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An efficient and hyperbolic interpolative-based second-order maximum entropy, M2,
moment closure for providing approximate numerical solutions to the equation of radiative
transfer in non-gray participating media is proposed and described. This newly-developed
non-gray moment closure technique results in significant computational savings compared
to an approach that makes use of the direct numerical solution of the optimization problem
for entropy maximization. Theoretical details of the proposed interpolative-based second-
order moment closure, along with a description of an efficient Godunov-type finite-volume
scheme that has been developed for the numerical solution of the resulting system of hyper-
bolic moment equations, are presented. The finite-volume method makes use of limited lin-
ear solution reconstruction, multi-block body-fitted quadrilateral meshes with anisotropic
adaptive mesh refinement (AMR), and an efficient Newton-Krylov-Schwarz (NKS) iterative
method for solution of the resulting non-linear algebraic equations arising from the spatial
discretization procedure. The predictive capabilities of the proposed interpolative non-gray
M2 closure are assessed by comparing its solutions to those of its lower-order counterpart,
i.e., the non-gray first-order, M1, maximum entropy moment closure. The comparisons
also include the more commonly adopted first-order, P1, and third-order, P3, spherical
harmonic moment closures, as well as the popular discrete ordinates method (DOM). The
latter is used as a benchmark for the comparisons whenever exact analytical solutions of
the radiative transfer equation (RTE) are not available. The assessment is performed for
a number of representative problems involving non-gray radiative heat transfer between
parallel plates as well as within rectangular enclosures. The strong spectral dependence ex-
hibited by the absorption coefficient of radiatively participating real gases is treated using
a statistical narrow-band correlated-k model. The numerical results for all the problems
studied show that the non-gray M2 maximum-entropy moment closure provides improved
predictions of the radiation solutions compared to the non-gray M1 and P1 closures, and
is, in most cases, superior to the P3 spherical harmonic moment closure, while achieving
similar levels of accuracy compared to the standard discrete ordinates method.

Nomenclature

c speed of light in vacuum
h Planck constant
k Boltzmann constant
n occupation number
C1 first radiation constant
Iη spectral radiative intensity distribution
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Ig reordered radiative intensity distribution
Ibη spectral blackbody intensity
κη spectral absorption coefficient (m−1)
k(g) reordered absorption coefficient (m−1)
ση spectral scattering coefficient
Φη spectral scattering phase function

I
(n)
η spectral angular moment or order n

I
(n)
g reordered angular moment or order n
N (n) normalized angular moment or order n
~s direction of propagation of radiation
hR radiative entropy
MN maximum entropy moment closure of order N
PN spherical harmonic moment closure of order N

Subscript
η wavenumber
g reordered wavenumber

I. Introduction

The equation governing the transport of radiative energy within a participating media, which is commonly
referred to as the radiative transfer equation (RTE), is a complex nonlinear integro-differential equation with
high dimensionality, since the distribution of radiation is a function of seven independent variables. The
high dimensionality, combined with high nonlinearity, makes it impossible to derive general exact analytical
solutions for the RTE in the general case, and approximate solutions of the latter equation are generally
obtained by numerical means.

In addition to its spatial and temporal dependencies, the radiative intensity distribution is also a function
of frequency or wavenumber and direction of propagation of radiation. While the spatial and temporal
variations are commonly treated using traditional finite-volume schemes for the solution of discrete governing
equations over finite control volumes,1–6 and the spectral dependence can be tackled by means of state-
of-the-art spectral radiation techniques,7–10 the treatment of the directional dependence of the radiative
intensity distribution, for accurate and efficient predictions of macroscopic radiative quantities, is still an
active research subject. The discrete ordinates method (DOM)11 is one of the most widely used techniques
for approximating the angular dependence of the RTE. Solutions of the DOM are generally obtained using
space marching iterative techniques, which are known to be very efficient for problems with relatively simple
geometry and simplified physics (e.g., non-scattering media). However, space marching techniques can lose
their effectiveness in cases with complex three-dimensional geometries and realistic physics, as is the case in
many practical applications. The method of moments12 provides a hierarchy of models allowing a possible
reduction in the numerical costs associated with solving the RTE by replacing the representation of the
angular dependence of the radiative distribution by a finite set of angular integrals or moments of the latter.
However, closure is required for the finite system of equations for the angular moments since there are
always more unknowns than equations. The spherical harmonic moment closures (PN , where N refers to
the order of the highest moments in the closed system), has been extensively used for providing approximate
radiation heat transfer solutions,13–16 where the underlying radiative intensity distribution is approximated
by a truncated series expansion in terms of orthogonal spherical harmonic functions. Closed-form analytic
expressions for the closing relations of the PN closures exist for any order of approximation, N . However, one
of the main limitations of the PN moment closures is their inability to properly capture highly anisotropic
regimes. In fact, in such regimes, the distribution of radiation is uniquely determined by a Dirac-delta, which
is almost impossible to reproduce with a polynomial expansion of the radiative intensity distribution, as in
the PN closures.

As alternatives to the spherical harmonic approximation of the radiative intensity distribution, there
has recently been particular interest in maximum-entropy-based, MN , moment closures to the system of
moment equations arising from the RTE.17 Approaches based on the principle of maximization of entropy
are particularly attractive for several reasons, among which is the fact that, for a given finite set of moments,
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they provide the most likely form of the radiative intensity distribution among all the possible forms that
can reproduce such set of moments.18 Moreover, the resulting closed system of moment equations is strictly
hyperbolic and the moments associated with the reconstructed entropy-maximizing distribution of radiation
are physically realizable. Furthermore, even the lowest-order maximum-entropy moment closure, namely the
first-order, M1, closure, can capture highly anisotropic distributions of radiative intensity. However, unlike
the PN moment closures, closed-form analytic expressions for the closing relations of the MN closures only
exist for the gray M1 closure in the case of Bose-Einstein entropy for radiation. Repeated numerical solution
of the optimization problem for entropy maximization is therefore generally required, whenever an update
of the radiation solutions is required, which can make the application of the MN closures computationally
prohibitive. In spite of these difficulties, in a previous study, Hauck19,20 explored the predictive capabilities
of maximum entropy moment closures up to sixth-order, based on the Boltzmann entropy of radiation, for
various test problems involving gray-gas radiative heat transfer in one-dimensional slab geometries. In this
study, the solutions of the aforementioned MN closures were obtained by solving the optimization problem
for entropy maximization via a numerical approach. Furthermore, Hauck compared the predictions of the
aforementioned MN closures to those of the PN spherical harmonic approximations. His analysis clearly
demonstrated that the higher-order MN closures provided significantly improved predictions of radiative heat
transfer, relative to the M1 closure, which produces a nonphysical behaviour in the radiative energy density
in situations where there is more than one primary direction for the propagation of the radiative energy.21

Similar results have been obtained by Monreal and Frank,22 who proposed an analytical approximation for
the M2 closing relation in the one-dimensional case.

Motivated by a desire for moment closures for radiative transport applications which have the desirable
properties of the MN closures without the prohibitive computational costs associated with repeated solution
of the optimization problem for entropy maximization, Pichard et al.23 recently proposed interpolative-based
approximations of the closure relations for both the gray M1 and M2 moment closures, obeying Boltzmann
statistics, in multiple space dimensions. In the context of the M1 closure, Pichard et al.23 developed an
interpolative-based analytical approximation of the Eddington factor. The proposed interpolation is based
on a convex combination of the known analytical expressions of the Eddington factor on the upper and lower
boundaries of the space of realizable angular moments up to second-order. The convex interpolant is then
determined such that the values of the Eddington factor as well as its first derivatives, both on the boundaries
of the realizable space up to first-order and in the isotropic limit, are exactly reproduced. In addition, the
interpolant was also chosen such that the error between the proposed approximation and pre-computed
solutions of the optimization problem for entropy maximization, for sets of angular moments uniformly
spanning the full realizable space up to first-order, is minimized. For the interpolative-based approximation
of the gray M2 closure in multiple space dimensions, Pichard et al.23 first performed interpolations in the
1D case, based on convex combinations of the known exact form of the closure relations on the upper and
lower boundaries of the realizability domain for angular moments up to third order. However, since, to
date, necessary and sufficient conditions for realizability of the third-order angular moments in multiple
space dimensions do not exist, the extension of the interpolation to multidimensional physical space was
then carried out in the realizable domain for moments up to first order, the latter being a subset of the full
realizable space for the M2 closure, which involves moments up to second order.

By way of its construction, the resulting interpolation procedure proposed by Pichard et al.23 only
mimics accurately the corresponding maximum entropy solutions in one dimensional physical space, but not
in multiple space dimensions. Moreover, the fact that the construction in multiple dimensions is based on
the realizability domain for moments up to just first order does not take into account the possible regimes
that can only be described by higher-order moments describing the realizable space for the M2 closure. More
recently Sarr and Groth24,25 proposed a new interpolative-based approximation of the gray M2 closure, in
the case of Bose-Einstein-based entropy of radiation. Unlike Pichard et al.,23 the M2 closure of Sarr and
Groth24,25 mimics fully the maximum entropy solutions everywhere within the realizable space for angular
moments up to second-order in multiple space dimensions. It should also be pointed out that an extended
quadrature method of moments (EQMOM)-based second-order moment closure was developed by Li et al.,26

as an approximation to the M2 maximum-entropy closure. In their approach, the base function used in the
EQMOM scheme are β probability density functions. One of the main advantages of this so-called B2 model
of Li et al.,26 compared to the M2 closure, is the existence of closed-form analytical expressions for the
closure relations. Moreover, the B2 model provides a smooth interpolation between the isotropic and the
free-streaming limits. However, the EQMOM-based closure does not really attempt to mimic closely the
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properties of the M2 maximum entropy closure and the B2 model in multiple space dimensions is neither
globally realizable nor globally hyperbolic. In fact, Li et al.26 have shown that the quadrature-based
approximation to the M2 closure is only realizable and hyperbolic in a portion of the realizable space defined
by moments up to second-order.

To the authors’ knowledge, the only previous study concerned with investigating the predictive capa-
bilities of the non-gray maximum-entropy moment closures for the non-gray case is due to Turpault.27,28

More specifically, the latter formulated a multigroup variant of the non-gray M1 closure, whereby the spec-
trally dependent form of the entropy maximizing distribution was approximated by averages over groups of
frequencies, spanning the spectrum of interest for the computations. For any given set of band-averaged
angular moments up to first-order, the Eddington factor, which is the only unknown parameter in the closing
relations, was then obtained by numerically solving the underlying dual optimization problem for entropy
maximization for the corresponding frequency group. As mentioned previously, the repeated solution of
the optimization problem for entropy maximization is expensive, and should be avoided, especially when
radiation must be coupled with other phenomena, as is the case in large-scale simulations for practical
engineering problems. Moreover, the multigroup approach, which consists of approximating spectral ra-
diative quantities over a given group of frequencies by an average over that set, may lead to substantial
over- or under-estimations of the spectrally integrated radiative quantities, due to the strong spectral de-
pendence of the absorption coefficient of real gases.29 Such strong variations of the absorption coefficient
with respect to frequency have led to the development of efficient, state-of-the-art spectral techniques for
efficient integration of radiative quantities over the full spectrum of frequencies, including the Statistical
Narrow-Band Correlated-k (SNBCK)7 model, which is of interest in this study. The SNBCK technique is
based on re-ordering of the strongly varying spectral absorption coefficient into a monotonic function of
a cumulative distribution function, and can yield comparable accuracy with respect to the straightforward
and very expensive line-by-line calculations,29 but with substantial improvements in computational efficiency
relative to the latter. In light of these observations, it seems crucial to develop efficient interpolative-based
non-gray maximum-entropy moment closures that accurately mimic numerical solutions of the maximum
entropy optimization problem and also couple naturally with the SNBCK, so as to take full advantage of the
computational benefits provided by the latter spectral techniques, for radiation calculations in real gases.

