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The application of the Gaussian moment closure to continuum and microscale flows with embedded, and possibly

moving, boundaries is considered. TheGaussianmoment closure is briefly reviewed, as is an extension that allows for

the treatment of flow of diatomic gases. A parallel upwind, finite volume schemewith adaptivemesh refinement using

a Roe-type numerical flux function is described for solving the hyperbolic system of partial differential equations

arising from this closure on multiblock meshes with embedded and possibly moving boundaries. The purely

hyperbolic nature of moment equations makes them particularly insensitive to discretizations involving grids with

irregularities. Typical of adaptive mesh-refinement, embedded-boundary, and Cartesian cut-cell treatments, mesh

irregularities are difficult to dealwithwhen secondderivatives are required by the physicalmodel. Such is the case for

the Navier–Stokes equations. Numerical solutions to mathematical descriptions involving second derivatives show

significantly degraded solution quality as compared to solutions of first-order quasi-linear moment equations. Solid-

wall boundary conditions are implemented via a Knudsen-layer approximation. Comparisons are made between

numerical solutions of theGaussianmodel on both body-fittedmeshes andmesheswith embedded boundaries, as well

as to experimental and approximate analytic results for a variety of flow problems. The benefits and potential of the

proposed approach for unsteady microscale flow applications having complex geometries are clearly demonstrated.

Nomenclature

A = computational cell area
ai = External acceleration field
ci = particle random velocity vector; vi − ui
d = plate gap width and cylinder diameter
Er = molecular rotational-energy density
F = vector of x-direction fluxes
F = probability density function
f = frequency
G = vector of y-direction fluxes
G = Gaussian distribution function
GD = Gaussian distribution function for diatomic gas
H = flux dyad; �F;G�
I = molecular moment of inertia
k = Boltzmann’s constant
Kn = flow Knudsen number
l = reference length scale
M = Maxwell–Boltzmann distribution function
M = Velocity-dependent weight
Ma = flow Mach number
m = gas-particle mass
n = unit normal
p = thermodynamic pressure
Re = flow Reynolds number
S = source vector
S = speed ratio
T = temperature
t = time

U = vector of moments
ui = bulk velocity
vi = gas-particle velocity vector
w = velocity of a cell face
xi = position vector
α = accommodation coefficient
Γα = vector of velocity-dependent weights
γ = ratio of heat capacities
Δl = length of a cell face
Θij = anisotropic temperature tensor
Λα = vector of closure coefficients
λ = mean free path
μ, μB = dynamic and bulk viscosity
ρ = gas density
τ, τt, τr = general, translational, and rotational relaxation times
ωα = molecular angular velocity

I. Introduction

N ONEQUILIBRIUM microscale flows, such as those encoun-
tered in the complex microsized conduits of microelectro-

mechanical systems and flows associated with chemical-vapor
deposition, are difficult to solve using existing mathematical models
and numerical methods [1,2]. In most cases, these microscale flows
are in the subsonic to low-supersonic regimes and, due to their
microgeometries, have low Reynolds numbers Re and remain
laminar. Flow Knudsen numbers Kn in the range 0.01 < Kn < 10
maybe encountered, even for pressures above one atmosphere, and as
a result, noncontinuum and thermal nonequilibrium effects can
significantly influence momentum and heat transfer phenomena in
typicalmicrochannel flows [3,4]. The situation is further complicated
by the fact that, in many practical cases, microscale flows can involve
complex moving and/or evolving boundaries and this can require
special gridding techniques.
Particle-simulation techniques, such as the direct-simulation

Monte Carlo method [2,5,6], and techniques based on the direct
discretization of the kinetic equation, such as the approach proposed
by Mieussens [7], have been developed for the prediction of general
nonequilibrium gaseous flows. However, for near-continuum
through to transitional-regime flows and for flows with low Mach
numbers, the computational costs incurred by these techniques are
considerable and have prohibited their widespread usage [2,6].
Alternate approaches that show considerable promise for the

Received 22 January 2013; revision received 20 January 2014; accepted for
publication 11March 2014; published online 21 July 2014.Copyright©2014
by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved. Copies of this paper may be made for personal or internal use, on
condition that the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 1533-385X/14 and $10.00 in correspondence with the CCC.

*Institute for Aerospace Studies, 4925 Dufferin Street; currently
Department of Mechanical Engineering, University of Ottawa, Ottawa,
Ontario K1N 6N5, Canada; james.mcdonald@uottawa.ca.

†Institute for Aerospace Studies, 4925 Dufferin Street; currently
Combustion Research and Flow Technology, Pipersville, PA 18947; j
.sachdev@utoronto.ca. Member AIAA.

‡Professor, Institute for Aerospace Studies, 4925 Dufferin Street; groth@
utias.utoronto.ca. Senior Member AIAA.

1839

AIAA JOURNAL
Vol. 52, No. 9, September 2014

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

O
ct

ob
er

 1
8,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
25

76
 

http://dx.doi.org/10.2514/1.J052576


treatment of microscale flows are based on moment closures of the
Boltzmann equation [8–12]. Moment closures provide an extended
set of hyperbolic partial differential equations (PDEs) describing the
transport of macroscopic fluid properties. In general, the solution of
these PDEs requires considerably less computational effort than
obtaining solutions using a particle-simulation or direct-discretiza-
tion methods.
The treatment of nonequilibrium flows with a purely hyperbolic

model brings additional advantages from a computational
perspective. The hyperbolic moment equations involve only first-
order derivatives (this is in contrast to other transport equations that
have an elliptic nature and require the evaluation of second- and/or
higher-order derivatives) and are therefore well suited to solution by
the class of very successful Godunov-type finite volume schemes that
make use of adaptive mesh refinement (AMR) with treatments for
embedded and moving boundaries and interfaces [12–24]. For
hyperbolic systems, schemes of this type are robust, relatively insen-
sitive to irregularities in the computational grids, provide accurate
resolution of discontinuities, and permit the systematic application of
physically realistic boundary conditions. When coupled with AMR,
embedded boundaries permit treatment of complex and evolving
flow geometries and the resolution of highly disparate length scales
while at the same time optimizing the usage of computational re-
sources. These numerical schemes also have narrow stencils, making
them suitable for implementation on massively parallel computer
architectures [19–21,23–28]. Note that higher than first-order
derivatives can be problematic when using adaptive mesh refinement
or meshes with embedded boundaries, as irregularities in the grid can
make accurate evaluation of these derivatives difficult. In particular,
there are serious tradeoffs between accuracy and positivity (related to
the satisfaction of the maximum principal) of the spatial discretiza-
tion operator for discretizations of second-order derivatives [29,30].
Both accurate and positive discretizations of the Laplacian operator
can be difficult to achieve on computational meshes having large
variations in the sizes of adjacent cells, as can typically occur inAMR
techniques. This situation is avoided with hyperbolic moment
closures.
With this viewpoint in mind, the potential of hyperbolic moment

closures combined with Godunov finite volume discretizations,
AMR, and embedded boundaries is explored herein for the efficient
and accurate simulation of continuum and nonequilibrium micro-
scale flows with moving boundaries and interfaces. Numerical
solutions of the Gaussian closure [9,21,31,32] (a low-order member
of the Levermore hierarchy) are considered. Following a brief review
of the Gaussian closure, a novel parallel finite volume scheme with
AMR and Riemann-solver-based numerical flux function is
described and used for solving the Gaussian moment equations on
multiblock meshes with embedded and possibly moving boundaries
[23,24]. After establishing the accuracy of the finite volume scheme
and AMR scheme with embedded-boundary treatment, numerical
predictions are then examined for a number of flow problems with
embedded and/or evolving boundaries in both the continuum and
transitional regimes. The results well illustrate the potential of
moment closures and demonstrate the benefits of a purely hyperbolic
treatment.

II. Governing Transport Equations

A. Method of Moments

A probabilistic treatment is adopted in classical gas-kinetic theory
in order to represent the microscopic behavior of gases and model
noncontinuum flows. This is accomplished by defining a probability
density function for the gas, F �xi; vi; t�, in six-dimensional phase
space that reflects the probability of finding particles at a given
location xi and time t having a velocity vi. The time evolution ofF is
governed by the Boltzmann equation [33–35], an integrodifferential
equation having the form

∂F
∂t
� vi

∂F
∂xi
� ai

∂F
∂vi
� δF

δt
(1)

where ai is the acceleration due to external forces and is taken to be
zero in the present work. The term on the right-hand side of the
equation, δF∕δt, is theBoltzmann collision operator representing the
time rate of change of the distribution function produced by binary
interparticle collisions. This term involves a multidimensional
integral over both velocity space and solid angle and can, in many
cases, be challenging to evaluate. Fortunately, for many engineering
applications, the detailed evaluation of the collision operator can be
avoided by using simplifying approximations such as the relaxation
time or Bhatnagar–Gross–Krook (BGK) model, as first proposed by
Bhatnagar et al. [36]. In the relaxation-time model, the collision
operator is represented by a source term

δF
δt
� −

F −M
τ

(2)

where M is the well-known Maxwell–Boltzmann distribution, the
equilibrium solution to the Boltzmann equation toward which
the nonequilibrium solution is relaxing; and τ is a characteristic
relaxation time for the collision processes. The relaxation time can be
related to the Knudsen number Kn, and a reference length scale l
using Kn � λ∕l and vth � λ∕τ, where vth is the mean or thermal
speed of the particles and λ is the mean free path traveled by the
particles between collisions. Thus,

τ � λ

vth
� Knl

vth
(3)

showing that the relaxation time scales directly with Knudsen
number.
The BGK operator of Eq. (2) is only an approximation to the

