moments. For any given set of velocity weights, M = m[1, vi , viv j , . . .]T,
one can construct polynomials, P(vi ), as

P(vi ) = aTM, (52)

where a is a column vector containing the coefficients of the polynomial. For any positive-valued distribution,
F , and polynomial, P , it is clearly a requirement that

〈||P(vi )||2F〉 = aT〈MMTF〉a = aTȲa ≥ 0, (53)

and thus the moments present in the real symmetric matrix Ȳ, given by

Ȳ = 〈MMTF〉, (54)

are physically realizable when this matrix is positive definite. It should be noted that in assessing the physical
realizability of a given moment state, the vector of velocity weights, M, does not only need to be equal to the
vector of generating weights, V, of the known moments. In fact, for a distribution function to be realizable, the
matrix Ȳ must be positive definite for every possible choice of M. In order to assess the physical realizability
of a specific moment state, the vector, M, which will lead to the known moments being included in Ȳ, should
be chosen.

For situations in which Ȳ is not positive definite, it follows that the velocity moments it contains are not
consistent with any possible positive-valued distribution function and, hence, are not physically realizable.
The preceding analysis for physical moment realizability follows from the early work of Hamburger [20,45]
and is equivalent to the now classical Hamburger moment problem.
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7.2 Physical realizability of 5-moment distribution functions

By dimensional analysis and the requirement of Galilean invariance, it can be shown that, without loss of
generality, a 5-moment distribution function can be non-dimensionalized such that ρ = 1, u = 0 and p = 1.
The questions of realizability can therefore be explored on a non-dimensional q
–r
 plane with

q
 = 1

ρ

(
ρ

p

) 3
2

q and r
 = 1

ρ

(
ρ

p

)2

r (55)

Once this non-dimensionalization has been carried out, the matrix Ȳ of Eq. (54) that will show the region of
physical realizability for the five moments considered in the above closure can be generated using the velocity
weights M = [1, v, v2] and can be written as

Ȳ =
⎡
⎣ 1 0 1

0 1 q


1 q
 r


⎤
⎦ . (56)

This matrix is positive definite whenever r
 ≥ 1+ (q
)2. These states are therefore physically possible. This is
not to say that all points on this plane are realizable by a distribution function of the form given in Eq. (46) but
that for any state that r
 ≥ 1 + (q
)2, there exists some corresponding positive-valued distribution function.

7.3 Realizability of maximum-entropy distribution functions

As has been shown by Junk, there do exist moment states that satisfy the constraints on physical realizability
but for which the entropy-maximization problem does not have a solution [i.e., there is no corresponding
distribution function of the form given in Eq. (46)] [29,30]. In these situations, the distribution function that
has the maximum entropy while being consistent with the moments cannot be said to exist.

Following the analysis of Junk, the physical region for which the entropy-maximization problem cannot
be solved is found to be the line on which q
 = 0 and r
 > 3. This last constraint is particularly troubling,
as the point at the end of this line, q
 = 0 and r
 = 3 is the point that corresponds to local thermodynamic
equilibrium. The physically realizable region and line along which no maximum-entropy distribution exists is
depicted in Fig. 1.

q*

r*

-3 -2 -1 0 1 2 3
0

2

4
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10

Physically
Realizable

Not Physically
Realizable

No Maximum-
Entropy Distribution
Exists

Local
Equilibrium
(0,3)

Fig. 1 Region of physical realizability and realizability of maximum-entropy distribution function for the one-dimensional
5-moment system
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Fig. 2 Non-dimensionalized closing flux s
 for the one-dimensional, 5-moment, maximum-entropy closure

This issue of non-solvability of the entropy-maximization problem is related to the inability to satisfy
simultaneously all of the restrictive conditions on the closure coefficients, α, which ensure that the polynomial
(α)TV in Eq. (8) decreases towards negative infinity in all directions as |vi | becomes large. More devastating
still, for all higher-order moment closures, the equilibrium state lies on the boundary in moment space sepa-
rating regions in which the entropy-maximization problem can be solved and regions in which a solution is
not possible [30]. This seems to leave little hope that numerical solutions to moment-closure problems can be
computed for any practical situations.

Investigation of the behaviour of the non-dimensional closing flux, s
, as a function of q
 and r
 shows
the practical nature of the problem of realizability for this 5-moment system. The closure is not defined on the
line extending upward from the point (0, 3). It can be seen in Fig. 2 that as this line is approached from either
the left or the right, the closing flux diverges quickly towards negative or positive infinity, respectively. For
practical use of higher-order moment closures, it is not only the mathematical problem of realizability that must
be overcome as, even in realizable regions, the flux becomes arbitrarily large and could never be computed
using finite-precision arithmetic. This issue could be referred to as a problem of numerical realizability.

8 Realizable distribution functions

One possible technique to avoid issues with non-realizability of maximum-entropy closures that is explored
herein is to modify slightly the assumed form of the distribution function. This can be accomplished by adding
an additional term or factor, σ , to the exponential of Eq. (8) to yield

F = e
(
αTV+σ

)
= e

(
αTV

)
fw, (57)

where fw = eσ . This type of modification to the maximum-entropy moment distribution was first proposed by
Au [2] and then later re-considered by Junk [28]. The modification is equivalent to multiplying the distribution
function by a factor fw that can be viewed as a “window” function that attenuates the distribution at high
velocities, thus ensuring the distribution remains finite. In general, σ is a velocity-dependent term that must
be chosen such that it approaches negative infinity more quickly than the polynomial, αTV, can approach
positive infinity as |vi | becomes large in any direction. This allows the closure to remain valid for all physically
realizable sets of velocity moments.