In a recent paper by the authors,30 an interpolative-based approximation of the Eddington factor for the
second-order closing fluxes of the non-gray M1 closure has been been proposed and described, followed by an
assessment of its predictive capabilities in laminar reactive flows with soot formation. Improvements to the
latter non-gray M1 closure have been proposed in a more recent paper by Sarr and Groth,31 which results in
a more robust, realizable and hyperbolic closed system of moment equations up to first-order. In particular,
the more recent study of Sarr and Groth31 follows a more systematic approach for the choice of the mapping
of the radiative energy density, for the purpose of the interpolation procedure. More specifically, instead of
an algebraic mapping, with arbitrarily fixed value for the mapping length scale,30 an exponential mapping
of the energy density was adopted in,31 the length scale of which was chosen to be a free parameter. The
distribution of such a length scale was then chosen such that the proposed interpolative-based approximation
of the Eddington factor is realizable and accurately mimics numerical solutions of the optimization problem
for entropy maximization over the full realizable space for angular moments up to first order and over the
full spectrum of frequencies, while yielding a hyperbolic closed system of moment equations.

The aim of this study is to develop a new, efficient and hyperbolic interpolative-based analytical approx-
imation of the closing relations for the non-gray M2 closure, in the case of the entropy of radiation based on
Bose-Einstein statistics. Our proposed interpolation procedure mimics very closely the solution quality and
desirable properties of the original non-gray M2 closure, while avoiding the relatively computationally expen-
sive iterative numerical solution procedure, associated with the entropy maximization problem, in practical
simulations. The proposed construction is very similar to the one adopted by Sarr and Groth24,25 for the
interpolative-based M2 closure for gray radiation, with some improvements in the polynomial interpolation
procedure, yielding an overall more computationally efficient approximation of the maximum-entropy-based
third-order closing fluxes. More specifically, unlike the M2 closure proposed by Pichard et al.,23 the third-
order closing fluxes of the non-gray M2 closure are approximated by a smooth interpolant of their known
exact analytical expressions at some of the boundaries of the realizable space for the second-order angular
moments. Moreover, for each of the closing fluxes being approximated, the interpolant is defined as an ex-
pansion of orthogonal polynomials, the coefficients of which are determined via solution of the Vandermonde
system associated with suitably chosen interpolation nodes, so as to provide quasi-optimal approximations
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of the quantities of interest. By means of its construction, our proposed interpolative-based procedure ac-
curately reproduces derivatives of the closing fluxes on some of the boundaries of the realizable space for
angular moments up to second-order, and also accurately approximates numerical maximum entropy solu-
tions associated with sets of angular moments spanning the full realizable space of interest. Furthermore,
unlike Pichard et al.23 and Sarr and Groth,24,25 where the assumption of a gray media was invoked, our
proposed interpolation procedure also involves a particular treatment of the spectral dependence of the third-
order closing fluxes. More specifically, in this study, the procedure described in the previous work of Sarr
and Groth,31 for the accurate treatment of the spectral dependence of the Eddington factor in the case of
the non-gray M1 closure, is adopted and extended to the case of the non-gray M2 closure, which results in a
robust and accurate approximation of maximum entropy solutions for the third-order closing fluxes over the
full realizable space for angular moments up to second-order, as well as over the full spectrum of frequencies.

After presenting the theoretical details of the interpolation procedure for our new non-gray M2 clo-
sure, its particular implementation in the context of the state-of-the-art statistical narrow-band correlated-k
(SNBCK) model,7 is discussed. Next, an efficient Godunov-type finite-volume scheme is described for the
numerical solution of the resulting system of hyperbolic moment equations arising from our non-gray M2

interpolative-based closure. Finally, the predictive capabilities of the newly developed non-gray M2 closure
are assessed by comparing its solutions to those of its first-order counterpart.31 The comparisons are also
concerned with the solutions of the more commonly adopted P1 and P3 spherical harmonic moment closures,
as well as the popular and standard DOM. The assessments, which, for now, are only concerned with solution
accuracy, are performed by means of several representative test problems involving non-gray radiative heat
transfer between parallel plates and within rectangular enclosures, whereby the medium composition and
temperature distribution are predetermined. The solutions of the DOM are used here as a reference for the
comparisons, whenever exact analytical solutions of the RTE are not available.

II. Radiation Transport in Non-Gray Participating Media

The transport of radiant energy in physical space, ~x, and time, t, in the direction of propagation, ~s, at
a given wavenumber, η, in a radiatively participating media with absorption coefficient, κη = κη(~x, t) and
scattering coefficient, σsη = σsη(~x, t), is described by the radiative transfer equation, which has the form32

1

c

∂Iη
∂t

+ ~s.~∇Iη = κηIbη − (κη + σsη)Iη +
σsη
4π

∫
4π

Iη(~s ′)Φη(~s ′, ~s)dΩ′, (1)

where c is the speed of light in a vacuum, Iη = Iη(~x,~s, t) is the spectral radiative intensity, Ibη = Ibη(T )
(where T = T (~x, t) is the temperature field) is the spectral Planck function or blackbody intensity, Ω denotes
solid angle, and Φη(~s ′, ~s) is the scattering phase function. The latter can be thought of as describing the
probability that a ray travelling in direction, ~s ′, will be scattered into direction, ~s, and is also a function of
location in space and time. The subscript, η, indicates a spectrally varying or dependent quantity.

The RTE, as given in Eq. (1), is a complex nonlinear equation with high dimensionality (7 independent
variables) for which there exists no general exact analytical solution. As such, one must therefore rely
on techniques based on approximate treatments on the independent variables. The temporal and spatial
dependencies can be treated using standard finite-volume techniques for hyperbolic equations. The rather
strong spectral dependence of the radiative properties of real gases, more specifically the spectral absorption
coefficient, κη, will be treated herein using the statistical narrow-band correlated-k (SNBCK) model.7 For
the angular dependence of the spectral radiative intensity distribution, different approximate treatments will
be considered, including the discrete ordinates method, the spherical harmonics, PN , and the maximum
entropy, MN , moment closures, the latter being the focus of the present study.

II.A. Discrete Ordinates Method (DOM)

In the DOM,11 angular quadrature is used to transform the equation of radiative transfer into a set of
partial-differential equations (PDEs) with only spatial and temporal dependence. The angular discretization
technique makes use of the assumption that the radiation is transported only along a finite set of discrete
directions, instead of the effectively infinite number of directions allowed in Eq. (1) by a continuous repre-
sentation of the solid angle. In other words, the solid angle is divided into a finite number, M , of discrete
directions (or ordinates) ~sm, m = 1, . . . ,M . In this way, the RTE is transformed into a system of M coupled
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equations given by

1

c

∂Iη,m
∂t

+ ~sm.~∇Iη,m = κηIbη − (κη + σsη)Iη,m +
σsη
4π

M∑
n=1

wnIη,nΦη(~sn, ~sm), (2)

where the subscript m denotes the discrete ordinate direction, Iη,m is the radiative intensity in the mth

direction and wm is the quadrature weight associated with the direction ~sm. Several quadrature rules have
been developed for the DOM, including the SN schemes of Lathrop and Carlson33 and the TN schemes of
Thurgood et al.34 The T4 quadrature scheme is used in this study for all of the reported DOM simulation
results.

The DOM has been used extensively to provide approximate solutions to the RTE due to its good balance
between accuracy and computational efficiency. However, this direct discretization technique is associated
with two major limitations:35 false scattering and ray effects. The former is due to the spatial discretization
of the RTE whereas the latter is related to the discretization of the angular distribution of the radiative
intensity. Several approaches have been proposed in order to cope with such issues.34,36–40 Additionally,
as mentioned in the introduction, the space marching techniques commonly used to solve the resulting
discretized equations of the DOM can be extremely efficient for relatively simple geometries and physics;
however, the space marching techniques may exhibit poor convergence for applications involving complex
three-dimensional geometries and complex physics5 (e.g., highly scattering media, turbulent reactive flows,
etc.).

III. Moment Closure Methods for Solution of the RTE

An alternative approach to the treatment of the angular dependence of the radiative intensity distribution,
as carried out in the DOM, involves solving directly for the angular integrals or macroscopic moments of the

distribution. These angular moments, I
(n)
η , are taken with respect to angular weights ~s n = ~s⊗ n. . . ⊗~s, for

n = 0, . . .∞, whose independent entries form a monomial basis, and have the form

I(n)
η (~x, t) = 〈~s nIη(~x,~s, t)〉

=

∫
4π

~s nIη(~x,~s, t) dΩ =

∫ 2π

0

∫ π

0

~s nIη(~x,~s, t) sin θdθdψ.
(3)

The first few angular moments, as defined in Eq. (3), are related to some well-known physical quantities.

More specifically, the zeroth-order moment, I
(0)
η , which is a scalar, is related to the radiative energy density,

the first-order moment, I
(1)
η , a 3-component vector in three-dimensional space, is associated with the radiative

flux, and finally, the second-order moment, I
(2)
η , which is a second-order tensor with 6 independent entries in

three dimensions, is associated to the radiative pressure. Beyond second-order, the angular moments, which
then correspond to symmetric tensors of order at least three, have no well-established physical interpretation.
We also define the normalized angular moments of order n, denoted by N (n), as follows

N (n) =
I

(n)
η

I
(0)
η

. (4)

Taking angular integrals of the RTE, Eq. (1), results in a system of moment equations of infinite size
characterizing uniquely an arbitrary distribution. Solving such an infinite system of equations is however
obviously unfeasible from a practical viewpoint. Instead, a reduced finite set of moments and their transport
equations are considered, in practice. In this case however, a solution to the so-called closure problem is
then required as the resulting system of transport equations for the finite set of moments generally involves
the next higher-order moments. In particular, additional expressions relating the highest-order moments
to the known lower-order moments are required for closure. These so-called closing relations are usually
obtained via the reconstruction of an assumed form for the underlying non-negative angular distribution in
terms of the known finite set of lower-order moments. There exists a wide range of possible forms for such
an approximate distribution. In fact, there is effectively an infinite set of possible distributions sharing the
same set of known lower-order moments. However, the choice of the approximate form generally dictates the
many important mathematical properties of the resulting closed system of moment equations: namely the
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realizablility of the predicted moments and hyperbolicity of the moment equations. A set of moments is said
to be physically realizable if there exists a strictly non-negative-valued distribution of the radiative intensity
that will yield the given moments.3 The set of all realizable moments up to a given order n then defines
the so-called n-dimensional phase space of physically realizable moments and is denoted here as R(n). This
region is generally described by a set of inequalities on the values of the moments: the so-called moment
realizability conditions. In this study, approximate forms for the angular distribution resulting from the
spherical harmonic approximation as well as the principle of maximization of entropy will be considered and
their application to radiative transport in non-gray media will be the primary focus.

Another important consideration for the moment closure techniques outlined above is the selection or
choice of the number of moments to be included in the closure of interest, and which are subsequently used
to reconstruct the approximate angular intensity distribution. In general, only the zeroth- and first-order

moments, namely the radiative energy density, I
(0)
η , and the radiative heat flux, I

(1)
η , respectively, are of

primary interest in engineering applications. However, the more angular moments that are used in the
closure to reconstruct the approximate distribution, the wider the range of optical conditions that may be
captured accurately by the closure.

III.A. PN Spherical Harmonic Moment Closures

In the spherical harmonic moment closures, the spectrally dependent radiative intensity distribution, Iη(~x,~s, t),
is expressed as a series expansion in terms of the orthogonal spherical harmonic functions as follows41,42

Iη(~x,~s, t) =

N∑
n=0

n∑
m=−n

Imn,η(~x, t)Y mn (~s), (5)

where N is the order of the highest moment in the closed system, Imn,η(~x, t) are location-dependent coefficients
of the series expansion which can be directly related to the known finite set of moments, and Y mn (~s) is the
spherical harmonic function of degree n and order m having the form

Y mn (~s) =

cos(mψ)Pmn (cos θ), for m ≥ 0,

sin(|m|ψ)P
|m|
n (cos θ), for m < 0,

(6)

and where Pmn (cos θ) is the associated Legendre polynomial.

III.B. First-Order P1 Spherical Harmonic Moment Closure

The first-order P1 spherical harmonic approximation provides closure to the system of transport equations
for angular moments up to first-order, which only involves transport equations for the zeroth- and first-order

moments, I
(0)
η and I

(1)
η , respectively (i.e., a set of four moments in three space dimensions for the radiative

energy density and fluxes in each coordinate direction). This is achieved by approximating the distribution
using the form given in Eq. (5), with N = 1, which is then reconstructed in terms of angular moments up to

first order. The second-order moment, I
(2)
η , is a dyadic quantity (i.e., a second-order tensor) and is involved in

the transport equation for I
(1)
η . This quantity can be directly expressed in terms of the lower-order moments

via integration of the reconstructed distribution, yielding

I
(2)
ij,η =

δij
3
I(0)
η , (7)

where δij is the Kronecker delta operator. This is the so-called P1 approximation, which is generally con-
sidered to be accurate only for optically thick media as it is associated with nearly-isotropic distributions of
the radiative intensity.