Boltzmann collision integral and ignores the detailed nature of
interparticle interactions. Nevertheless, it retains many of the qualita-
tive features of the true collision integral and is thought to be
sufficient for the present study of microscale flows. In particular, the
relaxation-time approximation preserves the usual collisional
invariants and, under equilibrium conditions (Kn → 0 and τ → 0),
dictates that δF∕δt � 0 and F �M as required. For collisionless
flows (Kn → ∞ and τ → ∞), the timescales of interest are much
smaller than τ and δF∕δt ≈ 0, also as expected.
Macroscopic or “observable” properties of the gas can be obtained

by taking appropriate velocity moments of F . This is done by
multiplying the distribution function by a velocity-dependent weight
M and integrating over all velocity space. For example, if the gas-
particle mass m is chosen as the weight, the corresponding velocity
moment is the fluid density given by

ρ �
Z

∞

−∞
mF�xi; vi; t� d3v � hmF i (4)

Other moments of interest include the bulk velocity

ui �
< mviF >

ρ
(5)

and anisotropic pressure tensor

Pij �< mcicjF > (6)

Here, ci � vi − ui is the random component of particle velocity. The
deviatoric stress tensor τij is related to the pressure tensor as
τij � δijp − Pij, where p � Pii∕3 is the thermodynamic pressure.
Transport equations governing the time evolution of the macro-

scopic quantities can be derived by evaluating velocity moments of
the Boltzmann equation given in Eq. (1). This yields the so-called
Maxwell’s equation of change [35] describing the transport of the
moment hMF i, which can be expressed inweak conservation form as

∂
∂t
hMF i � ∂

∂xi
hviMF i � −

1

τ
�hMF i − hMMi� (7)
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where the BGK collision operator has been used in the evaluation of
the collision terms.
Investigation of Eq. (7) reveals that the method of moments for the

macroscopic quantities does not yield a closed set of PDEs. This is
due to the fact that the time evolution of one moment hMF i depends
on the divergence of a moment of one order higher in velocity
hviMFi. However, the time evolution of this higher-order moment
depends on the spatial derivatives of a velocity moment of even
higher order. This process continues ad infinitum, and the application
of the method of moments to a general nonequilibrium gas would
therefore seem to require the solution of an infinite number of
coupled PDEs. This is obviously not practical.

B. Grad-Type Moment Closures

The most common technique for obtaining a closed system of
moment equations for practical applications is to use an assumed
form for the distribution function. That is to say,F is only allowed to
deviate from equilibrium in a prescribed fashion. Higher-order mo-
ments then automatically become functions of lower-order moments,
and the system of equations is closed.
Perhaps the most well-known assumed form for the non-

equilibrium distribution function is that due to Grad [8,11]. Grad-
type perturbative expansions for F are constructed about the
equilibrium solutionM through the use of Hermite polynomials that
can be expressed more generally as a regular polynomial expansion
of the form

F �M�1� A� Bαcα � Cαβcαcβ �Dαβγcαcβcγ� · · · � (8)

where A, Bα,Cαβ, andDαβγ are expansion coefficients. These coeffi-
cients depend onmacroscopic fluid properties but are independent of
the particle random velocities. Depending on the accuracy of the
approximation that is required, the expansion is truncated to some
prescribed order or degree in velocity space. This results in a closed
systemof PDEs governing the evolution of a finite set ofmacroscopic
fluid quantities.
AlthoughGrad-type expansions result in a closed set of hyperbolic

transport equations for a finite set of velocity moments, the assumed
distribution function can in many cases be nonphysical. It is possible
for Eq. (8) to yield negative probabilities for some values of the
particle velocity. This is particularly true in the tails of the distribution
function for large random velocities. More significantly, closure
breakdown and nonhyperbolicity of the moment equations can occur
even for physically realizable moments close to local equilibrium. As
a consequence, the moment equations can become ill-posed for
initial-value problems, a property that is obviously highly undesir-
able [37,38]. The development of significant nonpositive portions of
the distribution function and the loss of hyperbolicity of the moment
equations tend to occur at roughly the same time, and these two issues
may be related. Cai et al. [39] have very recently considered
alterations of Grad-type closures in order to yield globally hyperbolic
transport equations for arbitrary order expansions; however, the
viability and accuracy of such an approach for a modest number of
moments is questionable.

C. Gaussian Closure for a Monatomic Gas

Levermore [9] has proposed an alternative hierarchy of non-
perturbative maximum-entropy moment closures with many
desirable mathematical properties, including a positive-valued
distribution function, hyperbolic moment equations, realizability of
predicted moments, and a definable entropy relation [9,10,12]. This
closure hierarchy is also based on an assumed form for the
distribution function; however, in this case, F is assumed to have
the form of a maximum-entropy distribution given by

F � eΛαΓα (9)

where the closure coefficients Λα are functions of the prescribed
macroscopic moments of interest, and Γα are velocity-dependent
polynomial basis functions that are chosen following a procedure

proposed by Levermore [9]. The maximum-entropy distribution is
defined to be the distribution that maximizes the physical entropy
subject to the constraint that it be consistent with a given finite set of
velocity moments [9,10,12]. It may also be viewed as the most likely
distribution function subject to the constraint that it yield a given
finite set of moments [22,40]. Maximum-entropy formalisms have
also been applied in a wide range other fields, from the modeling of
liquid spray formation [41] to the prediction of radiative heat
transfer [42–46]. Although maximum-entropy closures could be
equally referred to as “minimum-entropy” closures, as they formally
correspond to the distribution function having the minimum
mathematical entropy for a given set of moments, the more
commonly used term “maximum-entropy” is applied herein in
reference to the closures’ maximization of physical entropy.
For a monatomic gas, the Levermore hierarchy included 5-, 10-,

14-, 21-, 26-, and 35-moment closures [9]. The lowest order of these
closures, other than the five-moment local-equilibrium closure
resulting in the Euler equations of compressible gas dynamics, is the
10-moment or Gaussian closure. It is constructed by using the basis
functions

Γα � f1; ci; cicjg (10)

This leads to a closed-form analytical expression for the assumed
form of the distribution function, the Gaussian distribution G, given
by

F � G � ρ

m�2π�3∕2�detΘ�1∕2
exp

�
−
1

2
Θ−1
ij cicj

�
(11)

where Θij � Pij∕ρ is defined to be the anisotropic “temperature”
tensor. TheGaussian distribution appears to have been first derived in
early work byMaxwell [47] and then rediscovered in subsequent but
independent research by both Schlüter [48,49] and Holway [50–53].
It may be regarded as a generalization of the bi- and tri-Maxwellian
velocity distribution functions with a form that does not require the
identification of the planes of principal stress. This approximate
nonequilibrium distribution possesses a Gaussian-like distribution in
each of the principal strain axes. Physically, it corresponds to a
nonequilibrium condition with a different temperature in each
direction.
The Gaussian closure yields a strictly hyperbolic set of macro-

scopic transport equations that, in addition to equations for the gas
density ρ and momentum ρui, contain equations for the symmetric
nonequilibrium pressure tensor Pij. Note that, by construction, the
third-order velocity moments of the Gaussian are zero, < mcicjckG >
� 0, such that the heat flux vector, qi � 1

2
< mcicjcjG >, also

vanishes. This points to a somewhat significant limitation of the
Gaussian closure: its inability to account for the effects of heat transfer.
Nevertheless, this low-order closure is very representative of what
may be achieved with hyperbolic closures of the type proposed by
Levermore [9] and is therefore considered here. In particular,
preliminary numerical studies by Brown et al. [31,32], McDonald and
Groth [12,21,22,54], Lam and Groth [55], Suzuki and van Leer [56],
Suzuki et al. [57], andBarth [58] indicate that closures of this type hold
considerable promise for describing nonequilibrium transport, at least
for subsonic and transonic flows in the slip and transition regimes.
Before continuing, it should be mentioned that, although the

maximum-entropy closures of the Levermore [9] hierarchy possess
many desirable properties, several difficulties are encountered in the
practical application of the closures beyond the level of the Gaussian
model. First, a numerical approach is required to relate the coeffi-
cients of the maximum entropy distribution Λα to the predicted
macroscopic moments, as explicit analytical expressions are not
achievable [9]. This significantly increases the computational costs of
carrying out a computation using the closures. Even more problem-
atic, Junk [59], Junk and Unterreiter [60], Schneider [61], and Hauck
et al. [62] have shown that there are physically admissible regions of
solution space defined by thevelocitymoments forwhich the entropy
minimization problem is not solvable and the closure coefficients
cannot be obtained. This is not a desirable feature for practical
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computations of nonequilibrium flows, and it has prevented thewider
application of the closures. Possible solutions or remedies for dealing
with the nonrealizability of maximum-entropy closures have been
proposed recently by Au [63], Schneider [61], Hauck et al. [62], and
McDonald and Groth [12,22,64], and they appear to hold
considerable promise. Groth et al. [65,66] have also proposed an
alternative hierarchy of perturbative closures based on the Gaussian
closure with a view to achieving practical and reliable mathematical
tools for computation. Nevertheless, the focus of this study is to
highlight what may be achieved with a hyperbolic description of
nonequilibrium flows combinedwith an effectiveAMRfinitevolume
numerical solution strategy, and the development of appropriate
high-order closures will be the subject of future research.