In the case that σ is not a function of the closure coefficients, proof of hyperbolicity as described in Sect. 3
remains valid and the hyperbolic properties of the moment closure are retained. A simple example where this
is true is to take σ = −b|vi |n where b is a positive real value and n is an even integer larger than the highest
power of the velocity weights in V. In this case, ∂σ/∂α = 0 and the proof of hyperbolicity remains entirely
unaltered. Unfortunately, for velocity-weight vectors in the Levermore hierarchy, the closure is no longer
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Galilean invariant for this choice of σ . Taking σ = −b|ci |n leads to a Galilean-invariant closure; however, in
this case, ∂σ/∂α �= 0 and hyperbolicity of the closure is not assured. This is because it is no longer possible
to ensure in a general manner that hαα is symmetric positive definite.

In practice, it would seem prudent to define σ to be a function of the local solution so as to ensure Galilean
invariance of the closure. Moreover, it has been found that it is also desirable to have the effective width of
the window function, σ , be dependent on the solution so as to match the standard deviation of the unmodified
distribution in some fashion and thereby result in a more appropriate windowing function. In the current work,
the modification to the maximum-entropy distribution is chosen to have the form

σ = −b

(
ρ

p

) L+2
2 |ci |L+2 , (58)

where L is the highest exponent of the velocity weights used in the moment closure and b is some speci-
fied positive number. This form for σ clearly makes strict proof of hyperbolicity elusive; however, numerical
experiments suggest that the resulting moment equations are well behaved and remain hyperbolic for a wide
range of flow conditions.

One cause for concern with this proposed approach may be its treatment of equilibrium conditions as the
modified-distribution function no longer contains the Maxwellian. Nevertheless, under equilibrium conditions,
the moments of the modified-distribution function used in the closure are in full agreement with those of the
Maxwellian up to one order higher than the order of the closure provided that the velocity weights of the
Levermore hierarchy are used. In addition, all odd-order random-velocity moments of the modified assumed
form for the distribution function vanish and are equal to those of the Maxwellian under equilibrium conditions.

It should be noted that the introduction of the window function no longer requires the strict use of the
velocity weights, V, proposed by Levermore [32] as the window function will ensure that the distribution
function remains finite regardless of the velocity weights. Other choices are therefore possible for the velocity
moments of the closure while still remaining both realizable and hyperbolic [28].

8.1 Alternate remedies for non-realizability

Recently, Schneider [22,49] has proposed an alternate approach to dealing with the realizability of maximum-
entropy closures. He proposes appropriately relaxing some of the equality constraints on the moments in the
entropy minimization procedure when defining the maximum-entropy distribution. This leads to a maximum-
entropy solution; however, it is one that does not satisfy the full set of predicted moments (only those that can
be satisfied and represented by the maximum-entropy distribution). Unfortunately, this modification results in
the entropy function loosing strict convexity at the moments that are not realizable under all of the equality
constraints. Hauck et al. [22] have subsequently carried out a thorough mathematical analysis of this alternate
approach to modifying maximum-entropy closures.

Mathematically, this approach does preserve hyperbolicity while leading to universally realizable closures.
However, there remain practical issues that are not resolved by Schneider’s solution. The new closure is modi-
fied only in the area where the traditional closure is non-realizable; all other regions are unaltered. Referring to
Fig. 2, it is clear that even in regions where the maximum-entropy distribution function exists, there are areas
where practical computation of the closing flux will be problematic. In fact, the closing flux still approaches
infinity as the problematic line is approached, and there are regions arbitrarily close to equilibrium where the
closing flux is arbitrarily large. This means that issues still remain for any solution procedure that makes use
of finite-precision arithmetic as numerical overflow can certainly occur.

8.2 Application to one-dimensional 5-moment system

The application of the windowing technique shown above is now considered for the one-dimensional 5-moment
system. The resulting distribution function is

F = eα0+α1c+α2c2+α3c3+α4c4−b(ρ/p)3c6 = eα0+α1c+α2c2+α3c3+α4c4
e−b(ρ/p)3c6

, (59)

where fw = e−b(ρ/p)3c6
is the window function. The parameter, b, can be adjusted to modify the effective

width of the window. For b = 0, the maximum-entropy closure is recovered. Figure 3 shows the numerical
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Fig. 3 Predicted fifth-order non-dimensional random-velocity moment, s
, as a function of q
 and r
 for the 5-moment one-
dimensional realizable moment closure with a b=10−4; and b b=10−5

computation of s
 as predicted by the new closure for a wide range of physically realizable situations for
b = 10−4 and b = 10−5. For these two values of b, the modified realizable distribution function fully spans
the region in q
–r
 space of all physically realizable moments and values for s
 are computable. In fact, the
proposed closure is technically realizable for all positive non-zero values of b; however, in practice, b must be
large enough that it ensures that the moments of the distribution function remain numerically computable by
finite-precision arithmetic. It is interesting to note that it appears that s
 may not be a smooth function of q