III.C. Third-Order P3 Spherical Harmonic Moment Closure

For comparisons to the proposed non-gray M1 interpolative closure, the third-order spherical harmonic, P3,
moment closure is also considered here. The P3 approximation provides closure to the system of transport

equations for angular moments up to third-order (i.e., I
(0)
η , I

(1)
η , I

(2)
η , and I

(3)
η ), where the transport equations
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for the third-order moments involve the fourth-order moments, I
(4)
η . More specifically, the fourth-order

moments are expressed in terms of the lower order moments by making use of the form for the distribution,
given in Eq. (5), with known angular moments up to third-order, and the resulting closing relations can be
summarized as follows

I
(4)
iiii,η = −(3/35)I(0)

η + (6/7)I
(2)
ii,η,

I
(4)
iijj,η = (4/35)I(0)

η − (1/7)I
(2)
jj,η,

I
(4)
iiij,η = (3/7)I

(2)
ij,η,

I
(4)
iijk,η = (1/7)I

(2)
jk,η.

(8)

It has been shown previously that the third-order P3 spherical harmonic approximation yields significantly
improved predictions compared the P1 closure.43 This accuracy improvement however comes at the expense
of a significant increase in computational cost. Moreover, higher-order approximations (N > 3) of the hier-
archy of spherical harmonic moment closures result in further substantial increases in computational efforts,
whereas the accuracy improvements with increasing N are somewhat more modest.44,45 For these reasons, it
is felt that the P3 approximation provides a reasonable balance between accuracy and computational costs,
relative to its higher- or lower-order counterparts.

III.D. Maximum-Entropy MN Moment Closures

Among the infinite family of possible distributions that can be used to approximate the underlying distri-
bution of the radiative intensity, the most probable form of the latter is given, according to Jaynes,18 by
the distribution that maximizes the radiative entropy, HR(Iη), subject to the constraints that a finite set

of its angular moments, I
(n)
η , n = 0, . . . , N , is known. The problem of finding such a distribution can be

formulated in mathematical terms as follows:

Iη = arg max
Iη

HR(Iη)

s.t. 〈~s (n)Iη〉 = I(n)
η , n = 0, . . . , N,

(9)

where N is the order of the highest moment in the closed system of moment equations and

HR(Iη) = 〈hR〉 =

∫
4π

hR(Iη)dΩ, (10)

and where hR denotes the radiative entropy density, which, for combustion applications, corresponds to the
entropy of radiation obeying Bose-Einstein statistics46 and is given by

hR(Iη) =
2kη2

c
[(n+ 1) ln(n+ 1)− n ln(n)], n =

Iη
2hcη3

. (11)

In Eq. (11), n is the occupation number, and h and k are the Planck and Boltzmann constants, respectively.
The Lagrangian of the optimization problem given in Eq. (9) is

L(Iη,α) = HR(Iη)−αT (〈m(~s)Iη〉 −Eη), (12)

where Eη is a vector containing all the independent entries of I
(n)
η , n = 0, . . . , N , m(~s) is a vector containing

all the independent entries of ~s (n), n = 0, . . . , N , and α is the vector of Lagrange multipliers associated with
the moment constraints. For a given finite set of angular moments, with associated Lagrange multipliers, α,
the form of the entropy maximizing distribution can be derived via the stationary point of the Lagrangian,
Eq. (12), i.e., ∂L(Iη,α)/∂Iη = 0, which yields the following expression17

Iη(α, m) = 2hcη3

[
exp

(
c2hη

k
αTm(~s )

)
− 1

]−1

. (13)

In Eq. (13), the radiative intensity distribution is expressed in terms of the Lagrange multipliers, α,
which depend on the angular moments of the distribution, Eη. With the exception of the gray M1 closure,17

there exist no analytical expressions for the Lagrange multipliers in terms of the known lower-order angular
moments. The former must therefore be determined numerically in terms of the latter by solving the
Lagrangian dual optimization problem

max
α
{L∗(α)}, (14)
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where L∗(α) is the Legendre transform of L(Iη,α), Eq. (12), and has the form

L∗(α) =
2kη2

c

〈
log

[
exp

(
c2hη

k
αTm(~s )

)
− 1

]〉
−αTEη. (15)

The wavenumber variable within the exponential term of Eq. (15) is rather inconvenient, since the
Lagrange multipliers must then be solved not only for realizable sets of moments up to first-order, but
also for values of wavenumber spanning the semi-infinite interval [0, +∞]. A more convenient form for
the optimization problem for entropy maximization, Eqs. (14) and (15), for the purpose of the proposed
interpolation procedure, can however be obtained by the change of variables β = (c2hη)α/k, such that

L∗(β) =
〈

log
[
exp

(
βTm(~s )

)
− 1
]〉
− βTE?

η,

L∗(α) = 2ckη2L∗(β),
(16)

where

E?
η =

πEη

C1η3
= {I(0)?

η , I(1)?
η , . . .}, I(n)?

η =
πI

(n)
η

C1η3
, (17)

represents the set of angular moments up to order N used for the solution of the dual optimization problem,
Eq. (16), and C1 = 2πhc2 is the so-called first radiation constant. It is clear from Eq. (16) that, for any
given wavenumber, η, maximizing L∗(α) is equivalent to maximizing L∗(β). Furthermore, the form given

in the latter equation allows the parameterization of the Lagrange multipliers in terms of the ratio I
(0)
η /η3,

instead of I
(0)
η and η, separately, and this parameterization yields a reduction in the number of independent

variables for the interpolation procedure of the non-gray M2 closure, which will be described in the sections
to follow.

III.E. Numerical Solution of the Optimization Problem for Entropy Maximization

The entropy of radiation based on Bose-Einstein statistics, given in Eq. (11), is a strictly convex functional,
and, as such, any locally optimal set of Lagrange multipliers, α, for the dual optimization problem, Eq. (14),
would also be a globally optimal set for the latter. The sequential quadratic programming (SQP) algorithm,
as implemented in the software package NLopt,47–49 an open source library for nonlinear optimization,
was therefore used for the numerical solution of the dual maximum entropy problem, Eq. (14). In this
implementation, an objective function and its gradients, as well as constraints on the Lagrange multipliers
so as as to ensure non-negativity of the entropy maximizing distribution, Eq. (13), are supplied by the user.
The Hessian matrix of second derivatives, which is required for solving the Newton system of equations
at each iteration, is then estimated by means of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
which provides substantial computational savings compared to the direct evaluation of the Hessian matrix
at every iteration.

The algorithm described above provides very good convergence for sets of moments far away from the
boundaries of the realizability domain. However, as one of the boundaries is approached, the dual optimiza-
tion problem becomes increasingly difficult to solve and might even fail to converge due to ill-conditioning
of the Hessian matrix. In order to improve the condition number of the latter, a preconditioning procedure,
similar to that described by Alldredge et al,50 is advocated. The preconditioning is equivalent to an adaptive
change of polynomial basis for the angular moments, relative to the original monomial basis, m(~s), such
that the Hessian is the identity matrix in the new basis. In addition, the regularization scheme introduced
by Alldredge et al.,51 to make the optimization algorithm more robust, especially for very ill-conditioned
problem, is also adopted. As an alternative to the Cholesky factorization of the Hessian for the precondi-
tioning adopted by Alldredge et al.,50 the modified Gram-Schmidt algorithm, described by Abramov,52 is
adopted. Furthermore, instead of preconditioning the Hessian matrix at each Newton step of the entropy
optimization process, the procedure developed by Abramov,53 allowing for several Newton steps between
successive reorthogonalizations, is applied. The procedure consists of tracking the condition number of the
inverse of the Hessian during the BFGS iterations, and then preconditioning the Hessian matrix whenever
the condition number exceeds a threshold value of 20.
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IV. First-Order Maximum-Entropy M1 Moment Closure for Non-Gray Gas

As an alternative to the first-order spherical harmonic, P1, moment closure, the system of transport
equations for angular moments up to first-order can be closed by assuming an entropy maximizing distribution
with known angular moments up to first-order. The reconstructed approximate form of the distribution can

then be integrated, with the appropriate angular weights, to obtain the second-order moments, I
(2)?
η (see

Eq. (17)), in terms of the lower-order moments, i.e., I
(2)?
η = I

(2)?
η (I

(0)?
η , I

(1)?
η ). Such a procedure results

in the so-called first-order maximum-entropy, M1, moment closure, which can be expressed in the so-called
Eddington form as follows54

N (2) =
1− χ2

2
~~I +

3χ2 − 1

2
~n⊗ ~n, I(2)?

η = N (2)I(0)?
η , (18)

where
~~I is the identity matrix, ~n = N (1)/‖N (1)‖ is the unit vector in the direction of the vector of first-order

normalized moments, N (1), and χ2 is the so-called Eddington factor, which is the only unknown in Eq. (18).
Unlike the case of the M1 closure for a gray gas, there exists no exact analytical expression for the Eddington
factor for a non-gray gas, which must therefore be determined numerically by solving the relatively expensive
optimization problem for entropy maximization, Eqs. (14) and (16), for any given realizable set of moments
up to first-order. For the purpose of radiation calculations in real gases, following the original development
of the non-gray M1 closure by Sarr et al.,30 an efficient and realizable interpolative-based approximation of
the the Eddington factor has been recently developed by Sarr and Groth,31 which results in a hyperbolic
system of moment equations up to first order.

V. Second-Order M2 Maximum-Entropy Moment Closure for Non-Gray Gas

The primary focus of the present study is the next member of the hierarchy of maximum entropy closures,
i.e., the second-order, M2, moment closure. The latter provides closing relations to the system of moment
equations up to second-order via reconstruction of an entropy maximizing distribution in terms of its known

angular moments up to order two. The third-order angular moments, I
(3)
η , which correspond to the fluxes of

the transport equations for the second-order angular moments, can then be expressed in terms of the known

moments, i.e., I
(3)?
η = I

(3)?
η (I

(0)?
η , I

(1)?
η , I

(2)?
η ) (see Eq. (17)). Unfortunately, as mentioned in the previous

section, it is not possible to obtain closed-form analytical expressions for the closing moment fluxes for the MN

closures, to the exception of the Bose-Einstein-based M1 closure for a gray medium. As such, in the context
of real-gas radiation, repeated numerical solution of the optimization problem for entropy maximization,
given by Eqs. (14) and (16), would therefore be necessary, whenever an update of the radiation solutions is
required, making the application of the closure computationally expensive.

To circumvent the need for the costly solutions of the optimization problem to determine the Lagrange
multipliers defining the maximum entropy distribution, an alternative interpolative-based approach for ac-
curately approximating pre-computed values of the closing fluxes for the non-gray M2 closure is proposed
herein. This approximation, in addition to attempting to retain some of the desirable properties of the
original model (e.g., hyperbolicity of the moment equations), also results in substantially reduced compu-
tational costs compared to the repeated solution of the optimization problem for entropy maximization.
The proposed interpolation procedure for the non-gray M2 closure is a direct extension of the framework
adopted by Sarr and Groth24,25 for the development of an interpolative-based approximation of the M2

closure in the case of gray radiation, which was motivated by the work of Pichard et al.,23 who appear to
be the first to develop interpolative-based approximations of the third-order closing fluxes for the gray M2

closure. It is formulated so as to closely match the form of the non-gray M2 maximum entropy solutions
over the entire space of physically realizable moments up to second-order (i.e., the space defined by the set of
necessary and sufficient conditions such that there exists a non-negative distribution reproducing moments
up to second order). More specifically, a procedure based on affine combinations of the known analytical
expressions of the third-order closing fluxes, N (3), on some of the boundaries of the realizable space for the
second-order angular moments, is adopted to provide approximations for the closing fluxes of the non-gray
M2 closure. The interpolants are chosen such that known analytical expressions of the third-order closing
fluxes in the isotropic and the free-streaming limits, as well as on the boundaries of the realizable space for
the second-order moments, are exactly reproduced. In the interior of the realizable space for the M2 closure,
the interpolants also exactly reproduce pre-computed numerical maximum entropy solutions at a finite set
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of points, chosen to coincide with roots or extrema of suitably selected orthogonal polynomials, which are
known to provide quasi-optimal approximation to a function.