D. Gaussian Closure for a Diatomic Gas

The preceding description is valid for a monatomic gas having no
internal degrees of freedom or energy modes. An extension to the
standard Gaussian closure for monatomic gases as proposed by
Hittinger [67] allows for the treatment of diatomic gases and is used in
this work. A similar extension that allows for polyatomic gases has
also been proposed by Le Tallec [68]. The diatomic Gaussian closure
comes from assuming the following form for the velocity probability
density function:

GD �
ρI

m2�2π�5∕2�detΘ�1∕2�p∕ρ�

�
T

Tr

�

× exp

�
−
1

2
�Θ−1

ij cicj � Rαβωαωβ�
� (12)

where ωα is the angular velocity vector of the molecule with just two
nonvanishing components, I is the moment of inertia of a gas
molecule, p is again the usual thermodynamic pressure, T is now the
temperature associated with the translational energy, Tr is the
rotational temperature, and Rαβ � �ρI∕mp��T∕Tr�δαβ. Following
McDonald and Groth [21,22] and Hittinger [67], a modified
relaxation-time approximation for the collision operator can be used
to represent interparticle collisions given by

δF
δt
� −

F − ED
τt

−
ED −MD

τr
(13)

where it is assumed that the nonequilibrium distribution relaxes
toward a distribution ED having translational degrees of freedom that
are in equilibrium with each other but not in equilibrium with the
rotational degrees of freedom. The equilibriumMaxwellian distribu-
tion in this case for a diatomic gas MD has the form

MD �
ρI

m2�2π�5∕2�p∕ρ�5∕2
exp

�
−
1

2

ρ

p

�
c2 � I

m
ω2

��
(14)

The preceding model allows different relaxation times for the
translational and rotational modes, τt and τr, and simple approximate
expressions can be used to relate the relaxation times to the gas
viscosities:

τt �
μ

p
; τr �

15μB
4p

(15)

where μ is the fluid viscosity, and μB is the bulk viscosity; empirical
relations can be used to determine the related viscosities. Generally,
τr is larger but of the same order of magnitude as τt.
It is worth mentioning that further extensions of the Gaussian

closure are possible to correct the defect in the missing heat flux. A
regularization technique has been developed recently by McDonald
and Groth [54] similar to that proposed by Struchtrup and Torrilhon
[11,69] and can be applied to incorporate anisotropic thermal-
diffusion effects. However, the regularization approach disrupts the
quasi-linear hyperbolic form of the model and leads to an extended
nonhyperbolic fluid-dynamic descriptionwith high-order derivatives

having an elliptic nature. This is considered to be deleterious in the
context of the AMR and moving boundary treatment considered
herein due to the challenges in accurately evaluating higher than first-
order derivatives on irregular meshes. A strictly hyperbolic treatment
is deemed to be most desirable and, for this reason, the regularized
extension of the Gaussian closure is not considered here.

E. Gaussian Closure Moment Equations

The moment equations arising from the Gaussian closure for a
diatomic gas can be written as

∂
∂t
�ρ� � ∂

∂xi
�ρui� � 0 (16)

∂
∂t
�ρui� �

∂
∂xj
�ρuiuj � Pij� � 0 (17)

∂
∂t
�ρuiuj � Pij� �

∂
∂xk
�ρuiujuk � uiPjk � ujPik � ukPij�

� −
1

τt

�
Pij −

δij
3
Pkk

�
−

2

15τr
�Pkk − 3Er�δij (18)

∂
∂t
�Er� �

∂
∂xi
�uiEr� � −

1

5τr
�3Er − Pkk� (19)

where Er is the rotational energy given by Er � p�Tr∕T�. A very
similar but reduced set of transport equations can be obtained for
monatomic gases. For nonequilibrium flows in two space dimen-
sions, the Gaussian moment equations can be reexpressed in weak
conservation form as

∂U
∂t
� ∂F

∂x
� ∂G

∂y
� S (20)

where x and y are the coordinates of the two-dimensional Cartesian
frame, and U is the vector of conserved solution variables given by

U��ρ; ρux; ρuy; ρu2x�Pxx; ρuxuy�Pxy; ρu2y�Pyy; Pzz; Er �T

Here,F andG are x- and y-direction components of the solution flux
dyadH � �F;G� having the forms

F�

2
6666666664

ρux
ρu2x�Pxx
ρuxuy�Pxy
ρu3x�3uxPxx

ρu2xuy�2uxPxy�uyPxx
ρuxu

2
y�uxPyy�2uyPxy

uxPzz
uxEr

3
7777777775
; G�

2
6666666664

ρuy
ρuxuy�Pxy
ρu2y�Pyy

ρu2xuy�2uxPxy�uyPxx
ρuxu

2
y�uxPyy�2uyPxy
ρu3y�3uyPyy

uyPzz
uyEr

3
7777777775

and S is the source vector associated with collisional processes given
by

S �

2
6666666666664

0

0

0

− 1
3τt
�2Pxx − Pyy − Pzz� − 2

15τr
�Pxx � Pyy � Pzz − 3Er�

− 1
τt
Pxy

− 1
3τt
�2Pyy − Pxx − Pzz� − 2

15τr
�Pxx � Pyy � Pzz − 3Er�

− 1
3τt
�2Pzz − Pxx − Pyy� − 2

15τr
�Pxx � Pyy � Pzz − 3Er�

− 1
5τr
�3Er − Pxx − Pyy − Pzz�

3
7777777777775
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In the preceding equations, ux and uy are the velocity components in
the x and y directions; andPxx,Pxy,Pyy, andPzz are the four nonzero
components of the pressure tensor in the restrictive case of two-
dimensional flows.

F. Solid-Wall Boundary Conditions

The prescription of boundary data for the Gaussianmodel requires
some consideration due to the increased number of dependent
solution variables. For the microscale flows of interest, a Knudsen-
layer analysis is used to arrive at boundary conditions for solid walls,
which allows for velocity slip [8,21]. In this approach, it is assumed
that there exists a Knudsen layer next to the solid surface. In this
infinitesimally thin layer, the fluid exists as a combination of the
distribution function defining incoming particles from the interior
flowfield and a distribution function defining reflected particles
arising from thewall. For example, for a solid wall extending in the x
direction with a fluid above it, all the particles with negative y-
direction velocities in the Knudsen layer will come from the
neighboring fluid with statistical properties defined by the Gaussian.
To model the particle interaction with the wall, an accommodation
coefficient, 0 ≤ α ≤ 1, is then defined. If α is zero (specular
reflection), the incoming particles will simply be reflected specularly
from the wall back into the Knudsen layer. For α � 1 (diffuse
reflection), incoming particles are fully accommodated and will
therefore come into thermodynamic equilibrium with thewall before
being released from the wall and will reenter the Knudsen layer with
the statistical properties of a Maxwell–Boltzmann distribution
defined by a wall temperature Tw. For any intermediate α value, the
reflected particles will enter the Knudsen layer as a combination of
the two cases. The resulting distribution function in the Knudsen
layer is then given by

FKn � F� � F− (21)

where F� and F− are given by

F− �
�
Gb�vx; vy; vz� for vy < 0;

0 for vy > 0;

F� �
�
αMw�vx; vy; vz� � �1 − α�Gb�vx;−vy; vz� for vy > 0;

0 for vy < 0;

where Gb is the Gaussian distribution at the edge of the Knudsen
layer, and where Mw is the Maxwellian defining particles that are
fully accommodated by the wall. By assuming that the bulk y-
direction velocity of the fluid immediately above the wall is zero and
by imposing the constraint that the net particle flux through thewall is
also necessarily zero, it is possible to show that the Maxwellian
defining accommodated particles has the form

Mw�vx; vy; vz� �
ρ

�������������������������
mPyy∕ρkTw

p
m�2π�3∕2�m∕kTw�3∕2

× exp

�
−
�
m

2kTw

�
��vx − uxw �2 � v2y � v2z �

�
(22)

where k is Boltzmann’s constant, and all macroscopic quantities
appearing in the preceding expression are those of the fluid outside
the Knudsen layer with the exception of the wall temperature Tw and
the velocity component of the wall in the x direction uxw . A quick
inspection of the first term in this distribution function finds that it
relates the density of the reflectedMaxwellian to that of the incoming
Gaussian distribution such that

ρw
ρ
�

������������
mPyy
ρkTw

s
(23)

It can be easily shown that, if the distribution function emitted from
thewall has a temperature equal to the temperature normal to thewall

of the incoming distribution, the preceding ratio will be one, and
Eq. (22) reduces to

Mw�vx; vy; vz� �
ρ

m�2π�3∕2�m∕kT�3∕2

× exp

�
−
�
m

2kT

�
��vx − uxw �2 � v2y � v2z �

�
(24)

where T is now the interior fluid temperature.
The requirement that the component of the bulk velocity of the

fluid normal to solidwalls is zero is a very natural boundary condition
for the Gaussian closure and provides one value for the required
boundary data. The eigenvalues of the system, however, suggest that
two boundary data are required to ensure that the problem is well
posed [21,22]. Realizing that, in the equilibrium limit with no
accommodation at thewall, thewall shear stress must be zero in order
to recover the Euler equations, it seems that a boundary condition for
Pxy would also be most appropriate. To define the boundary
condition for Pxy, the appropriate velocity moment of FKn given by
Eq. (21) must be evaluated and, while not enforced directly as a
boundary condition, the full bulk velocity in theKnudsen layer is also
required as an intermediate step. It then follows that the following
boundary conditions are appropriate for the Gaussian closure in the
case of a solid wall extending in the x direction:

uyKn � 0; uxKn � �2− α�
�
ux
2
−

Pxy���������������
2πρPyy

p �
� α

2

�
mPyy
ρkTw

�
1∕2
uxw

(25)

PxyKn � α

�
Pxy
2
�

����������
ρPyy
2π

r
�uxw − ux�

�
(26)

with allmacroscopic quantities being those of the incomingGaussian
distribution with the exception of uxw and Tw, which define the
Maxwellian Mw for accommodated particles. It can be seen that
Eqs. (25) and (26) allow for velocity slip and finite shear at the wall
and recover the correct “no-shear” “full-velocity-slip” limit for
specular reflection (α � 0).
The preceding solid-wall boundary conditions for the Gaussian

closure of a monatomic gas were used for obtaining all of the
numerical solutions described herein. An accommodation coefficient
of one was used in all cases, except for the final simulation, in which
the accommodation coefficient was taken to be zero. For the case
of a diatomic gas, an additional zero flux boundary condition was
enforced for the rotational energy. Note that additional analysis of
solid-wall boundary conditions for the Gaussian closure is given in
the recent paper by Khieu et al. [70].