and r
 as indicated by the sharp changes in the contour lines.
From Fig. 3, it is evident that the modification to the maximum-entropy distribution function has resulted

in a moment closure that covers the whole realizable moment space; however, formal proof of global hyperb-
olicity is not possible in this case. Hyperbolicity of the proposed closure is instead investigated numerically. If
the flux Jacobians are computed numerically using a second-order accurate centred finite-difference technique,
eigenvalues of the Jacobians can then be computed numerically. The system of moment equations is deemed
hyperbolic whenever the eigenvalues are real. Figure 4 shows the largest imaginary part of the computed eigen-
values as a function of q
 and r
 for the normalized distribution function, again for the cases where b=10−4

and b=10−5. The computed eigenvalues do not remain real, and hence, the system appears not to be globally
hyperbolic. Fortunately, as b decreases, the region of hyperbolicity expands greatly. It should be obvious that
for b=0, the closure will be hyperbolic but not realizable and as b is increased, the closure is now realizable
but the region of hyperbolicity is reduced and does not span the full range of realizable moments. This points
to a trade-off in the selection of the realizability parameter, b: it must be non-zero and large enough so that all
moments are numerically integrable (numerically realizable) but sufficiently small so that the closure remains
hyperbolic for the non-equilibrium flow conditions of interest.

In order to gain a feel for the degree of non-equilibrium behaviour that is contained in the hyperbolic
region, the orbits of moments describing the structure of shock waves with shock Mach numbers of 2, 4 and
8 as predicted by a high-resolution numerical solution of the BGK kinetic equation [Eq. (18)] are shown in
both Fig. 4a, b. The orbit corresponding to a shock with an upstream Mach number of 2 is quite small as
compared to that of the stronger shocks. It can be observed that, if b is taken to be 10−5, even the relatively
high shock-Mach-number case remains in the hyperbolic region. The appearance of complex eigenvalues along
the lines across which s
 exhibits very non-smooth behaviour as a function of q
 and r
 is most likely due
to the unsuitability of finite differences across this line. The hyperbolic nature of the closure and its moment
equations is difficult to evaluate on this line; however, in practice, no issues were observed.

The origin of the apparent non-smooth behaviour of s
 can be understood through an examination of the
underlying distribution function. Figure 5 shows the natural logarithm of the modified, realizable, 5-moment
distribution functions for various values of q
 with r
 = 20 and b = 10−4 and b = 10−5 (the exact locations
investigated are shown on Fig. 3). It can be seen that, when q
 = 3 (location A), the distribution function is
bimodal with most particles having low speeds and a small portion or parcel with higher velocity. As q
 is
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Fig. 4 Largest imaginary part of the numerically determined eigenvalues of flux Jacobian for the modified, realizable, 5-moment
moment closure with a b = 10−4, and b b = 10−5. The orbits of velocity moments corresponding the transition and internal
structure for stationary shock-wave solutions with shock Mach numbers of Ma=2, Ma=4, and Ma=8 are also shown with the
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Fig. 5 Natural logarithm of modified, realizable, 5-moment moment closure with a b = 10−4, and b b = 10−5 for r
 = 20 at
various values of q
. The exact locations are also shown on Fig. 3

reduced, this small parcel of faster-moving particles begins to reduce in size (i.e., the number of high-speed
particles is reduced) but, at the same time, the speed of these particles is increased. In the unmodified max-
imum-entropy case, the number of particles in this high-speed packet approaches zero as the velocity of the
particles in the parcel approaches positive infinity [31]. For the new modified realizable closure, the tendency
for the velocities of the particles in the high-speed parcel to increase is eventually overwhelmed by the win-
dowing function and a maximum in achieved. At this point, another small parcel of particles having high
negative velocities quickly appears. This appearance of the latter is what leads to the very sharp changes in
the distributions of s
. When q
 = 0 (location E) the packets of both positive- and negative-moving particles
now have the same size and speed (i.e., the number of particles in each oppositely moving high-speed parcel
is the same) yielding a symmetric distribution function.

Even though the distribution function is now realizable and it appears to have a large enough region of
hyperbolicity for many problems, it remains to be seen how well solutions of the new moment system agree
with solutions of the higher-dimensional kinetic equation. As with all moment closures, there is no formal
estimate on the error for the closing fluxes, and the predictive validity of the system must be evaluated through
numerical experimentation. This is the topic of the next subsections.
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8.3 Godunov-type finite-volume scheme

As a preliminary investigation of the predictive capability offered by the proposed higher-order realizable
hyperbolic moment equations, a numerical-solution procedure has been constructed for the one-dimensional
moment system described above. The moment equations are solved using a Godunov-type finite-volume
scheme. The HLL [21] approximate Riemann solver is used to evaluate inter-cellular fluxes, for which esti-
mates for the maximum and minimum wave speeds are based on the numerical evaluation of the eigenvalues
of an approximate flux Jacobian for the moment closure. Higher-order accuracy is achieved through piecewise
limited linear reconstruction and a point-implicit predictor-corrector time-marching scheme that treats the
hyperbolic terms explicitly and the collisional terms implicitly is used to advance the solution [35]. The fully
discrete finite-volume formulation applied to the i th cell is given by