While the assumption of gray radiation was invoked in the study by Sarr and Groth,24,25 non-gray
participating media are of interest in the present study, which also involve the dependencies of the third-
order closing fluxes on the radiative energy density and wavenumber. For the treatment of such additional
dependencies, an extension of the procedure presented in the authors’ recent paper,31 in the context of the

non-gray M1 closure, is adopted. In particular, an exponential mapping of the radiative energy density, I
(0)?
η ,

is employed for the purpose of our polynomial interpolation procedure, and the length scale of the mapping
is systematically chosen so as optimize the accuracy with respect to numerical maximum entropy solutions,
while resulting in an overall hyperbolic closed system of moment equations up to second-order. However,
unlike the procedure followed by Sarr and Groth,31 realizability of the closing fluxes is not considered herein
for the determination of the distribution of the length scale of the exponential mapping, due to the lack of
necessary and sufficient conditions for realizability of angular moments up to third-order.

The development and description of the proposed interpolative-based non-gray second-order M2 closure
are given below in the section to follow. More specifically, after a brief overview of the realizable space for
angular moments up to second-order, an in-depth description of the theoretical details of the interpolative
procedure for the non-gray M2 closure is carried out. Hyperbolicity of the resulting closed system of partial
differential equations for the angular moments is discussed later in section VII.B.

V.A. Interpolative-Based Second-Order M2 Non-gray Maximum-Entropy Moment Closure

For angular moments up to second-order associated with an every-where non-negative angular distribution
of the radiative intensity, the corresponding necessary and sufficient conditions on moment realizability, in
multiple space dimensions, have been established by Kershaw,55 and were recently revisited by Sarr and
Groth.25 Such conditions, which describe the realizable space for angular moments up to second order, R(2),
can be be summarized as follows

R(2) = {(I(0)
η , I(1)

η , I(2)
η ) ∈ R3 × R3×3, s.t. I(0)

η ≥ 0, ‖N (1)‖ ≤ 1,

N (2) −N (1)(N (1))T ≥ 0, ~nTN (2)~n ≤ 1 ∀ ‖~n‖ ≤ 1,

tr(N (2)) = 1 and N
(2)
ij = N

(2)
ji } .

(19)

One of the key steps in the proof of sufficiency of the above conditions is the transformation which sends
the Cartesian axes in the coordinate frame where the covariance matrix, (N (2) −N (1)(N (1))T ), is diagonal,
i.e., Cartesian axes aligned with principal axes of the covariance matrix. Such a transformation can be
summarized as follows

T : (I(0)
η , I(1)

η , I(2)
η )→ (I ′ (0)

η , I ′ (1)
η , I ′ (2)

η )

s.t. (N ′ (2) −N ′ (1)(N ′ (1))T ) is diagonal positive definite,
(20)

where I
′ (i)
η , i = 0, . . . , 2, denote the images of the angular moments I

(i)
η , i = 0, . . . , 2, under the rotational

transformation which sends the coordinate axes along the principal axes of the covariance matrix. The latter
can be expressed in terms of the former via the following relationships

I ′ (0)
η = I(0)

η , I
′ (1)
η,i = RjiI

(1)
η,j , I

′ (2)
η,ij = RpiRqjI

(2)
η,pq, (21)

where R is the rotation matrix such that RT (N (2)−N (1)(N (1))T )R is diagonal positive definite. Moreover,
the third-order angular moments in the two coordinate systems can also be related as follows

I
′ (3)
η,ijk = RliRmjRnkI

(3)
η,lmn. (22)

In Eq. (20), the quantities, N ′ (i), i = 1, . . . , 2, represent normalized angular moments associated with

the transformed full angular moments, I
′ (i)
η , i = 1, . . . , 2. In the new coordinate frame, the transformed

second-order moment can be written as follows

N ′ (2) = N ′ (1)(N ′ (1))T + (1− ‖N ′ (1)‖2)diag(γ1, γ2, γ3). (23)
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(a) (b)

Figure 1. Realizability domain, R(2)
T , for the M2 closure in the frame where the covariance matrix, N(2) −N(1)(N(1))T ,

is diagonal positive definite for any given non-negative radiative energy density, I′ (0)
η , and (a) a fixed set of normalized

eigenvalues {γ1, γ2, γ3}; and (b) a fixed set of first-order moments {N ′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 }.

where γi, i = 1 . . . 3, are the normalized eigenvalues of the covariance matrix, which satisfy the constrains
γi ≥ 0 and

∑3
i=1 γi = 1, and where the former constraint is a consequence of the positive semi-definiteness

of the covariance matrix, whereas the latter equality stems from the trace equality on the covariance matrix.
The realizability conditions in the new coordinate frame can then be summarized as follows

R(2)
T = {(I ′ (0)

η , I ′ (1)
η , I ′ (2)

η ) ∈ R× R3 × R3×3, } s.t. I ′ (0)
η ≥ 0, ‖N ′ (1)‖ ≤ 1,

0 ≤ γi ≤ 1, i = 1 . . . 3, and

3∑
i=1

γi = 1} .
(24)

The transformation which sends the Cartesian axes along the principal axes of the covariance matrix
clearly allows for a more straightforward characterization of the realizable space for angular moments up to
second order via a reduction of the number of independent variable from 9 to 6, in three-dimensional physical
space. In fact, the set of angular moments up to second-order is represented by 9 independent variables since

the zeroth-order moment, I
(0)
η , is a scalar, the first-order moment, I

(1)
η , is a 3-component vector, and the

second-order moment, I
(2)
η , is a symmetric second-order dyad or tensor with 5 unique entries.

A graphical representation of the realizability domain for angular moments up to second-order, R(2)
T , is

shown in Fig. 1, for any given non-negative radiative energy density, I
′ (0)
η . It can be clearly observed that

for any given realizable first-order angular moment vector, the matrix of second order angular moments is
realizable if and only if its normalized eigenvalues lie within the triangle (P1, P2, P3). At the vertices of the
latter triangle, closed-form analytical expressions for the third-order angular moments, N ′ (3), exist and are
summarized in Table 1. We then aim to write the third-order closing fluxes for our non-gray M2 closure,

for any given set of angular moments up to second-order in R(2)
T , as an affine interpolant of their known

expressions at such vertices.
It is worth pointing out that the third-order normalized moment tensor, N ′ (3), is symmetric and therefore

Table 1. Exact Analytic Expression of M2 Closing Relations at the Vertices of the Triangle (P1, P2, P3).

Vertex N
′ (3)
111 N

′ (3)
122 N

′ (3)
123

P1 N
′ (1)
1

[
(N
′ (1)
1 )2 + (1− ‖N ′ (1)‖2)

]
N
′ (1)
1 (N

′ (1)
2 )2 N

′ (1)
1 N

′ (1)
2 N

′ (1)
3

P2 (N
′ (1)
1 )3 N

′ (1)
1

[
(N
′ (1)
2 )2 + (1− ‖N ′ (1)‖2)

]
N
′ (1)
1 N

′ (1)
2 N

′ (1)
3

P3 (N
′ (1)
1 )3 N

′ (1)
1 (N

′ (1)
2 )2 N

′ (1)
1 N

′ (1)
2 N

′ (1)
3
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Table 2. Form of the entropy maximizing distribution on the boundaries of the realizable space for angular moments
up to second-order.

Regime Form of the Distribution

‖N ′ (1)‖ = 1 Iη = I
(0)
η δ(~Ω−N (1))

γi = 0 or γi = 1 see25

I
′ (0)
η → 0 Iη(α, m) = 2hcη3 exp

(
− c

2hη
k αTm(~s )

)
I
′ (0)
η → +∞ Iη(α, m) = 2kη2

c

[
αTm(~s )

]−1

intR(2)
T Iη(α, m) = 2hcη3

[
exp

(
c2hη
k αTm(~s )

)
− 1
]−1

has just 10 unique, independent entries, in three-dimensional physical space. Furthermore, knowledge of just

3 of these entries, namelyN
′ (3)
111 , N

′ (3)
122 andN

′ (3)
123 , is sufficient to obtain values for the remaining 7 independent

entries which can be related to these 3 entries as follows:

N
′ (3)
222 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
111 (I ′ (0)?

η , N
′ (1)
2 ,−N ′ (1)

1 , N
′ (1)
3 , γ2, γ1),

N
′ (3)
333 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
111 (I ′ (0)?

η , N
′ (1)
3 , N

′ (1)
2 ,−N ′ (1)

1 , γ3, γ2),

N
′ (3)
112 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
122 (I ′ (0)?

η , N
′ (1)
2 ,−N ′ (1)

1 , N
′ (1)
3 , γ2, γ1),

N
′ (3)
113 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
122 (I ′ (0)?

η , N
′ (1)
3 , N

′ (1)
1 , N

′ (1)
2 , γ3, γ1),

N
′ (3)
133 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
122 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
3 ,−N ′ (1)

2 , γ1, γ3),

N
′ (3)
223 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
122 (I ′ (0)?

η , N
′ (1)
3 , N

′ (1)
2 ,−N ′ (1)

1 , γ3, γ2),

N
′ (3)
233 (I ′ (0)?

η , N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) = N

′ (3)
122 (I ′ (0)?

η , N
′ (1)
2 , N

′ (1)
3 , N

′ (1)
1 , γ2, γ3).

(25)

It is also worth mentioning that the optimization problem for entropy maximization given by Eqs. (14)

and (16) cannot be solved directly on the boundaries of the realizability domain, R(2)
T , denoted as ∂R(2)

T ,

and where some of the inequalities defining the realizable space, R(2)
T , become sharp, i.e.,

∂R(2)
T = {(I ′ (0)

η , I ′ (1)
η , I ′ (2)

η ) s.t. I ′ (0)
η → 0 or I ′ (0)

η → +∞ or ||N ′ (1)|| = 1,

or γi = 0 or γi = 1, i ∈ {1, 2, 3}}.
(26)

In fact, on ∂R(2)
T , the entropy maximizing distribution of Eq. (13) becomes singular due to the fact that

propagation of radiation is then only allowed along specific directions, instead of spanning the full solid
angle. More specifically, the entropy maximizing distribution is either uniquely determined by a Dirac-delta
distribution (for ‖N (1)‖ = 1), or a combination of Dirac-delta distributions (for γi = 1, i ∈ {1, 2, 3}, see25),

or takes a particular form, as in the case of the limit where I
′ (0)
η → 0 or I

′ (0)
η → +∞, which are referred to

as the hyperbolic and the logarithmic limits,56 respectively. In the case where only one eigenvalue vanishes,
i.e., γi = 0, i ∈ {1, 2, 3}, the distribution still has the form given in Eq. (13) for the entropy maximizing
distribution, but is only defined over a circle instead of the full solid angle, as it becomes singular with respect
to one of the direction cosines of the vector, ~s, characterising the direction of propagation of radiation. The
expressions for the entropy maximizing distribution associated with each of the aforementioned limits, are
summarized in Table 2.