III. Numerical Solution Method

Numerical solution of the Gaussian closure using Godunov-type
finite volume schemes have been considered previously by Brown
et al. [31,32], Hittinger [67], McDonald and Groth [12,21,22,71],
and Lam and Groth [55]. A Godunov-type finite volume scheme
with block-based AMR and a treatment for arbitrarily embedded
boundaries is proposed here for the numerical solution of the two-
dimensional weak conservation form of the moment equations given
in Eq. (20). The proposed Godunov-type solution algorithm is
implemented on multiblock body-fitted quadrilateral meshes. The
scheme allows for solution-directed block-based AMR, and an effi-
cient and highly scalable parallel implementation has been achieved
via domain decomposition. A mesh-adjustment scheme is used to
perform local alteration of the mesh at embedded boundaries that
are not necessarily aligned with the underlying mesh. For moving
embedded boundaries, the mesh is restored to its original form and
then adjusted to the new location of the embedded boundary at each
time step. Key aspects of the parallel AMR scheme for embedded and
moving boundaries are now described.
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A. Godunov-Type Finite Volume Scheme

By integrating the hyperbolic system of Eq. (20) over a computa-
tional cell �i; j� of a multiblock quadrilateral mesh and subsequently
applying the divergence theorem, ordinary differential equations
prescribing the evolution of the cell-averaged value of the solution
vector Ui;j can be obtained and written as

dUi;j
dt
�−

1

Ai;j

X
k

��H−wU� ·nΔl�i;j;k−
�
U

A

dA

dt

�
i;j

�Si;j (27)

where Aij is the area of the cell; andw, n, andΔl are the velocity of,
unit normal to, and length of the kth cell face or edge, respectively;
andFk andUk are the flux dyad and solution at the kth face. The term
on the right-hand side of this equation containing the factor dA∕dt
corresponds to the time rate of change of the cell area. This term is
approximated by the geometric conservation law that states that the
change in cell area is equal to the area swept by the moving surfaces
[72]. Given left and right solution vectors, Ul and Ur, at each cell
interface, the numerical flux is given by

�H −wU� · n �ℋ�Ul;Ur;w;n� (28)

where the numerical flux ℋ is calculated by solving a Riemann
problem in a frame of reference that is rotated to be aligned with the
normal to the face and translated with the edge velocity. The left and
right solution states are determined via a least-squares piecewise-
linear reconstruction procedure in conjunction with the slope limiter
of Barth and Jesperson [73] and Venkatakrishnan [74]. This allows
second-order spatial accuracy in smooth regions and first-order
accuracy at discontinuities. Roe’s approximate solver [75] is used to
solve the Riemann problem and evaluate the numerical flux. A
suitableRoe linearization of the flux Jacobian of theGaussian closure
for monatomic gases has been determined by Brown et al. [31,32]. A
similar linearization has been developed by Hittinger [67] for the
diatomic case.
The ordinary differential equations of Eq. (27) are integrated for-

ward in time using a second-order-accurate point-implicit predictor-
corrector time-marching scheme [21,22]. In the point-implicit
treatment, the hyperbolic fluxes are integrated explicitly, and the
collisional source terms are dealt with implicitly. The local nature of
the collisional terms allows for an implicit treatment that, following
a linearization, involves only the inversion of small local linear
systems,which ismuch easier than the inversion of a large global left-
hand side. For time-accurate calculations, the global time step is
restricted by the most restrictive Courant–Friedrichs–Lewy (CFL)
condition for the fastest moving wave in any cell. For steady-state
situations, local time stepping with a local CFL number based on
local flow conditions is used to accelerate convergence to the desired
time-invariant solution. For all of the steady flow problems consid-
ered in the results to follow, a local CFL number of 0.8 was generally
used. For the unsteady flow problems, a global CFL number of 0.8
was used. It is recognized that, for steady time-invariant problems,
the proposed time-marching scheme is certainly nonoptimal. Howev-
er, themain thrust of this study is to show the relative robustness of the
spatial discretization of the moment equations on the lower-quality
meshes resulting from the embedded-boundary treatment. The pro-
posed time-marching scheme is deemed sufficient for such purposes.
A more efficient parallel, fully implicit approach has been recently
proposed and developed by Lam and Groth [55] for the three-
dimensional form of the Gaussian closure based on a Newton–
Krylov–Schwarz iterative solutionmethod but is not considered here.

B. Block-Based Adaptive Mesh Refinement on Body-Fitted Mesh

Adaptive mesh refinement has proven to be very effective for
treating problemswith disparate length scales, providing the required
spatial resolution while minimizing memory and storage require-
ments. Groth and McDonald [12], Sachdev et al. [20], Groth and
Northrup [76], Gao and Groth [77,78], and Gao et al. [79] have
developed a flexible block-based AMR scheme allowing automatic
solution-directed mesh adaptation on multiblock body-fitted (curvi-

linear) meshes consisting of two-dimensional quadrilateral and
three-dimensional hexahedral computational cells. The block-based
approach has been shown to enable efficient and scalable parallel
implementations for a variety of flow problems, as well as allow local
refinement of body-fitted meshes with anisotropic stretching. The
latter aids in the treatment of complex flow geometry and flows with
thin boundary, shear, and mixing layers and/or discontinuities and
shocks. Applications of the block-based AMR scheme have included
laminar flames [79,80] and high-pressure soot prediction [81,82],
and turbulent non-premixed flames [77–79], as well as turbulent
multiphase rocket core flows [20,83] and microscale flows [12,21].
Extensions of the block-based body-fitted AMR approach for
embedded boundaries not aligned with the mesh [23] and with an
anisotropic refinement strategy [84] are also possible and have been
developed. The mesh-adjustment scheme for multiblock body-fitted
AMR mesh with embedded boundaries and its application to
microscale nonequilibrium flows are the focus here.
Solution of the moment equations by the finite volume method

previously outlined yields area-averaged solution quantities defined
within quadrilateral computational cells. In the proposed multiblock
body-fitted AMR scheme, these cells are embedded in structured
body-fitted grid blocks consisting of Ncells � Ni × Nj cells, where
Ni andNj are integers representing the number of cells in each logical
coordinate direction of the block. Mesh adaptation is accomplished
by the dividing and coarsening of appropriate solution blocks. The
refinement of the mesh is directed by local physics-based refinement
criteria (blocks containing high and low values of the chosen criteria
are flagged for either refinement or coarsening) as well as by other
geometrical criteria related to the needs of accurately resolving
embedded/movingboundaries. TheAMRalgorithm first flags blocks
for either refinement or coarsening based on situation-dependent
criteria and thresholds. Blocks flagged for refinement are subdivided
into four “child” blocks, each of which has the same number of cells
in each direction, as did the “parent” block, thus doubling the mesh
resolution. If all four child blocks of one parent are later flagged for
coarsening, the process can be reversed. Note, however, that no area
of the mesh can be made coarser than it was originally. Standard
restriction and prolongation operators are used to evaluate the solu-
tion on all blocks created by the coarsening and division processes,
respectively. Physical boundaries are stored as high-resolution
splines; boundary nodes inserted during refinement are placed on
these splines. In this way, underresolved boundary geometry will be
recovered as the grid is refined.
For the bulk of this study, the mesh-refinement scheme is used

primarily to ensure embedded boundaries are well represented by the
mesh. Therefore, the refinement criterion used in most cases consid-
ered here is simply to flag any block that is crossed by an embedded
boundary for refinement. The framework, however, is quite flexible,
and it is easy to define a variety of refinement criteria based on simple
physical variables (or gradients) or on more sophisticated error
estimates or sensitivity analyses.
A hierarchical quadtree data structure is use to keep track of the

connectivity between solution blocks, an example of which can be
seen in Fig. 1. Solution information is shared between adjacent
blocks through the use of “ghost” or “halo” cells. A primary advan-
tage of the quadtree data structure is that it readily permits local mesh
refinement. Local modifications to the multiblock mesh can be
performed without regridding the entire mesh and recalculating all
solution-block connectivity. In this implementation, neighboring
blocks are restricted to have a difference in refinement of, atmost, one
level; this includes corner neighbors. This simplifies the implemen-
tation of the prolongation and restriction of ghost-cell information.
As well, it makes it easier to maintain the conservation properties of
the finite volume scheme. The proper conservation of conserved
quantities between blocks of differing refinement levels must be
carefully handled such that the overall conservation properties of the
finitevolume scheme aremaintained. If twoneighboring blocks are at
the same refinement level, there is no issue. Cells in the two blocks
will automatically compute the same flux through their shared
interface. However, if two neighboring cells are at different refine-
ment levels, special care must be taken. In this case, intercellular
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fluxes computed on the more refined grid are taken to be more
accurate and replace fluxes computed along the shared edge of the
coarser block. Each cell along the edge of the coarser blockwill share
an edge with two cells from the more refined block, and the flux
through the shared edge is simply the sum of the fluxes computed for
the more refined pair of cells.