Ũn+1
i = Un

i + �t

�x

(
Fi− 1

2
− Fi+ 1

2

)
+ �t S̃n+1

i , (60)

Un+1
i = Un

i + �t

2�x

(
Fi− 1

2
− Fi+ 1

2
+ F̃i− 1

2
− F̃i+ 1

2

)
+ �t

(
Sn

i + Sn+1
i

2

)
, (61)

where Ui is the conserved solution vector for the i th cell, Fi± 1
2

is the flux dyad evaluated at the cell interface,
and Si is the effect of the source vector on the cell-average state. The superscript n is the index for the time
step of size �t . This time-marching formulation allows the maximum time step to be determined by the usual
CFL condition rather than being governed by the relaxation-time scale of the stiff source terms.

As stated earlier, for the 5-moment closure, there is no explicit conversion from conserved moments, U,
to the closure coefficients, α. The evaluation of the highest-order flux requires that all of the coefficients be
known at each time step. These coefficients can be determined by finding the extremum of Eq. (16) with
the modified-distribution function used to define a modified density potential. This leads to a minimization
problem given by

min
α

[〈exp(αTV + σ)〉 − αTU
]
. (62)

By making the term σ dependent on the “target” moments, this function remains convex. The minimization
problem can therefore be solved using an approximate Newton’s method. In some cases, it is possible for the
computed update from Newton’s method to move the vector α to a location where numerical integration of
the moments is not possible. When this happens, a simple back-tracking technique is used to step back into a
computable region of moment space.

8.4 Numerical calculations of stationary shocks

Predictions of the structure of stationary shocks for the one-dimensional gas obtained by solving the 5-moment
version of the physically realizable moment equations are now considered. The numerical results are shown
in Fig. 6 and compared with numerical solutions to the equivalent Navier–Stokes-like equations given previ-
ously for a range of shock Mach numbers. Due to the expense of solving the re-synchronization problem, it
was only affordable with the current methodology to use a grid in physical space comprising 1,000 volumes;
however, this resolution is sufficient for the evaluation purposes here. High-resolution numerical solutions of
the one-dimensional BGK kinetic equation for this one-dimensional gas are also depicted for comparison. The
discrete-velocity method of Mieussens [39] is used to obtain the numerical solution of the one-dimensional
kinetic equation with a region of velocity space stretching from −5,000 to 5,000 m/s discretized into 500
equally spaced points for the cases with a shock Mach number of 2 and 4 and from −10,000 to 10,000 m/s
discretized into 1,000 equally spaced points for the case of the shock with a Mach number of 8. This expanded
region of velocity space was needed for the higher-Mach-number case in order to properly represent the distri-
bution function of the high-temperature gas after the shock wave. It can plainly be observed that the results for
the 5-moment system are in much better agreement with the BGK solution than those of the Navier–Stokes-like
solution. As with all hyperbolic systems, discontinuities appears in the moment solution when the incoming
flow speed exceeds the maximum wavespeed in the system. In this case, however, the size of the jump is very
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Fig. 6 Predicted normalized density and heat transfer through a stationary shock wave for a one-dimensional gas as determined
using the modified, realizable, 5-moment closure with b=10−5. The predicted shock structure is compared to results obtained by
the direct numerical solution of the BGK kinetic equation and Navier–Stokes-like equations for a range of shock Mach numbers,
a, b Ma=2, c, d Ma=4, and e, f Ma=8
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Fig. 7 Comparison of density and heat-transfer profiles through a shock wave with a Mach number of 2 computed using the
modified, realizable, 5-moment closure with varying values of the coefficient, b

small. This is in contrast to many other moment-closure predictions of shock structure where the size of the
discontinuity tends to grow with the shock Mach number and quickly dominates the profile.

The effect that varying the parameter b has on the predicted shock structure for a shock wave with a Mach
number of 2 is demonstrated in Fig. 7. It can be seen that when b is larger than 10−5, significant variations in
the front half of the shock structure are observed. Nevertheless, the solutions with b = 10−5 and b = 10−6

are quite similar. For higher Mach numbers, the solutions leave the region of hyperbolicity for larger values
of b. For the case with a Mach number of 8, even using b = 10−4 leads to large instabilities and a steady
solution cannot be computed. Also at this higher Mach number, re-synchronization of the moments and closure
coefficients becomes much more difficult for the case with b = 10−6. A value of b = 10−5 was effective for
all cases considered in this paper.

At this point, it is interesting to compare the velocity distribution function predicted by the solution of the
BGK equation to those predicted by the 5-moment maximum-entropy-based method. Three points within the
shock wave with a Mach number of 8 are considered. Firstly, the point at x/λ = −35 is investigated in Fig. 8a.
This point is immediately after the small sub shock in the moment-closure solution. As can be seen in the figure,
the predicted distribution function for the 5-moment computation is in good agreement with that predicted
during the BGK calculation. Figure 8b shows the same velocity distributions at the point x/λ = 0 (the point
where the density is halfway between the upstream and downstream values). In this figure, it is obvious that the
distribution functions are very different. What is most significant, however, is that the lower-order moments of
both distribution functions (the ones used in the moment calculation) are in close agreement. This emphasizes
the fact that, where moment methods are concerned, accurate representation of the true distribution function
is not necessarily the goal. It is sufficient to chose distribution functions that will accurately predict closing
fluxes for known input moments. In Fig. 8c, at x/λ = 20, it can be seen that the maximum-entropy-based
distribution function is again in good agreement with the kinetic solution. Figure 8d shows the normalized
closing moment, U5 = 〈mv5F〉, for the 5-moment method as compared to the BGK solution. It can be seen
that there is good agreement throughout the shock profile.