Based on the above, numerical maximum-entropy solutions for the third-order closing fluxes throughout

the full realizable space, R(2)
T = intR(2)

T ∪ ∂R
(2)
T , can then be obtained by solving the optimization problem

for entropy maximization using the appropriate form of the distribution for any given set of moments up to

second order. We then aim to approximate the third-order closing fluxes at any point within R(2)
T by writing

the entries, N
′ (3)
111 = N

(3)
111(I

′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), N

′ (3)
122 = N

′ (3)
122 (I

′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2)

and N
′ (3)
123 = N

′ (3)
123 (I

′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), as affine interpolants between their known closed-form

expressions at the vertices of the triangle (P1, P2, P3) (see Table 1) as follows

N
′ (3)
111 = N

′ (1)
1

[
(N
′ (1)
1 )2 + f

N
′ (3)
111

(1− ‖N ′ (1)‖2)
]
, (27)
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N
′ (3)
122 = N

′ (1)
1

(
(N
′ (1)
2 )2 + f

N
′ (3)
122

(1− ‖N ′ (1)‖2)
)
, (28)

and
N
′ (3)
123 = f

N
′ (3)
123

N
′ (1)
1 N

′ (1)
2 N

′ (1)
3 , (29)

where f
N

′ (3)
111

= f
N

′ (3)
111

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), f

N
′ (3)
122

= f
N

′ (3)
122

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2),

and f
N

′ (3)
123

= f
N

′ (3)
123

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) are polynomial expressions defined such that the pro-

posed approximations of the third-order closing fluxes exactly match the known closed-form expressions at
the vertices of the triangle, (P1, P2, P3), and consist of the following expressions

f
N

′ (3)
111

= γ1

[
1 + (1− γ1)g

N
′ (3)
111

]
, (30)

f
N

′ (3)
122

= γ2

[
1 + γ1gN ′ (3)

122

]
, (31)

and
f
N

′ (3)
123

= 1 + γ1γ2γ3gN ′ (3)
123

, (32)

and where g
N

′ (3)
111

= g
N

′ (3)
111

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), g

N
′ (3)
122

= g
N

′ (3)
122

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2),

and g
N

′ (3)
123

= g
N

′ (3)
123

(I
′ (0)?
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) are polynomial expressions which are written as trun-

cated series expansions in terms of orthogonal basis functions as follows

g
N

′ (3)
uvw

=

ni∑
i=0

nj∑
j=0

nk∑
k=0

k∑
l=0

np∑
p=0

np−p∑
q=0

C
N ′ (3)
uvw

ijklpqTi(MI
′ (0)?
η

)T2j(‖N ′ (1)‖)Y 2l
2k(θ, φ)Ppq(γ1, γ2), (33)

with ni = nj = nk = np = 4.
In Eq. (33), Tn represents the Chebyshev polynomial of the first kind of degree n, Y lk is the spherical

harmonic function of degree k and order l, Ppq represents the Proriol polynomial of order, p + q, θ and φ
respectively represent the polar and azimuthal angles characterizing the direction of the normalized first-order
angular moment vector, N ′ (1), in a spherical coordinate system and are defined as follows

θ = arccos

(
N
′ (1)
3

‖N ′ (1)‖

)
, φ = arccos

 N
′ (1)
1√

(N
′ (1)
1 )2 + (N

′ (1)
2 )2

 , (34)

and M
I
′ (0)?
η

represents an exponential mapping of the radiative energy density, similar to the one adopted

by Sarr and Groth,31 of the form

M
I
′(0)?
η

: [0, +∞]→ [−1, 1],

I ′(0)?
η → 1− 2 exp

(
− I

′(0)?
η

LN ′ (3)

)
,

(35)

and where LN ′ (3) is the length scale of the mapping, M
I
′(0)?
η

, the distribution of which is chosen such

that the accuracy of our interpolative-based approximations of the third-order closing fluxes, with respect to
numerical maximum-entropy solutions, is optimized, for sets of angular moments up to second-order spanning

R(2)
T and over the full spectrum of frequencies. The choice of the form of the mapping length scale is also

dictated by some of the desirable properties of the original non-gray M2 closure, in particular hyperbolicity
of the resulting closed system of moment equations. An in-depth description of the procedure adopted in
the present study for determining the optimal distribution of LN ′ (3) is presented later in this section.

The coefficients, C
N ′ (3)
uvw

ijklpq, i = 0, . . . , ni, j = 0, . . . , nj , k = 0, . . . , nk, l = 0, . . . , k, p = 0, . . . , np, q =

0, . . . , np − p, appearing in Eq. (33), and defining the vector of coefficients, CN ′ (3)
uvw , are determined via the

solution of the Vandermonde system arising from the enforcement of the latter equation at several, suitably

chosen, interpolation nodes spanning R(2)
T . In the present study, the interpolation points for M

I
′(0)?
η

and
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‖N ′(1)‖ are chosen to coincide with extrema of Chebyshev polynomials of the first kind of order ni and 2nj ,
respectively, including the endpoints. On the other hand, for the eigenvalues of the covariance matrix, a
distribution similar to the one proposed by Blyth and Pozrikidis,57 for the interpolation over the standard
triangle, is employed, which yields

γ1,i =
1

3
(1 + 2vi − vj − vk), γ2,j =

1

3
(1 + 2vj − vi − vk), (36)

where i = 1, . . . , np + 1, j = 1, . . . , np + 2 − i, and k = np + 3 − i − j, and where vm, m = 1, . . . , np + 1,
are chosen to coincide with extrema of the shifted Chebyshev polynomial of the first kind of order np, also
including the endpoints. The interpolation nodes for the polar angle θ were chosen such that cos θ coincides
with roots of the Legendre polynomials of order (2nk + 1), whereas, for the azimuthal angle, φ, a set of
4nk points uniformly distributed on the unit circle were selected as the interpolation points. The choice
of extrema of Chebyshev polynomials of the first kind, including the endpoints, also known as Chebyshev-
Gauss-Lobatto points, for the purpose of interpolating over the domain spanned by the mapping, M

I
′(0)?
η

,

and the norm of the first-order normalized moment vector, ‖N ′(1)‖, as well as over the triangle
(P1, P2, P3), allows for the derivatives of the third-order closing fluxes to be accurately reproduced in the
isotropic (‖N (1)‖ = 0) and the free-streaming (‖N (1)‖ = 1) limits, as well as on the boundaries (edges) of
the triangles of the triangle (P1, P2, P3), which correspond to situations where at least one of the eigenvalues
of the covariance matrix vanishes. This feature is quite desirable as it ensures that our interpolative-
based approximations of the third-order closing fluxes accurately capture the rates of change of the original
maximum entropy solutions in such limits, and, consequently, oscillations of the interpolated solutions as such
limits are approached, which can yield both realizability and hyperbolicity issues, are minimized. However,
computations of the numerical values for g

N
′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

from the maximum entropy solutions,

using Eqs. (27) and (30) for N
′(3)
111 , Eqs. (28) and (31) for N

′(3)
122 , or Eqs. (29) and (32) for N

′(3)
123 , respectively,

for the purpose of solving the Vandermode system for the vector of coefficients, CN
′ (3)
111 , CN

′ (3)
122 , and CN

′ (3)
123 ,

from Eq. (33), though straightforward for distributions away from the isotropic and free-streaming limits,
as well as distributions away from the edges of the triangle described by the eigenvalues of the covariance
matrix, result in undetermined expressions in these limits. In this study, l’Hopital’s rule is used to provide
computable expressions for g

N
′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

in such limits, the derivation of which is not presented

herein.
In the present study, the form of the length scale, LN ′ (3) , of the exponential mapping given in Eq. (35)

is inspired from the expression proposed by Sarr and Groth,31 in the case of the non-gray M1 closure, and
can be seen as an extension of the latter to the case of known angular moments up to second-order. More

specifically, we aim the write the length scale, LN ′ (3) = LN ′ (3)(N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2) in the following

form

LN ′ (3) = exp

 nj∑
j=0

nk∑
k=0

k∑
l=0

np∑
p=0

np−p∑
q=0

C
L
N′(3)

jklpq T2j(‖N ′(1)‖)Y 2l
2k(θ, φ)Ppq(γ1, γ2)

 , (37)

where the coefficients, C
L
N′ (3)

jklpq , j = 0, . . . , nj , k = 0, . . . , nk, l = 0, . . . , k, p = 0, . . . , np, q = 0, . . . , np − p,
defining the vector of coefficients, CL

N′ (3) , are chosen so as to accurately mimic numerical solutions of the
entropy optimization problem, for the third-order closing fluxes, over the full realizable space for angular

moments up to second order, R(2)
T , and over the full spectrum of frequencies. In the case of the non-gray

M1 closure proposed by Sarr and Groth,31 the determination of the coefficients for the length scale of the
exponential mapping was only concerned with the Eddington factor, which is the only unknown in the
second-order closing fluxes. In the present study, on the other hand, the optimal distribution of the length

scale, LN ′ (3) , accounts simultaneously for the third-order closing fluxes N
′ (3)
111 , N

′ (3)
122 , and N

′ (3)
123 , for which

interpolative-based approximations are proposed herein. More specifically, the vector of coefficients, CL
N′ (3) ,

is computed herein via the solution of a nonlinear least-squares problem, which consists of minimizing a
weighted sum of the L2 errors of the interpolative-based approximations of the third-order closing fluxes,
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and can be summarized by the following expressions

min
C
L
N′ (3)

{weighted errorg
N

′ (3)
uvw

},

weighted errorg
N

′ (3)
uvw

= w
N

′ (3)
111
× errorg

N
′ (3)
111

+ w
N

′ (3)
122
× errorg

N
′ (3)
122

+ w
N

′ (3)
123
× errorg

N
′ (3)
123

,

errorg
N

′ (3)
uvw

=

Ni∑
i=1

Nj∑
j=1

2Nk∑
k=1

Nk∑
l=1

Np∑
p=1

Np−p∑
q=1

Nr∑
r=1

wiwjwkwlwpqwr

(
gijklpqr
N

′ (3)
uvw ,fit

− gijklpqr
N

′ (3)
uvw ,numerical

)2

,

(38)

where the weights, w
N

′ (3)
111

= 0.4, w
N

′ (3)
122 =0.3

, and w
N

′ (3)
123

= 0.3, respectively express the relative importance

of each of the third-order closing fluxes, N
′(3)
111 , N

′(3)
122 , and N

′(3)
123 , in the determination of the coefficients of

the length of the exponential mapping of the radiative energy density.
In Eq. (38), gijklpqr

N
′ (3)
uvw ,numerical

represents values of the weighting function, g
N

′ (3)
uvw

, of the affine interpolant

given in Eq. (33), obtained via numerical solution of the optimization problem for entropy maximization for
N = 2NiNj(Nk)2NpqNr = 6.72 × 109 evaluation points. The latter consist of Ni = 20 values of M

I
′(0)?
η

following a Gauss-Lobatto-Chebyshev distribution in [−1, 1], with associated weights, wi, i = 1, . . . , Ni,
Nj = 20 values of ‖N ′(1)‖ associated with non-negative Gauss-Lobatto-Chebyshev points in [−1, 1], with
weighting wj , j = 1, . . . , Nj , and Nr = 100 values of LN ′ (3) based on roots of Laguerre polynomials with
weighting wr, r = 1, . . . , Nr. Moreover, Nk = 20 values of θ and 40 values of φ (see Eq. (34)) uniformly
distributed in [0, π] and [0, 2π], respectively, with weights, wl, l = 1, . . . , Nk, and wk, k = 1, . . . , 2Nk, were
also used in the solution of the least-squares problem, in addition to Npq = Np(Np + 1)/2 = 210 points
(with Np = 20) following the distribution given in Eq. (36), with associated weights, wpq, p = 1, . . . , Np,
q = 1, . . . , Np − p.

Furthermore, in Eq. (38), gijklpqr
N

′ (3)
uvw ,fit

corresponds to values of the weighting function, g
N

′ (3)
uvw

, computed

via evaluation of the proposed polynomial approximation, Eq. (33), at the test points. At each iteration of
the nonlinear least-squares problem defined by Eq. (38), the iterate, CL

N′ (3) , can be used, in conjunction

with Eq. (37) as well as the inverse of the exponential mapping of Eq. (35), to compute values of I
′(0)?
η

associated with the chosen interpolation nodes for M
I
′(0)?
η

, and consequently solve the corresponding dual

maximum-entropy problem at each of the interpolation points. The vectors of coefficients, CN
′ (3)
111 , CN

′ (3)
122 ,

and CN
′ (3)
123 (see Eq. (33)), are then obtained via solution of the associated Vandermonde systems, and the

resulting polynomial expressions of Eq. (33) are then used to compute the quantities, g
N

′ (3)
111 ,fit

, g
N

′ (3)
122 ,fit

, and

g
N

′ (3)
123 ,fit

, at the evaluation points.

Two equally important properties to consider for the purpose of our interpolation procedure, in addition
to accuracy with respect to numerical maximum-entropy solutions for the third-order closing fluxes, are
realizability and hyperbolicity of the interpolative-based non-gray M2 closure, throughout the full realizable
space for angular moments up to second-order, in multiple space dimensions, as well as over the full spectrum
of frequencies. Unfortunately, unlike the case for the non-gray M1 closure, necessary and sufficient conditions
for realizability of angular moments up to third-order in multi-dimensional physical space are not available to
date, and, as such, realizability of the third-order closing fluxes is not considered in the proposed interpolation
procedure. On the other hand, hyperbolicity of our proposed non-gray M2 closure is sought by enforcing, at
each step of the least-squares optimization problem, Eq. (38), appropriate constraints on the eigenvalues of
the flux Jacobian of the resulting closed system of equations, as discussed in Section VII.B.