C. Parallel Implementation

By design, the multiblock body-fitted AMR scheme is well suited
to parallel implementation on distributed-memory multiprocessor
architectures via domain decomposition. Grid blocks are simply
distributed equally among the available processors, with more than
one block permitted on each processor. Due to the similar nature of
the grid blocks, an efficient decomposition can be readily achieved,
leading to high parallel efficiency and scalability. Every time AMR is
applied, the solution blocks are redistributed to ensure optimal load
balancing. If the resulting number of blocks is not evenly divisible by
the number of processors, there can be an imbalance of, at most, one
block per processor. Parallel implementation of the block-based
AMR scheme has been carried out using the message passing
interface library [85,86]. Message passing of information between
processors is largely limited to the asynchronous communication of
ghost-cell solution values.

D. Mesh-Adjustment Scheme

To add greater flexibility for the treatment ofmicroscale flowswith
complex flow geometries, the preceding finite volume scheme has
been combined with the mesh-adjustment scheme proposed recently
by Sachdev and Groth [23,24]. The mesh-adjustment scheme
provides an automated treatment for both fixed andmoving non-grid-
aligned boundaries embedded in a body-fitted multiblock mesh.
Similar in nature to the Cartesian-cut-cell methods developed by
Bayyuk et al. [87] andMurman et al. [88], this scheme allows for the
nodes of an underlying body-fitted mesh to be adjusted so as to
coincide with the embedded boundary. By making only local

alterations to the grid, this scheme enables the solution of unsteady
flows involving moving boundaries or for steady flow problems
involving stationary boundaries that are not necessarily aligned with
the mesh while preserving the structured nature of the blocks. It also
seems to automatically avoid the creation of small cut cells, which are
often generated by traditional cut-cell approaches, without the need
for any special treatment, such as the merging of small cut cells into
larger neighbors [23,24]. In addition, the mesh-adjustment algorithm
is fully compatible with block-based AMR and parallel implemen-
tation via domain decomposition used in the finite volume scheme
previously described. A brief summary of the mesh-adjustment
scheme is given in what follows. Refer to the paper by Sachdev and
Groth [23] and the thesis by Sachdev [24] for further details.
Mesh adjustment is carried out in several steps, as illustrated in

Fig. 2. First, a pre-mesh-adjustment flagging is applied in order to
identify cells that may require adjustment. The nodal locations of
each cell are compared to bounding boxes that are constructed for
each interface; a cell is flagged to be active if all four of its nodes lie
outside all bounding boxes. Next, if the cell is partially or entirely
contained in a bounding box, intersections between the edges of the
cell and each boundary are sought. If no intersections exist, a ray-
tracing algorithm is employed to determine if the cell is entirely inside
or outside of the boundaries. This ray tracing simply entails counting
the number of intersections between the line segments comprising the
embedded boundary and a line segment connecting the cell centroid
to a reference point known to liewithin the boundary. An odd number
of intersections indicates that the cell is outside of the interface. These
cells are used during the solution of the moment equations and are
tagged as “active” cells. Conversely, an even number of intersections
indicates that the cell is inside the interface and can be tagged as
“inactive”. The latter are not used in the solution of the moment
equations. All cells that have not been deemed active or inactive are
labeled as “unknown”.
The first mesh-adjustment step involves identifying sharp corners

in the interfaces. The unknown cell that contains each sharp corner is
identified, and its nearest node is moved onto the corner. Once a

Level

4

3

2

1

0

B

A

Tree

C

a) Quadtree data structure

A

C B

Adaptive Blocks

b) Multiblock body-fitted grid blocks

Fig. 1 Block-based AMR scheme showing four levels of refinement.

a) Initial mesh b) Primary adjustment c) Secondary adjustment

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3)

(4,3)
(5,3)

(1,4) (2,4) (3,4) (4,4)
(5,4)

(1,5) (2,5) (3,5) (4,5) (5,5)

(1,6) (2,6) (3,6) (4,6) (5,6)

d) Final structured mesh

Fig. 2 Mesh-adjustment algorithm.
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node has been adjusted to lie on a boundary, it is tagged as
“aligned”. For the remaining unknown cells, the nodes nearest to
the boundary are moved to the closest point of intersection between
the interface and the mesh lines, as shown in Fig. 2b. This step is
performed twice to increase the robustness of the procedure,
particularly on course meshes when a cell face can have multiple
intersections with a boundary. Again, nodes that have been moved
are tagged as aligned. This movement will leave cells that are
bisected diagonally by the boundary. To account for this, the
secondary step involves moving the nearest not-yet-aligned node of
bisected cells so that it also lies on the boundary. This step will
produce triangular cells, as depicted in Fig. 2c. All triangular cells
are simply treated as degenerate quadrilaterals with two coincident
nodes. The final step in the mesh-adjustment algorithm involves
using the same ray-tracing technique previously mentioned to
determine which of the unknown cells are active and which are
inactive. The resulting mesh remains structured and does not result
in neighboring cells of radically different sizes.
The current implementation also allows for moving embedded

boundaries forwhich themotion can be prescribed either explicitly or
through a level-setmethod [89,90].Boundary locations are computed
at each time step, and the mesh is readjusted. The velocity of the
embedded boundary is accounted for during the calculation of the
solution flux and the effect of the rate of change of cell area is
included as a source term [see Eq. (27)]. To avoid excessive tangling,
the mesh is first returned to an unadjusted state and then readjusted.
Cells near the boundary will therefore change shape, and previously
active cells may become inactive, or vice versa. Solution content is
supplied to newly activated cells and removed from newly
deactivated cells through a redistribution algorithm designed to en-
sure the conservation properties of the finite volume scheme. The
solution content of a newly deactivated cell is area averaged into
neighboring active cells. The solution content of a newly activated
cell is determined by taking the area-weighted average of the parts of
the active cells from the previously adjusted mesh that intersects with
the newly activated cell. A more detailed explanation of the mesh-
adjustment scheme and solution redistribution algorithm is provided
in the paper by Sachdev and Groth [23] and the thesis by Sachdev
[24]. This redistribution algorithm is akin to the projection stage of a
finite volume scheme in which cell-averaged solution values are
determined.
Though this implementation is tailored for two-dimensional situa-

tions, extension to three-dimensional structured meshes is certainly
possible. In a three-dimensional version, cells intersected by an
embedded surface would be identified and flagged for adjustment.
Next, the nearest nodes would be moved along grid lines to a point
intersected by the boundary. The number of ways in which a
hexahedral cell can be intersected by a boundary is larger than that for
two-dimensional quadrilaterals; however, it should be possible to
implement the logic required to move additional cell nodes onto the
boundary such that no bisected cells result from the boundary
treatment. A similar ray-tracing algorithm can be used to find which
points are within an embedded boundary.

IV. Numerical Results

To verify and explore the potential of the proposed approach for
predicting nonequilibrium microchannel flows, several flow prob-
lems are now considered. The accuracy of the proposed finite volume
spatial discretization procedure andAMR algorithmwith embedded-
boundary treatment is first assessed for a problem for which an
analytical solution has been determined by using the method of
manufactured solutions. Subsonic, laminar boundary-layer flow over
a flat plate is then examined to demonstrate that the embedded-
boundary treatment and hyperbolic nature of the governing equations
will yield smooth predictions of the frictional drag forces acting on
the plate; traditional cut-cell-type approaches combined with the
Navier–Stokes equations have been shown to produce large oscilla-
tions in viscous drag predictions [29]. Subsequently, subsonic,
laminar, Couette flow is studied for a range ofKnudsen numbers. The
aim in this case is to show that the combination of the Gaussian

closure with appropriate boundary conditions can describe the full
range of flows from the well-known continuum regime at low
Knudsen numbers, through the transition regime, and on to the free-
molecular regime at high Knudsen numbers. It is demonstrated that
the solutions are equally well predicted by meshes that are aligned
and nonaligned to the plates. Next, subsonic laminar flow past a
circular cylinder is considered. This case is considered to illustrate the
applicability of the Gaussian closure and proposed solution scheme
to transition-regime flows. Previous investigations using body-fitted
meshes have shown good agreement with experimental results [21],
and it is shown here that results of equivalent accuracy can be
achieved with the proposed embedded-boundary treatment. To show
the ease with which complicated geometries including multiple
stationary and moving embedded boundaries can be treated, a
microscale channel flow with a more complicated moving geometry
is also considered for both continuum and nonequilibrium flows. A
final demonstration of the capabilities of the proposed modeling and
solution methods is provided by a NACA 0012 airfoil undergoing a
prescribed oscillatory pitchingmotion. For this case, the treatment for
embedded moving boundaries is combined with solution-directed
AMR, and comparisons are made with available experimental data.
For all of the cases considered, values of the mean free path λ used in
defining the Knudsen number were determined using the expression
for hard-sphere collisional processes given by Bird [5].
All of the two-dimensional computations were performed on a

high-performance parallel cluster consisting of 3780 Intel Xeon
E5540 (2.53 GHz) nodes with eight CPU cores and 16 GB of RAM
per node. The cluster is connected with a high-speed low-latency
InfiniBand switched fabric communications link. The steady-state
flat-plate flow cases on the finer mesh required about 2–3 h of wall-
clock time using 96 processor cores. Similarly, the steady-state
cylinder flow cases necessitated approximately 1 h on 48 cores. The
unsteady airfoil case required about 300 h on 48 cores. These timings
may seem high; however, this work was done using a research code
and, as such, there are a number of inefficiencies in the implemen-
tation that would not be present in a production code. Steady-state
simulations were deemed to be converged once the residual of x-
direction momentum density had been reduced by at least six orders
of magnitude.