8.5 Numerical calculations of Riemann problem

In order to explore further the behaviour of the modified 5-moment closure across a range of Knudsen numbers,
a Riemann initial-value problem is considered. The case of interest consists of a two-state initial condition
with a pressure ratio of 2.5 and a density ratio of 2. Three different situations were examined corresponding
to Knudsen numbers of 2.3 × 10−5, 2.3 × 10−2 and 23, thus spanning the continuum, transition and free-
molecular flow regimes. A computational grid of 300 volumes is used. The resulting solutions are shown in
Fig. 9. Here, the 5-moment system is compared to the 3-moment closure (which is equivalent to the Euler
equations for a one-dimensional gas), high-resolution numerical solutions of the BGK kinetic equation and
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Fig. 8 Velocity PDFs predicted by high-resolution solution of the one-dimensional BGK equation for a shock wave with and
upstream Mach number of 8 compared to velocity PDFs corresponding to the numerical solution of the 5-moment realizable
moment closure with b = 10−5. Sample locations are a x/λ = −35, b x/λ = 0, c x/λ = 20. The normalized closing moment,
U5 = 〈mv5F〉, for the 5-moment method as compared to the BGK solution is shown in d

numerical solution of the equivalent Navier–Stokes-like equations. All of which were described above. Again,
the discrete-velocity method of Mieussens [39] is used to obtain the kinetic solutions now with a resolution of
200 points stretching from −2,000 to 2,000 m/s.

It can be seen in Fig. 9a, b that, in the continuum regime, all three non-equilibrium solutions treatments
are in close agreement with the equivalent Euler-like equations for this one-dimensional gas. On this scale of
interest, the regions of the flow that are not in local thermodynamic equilibrium are much smaller than the
domain of interest and are generally not resolved.

Figure 9c and d depicts the numerical results for the transition regime, lying somewhere between contin-
uum and free-molecular results. In this regime, the 3-moment model, which can only correctly account for
flows in thermodynamic equilibrium, gives an identical solution, although on a different scale, to that found
for the continuum regime. The non-equilibrium solutions of the 5-moment model, Navier–Stokes equations
and BGK equation on this scale are all still quite similar to each other in this case but are now quite distinct
from the equilibrium or equivalent Euler-like result. For the non-equilibrium solutions, the wave structures
that appear as discrete near discontinuities in the continuum situation are still identifiable but are now quite
diffuse and approach one another such that they interact, yielding a solution with a smooth transition between
the two constant initial states at either end of the solution domain.
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Fig. 9 Predicted normalized density and heat flux for the Riemann initial-value problem as determined using the modified,
realizable, 5-moment closure with b = 10−5 as compared to the equilibrium 3-moment closure, the kinetic equation, and the
Navier–Stokes-like solutions for a range of Knudsen numbers: a, b Kn=2.3 × 10−5, c, d Kn=2.3 × 10−2 and e, f Kn=23
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The free-molecular results for the Riemann initial-value problem are given in Fig. 9e, f. For this case,
the 3-moment model again yields results that are the same as those for the continuum flow solution. For the
modified 5-moment model, due to infrequent inter-particle collisions, the terms associated with the collision
operator have now become so insignificant that the moment closure essentially behaves as a purely hyperbolic
system without relaxation. It yields a solution with five distinct waves separated by essentially constant solu-
tion states. This non-equilibrium result is in contrast to the BGK kinetic equation solution, which consists of a
single smooth transition between the two constant initial states, with no clearly identifiable wave structure. The
agreement between 5-moment-closure solution and the exact or BGK kinetic solution is certainly not very good
in this case, indicating that, while it is still possible to obtain solutions, there is an upper bound on the Knudsen
number for which the 5-moment model remains physically valid. Higher-order moment closures would be
needed to improve on this result. For this highly rarefied case, the speed with which significant heat-transfer
effects are carried in the Navier–Stokes case is over predicted and is so high that any temperature differences are
smoothed out extremely rapidly. These thermal effects move so quickly relative to the hyperbolic components
of the equations that they impact the boundary of the computational domain almost immediately, and there-
fore, boundary conditions play an important role; in this case, a zero-derivative Neumann boundary condition
was used for all variables. Regardless of which boundary condition is used, the speed at which temperature
differences are diffused away leads the Navier–Stokes-like equations to predict solutions that approach the
solution to the isothermal Euler solution. This is why a two-wave solution is predicted in this case.