It should be pointed out that several improvements in our polynomial interpolation procedure have been
made compared to the one adopted by Sarr and Groth25 for the gray M2 closure, thereby resulting in
improved efficiency of our interpolative-based approximations of the maximum-entropy-based third-order
closing fluxes. First, instead of employing the rectangle-triangle mapping adopted by Sarr and Groth,25

in conjunction with a product of Chebyshev polynomials, for the interpolation over the triangle, (P1, P2,
P3), in this study, we make use of Proriol polynomials, which represent a complete set of orthogonal basis
polynomials on the standard triangle, and result in a well-conditioned Vandermonde matrix when used
in conjunction with the nodal distribution given in Eq. (36), for the interpolation over the triangle, (P1,
P2, P3). Moreover, the latter nodal distribution, i.e., that of Eq. (36), provides a better distribution of
interpolation nodes over the triangle, unlike the rectangle-triangle mapping employed by Sarr and Groth,25

which unnecessarily and undesirably clusters the interpolation points near one of the vertices or edges of
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the triangle. As for the spherical harmonic expansion in terms of the polar and azimuthal angles associated
with the vector of first-order moments, a careful analysis of the evenness of the third-order closing fluxes
revealed that only the spherical harmonic functions of even degree and even order need to be retained for
the interpolations, instead of including all the terms, whether even or odd, in the expansion, as was done
in.25 Using these facts yields a reduction in the total number of coefficients for the interpolations by half,
at least. The aforementioned improvements, despite resulting in a more efficient interpolative procedure for
the third-order closing fluxes of the M2 closure, still yield a relatively computationally expensive closure for
comparisons with the recently developed interpolative-based approximation of its lower-order counterpart,31

the non-gray M1 closure, as well as the P1 and P3 spherical harmonic moment closures. In fact, the set
of orthogonal polynomials bases, used for the interpolation of maximum entropy solutions, for the third-
order closing fluxes, over the full realizable space for moments up to second-order, while very convenient for
accurately computing the coefficients associated with our proposed polynomial approximations, Eq. (33),
would involve repeated computations of factorial expressions, among others, when implemented directly for
use in computing approximations to the entries of N ′ (3). In light of this, substantial computational savings
can be achieved by reformulating the polynomial expressions for g

N
′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

(see Eq. (33)),

as well as for LN ′ (3) (see Eq. (37)), in terms of monomials with respect to the independent variables, once

the coefficients, CN
′ (3)
111 , CN

′ (3)
122 , CN

′ (3)
123 , and CL

N′(3) , have been determined. The resulting polynomial
interpolants, given in Eqs. (33) and (37), can then be evaluated very efficiently by means of the well known
Horner scheme.58,59

VI. Implementation of M2 Closure with Narrow-Band Correlated-k Model

The RTE, as defined in Eq. (1), represents the transport of radiation for a single wavenumber. In reactive
flows however, the radiative properties of participating gases, in particular the absorption coefficient, varies
strongly throughout the spectrum. The statistical narrow-band correlated-k (SNBCK) model is employed in
this study in order to treat such strong spectral dependence. In the SNBCK model, the spectral domain is
divided into bands of frequencies of size ∆η. The size of the bands is chosen to be sufficiently small such that
the Planck function, Ibη, can be assumed to be constant within each band. A cumulative distribution function
for the absorption coefficient, g(k), which can be interpreted as a dimensionless wavenumber coordinate
varying between 0 and 1, is then introduced. This cumulative distribution function allows the reordering
of the strongly spectrally varying absorption coefficient into a monotonic function, such that the number of
evaluations of the RTE, required for accurate integration over each narrow-band, is substantially reduced in
comparison to straightforward line-by-line methods. Assuming a non-scattering medium, the RTE of Eq. (1),
integrated over each narrow band, yields∫ 1

0

1

c

∂Ig
∂t

dg +

∫ 1

0

~s.~∇Igdg =

∫ 1

0

k(g)(Ibηc − Ig)dg, (39)

where

Ig =

∫
∆η

Iηδ(k − κη)dη∫
∆η

δ(k − κη)dη
(40)

and where Ibηc is the Planck function evaluated at the wavenumber corresponding to the band centre,
denoted herein by ηc. In the context of the statistical narrow-band correlated-k model considered herein,
the cumulative distribution function, g(k), is obtained by taking the inverse Laplace transformation of
the statistical narrow-band transmissivity,60 the construction of which is based on the narrow-band data
of Soufiani and Taine61 for water vapour (H2O), carbon dioxide (CO2) and carbon monoxide (CO). In
order to achieve computational savings, the three radiating gases are approximated by a single gas with
effective narrow-band parameters based on the optically thin limit.9 In addition, the band lumping procedure
described by Liu et al.8 is also adopted, whereby several bands are combined to form wide bands. A total
of nine non-uniformly spaced wide bands are employed herein based on the recommendation of Goutiere et
al.62

The integration over the narrow-bands is performed by means of Gauss-Legendre quadrature, such that
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the spectrally integrated intensity for each band is computed as

I∆η =

Ng∑
i=1

wiI(gi), (41)

where Ng is the umber of Gauss quadrature points and wi are the weights. Liu et al.7 found that four Gauss
quadrature points provide a good balance between accuracy and computational costs. The divergence of the
radiative heat flux, also referred to as the radiative source term, which is the quantity of interest in reactive
flows simulations, is then evaluated as

SR = ∇.qrad ≈
Nb∑
j=1

Ng∑
i=1

wiκ(gi)
(
4πIbηcj − 〈I(gi)〉

)
∆ηj , (42)

where Nb is the number of narrow bands, ∆ηj is the width of the jth narrow-band, and 〈I(gi)〉 represents
the angular integral, more specifically the zeroth-order moment (see Eq. (3)), of the intensity distribution,
and is obtained by solving the RTE at quadrature point gi.

Using either the DOM or the PN moment closures, an estimate of the radiative energy density, 〈I(gi)〉, at
each of the quadrature points, gi, for use in Eq. (42), can be easily obtained. However, for the proposed non-
gray M2 closure, coupling with the SNBCK presents additional challenges due to the explicit wavenumber
dependence of the resulting closing relations, as was also the case for the non-gray M1 closure developed by
Sarr et al.30 and improved by Sarr and Groth.31 Nevertheless, a close examination of the entropy maximizing
distribution, Eq. (13), reveals that it has the same form as the Planck function, which reads as follows

Ibη(T ) = 2hcη3

[
exp

(
hcη

kT

)
− 1

]−1

. (43)

In fact, a close inspection of Eqs. (13) and (43) shows that the Planck function and the entropy maximizing
distribution, for a given finite set of angular moments, only differ by the expressions in the respective
exponential terms. More specifically, for any given wavenumber, the Planck function can be thought of as an
isotropic distribution of the radiative intensity, while the entropy maximizing distribution allows departures
from the equilibrium or isotropic distribution via the Lagrange multipliers. This suggests that, for the same
energy density (zeroth-order moment), the entropy maximizing distribution has similar profiles, with respect
to wavenumber, compared to the blackbody intensity, over the full spectrum of frequencies, except that the
former is shifted relative to the latter in frequency space. It would therefore seem reasonable to evaluate
the entropy maximizing distribution at the wavenumber corresponding to the band centre, similar to the
Planck function, and such a procedure is adopted here, as was also done for the non-gray M1 closure recently
proposed by the authors .30,31

VII. Numerical Solution Method

Similar to the P1 and P3 moment closures, as well as the non-gray M1 interpolative closure of Sarr and
Groth,31 the proposed interpolative-based non-gray second-order maximum-entropy, M2, moment closure is
strictly hyperbolic in the sense of Lax.63 While not proven here, strong numerical evidence for the hyper-
bolicity of the proposed M2 closure is provided here. In the original definition, quasi-linear inhomogeneous
PDEs are said to be strictly hyperbolic if the eigenvalues associated with the eigensystem of the coefficient
matrices and flux Jacobians are all real and distinct. A slightly less restrictive demand for strict hyperbolic-
ity is that the eigenvalues are all real (i.e., repeated eigenvalues are permitted) and that the corresponding
right eigenvectors form a complete and linearly independent set such that the coefficient matrices and flux
Jacobians are diagonalizable. Levermore64 has shown that the maximum-entropy closures applied to the
Boltzmann equations of gas kinetic theory with the Boltzmann entropy result in moment equations that are
symmetric hyperbolic systems and strictly hyperbolic.

Quasi-linear hyperbolic PDEs of the type governing the system of angular moments for the M2 closure
are very well suited for solution by the now standard family of upwind finite-volume spatial discretization
techniques originally developed by Godunov.65 In this study, solutions of the proposed interpolative-based
M2 closure for non-gray radiation, as well as those of the non-gray M1 closure, and the P1 and P3 moment
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closures, are all obtained using a parallel, implicit, upwind Godunov-type finite-volume scheme similar to
those previously described by Groth and co-workers1–6 for systems of partial differential equations. In what
follows, the proposed numerical solution methodology is described for the non-gray M2 moment closure.
Similar solution procedures are also applied here for the non-gray M1 closure as well as the two PN closure
methods. Additionally, the hyperbolicity of the proposed interpolative-based M2 closure is explored by
numerical means and discussed in Subsection VII.B below.

VII.A. Weak Conservation Form of M2 Moment Equations

The finite-volume scheme used in the numerical solution of the proposed interpolative-based non-gray second-
order maximum entropy, M2, moment closure considers the weak conservation form of the moment equations
applied to two-dimensional, body-fitted, multi-block, quadrilateral meshes. The weak conservation form of
the M2 moment equations for a two-dimensional Cartesian coordinate system can be obtained by taking
appropriate angular moments of the underlying RTE for a non-gray medium and written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S , (44)

where U is the vector of conserved moments given by

U =
[
I

(0)
g , I

(1)
g,1 , I

(1)
g,2 , I

(2)
g,11, I

(2)
g,12, I

(2)
g,22

]T
, (45)

F and G are the flux vectors in the x- and y-coordinate directions, respectively, having the form

F = c
[
I

(1)
g,1 , I

(2)
g,11, I

(2)
g,12, I

(3)
g,111, I

(3)
g,112, I

(3)
g,122

]T
,

G = c
[
I

(1)
g,2 , I

(2)
g,12, I

(2)
g,22, I

(3)
g,211, I

(3)
g,212, I

(3)
g,222

]T
,

(46)

and where S represents the source term vector, which, under the assumption of isotropic scattering, is given
by

S = c



k(g)(4πIbηc − I
(0)
g )

−(k(g) + σs)I
(1)
g,1

−(k(g) + σs)I
(1)
g,2

1
3 (4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,11

−(k(g) + σs)I
(2)
g,12

1
3 (4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,22


. (47)

It is worth mentioning that the subscript, g, indicates a reordered quantity, from frequency space to the
domain defined by the cumulative distribution function, g, and the following definition holds

I(n)
g (~x, t) = 〈~s nIg(~x,~s, t)〉, (48)

where the reordered intensity distribution, Ig, is defined in Eq. (40). The corresponding normalized angular
moments in the reordered space are computed in a similar way as in Eq. (4), except that the wavenumber
subscript is replaced by a subscript based on the cumulative distribution function, g. In Eq. (46), the
third-order moment fluxes are related to the known lower-order moments through the expressions given in
Eqs. (25), (27)-(33), defined above, thereby resulting in the non-gray M2 closure.