A. Manufactured Solution Between Two Concentric Cylinders

The proposed finite volume spatial discretization procedure, semi-
implicit time-marching scheme, and AMR algorithm with adjusted
mesh and embedded-boundary treatment are nominally second-order
accurate with discretization errors ofO�Δx2;Δt2�, where Δx andΔt
are the spatial and temporal discretization step sizes. Although the
second-order spatial accuracy of the finite volume scheme and AMR
method with mesh adjustment have been previously verified by
Sachdev and Groth [23,24] for a related nonlinear hyperbolic system
of conservation laws, with the Euler equations corresponding to the
Maxwellian closure, it is important here to establish that a similar
accuracy can be achieved for the moment equations of the Gaussian
closure before proceeding to the application of the methodology to
more practical flow problems. As there are no practical situations for
which analytical solutions to the Gaussian moment equations are
known, the method of manufactured solutions is used to construct
such a solution forwhich the formal accuracy of the proposed scheme
can be assessed.
Themethod ofmanufactured solutions is a rather simple procedure

that allows analytical solutions to be constructed for the PDEs of
interest by slightly modifying the equations through the addition of
source terms. This can be done for the Gaussian closure by
prescribing a solution ~U, the desired analytical result, and determin-
ing analytically the associated solution residual vector as defined by
Eq. (20) and given by

~R � ∂ ~U

∂t
� ∂F� ~U�

∂x
� ∂G� ~U�

∂y
− S� ~U� (29)
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This residual is then added as a source to the original moment
equations of Eq. (20), such that the prescribed solution ~U is in fact the
analytical solution to the modified moment equations given by

∂U
∂t
� ∂F

∂x
� ∂G

∂y
� S� ~R (30)

Discretization errors of the proposed numerical solution method can
then be assessed by direct comparison of predicted solutions to the
analytical result, ~U.
Here, in order to assess the spatial accuracy of the finite volume

scheme and AMR method with embedded-boundary treatment,
predictions for a time-invariant manufactured solution for the
Gaussian moment closure of monatomic gas on a domain between
two concentric cylinders are considered. The prescribed solution is
this case was chosen to be

ρ � 2� sin�x� y�;
ux � cos�x� y�;
uy � sin�x − y�;

Pxx � 3 − sin�x� y�;
Pxy � sin�y − x�;

Pyy � 3� cos�x� y�;
Pzz � 3� cos�−x − y� (31)

The offsets in the density and normal components of the pressure
tensor ensure that theGaussian solution remains physically realizable
everywhere. The problem domain was chosen to be an annulus lying
between cylinders of radii of 0.1 and 0.5 m. To ensure that the
hyperbolic and relaxation parts of the system are both of similar
magnitude and impact, the relaxation time was taken to be τ � 1 s.
Adjusted computational grids were generated for this problem by

imposing two embedded circular boundaries on to regular Cartesian
grids of varying resolution. An initial Cartesian grid was considered
containing 32 × 32 cells, 200 of which are active after application of
the embedded-boundary treatment. Additional gridswere then gener-
ated by consecutively doubling the resolution of the initial Cartesian
mesh in each direction. This produced a sequence of four adjusted
meshes between the two circular embedded boundaries having 200,
780, 3104, and 12,371 active cells, respectively. The four adjusted
computational grids are depicted in Fig. 3.
Predicted solutions for the time-invariant manufactured solution

on the four adjusted meshes were obtained using the numerical
scheme previously outlined. The exact analytical solution was pre-
scribed on the domain boundaries, and the numerical solution was
advanced in time until converged steady-state results were achieved.
The corresponding error norms for the predicted solutions on the four
adjusted meshes are shown in Fig. 4. L1, L2, and L∞ norms of the
difference between the analytical and numerical solutions are all
given in the figure as a function of the nominal mesh density as
represented by the square root of the number of active cells in each
mesh. The average slopes for the L1, L2, and L∞ error norms are
−1.97, −2.03, and −1.99, respectively. It is evident from these result

that the spatial accuracy of the scheme is indeed second order, even
for the adjusted meshes of degraded quality caused by the embedded
boundaries. Similar findings were obtained by Sachdev and Groth
[23,24] for the Euler equations of inviscid compressible gas
dynamics.

B. Subsonic Laminar Flat-Plate Boundary-Layer Flow

Subsonic boundary-layer airflow past a flat plate is considered. For
this diatomic gas case, the freestream Mach and Reynolds numbers
are Ma � 0.2 and Re � 2; 000, respectively, and the Knudsen
number is 1.5 × 10−4, which indicates that the flow is laminar and in
the continuum regime. Results for two computational meshes are
considered: one aligned with, or at 0 deg to, the plate; and a second
mesh at 30 deg to the plate. Both meshes initially consisted of one
16 × 16 Cartesian square block centered on the origin of the x and y
axes. A boundary representing the flat plate was embedded in the
block. This boundary is a line that is coincident with the x axis and
passes through the origin. For x < 0, inviscid slip or reflection
boundary conditionswere used,whereas for x > 0, no-slip solid-wall
boundary conditions with full accommodation were used. To reduce
the influence of the outflow boundary on the solution, the computa-
tional domain and plate extended approximately 20% further than the
plate length of interest and the solution at all other boundaries ismade
equal to be a corresponding Navier–Stokes Blasius solution. The
computational grid was then subjected to six or eight mesh refine-
ments such that, at each level of refinement, any block crossed by the
boundary was refined. The result was a mesh comprising 376 blocks
and 48,128 active cells for the 0 deg case and 508 blocks and 65,024
active cells for the 30 deg case when six levels of refinement were
applied. For eight levels of refinement, 764 active blocks and 195,584
active cells for the 0 deg case and 1271 active blocks and 276,992
active cells for the 30 deg casewere used. Sections of both the aligned
and nonaligned meshes are provided in Fig. 5. The somewhat larger
number of cells in the nonaligned case is a result of the fact that, at

Fig. 3 Sequence of adjusted meshes with embedded circular boundaries.
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Fig. 4 L1, L2, and L∞ error norms for the manufactured-solution
problem.
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30 deg, the interface crosses more blocks, which will be flagged for
refinement; nevertheless, the smallest cells are the same size for both
grid angles.
With eight levels of refinement, the Knudsen number based on the

cell size varied from 4.1 × 10−3 to 0.26. With a local CFL number of
0.8, the semi-implicit time-marching scheme was able to effectively
deal with any numerical stiffness associated with interparticle
collisions arising in the larger cells for this continuum flow problem.
The numerical predictions of the profile of the local skin-friction

coefficient Cf along the length of the plate obtained using the
Gaussian closure for the laminar boundary-layer flow previously
described are shown in Fig. 6, alongwith comparisons to the classical
boundary-layer results of Blasius [91]. The results of the figure show
that there is excellent agreement between the skin-friction coefficient
profiles predicted by the moment closure and the Blasius solution.
Furthermore, the two sets of computed results for six and eight levels
of mesh refinement on both the aligned and nonaligned
computational grids, shown in the close-up view, demonstrate the
convergence of the Gaussian closure solutions, as the grid is refined
as well as the relative independence of the solutions to grid orienta-
tion with the embeddedmesh treatment. Clearly, the Blasius solution
is recovered as the mesh is refined for both aligned and nonaligned
cases, and the two results are virtually identical with eight levels of
mesh refinement.
It is also important to note that the results of Fig. 6 indicate that

there are no oscillations present in the Gaussian-closure predictions

of the skin-friction coefficient on the nonaligned computational
grids. These smooth profiles are in definite contrast to previous
results obtained by Sachdev and Groth using the Navier–Stokes
equations [23,24]. Figure 7a shows typical results for the prediction
of the skin-friction coefficient for flow past a flat plate angled at
30 deg to the grid obtained using the standard Navier–Stokes model.
For these Navier–Stokes solutions, the elliptic diffusion terms
through cell interfaces were discretized based on a Green–Gauss
integration around a diamond path created by the points describing
the cell centers of the neighboring cells and the nodes defining the
interface. This technique was proposed by Coirier and Powell [30].
The exact details of the current implementation are available in the
paper by Sachdev and Groth [23] and thesis by Sachdev [24]. The
identical mesh-adjustment scheme with both six and eight levels of
refinement was again used. The oscillations present in the predicted
skin-friction profile of this figure are entirely due to the necessity of
evaluating second derivatives in the solution of the Navier–Stokes
equations and the sensitivity of numerical treatments for these higher-
order derivatives to grid irregularities caused by the embedded
boundary. As is evident from Fig. 7b, the oscillations in the predicted
skin-friction coefficient are directly related to local modifications to
the mesh caused by the embedded boundary. There is a systematic
jump in the skin-friction profilewhenever the row of cells intersected
by the boundary changes. The results also show that it is not neces-
sarily simply a matter of further refinement of the mesh in order
to yield improved results for the Navier–Stokes equations. The

a) Aligned mesh at 0°° to plate b) Nonaligned mesh at 30° to plate

Fig. 5 Computational grids used in the numerical prediction of laminar boundary-layer flow.
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Fig. 6 Numerical prediction of skin-friction coefficient for flow past a flat plate
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Navier–Stokes solution obtained here for the more refined mesh are
somewhat worse and exhibit even larger solution jumps. Similar
oscillations in the predicted skin-friction coefficients, with even
larger and far more deleterious excursions, were observed in the
AMR solutions of Coirier [29] and Coirier and Powell [30] using a
cut-cell approach.
Additional evidence of grid convergence for the flat-plate

boundary-layer flow is demonstrated in Fig. 8. Here, solutions to the
boundary-layer flow were again computed on sequences of meshes
that were constructed either with uniform mesh spacing or with
AMR. Results for both aligned (0 deg) and nonaligned (30 deg) grids
were again considered. The coefficient of total drag CD was then
computed from the integrated predicted skin-friction profiles in each
case and plotted as a function of the mesh resolution. It is evident
from the figure that the predicted drag on each sequence of grids is
convergent and that the solutions on each sequence are converging to
the same result (CD ≈ 0.028). Although the converged value for the
drag coefficient predicted by theGaussian closure is slightly less than
the value of 0.0297 predicted by the Blasius solution, this is expected
because the Blasius solution yields a skin-friction coefficient that
approaches infinity at the leading edge, whereas theGaussian closure
does not; therefore, even though the solutions to the moment equa-
tions agreewell with the Blasius solution further along the plate, they
tend to predict a somewhat lower drag near the plate leading edge.