9 Closed-form approximation to a maximum-entropy moment closure

As stated earlier, one of the major stumbling blocks to the adoption of maximum-entropy-based moment clo-
sures is the lack of a closed-form expression for closing moment fluxes. It will now be shown that a simple
surface fit can provide an adequate approximation to the true maximum-entropy 5-moment closure above,
Eqs. (47)–(51). By using a fit in this manner, the complexity and expense of moment and distribution function
resynchronization can be avoided. Numerical-solution costs are therefore reduced by orders of magnitude.
Moreover, and somewhat serendipitously, this fit will also avoid the problem of non-realizability of the true
maximum-entropy closure.

Firstly, it should be noted that along the line defining the envelope of the region of physical realizability,
r
 = 1 + (q
)2, the distribution function is comprised of two delta functions. On this line, the closing relation-
ship can be easily found analytically and is s
 = (q
)3 + 2q
. Next, realizing that the region of realizability
is parabolic, it seems sensible to parametrize this space using a parabolic transformation of the form given by

r
 = 2(q
)2

σ
+ 3 − σ with 0 ≤ σ ≤ 2. (63)

For this mapping, lines of constant σ are parabolas and σ is the distance down from local equilibrium, r
 = 3,
that these lines intersect the r
 axis. These parabolas have curvatures that increase from σ = 2, where the
parabola coincides with the limit of physical realizability, to σ = 0 where the parabola collapses to the line
q
 = 0 and r
 ≥ 3, thus covering the entire realizable region.

It was found through numerical experimentation that along the lines of constant σ , the moment s
 can
be well approximated by a cubic function of q
 as s
 = p3(σ )(q
)3 + p1(σ )q
. The functions p3(σ ) and
p1(σ ) must be fit by first numerically finding finite-difference approximations to these derivatives along the
line q
 = 0 and 1 ≤ r
 ≤ 3. These data points are then fit using standard fitting software; it has been found
that these functions are well approximated as

p1 = a1 + b1σ + c1σ
2 + d1σ

3 + e1σ
4 + f1σ

5 + g1σ
6, (64)

with

a1 = 9.9679007422678190 e1 = 4.3920303941514343
b1 = −9.234367231975216 f1 = −1.452821303578764
c1 = 8.2142492688404296 g1 = 0.2006200057926356
d1 = −7.372320367163680

,

and

p3 = a3 + b3σ + c3σ
2 + d3σ

3

1 + e3σ + f3σ 2 + g3σ 3 , (65)
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with

a3 = −20840.93761193234 e3 = −1077.797102997202
b3 = 7937.3772948278038 f3 = −3072.303291055466
c3 = 405.05250560053173 g3 = 1056.0890741355661
d3 = −329.3827765656151

.

Having determined the fits above, the closing flux is expressible as a closed-form function of q
 and r
.

9.1 Accuracy of fit and hyperbolicity

Figure 10a, b show the non-dimensionalized closing flux, s
 of the 5-moment maximum-entropy system as
well as the surface fit shown above. The relative error is plotted in Fig. 11. It can be seen that away from the
line on which the maximum-entropy distribution does not exist and the predicted flux is singular, the fit is quite
good. In practice, the fact that the fit does not approximate the singularity well is actually advantageous as the
fit transitions smoothly across the r
 axis and numerical overflow is avoided.

Once again, there is no formal proof of hyperbolicity when this surface fit is used for the closing flux. How-
ever, experience gained from numerical calculation of many flows using this fit suggests that non-hyperbolicity
does not seem to be an issue for a wide range of conditions.
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Fig. 12 Predicted normalized density and heat transfer through a stationary shock wave for a one-dimensional gas as determined
using a surface fit for the closing flux of the maximum-entropy 5-moment closure. The predicted shock structure is compared to
results obtained by the direct numerical solution of the BGK kinetic equation and Navier–Stokes-like equations for a range of
shock Mach numbers. a, b Ma=2, c, d Ma=4, and e, f Ma=8
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9.2 Numerical calculations of shock structures

As a preliminary investigation into the behaviour of the fitted moment closure, shock waves of Mach numbers
2, 4 and 8 are again considered. Once again, the same Godunov-type finite-volume scheme is used. The costly
re-synchronization step is now unnecessary as the closing flux is known as a function of the known moments.
A computational mesh with 5,000 volumes can now easily be used to ensure a solution that is entirely grid-con-
verged. Eigenvalues must still be determined in order to use the HLL flux function; these are found numerically
using the analytic flux Jacobian.

Comparisons are once again made to high-resolution simulation of the kinetic equation, Eq. (18), with the
same relaxation collision operator as was used in the moment equations [5] and with the equivalent Navier–
Stokes-like equations for this situation. Figure 12a, c, e show normalized density profiles for shocks with a
Mach number of 2, 4 and 8, respectively, while normalized heat transfer is shown in Fig. 12b, d, f.

It can be seen that agreement between the moment equations and the BGK equation is again very good,
far better than the Navier–Stokes-like equations. The profiles predicted by the surface fit are very comparable
to the profiles predicted by the modified, realizable, 5-moment system of Sect. 8. The same relatively small
discontinuities in the shock profile are again present. Figure 11 shows the orbits traced by these shock profiles
in the q̂–r̂ plane. All shocks begin at equilibrium, jump to a non-equilibrium state across the discontinuity and
return smoothly to equilibrium. It can be seen that in all cases, the area of largest relative error in the fit is
avoided.