VII.B. Eigenstructure And Hyperbolicity of Interpolative-Based Non-Gray M2 Moment Clo-
sure

The hyperbolicity of the closed system of moment equations up to second order, resulting from the proposed
interpolative-based approximation of the third-order closing fluxes for the non-gray M2 closure, in two
space dimensions, is investigated by considering the eigenvalues of the flux Jacobian A = ∂F/∂U and
B = ∂G/∂U for the x- and y-coordinate directions, respectively. Hyperbolicity is ensured if the eigenvalues
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of the Jacobians A and B are all real. For the non-gray M2 closure, the flux Jacobian in the x-direction, A,
can be written as

A =
∂F

∂U
= c



0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
∂I

(3)
g,111

∂I
(0)
g

∂I
(3)
g,111

∂I
(1)
g,1

∂I
(3)
g,111

∂I
(1)
g,2

∂I
(3)
g,111

∂I
(2)
g,11

∂I
(3)
g,111

∂I
(2)
g,12

∂I
(3)
g,111

∂I
(2)
g,22

∂I
(3)
g,112

∂I
(0)
g

∂I
(3)
g,112

∂I
(1)
g,1

∂I
(3)
g,112

∂I
(1)
g,2

∂I
(3)
g,112

∂I
(2)
g,11

∂I
(3)
g,112

∂I
(2)
g,12

∂I
(3)
g,112

∂I
(2)
g,22

∂I
(3)
g,122

∂I
(0)
g

∂I
(3)
g,122

∂I
(1)
g,1

∂I
(3)
g,122

∂I
(1)
g,2

∂I
(3)
g,122

∂I
(2)
g,11

∂I
(3)
g,122

∂I
(2)
g,12

∂I
(3)
g,122

∂I
(2)
g,22


, (49)

where the derivatives of the third-order closing fluxes with respect to the lower-order angular moments
making up the components of the solution vector, Uq, q = 1, . . . , 6 (see Eq. (45)), in R(2), can be written,
using the product rule, in conjunction with the inverse of the relationship given in Eq. (22), in the form

∂I
(3)
g,ijk

∂Uq
= I
′ (3)
g,lmn

∂

∂Uq
(RilRjmRkn) +RilRjmRkn

∂I
′ (3)
g,lmn

∂Uq
. (50)

Further applying the product rule on the derivatives appearing in the first term on the right hand side of
the latter equation allows us to write

∂

∂Uq
(RilRjmRkn) = RjmRkn

∂Ril
∂Uq

+RilRkn
∂Rjm
∂Uq

+RilRjm
∂Rkn
∂Uq

. (51)

To further decompose the derivatives involved in the second term on the right hand side of Eq. (50), we
make use of the chain rule of derivatives, which when combined with the application of the product rule on
the relationship, U ′i = TijUj , yields the following expression

∂I
′ (3)
g,lmn

∂Uq
=
∂I
′ (3)
g,lmn

∂U ′p

(
Tpq + Ur

∂Tpr
∂Uq

)
, (52)

where T represents the rotation matrix which transforms the components of the vector of conserved variables,

U , in R(2), into the elements of the vector of conserved variables, U ′, in R(2)
T .

Analytical expressions for the derivatives of the closing fluxes I
′ (3)
ijk , in R(2)

T , with respect to the lower-

order moments, U ′q, inR(2)
T , can be readily derived by using Eqs. (25), (27)-(33). Furthermore, the derivatives

appearing in Eq. (51) can also be obtained from the analytical form of the rotation matrix, R, with respect
to the lower-order moments, Uq, q = 1, . . . , 6, in R(2).

In order to ensure hyperbolicity of the system of equations resulting from our proposed interpolative
non-gray M2 closure, constraints on the eigenvalues of the flux Jacobian of Eq. (49), such that the latter are
real, are enforced, at every step of the non-linear least-squares optimization problem, Eq. (38), for each of
the sample points used to assess the error given in the latter equation.

The numerical solution of the non-linear least-squares problem, Eq. (38), in conjunction with the con-
straints of hyperbolicity discussed above, yields a distribution of the length scale, LN ′ (3) (see Eq. (37)), of
the exponential mapping for which the eigenvalues of the flux Jacobian, A, are all real valued for all of the
test points considered within the space of realizable moments up to second order. Due to the geometric
symmetries of the closure, similar findings are expected for the y-direction flux Jacobian, B. It should be
pointed out that the above numerical findings are certainly not a proof that the eigenvalues are everywhere
real nor was the issue of strict hyperbolicity tested as part of this study. In particular, it was indeed felt that
the distinct nature of the eigenvalues and/or non-degenerate nature of the eigenstructure can be difficult
to confirm by numerical means. Nevertheless, the local hyperbolicity of the proposed interpolative-based
non-gray M2 closure for all points examined within the space of physically realizable moments is very encour-
aging and provides strong evidence of the extent to which the proposed interpolative-based closure mimics
the actual non-gray second-order, M2, maximum-entropy model, which of course is known to be hyperbolic.
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n̂k
∆lk

Cell (i, j)

Figure 2. Quadrilateral computational cell of two-dimensional multi-block body-fitted mesh.

VII.C. Finite-Volume Spatial Discretization Procedure and Semi-Discrete Form

In the proposed second-order limited upwind finite-volume method, the integral form of the conservation
equations defined by Eq. (44) is applied to quadrilateral cells of a two-dimensional multi-block body-fitted
grid. This results in the so-called semi-discrete form, a coupled system of nonlinear ordinary differential
equations for cell-averaged solution quantities, which can be written for computational cell (i, j) (see Fig. 2)
as

dUi,j

dt
= − 1

Ai,j

Nf∑
m=1

~Fi,j,m · ~ni,j,m ∆li,j,m + Si,j(Ui,j) = −Ri,j(U) , (53)

where Ui,j = (1/Ai,j)
∫
Ai,j

U dA is the cell-averaged conserved solution vector, ~F = [F,G] is the moment

flux dyad, Ri,j(U) is the residual vector, Ai,j is the cell surface area, ∆li,j,m and ~ni,j,m, respectively, are the
length and unit outward normal vector of the mth face of quadrilateral cell (i, j) having Nf =4 cell faces.

VII.D. Numerical Flux Evaluation

The numerical moment flux, ~F · ~n, at cell faces, (i, j,m), appearing in the semi-discrete form of the moment
equations given in Eq. (53) above are evaluated here using a Riemann solver-based flux function in con-
junction with piecewise limited linear reconstruction. In this approach, the numerical moment flux can be
expressed as

~F · ~n = F(UL,UR, ~n), (54)

where F is the so-called numerical flux function and UL and UR are respectively the values of solutions at
the mid-point of the cell face to the left (inside the cell) and right (outside the cell) of the interface. The
widely-used HLLE approximate Riemann solver, based on the approximate Riemann solver of Harten, Lax,
and van Leer66 with estimates of the wave speeds due to Einfeldt67 is used here to define the flux function,
F . Piecewise limited linear reconstruction based on the least-squares approach of Barth68 with the slope
limiter of Venkatakrishnan69 to ensure solution monotonicity are used to reconstruct the values of UL and
UR at the cell interfaces.

VII.E. Block-Based Anisotropic Adaptive Mesh Refinement (AMR)

While not applied in the present study, the finite-volume scheme described above can also be used in conjunc-
tion with a block-based hierarchical data structure to facilitate automatic solution-directed mesh adaptation
on multi-block mesh according to physics-based criteria. The block-based anisotropic AMR implemented
here is similar to that described by Groth and co-workers70–73 for computations of two-dimensional problems
and71,73–75 for three-dimensional flows. The anisotropic approach allows the adaptation of the mesh based
on solution-dependent physics-based criteria as the computation is performed, such that areas associated
with small spatial scales (e.g., regions with shocks, steep gradients, and/or discontinuities) are resolved with
appropriately higher mesh densities, while areas with larger spatial scales are resolved on coarser meshes
associated with large cell sizes. The block-based anisotropic AMR scheme has been shown to be very effective
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in reducing the overall mesh size for a given flow problem as well as providing efficient and highly scalable
implementation on high-performance parallel computing systems using domain decomposition.4,73,75,76

VII.F. Newton Krylov Schwarz (NKS) Method

In most practical applications involving radiative heat transfer, the time scales for the transport of the
radiation are generally much smaller than those associated with the other phenomena involved, thereby
making steady-state solutions of the RTE of primary interest. Newton’s method is applied herein to obtain,
in an efficient manner, steady-state solutions of the algebraic non-linear equations following from Eq. (53)
and satisfying

R(U) = −dU

dt
= 0 . (55)

The particular implementation of the Newton method used here has been developed previously by Groth
and Northrup77 as well as Charest et al.5,78 for computations on large multi-processor parallel clusters. It
consists of a Jacobian-free inexact Newton method coupled with an iterative Krylov subspace linear solver.
The widely-used generalized minimal residual (GMRES) technique developed by Saad and co-workers79–82 is
used to solve the linear system at each Newton step. The technique is particularly attractive because the left-
hand-side matrix of the linear system is not explicitly formed and instead only the results of matrix-vector
products are required at each iteration, thereby significantly reducing the required storage. A combination of
additive Schwarz and block incomplete lower-upper (BILU) local preconditioning of the linear system is used
to ensure effectiveness of the GMRES method. The additive Schwarz preconditioning is easily implemented
within the block-based anisotropic AMR scheme presented in the previous subsection. Finally, to improve
the global convergence of the Newton algorithm, an implicit Euler time-marching startup procedure with
switched evolution/relaxation (SER), as proposed by Mulder and Van Leer,83 is also applied.

VIII. Numerical Results for Radiation Transport in Non-Gray Gases

In this section, the predictive capabilities of the newly-developed interpolative-based non-gray second-
order maximum-entropy, M2, moment closure are assessed by comparison of its solutions to those of its
lower-order counterpart, i.e., the non-gray M1 closure, as well as those of the more commonly adopted first-
and third-order spherical harmonic moment closures, P1, and P3, respectively, and the DOM, for a range
of test cases involving non-gray radiative heat transfer in real gases. In addition to the total (spectrally

integrated) radiative energy density, I(0) =
∫∞

0
I

(0)
η dη, and the total radiative heat flux, I(1) =

∫∞
0
I

(1)
η dη,

comparisons are also performed in terms of the total radiative source term, SR, as defined in Eq. (42),
which contributes to the source term in the conservation of energy equation. In all the cases studied,
the spectral dependence of the radiative properties of participating (absorbing, emitting and/or scattering)
gases is treated using the statistical narrow-band correlated-k (SNBCK) model, and steady-state numerical
solutions for the non-gray M2 closure are obtained using the Godunov-type finite volume scheme described
above.

Figure 3. Illustration of parallel plate test case for non-gray radiation.
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Table 3. Computational Conditions for Parallel Plate Test Cases.

Case L (m) Temperature Distribution Mixture

1 0.1 and 1.0 Uniform at 1000 K Pure H2O

2 1.0 Uniform at 1000 K N2 and H2O with fH2O = 4
(
1− x

L

)
x
L

3 0.2 T = TU + (TL − TU )
(
1− x

L

)10 Pure H2O

4 0.5 T = TU + (TL − TU )
(
1− x

L

)10 10% CO2, 20% H2O, and 70% N2 (mole basis)

For all the cases studied, the method of characteristics is used to provide boundary conditions to the
systems of equations arising from the moments closures of interest in the present study. In the particular
case of the M1 and M2 closures, new generalized Roe matrices have been developed by the authors, for
multi-dimensional problems, following the Multiple Averages (MAs) methodology proposed by Rosatti and
Begnudelli.86 The derivation of the latter matrices is not presented herein but will be the subject of future
follow-on studies.

The first set of representative test problems involves radiative heat transfer between two parallel plates
with given separation distance, medium temperature distribution, and gas mixture composition, similar to
those studied by Liu et al.7 as well as Sarr and Groth.31 For such test cases, exact analytical solutions of
the RTE are available, and are therefore used as additional references for the comparisons, similar to the
work by Sarr and Groth.31

Next, the assessment of the newly-developed non-gray M2 closure is applied to multi-dimensional radiative
heat transfer problems by considering non-gray radiation within a rectangular enclosure, with specified
distributions of the temperature and gas mixture compositions.

For all the test problems considered, comparisons are performed on grid independent solutions for the M1

M2, P1, and P3 moment closures, as well as the DOM. Such solutions are obtained by comparing predictions
of each of the radiation models on a sequence of increasingly refined grids and consequently choosing the
mesh size for which no significant further change in the solution is observed as the mesh is further refined.

VIII.A. Non-Gray Radiative Heat Transfer Between Parallel Plates

The geometry for the parallel plate test problems, considered in the present study for the assessment of the
proposed non-gray M2 closure, is illustrated in Fig. 3. The bounding wall surfaces are assumed to be black,
i.e., εL = εU = 1, and the medium between the two plates is non-scattering at a uniform pressure of 1 atm.
The computational parameters, specific to each of the test cases related to this geometry, are summarized in
Table 3. Furthermore, for a non-scattering medium confined between two black, parallel plates, there exists
an exact analytical solution to the radiative transfer equation,32 Eq. (1).