Figure 8 also provides a good illustration of the computational
advantages provided by the proposed AMR scheme. It can be seen
that the solutions obtained using AMR achieve a given level of
accuracy using only a fraction of the number of cells required to
obtain the same level of accuracy on a uniform mesh. Obviously in
this situation, mesh point and grid line clustering could be used
to concentrate cells near the boundary to obtain similarly accurate
results to those of the AMR mesh. However, in more complicated
situations, it is not always clear where enhanced spatial resolution is
needed and mesh clustering and/or stretching may not be effective.
Also, if the domain boundaries are moving or evolving during the
simulation, areas requiring increased resolution will also move and
change over time. Adaptive mesh refinement is especially useful in
these situations.

C. Subsonic Laminar Couette Flow

The second problem considered is the one of Couette flow for a gas
spanning a variety of flow regimes. The current investigation com-
prises two infinite-span plates separated by a fluid-filled gap. The two
plates are translating in opposite directions with a speed of up �
30 m∕s. The gap between the plates is filled with argon at a temper-
ature of T � 288 K and standard pressure; the diatomic extension to
theGaussian closure is therefore not used for this case. The gapwidth
dwas varied such that a range of flowKnudsen numbers,Kn � λ∕d,
were considered. Again, two embedded meshes are considered, one
aligned at 0 deg to the plates and one at 30 deg to the plates. The
original unadjusted mesh in each case comprised 10,240 cells;
however, many of these cells were inactive. The number of active
cells for the aligned (0 deg) mesh was 2560 and, for the nonaligned
(30 deg)mesh, therewere 3956 active cells. The topologies of the two
computational meshes used in the Couette flow study are given
in Fig. 9. For this problem, the Knudsen number based on the cell
size depended on the flow Knudsen number considered. The cell
Knudsen number was about 0.68 for a flow Knudsen number of
Kn � 0.01 andwas about 680 for theKn � 10 case. Therefore, even
for the Kn � 0.01 case and with a local CFL number of 0.8, the
source terms associated with particle collision processes did not
introduce significant numerical stiffness and collision timescales
were essentially resolved. A value of the cell Knudsen number near
unity, even for near-continuum situations with small flow Knudsen
numbers, indicates that the timescales for transport and collisional
effects are similar in magnitude.
Boundary conditions for the solid walls of the two plates were

applied as previously described. At the remaining two boundaries,
the velocity and the shear component of the pressure tensor were
extrapolated, whereas all other flow properties where held fixed. This
situation is particularly well suited for the Gaussian moment closure,
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Fig. 7 Skin-friction coefficient for boundary-layer, computed using the Navier–Stokes equations.
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Fig. 8 Predicted coefficient of drag for boundary-layer flow with
varying mesh resolution.

MCDONALD, SACHDEV, AND GROTH 1849

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

O
ct

ob
er

 1
8,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
25

76
 



as the continuum and free-molecular exact solutions do not have heat
transfer. The lack of heat transfer in the moment equations should
therefore not lead to significant solution errors in either of these
regimes. The Couette flow problem is therefore a good test case to
demonstrate the validity of the solid-wall boundary treatment across
the full range of Knudsen numbers.
Figure 10 shows both the predicted normalized flow velocity at

the wall, u∕up, and normalized shear stress, τxy∕ρup
������������������
2kT∕πm

p
, for

the Couette problem as a function of Knudsen number. Values for the
fluid velocity at the wall shown in Fig. 10 were evaluated by taking
the average along each plate, and values for the fluid shear were
evaluated by taking the average over the entire domain. The results
show that the Gaussian closure, combined with the Knudsen-layer
analysis for the solid boundary, is able to reproduce the correct results
in both the continuum (Navier–Stokes) regime, where there is no slip
between the fluid and the wall; and the free-molecular regime, where
there is perfect slip. In addition, it provides solutions that effectively
transition from the continuum result to the free-molecular-flow
values in a manner that is in very good agreement with an approxi-
mate analytical solution developed by Lees [92]. Lastly, the
numerical predictions are essentially independent of the computa-
tional mesh used (i.e., the aligned and nonaligned mesh results are
almost indistinguishable) and further demonstrate the high accuracy

that can be achieved using the Gaussian closure coupled with the
embedded-mesh algorithm.

D. Subsonic Laminar Flow Past a Circular Cylinder

As a next case, subsonic airflow past a circular cylinder is
considered. Experimental results at low-speed and high-Knudsen
numbers have been previously obtained by Coudeville et al. [93] for
this case. The application of the Gaussian closure to this case was
previously considered by McDonald and Groth using body-fitted
meshes [21] for two speed ratios, S � 0.027 and S � 0.107, and a
wide range of Knudsen numbers in the continuum and transition
regimes. The speed ratio S is the ratio of the mean flow speed to the
most likely random component of a gas particle’s velocity; it differs

from the Mach number by a factor of
��������
2∕γ

p
. These previous numeri-

cal results are reproduced in Fig. 11, where the predictions of the
coefficient of drag Cd for the cylinder flow are compared to the
experimental results due to Coudeville et al. [93] and an approximate
analytical expression due to Patterson [94].
To demonstrate that the present embedded-mesh treatment can

recover the drag results for the circular cylinder previously described
with virtually equal accuracy to those obtained with a body-fitted
mesh, values for the coefficient of drag were recomputed using the
Gaussian closure and embedded-mesh approach for a range of
Knudsen numbers at the higher speed ratio of S � 0.107. All of the
computations were again conducted on a square-shaped Cartesian
mesh that initially contained one 16 × 16 block with an embedded
circular cylinder. For most cases, the square domain had a dimension
that was 125 times the cylinder radius, and the far-field solution was
assigned the freestream values. This mesh was then refined 10 times
in order to capture the boundary, resulting in amesh of 556 blocks and
112,936 active cells, as seen in Fig. 12. The cylinder diameter d was
varied such that a range of flow Knudsen numbers, Kn � λ∕d, were
considered. As the cylinder radius decreases and Knudsen number
increases, the relative distance to which the flow is disturbed by the
cylinder boundary layer also increases. Thus, in order to eliminate the
effects of the far-field boundary on the numerical solution, the size of
the initial grid had to be enlarged for theKn � 0.5 andKn � 1 cases.
Additional levels of mesh refinement were then used in order to
maintain the resolution at the inner boundary. As with the Couette
flow problem, the Knudsen number based on the cell size depended
on the flow Knudsen number of interest. The cell Knudsen number
varied from about 0.020 to 2.6 for a flow Knudsen number of
Kn � 0.01 and ranged from 0.2 to 105 for the Kn � 1 case. As for
the flat-plate boundary-layer flow, the proposed semi-implicit time-
marching scheme with a local CFL number of 0.8 was able to cope
with the numerical stiffness associated with interparticle collisions
arising in the larger cells of the near-continuum regime cases.

a) Aligned mesh at 0°° to upper and lower plates

b) Nonaligned mesh at 30°° to upper and lower plates

Fig. 9 Grids used in subsonic laminar Couette flow computations.
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Fig. 10 Numerical predictions of normalized velocity and shear stress for Couette flow.
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The resulting embeddedAMRmesh predictions of the coefficients

of drag are shown in Fig. 12. The embedded-mesh results are

compared theGaussian-closure solutions obtained previously using a

body-fitted mesh, as well as to the experimental results collected by

Coudeville et al. [93]. It is quite apparent that agreement between the

experimental results and the values predicted by theGaussian closure

are equally accuratewhen the embedded-boundary treatment is used.

There does, however, appear to be a growing discrepancy between

both sets of computational results and the experimental data as the

Knudsen number approaches unity. This is likely due to the fact that

the Gaussian closure does not account for the large nonequilibrium

and heat transfer effects that are present under more highly rarefied

conditions.