9.3 Numerical calculations of Riemann problem

Finally, the 5-moment-closure fit it used for the computation of the Riemann problem of Sect. 8.5. For this
case, a computational mesh comprising 3, 000 cells was used. The results are shown in Fig. 13. Once again,
solutions are almost identical to those obtained with the modified, realizable, 5-moment closure. The same
transition from a three-wave equilibrium solution through a diffuse smooth transition into a 5-wave non-equi-
librium solution is observed. The only difference in solution that is noticeable to the eye is in the heat-flux
prediction for the free-molecular case (Figs. 9f, 13f). These solutions are obtained in orders of magnitude less
time than the previous calculations with the costly re-synchronizations of moments and closure coefficients.

10 Remarks regarding computational cost

The computational expense of the different techniques considered in this chapter varied widely. Although real
effort has been made to optimize the solution methods or computer implementations of the techniques, it is
felt that some remarks on computational cost are warranted.

The numerical solution of the one-dimensional kinetic equation for most of the problems above was the
most expensive by a significant amount. Such computations for a realistic three-dimensional gas would obvi-
ously require huge computational resources. For example, if the same resolution in velocity space was used in
three space dimensions as was used for the shock-structure calculations above, the solution vector in each cell
would have over a hundred million entries. This is clearly not an attractive option.

The prospects for the moment closure based on a realizable distribution function shown above are not
much better. A similar curse of dimensionality that afflicts the kinetic method also affects this method. The
extension to a three-dimensional gas would require the integration of distribution functions that would then
exist in a three-dimensional space. Thus, the computational costs of the moment re-synchronization procedure
would appear to be prohibitively expensive.

The surface-fit closure is a much more affordable option. The computations carried out above only required
several minutes of computing time. Moreover, the extension of this method to a realistic three-dimensional
gas does not need to bring the same devastating cost increase as either the kinetic method or the method
based on realizable distribution functions. The simplest three-dimensional equivalent to the maximum-entropy
5-moment system shown above is a 14-moment system. Closing fluxes would therefore have to be fit for a
higher-dimensional space, but not higher by orders of magnitude.

The time required for the Navier–Stokes-like computations varied based on the Knudsen number. For
low-Knudsen-number cases, computations were very fast and required only a matter of seconds in computing
time. However, as the Knudsen number increased and the length scales became relatively smaller, the time-
step restriction required for stability of the rather simple explicit calculation procedure adopted here becomes
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Fig. 13 Predicted normalized density and heat flux for the Riemann initial-value problem as determined using a surface fit for the
closing flux of the maximum-entropy 5-moment closure as compared to the equilibrium 3-moment closure, the kinetic equation,
and the Navier–Stokes-like solutions for a range of Knudsen numbers: a, b Kn = 2.3 × 10−5, c, d Kn = 2.3 × 10−2 and e, f
Kn=23
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very restrictive due to the partially elliptic nature of the equations. Use of an implicit solution scheme would
alleviate this issue.

Solution of the equilibrium 3-moment equations was obviously far faster than all of the other methods.
However, with no treatment for non-equilibrium effects of any sort, the usefulness of these equations for
practical problems involving any departure of the solution from equilibrium is very limited.

11 Comparison to other moment closures

Maximum-entropy-based moment closures are initially attractive because of the mathematical properties they
posses, most notably their robust hyperbolicity. However, for the simplified one-dimension physics considered
here, it is also possible to construct many other hyperbolic closures. It was only after numerical implementation
and testing of the one-dimensional maximum-entropy closure considered here that the remarkable agreement
with the kinetic scheme was observed. It would be highly advantageous if other closures could provide similar
accuracy without issues of realizability or the lack of an exact closed-form expression for the flux.

One set of moment equations which is hyperbolic for one-dimensional physics is the set based on Pear-
son-IV distribution functions recently proposed by Torrilhon [57]. For one-dimensional physics, Torrilhon
proposed two hyperbolic closures. Both are 4-moment closures, and therefore, the closing relations are for r̂ ,
rather than ŝ. One is referred to as the “realizable” Pearson-IV closure as it possesses a realizable underlying
distribution function. For this closure, the closing flux is

r̂ = 3

(
1 + q̂2 22 + q̂2

32 − q̂2

)
. (66)

A second variant of the Pearson-IV closure is the so-called singular closure. The underlying distribution func-
tion of this closure corresponds to a limit for the existence of the underlying Pearson-IV distribution. It leads
to a closing flux of

r̂ = 3

(
1 + 1

2
q̂2

)
. (67)

Figure 14 shows the shock structure predicted by these closures for a shock wave with a Mach number of 4. It
can be seen that while the agreement for the Pearson-IV-based moment closures is fairly good, it is not of the
same quality as that of the maximum-entropy-based approach described earlier.