E. Subsonic Laminar Channel Flow with Moving Boundaries

In previous work, Coirier [29] explored subsonic laminar flow of
air through a branched channel containing three rows of pin cooling

fins (14 pins in total) using a Cartesian-cut-cell approach. The
geometry of the problem was originally designed so as to loosely
model the flow within turbine blades. It involves a channel through
which fully developed flow enters. The upstream solution flow was
taken to be fully developed pipe flow with an average Mach number
of Ma � 0.1. At the two outflows, a constant-pressure boundary
conditionwas used, inwhich all other flowvariables are extrapolated.
The channel contains a branch with the three rows of cooling pins.
The pin obstructions produce flow resistance and losses, and they
cause a portion of the flow to be redirected through a secondary
channel. A similar case is considered here, except two of the three
rows of the pins are now assumed to move relative to the center
stationary rowwith a prescribed oscillatory motion (i.e., 10 pins have
a prescribed oscillatory motion). This case has been included here to
show how easily the current embedded-boundary treatment can be
used for cases with numerous embedded boundaries (i.e., one for
each pin as well as the channel boundaries), some of which are
moving with respect to the frame of the computational mesh.

a) Body-fitted computational mesh
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100
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Coudeville et. al. S = 0.027 [94]
Coudeville et. al. S = 0.107 [94]
Gaussian S = 0.027
Gaussian S = 0.107
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Patterson S = 0.107 [95]

b) Coeciffient of drag

Fig. 11 Predicted drag for airflow past a circular cylinder with body-fitted mesh.

a) Embedded computational mesh

Kn

C
d

10-2 10-1 100
100

101

102

Gaussian Closure - Body Fitted Mesh
Gaussian Closure - Embedded Boundary
Coudeville et al. [94] - Experimental Results

b) Coeciffient of drag

Fig. 12 Predicted drag for airflow past a circular cylinder with embedded-boundary mesh.
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The computational grid used for the branched-channel problem is
shown in Fig. 13. A close-up view of the area surrounding the 14
cooling pins at three different instances in time is shown in Fig. 14.
The latter shows the initial as well as the extremes of the pin row
motion. Two flow Knudsen numbers (based on pin diameter) were
examined for this case: Kn � 7 × 10−6 (continuum flow regime)

and Kn � 7 × 10−2 (transitional flow regime). For both cases, the
simulation was originally run to steady state with the pins held
stationary, and then the oscillatory motion of the pins was initiated.
For the continuum-regime solution, the steady-state result was
found to be in good qualitative agreement with Coirier’s solution
[29] and possessed similar flowfield and recirculation patterns.

Fig. 13 Multiblock, AMR, grid with embedded-boundary used in subsonic branched-channel simulation.

Fig. 14 Close-up view of mesh around embedded pins for branched-channel simulation.

Fig. 15 Branched-channel flow prediction for Kn � 7 × 10−6; t � 10 ms (top); t � 15 ms (bottom).
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Fig. 16 Branched-channel flow prediction for Kn � 7 × 10−2; t � 10 ms (top); t � 15 ms (bottom).

Fig. 17 Multiblock, AMR, computational grid with embedded-boundary treatment for NACA 0012 airfoil.
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Once steady state was achieved, the pins were set into motion

according to the function δx � �Δx sin�2πft�, where δx is the pin
displacement in the x direction from its initial position, Δx is the

maximum displacement, t is the time, and f � 100 s−1 is the

frequency of the motion.
Figures 15 and 16 show the predicted distributions of the x-

direction velocity component for the branched-channel flow with

Kn � 7 × 10−6 andKn � 7 × 10−2, respectively. In each figure, the

results in the top half of the figure show the predicted solutions after

10 ms (one period), whereas the results in the bottom half depict the

results after 15 ms (one and a half periods). The geometry at both

times is identical; however, at t � 10 ms, the two outside rows of

pins are approaching the center row, whereas at t � 15 ms, the

outside rows are moving apart. The differences in the plots indicate

that there is some level of hysteresis. It should also be noted that, in

the transition-regime case, the hysteresis as well as the general effects

of the pins on the flow appear to be significantly reduced. This should

be expected since, at higher-Knudsen numbers, the reduced frequen-

cy of interparticle collisions leads to a flow that is mostly dependent

on the projected area of the cooling pins; something that does not

change throughout the simulation.

F. Transonic Flow Past an Oscillating NACA 0012 Airfoil

The final problem considered herein is that of aNACA0012 airfoil

undergoing a prescribed oscillation in a background airflow. The

specific problem selected is one studied experimentally by Landon

[95] as part of a study of flow conditions for helicopter blades. Here, a

NACA 0012 airfoil undergoes an oscillation about its quarter-cord

with angle of attack α prescribed by the function

α�t� � α0 � αm sin�2πft� (32)

where α0 � 0.015 deg, αm � 2.51 deg, and f � 62.5 s−1. The
freestream Reynolds number based on chord length is Re �
5.5 × 106, and the freestream Mach number is Ma � 0.775. The
Knudsen number in this case is Kn � 6.3 × 10−7 and the flow is
therefore firmly in the continuum regime.Under these conditions, the
flow surrounding the airfoil is expected to be turbulent; however,
there is, as yet, no method for the treatment of turbulence in the
Gaussian closure. Also, in order to avoid using the number of cells
required to predict a boundary layer at such a high Reynolds number,
the solid-wall accommodation coefficientwas specified to be zero for
this case. This is equivalent to assuming fully specular reflection at
the boundary and will lead to an inviscid Euler-like near-equilibrium
solution using the Gaussian model. To affordably and accurately
resolve a boundary layer around the airfoil, an anisotropic mesh-
refinement method, as discussed by Zhang and Groth [84], is
required. With an anisotropic strategy, resolution could be added
normal to the surface without creating a mesh that overresolves the
direction along the airfoil surface. Such an approach will eventually
be considered as part of the present numerical solution method;
however, for now, the accurate resolution of boundary layers for
aerodynamic flows such as this is deemed to be too expensive.
Given the underresolution of viscous effects for the airfoil, results
should not be expected to be entirely physically accurate. Rather,
this computation is provided to demonstrate the ease with which
the moving-embedded-boundary treatment can be combined with
solution-directed adaptivemesh refinement for its eventual application
to more practical situations.
TheNACA0012 airfoil boundarywas embedded in anO-type grid

with the far-field boundary located 16 chord lengths out from the

Fig. 18 Numerical prediction of transonic flow past an oscillating NACA 0012 airfoil.
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quarter-chord of the airfoil. The far-field boundary conditions were
applied in this case by assigning the freestream flow conditions. This
initialmesh originally consisted of two 4 × 8 grid blockswith 64 cells
and is depicted in Fig. 17a. This mesh was then refined uniformly
twice so as to produce a 32-block grid, as given in Fig. 17b. A
regiment of grid sequencing was then employed during which
steady-state solutions for flow past the stationary airfoil were sought
on sequentially finer meshes leading to a final meshwith eight refine-
ment levels. The successive meshes were obtained either through
refinement of every block lying within a bounding box surrounding
the airfoil or through solution-directed refinement using the
divergence of the velocity field as the refinement criterion (blocks
containing high values of the divergencewere flagged for refinement,
and blocks containing lower values were flagged for possible
coarsening). This criterion has been found to identify shocks effec-
tively. The final eight-level AMR mesh resulting from the grid
sequencing comprised 3023 blocks and 96,736 cells, 46,797 of
which were internal to the airfoil, and therefore inactive. The grid is
shown in Fig. 17d. Finally, a zoomed-in view of the trailing-edge
region of this final mesh is shown in Fig. 17e. It can be seen that
the location of the trailing edge is accurately represented by the
modified mesh.
The resulting mesh and steady-state solution from this grid-

sequencing procedure was used as the starting point for the time-
accurate oscillatory study. For this simulation, adaptive mesh
refinement was carried out every 50 time steps. This was found to be
of sufficient frequency to allow the grid to track changes in the flow in
an effective manner.
The adjusted grid and computed distributions of the thermody-

namic pressure for the unsteady problem are shown in Fig. 18. This
figure shows the initial steady-state solution as well as the solution
t � 36 ms and t � 44 ms (first and third quarter of the third period of
the airfoil pitching motion). It can be observed that, as the airfoil
pitches up, the shock on the upper surface strengthens and moves
toward the trailing edge, whereas the shock on the lower surface
weakens and eventually disappears entirely. As the airfoil pitches
down, the opposite is true. The effectiveness with which the adaptive
mesh refinement tracks the movement of the shocks can also be
plainly seen in Fig. 18. The scheme effectively concentrates blocks,
and thus computational cells, along the discontinuity. It is observed
that, during the oscillation, there is a hysteresis in the shock position
as the airfoil passes the symmetric situation. This hysteresis is
reflected in the calculated coefficient of normal force, as seen in the
bottom right panel of Fig. 18. In this figure, the computed normal
force coefficient moves from a near-symmetric steady-state initial
solution to a periodicmotion that is in rather good agreement with the
experimental results of Landon [95], considering the fact that viscous
effects are underresolved and largely ignored in the computation.

V. Conclusions

The potential has been demonstrated for the use of moment
closures, combined with an efficient and robust block-based AMR,
finite volume scheme and a novel treatment for embedded and
moving boundaries, in the numerical solution of continuum- and
transition-regime flows. The proposed approach allows for a non-
Cartesian body-fitted grid to undergo local adjustments such that it is
aligned with arbitrary boundaries. Sharp corners in the interface can
be accurately represented, and very small cells, typical of traditional
cut-cell approaches, are not introduced. Combined with the purely
hyperbolic nature of the moment equations, this allows for accurate
treatment of microscale flows and yields solutions that are not
strongly affected by grid irregularities arising from the mesh refine-
ment and/or adjustment procedures.
The proposed combined approach has been verified through

application to a number of representative two-dimensional flow
problems. It has been demonstrated that the hyperbolic nature of
moment closures allows for smooth predictions of viscous effects
along embedded boundaries for which similar treatments applied to
theNavier–Stokes equations yield oscillatory results. Future research
will possibly include the extension of the proposed approach to three-

dimensional flows and the extension of theGaussian closure or use of
higher-order moment closures to account for the important effects of
heat transfer.
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