In order to reinforce the point that robust hyperbolicity is only one desirable characteristic of moment
closures and that models will eventually be judged on their agreement with kinetic solutions or experiment,
the poor predictive capabilities of several ad hoc globally hyperbolic closures are also now demonstrated.
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Fig. 14 Density and heat-flux profiles for a shock wave with a Mach number of 4 as predicted by the hyperbolic, one-dimensional
realizable and singular Pearson-IV-based moment closures as compared to high-resolution solution of the BGK equation
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Fig. 15 Density and heat-flux profiles for a shock wave with a Mach number of 4 as predicted by several ad hoc 4-moment
closures as compared to high-resolution solution of the BGK equation

These closures are constructed by assuming a polynomial form for the closing flux that possesses the correct
symmetries. The flux Jacobian can then be calculated analytically and the discriminant of the characteristic
equation is found. Coefficients are chosen based solely on the requirement that this discriminant be positive
definite and thus the eigenvalues remain real and the closure remains globally hyperbolic. It is possible to
construct 4-moment closures with a closing flux that is similar in form to the realizable Pearson-IV closure by
assuming a flux of

r̂ = 3
(
1 + a4q̂2) . (68)

Solutions can then be investigated for different values of a4. Once again, a shock wave of Mach number 4 is
considered in Fig. 15 for three different values of a4 (a4 = 3, a4 = 6 and a4 = −3). It can be seen that, as
should be expected, agreement with the kinetic solution is not very good. This emphasizes the idea that strict
hyperbolicity should never be the end goal in the development of moment closures. In the end, the accuracy
of the model for practical non-equilibrium situations will determine its usefulness.

It is perhaps more interesting to investigate several ad hoc 5-moment closures as they have the same number
of variables as the maximum-entropy closures considered herein and may provide a comparison that is more
fair. The form of the closing flux considered in this work is of the form
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Fig. 16 Density and heat-flux profiles for a shock wave with a Mach number of 4 as predicted by several ad hoc 5-moment
closures as compared to high-resolution solution of the BGK equation
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ŝ = a5q̂ + b5q̂(r̂ − 3) + c5q̂(r̂ − 3)2 + d5q̂3. (69)

These particular terms are chosen because ŝ must be an odd function of q̂ for the resulting closure to have the
proper symmetry. Again, three possible choices of coefficients are considered, (a5 = 6, b5 = 2, c5 = 0,
d5 = 2), (a5 = 7, b5 = 5, c5 = 5, d5 = 5) and (a5 = 10, b5 = 2, c5 = 1, d5 = 3). In Fig. 16, the shock
profiles predicted by these closures for the same shock with a Mach number of 4 are considered. Once again, it
can be seen that agreement with the kinetic solution is not nearly as good as for the maximum-entropy closure,
even though the number of moments is the same. Though global hyperbolicity is a desirable mathematical
property for moment systems, it alone does not assure a model will be useful. The fact that maximum-entropy
closures, and other closures-based thereon, are derived based on justifiable physical arguments helps to ensure
that they lead to accurate predictions.

12 Conclusions

Although maximum-entropy-based moment closures are known to have several apparent disadvantages, includ-
ing a lack of a closed-form expression for closing fluxes and regions of non-realizability, it has been demon-
strated that these difficulties can be handled in practice, at least for some closures that contain heat transfer.
Moreover, numerical predictions obtained using these closures for simple, one-dimensional situations suggest
considerable promise for their use in more complex, multi-dimensional flow situations.

The preceding discussion has proposed a technique for the construction of realizable 5-moment moment
closures. For this technique, the underlying distribution function is a modification of the maximum-entropy
distribution function that ensures universal moment realizability for the entire range of physical validity. Global
hyperbolicity has been lost; however, through careful selection of the parameter, b, moments remain numer-
ically realizable and the closure remains hyperbolic for a very wide range non-equilibrium behaviour. The
technique leads to usable moment equations; however, the cost of their numerical solution remains somewhat
high. Numerical integration of distribution functions is costly, even for the one-dimensional case. For a truly
three-dimensional gas, the costs associated with the resynchronization procedure would be overwhelming.
However, the numerical results for the one-dimensional case shown above show the promise of hyperbolic
moment closures to provide very accurate prediction of non-equilibrium flows. If such closures are going to
be used as a practical tool, more computationally affordable variants are required.

It has also been shown that, for this 5-moment system, a simple surface fit can provide equally good
flow predictions for the cases considered. This includes predictions for highly non-equilibrium strong shocks.
Eigenvalues must still be obtained numerically; however, the cost of using the surface fit remains orders of
magnitude lower than the technique of using the modified, realizable distribution function with its costly
re-synchronizations.

Extension of the methods considered here to a fully three-dimensional gas is, however, not necessarily
simple. It is anticipated that the modified-distribution technique of Sect. 8 will technically extend to three-
dimensions. Nevertheless, the cost of the accurate numerical integration of multi-dimensional distribution
functions required for the re-synchronization step is expected to be overwhelming.

If hyperbolic moment closures are to be affordable for large-scale, practical, multi-dimensional problems,
closing fluxes should be expressible as a function of known moments. This was the case for the simple sur-
face fit shown above. A three-dimensional extension of this technique would require the determination of an
appropriate mapping [similar to that in Eq. (63)] after which closing fluxes can be fit easily. The challenge in
this case may be that an appropriate mapping may not be obvious for multi-dimensional flows.

In summary, it seems that the issues of realizability associated with higher-order maximum-entropy moment
closures for gasdynamics should be regarded as an inconvenient part of an effective model that must be
addressed, rather than a problem that is chronic to a model that should be avoided.
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