103

1/h

103

104

L1  e
rr

or

DOM
M1
M2
P1
P3

(a)

102

1/h

103

104

L1  e
rr

or

DOM
M1
M2
P1
P3

(b)

Figure 4. Illustration of grid convergence analysis on the predicted radiative source term for DOM, M1, M2, P1, and
P3, for (a) the small plate separation of Case 1 (L = 0.1 m), and (b) the larger plate separation of Case 1 (L = 1 m).
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VIII.A.1. Parallel Plate Case 1

For the first parallel plate test problem, which is considered here to assess the ability of the proposed
interpolative-based non-gray M2 closure to accurately capture radiative transfer for various optical condi-
tions, the medium between the two plates consists of pure H2O at a temperature of 1000 K, while the
bounding walls are maintained at a cold temperature of 0 K. Two plate separation distances are considered,
i.e., L = 0.1 m and L = 1 m. Results of grid convergence analysis are presented in Fig. 4 for both plate
separations. In addition, comparisons of the predictions of the radiative energy density, the radiative heat
flux, and the radiative source term, for this test problem, are also illustrated in Figs. 5 and 6, for the small
and larger plate separations, respectively. For all the radiation models considered in this study, the solutions
obtained on the second-finest grid are used for the comparisons of spectrally integrated radiative quantities.
This mesh resolution can be observed to fall well within the asymptotic range of convergence for both plate
separations and ensures that numerical errors do not influence the comparisons of the solutions.

For the small plate separation, the M1 model provides solutions of comparable accuracy to those of the
third-order spherical harmonic, P3, moment closure, while yielding improved predictions of the radiative
quantities under consideration relative to its spherical harmonic counterpart, i.e., the P1 moment closure.

(a) (b)

(c)

Figure 5. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for the small
plate separation of Case 1 (L = 0.1 m) obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact
solution to the RTE used a reference for comparisons.
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(a) (b)

(c)

Figure 6. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for the
larger plate separation of Case 1 (L = 1 m) obtained using the DOM, the M1, M2, P1 and P3 moment closures, with
exact solution to the RTE used a reference for comparisons.

However, as either one of the bounding walls is approached, the radiative energy density predicted by the non-
gray M1 seems to noticeably deviate from the predictions of the P3 moment closure, and provides somewhat
less accurate solutions than either the P1 or P3 spherical harmonic moment closures. A similar phenomenon
is also observed in the case of the radiative source term, which is directly related to the radiative energy
density, as can be seen from Eq. (42). On the other hand, predictions of the radiative heat flux near the
bounding walls, obtained using the M1 closure, do not display such features but are rather in good agreement
with those of the P3 moment closure, as well as the DOM and the exact solution, while being superior to the
predictions of the P1 closure. As can be expected, the non-gray M2 closure yields improved predictions of
the radiative solutions compared to its lower-order counterpart, i.e., the non-gray M1 closure, as well as the
P3 closure, and is of comparable accuracy to the DOM and the exact solutions. However, similar to the M1

closure, the distribution of the radiative energy density, as well as the radiative source term, predicted by
the non-gray M2 closure also deteriorate near the bounding walls. This may point to the fact that the MN

closures cannot properly capture discontinuous temperature distributions, as is the case for the test problem
under consideration.

As the plate separation is increased, similar observations as for the smaller plate separation can be made,
i.e., the M2 closure again provides improved solutions compared to the M1 closure. Away from the bounding
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walls, the latter closure is seen to maintain similar level of accuracy relative the the P3 moment closure,
while yielding better solutions than the P1 closure. The M2 closure, on the other hand, outperforms all
the other three moment closure techniques under consideration and matches both the DOM and the exact
solutions. As either one of the bounding plates is approached, predictions of the radiative energy density
as well as the radiative source term, for both the M1 and M2 closures, are again observed to deteriorate,
compared to the P1 and P3 closures, due to the discontinuous temperature distributions near the walls.

Solutions of the radiative energy density, the radiative heat flux, as well as the radiative source term,
between the two plates, obtained using the M1, M2, P1 and P3 moment closures, as well as the DOM, can
be seen to be in better agreement with the exact solution for the larger plate separation, when compared
to the small separation distance. In fact, as the distance between the two plates is increased, the optical
thickness of radiatively absorbing and emitting media of the type considered herein (for Case 1) increases,
thereby resulting in more substantial emission of radiation throughout the domain. This in turn results
in distributions of radiation lying closer to the isotropic limit, as compared to smaller plate separations,
characterized by smaller optical depths.

(a) (b)

(c)

102

1/h

102

103

L1  e
rr

or

DOM
M1
M2
P1
P3

(d)

Figure 7. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for Case 2
(L = 1 m) obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used as
reference for comparisons, and (d) illustration of grid convergence analysis on the predicted radiative source term.
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VIII.A.2. Parallel Plate Case 2

The next parallel plate problem has been considered to assess the predictive capabilities of our non-gray
M2 closure in the case of radiative transfer in non-homogeneous media, in particular media with spatially
varying species concentrations. More specifically, for this test problem, the medium between the two plates,
with separation distance L = 1 m, is now a mixture of N2 and H2O, and the distribution of the mole fraction
of H2O in the mixture is given by

fH2O = 4
(

1− x

L

) x
L
, (56)

where x represents the distance from the lower plate and L = 1 m is the separation distance between the
two plates. The gas mixture is at a temperature of 1000 K, while the bounding walls are again assumed
to be cold at 0 K. Similar to Case 1, a grid convergence analysis has again been performed, the results of
which, for this test problem, are illustrated in Fig. 7(d). It can be seen that the solutions corresponding to
the second-finest mesh, for all five of the radiation models, are indeed grid independent and are therefore
used for the comparisons of total radiative quantities of interest, which are illustrated in Fig. 7.

A phenomenon similar to the one observed in Case 1, where the same temperature distribution was
adopted, can be depicted in the predictions of the radiative energy density obtained using both the M1 and
M2 closures. More specifically, the solutions provided by the latter closures, in terms of the radiative energy
density, are again observed to deteriorate as either one of the walls is approached. Unlike Case 1 however,
the same phenomenon is not observed for the total radiative source term, which is due to the distribution of
the concentration of radiatively participating gases. In fact, the mole fraction of water vapour, H2O, which
is the only absorbing/emitting specie in the gas mixture considered in this test problem (N2 is an inert gas),
vanishes as either wall is approached. This explains the fact that the radiative source term predicted by all of
the approximate radiation models considered in the present study, in addition to the exact solution, vanishes,
due to its direct proportionality to the absorption coefficient. To the exception of the latter phenomena,
the solutions provided by the M1 closure are of comparable accuracy to those of the P3 closure and superior
to the predictions of the P1 closure. The M2 closure on the other hand yields improved predictions of the
radiative quantities, relative to the M1 closure, as can again be expected, and matches both the DOM and
the exact solutions, while outperforming the PN closures considered in this study.

VIII.A.3. Parallel Plate Case 3

In addition to spatially varying species concentrations, location-dependent temperature distributions are
also commonly encountered in practical applications, and are considered in the present assessment of the
proposed non-gray M2 closure, for the sake of completeness. Thus parallel plate Case 3 is examined next,
which involves radiative transfer between two parallel plates with a separation distance L = 0.2 m. The
medium between the plates consists of pure H2O, with a temperature distribution of the form

T = TU + (TL − TU )
(

1− x

L

)10

, (57)

where again x represents the distance from the lower plate, and TU = 300 K and TL = 1500 K represent
the temperature on the upper and lower walls, respectively. Similar to the previous test cases, i.e., Case 1
and 2, grid convergence studies are performed on the solutions of the DOM, M1, M2, P1 and P3 radiation
models, in particular on the predicted total radiative source term, as can be depicted in Fig. 8(d). Moreover,
numerical predictions of total radiative energy density, total radiative heat flux, and total radiative source
term for Case 3 are also illustrated in Fig. 8.

The results shown in the latter figure were again obtained on the second finest mesh, which, as can be
seen in Fig. 8(d), corresponds to grid-converged solutions well within the asymptotic range of convergence.
The numerical results show that the M1 closure substantially underpredicts the radiative energy density and
is less accurate than both the P1 and P3 closures, as far as the latter radiative quantity is concerned. On
the other hand, solutions of the radiative heat flux obtained using the M1 closure are superior to those of
the P1 closure, though still not as accurate as the P3 closure. In terms of the radiative source term, the
M1 closure can be seen to be at least as accurate as the P3 spherical harmonic moment closure, as far as
the DOM and the exact solutions are concerned, and is again superior to the P1 closure, especially in the
region where the peak occurs. Improvements in the predictions of the radiative quantities, relative to the M1

closure, can be achieved, as can be expected, by considering higher-order members of the hierarchy of MN
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Figure 8. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for Case 3
(L = 0.2 m) obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used
as reference for comparisons, and (d) illustration of grid convergence analysis on the predicted radiative source term.

closures, in particular the M2 closure. The latter closure is observed to provide substantial improvements
in the solutions of the radiative energy density, relative to its lower-order counterpart, though still not as
accurate as the PN closures studied herein. However, for both the radiative heat flux and the radiative
source term, the solutions of the M2 closure outperform, once again, the M1, P1, and P3 moment closures
and are of comparable accuracy to those of both the exact solutions and the DOM.

VIII.A.4. Parallel Plate Case 4

Similar to Case 3, the last test problem involving radiative transfer between parallel plates seeks to assess the
predictive capabilities of our non-gray M2 closure for non-gray radiative transfer in non-isothermal media.
Unlike Case 3 however, the present test problem involves a radiatively participating gas mixture consisting of
10% CO2, 20% H2O, and 70% N2, where the percentages are given on a mole basis, and the plate separation
is L = 0.5 m. Results of grid convergence analysis, based on the predicted radiative source term, for all
the approximate radiation models of interest in the present study, are presented in Fig. 9(d). Furthermore,
numerical predictions of total radiative energy density, total radiative heat flux, and total radiative source
term, obtained on the second-finest mesh, are illustrated in Fig. 9.

28 of 36

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Ja
nu

ar
y 

1,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

2-
21

20
 



(a) (b)

(c)

102 103

1/h

103

104

L1  e
rr

or
DOM
M1
M2
P1
P3

(d)

Figure 9. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for Case 4
(L = 0.5 m) obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used
as reference for comparisons, and (d) illustration of grid convergence analysis on the predicted radiative source term.

The numerical results associated with this test problem show similar trends to those obtained for Case
3, which is expected since the only differences between the two cases, i.e., Case 3 and Case 4, are the
composition of the radiatively participating gas mixture and the separation distance between the two plates.
In particular, the P1 and P3 closures provide more accurate predictions of the radiative energy density
compared to the non-gray M2 closure, which yields improved predictions compared to the M1 closure for
which substantial underestimations of the energy density are observed. As far as the radiative heat flux
and the radiative source term, the P1 and P3 closures are outperformed by the M2 closure which displays
similar levels of accuracy as the DOM and the exact solutions. It should also be noted that, in the case of
the radiative source term, even the M1 closure is at least as accurate as the P3 closure and is superior to the
P1 closure, especially in the region where the peak values are observed.
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Figure 10. Illustration of rectangular enclosure test case for non-gray radiation.

VIII.B. Non-Gray Radiative Heat Transfer within Rectangular Enclosures

Radiative heat transfer within a rectangular enclosure is now considered. The geometry of the latter, which
is 4 m long and has a width of 2 m, is illustrated in Fig. 10. The surrounding walls are black and cold at 400
K, while the gas mixture within the enclosure, which consists of 20% H2O, 10% CO2, and 70% N2, where
the percentages are expressed on a mole basis, is maintained at atmospheric pressure. The temperature of
the gas inside the enclosure is not uniform but instead follows a distribution that is symmetric with respect
to the centreline of the enclosure, and has the following form:

T = Tw + (Tc − Tw)
(
1− 3|y|2 + 2|y|3

)
, (58)

where y corresponds to the radial distance from the centreline, Tw = 400 K represents the walls temperature,
and Tc is the centreline temperature. The latter is assumed to increase quadratically from Ti = 400 K at
the inlet (x = 0 m) to 1800 K at x = 0.5 m, then decreases quadratically to To = 800 K at the exit (x = 4

102

Ncells
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3

4

5

6

7

L1  e
rr

or

104

DOM
M1
M2
P1
P3

(a)

Figure 11. Illustration of grid convergence analysis on the predicted radiative source term for DOM, M1, M2, P1, and
P3, for Case 5, involving radiative heat transfer in a rectangular enclosure.
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(a) (b)

Figure 12. Contours of radiative energy density predicted by (a) the DOM, and (b) the non-gray M2 closure for the
rectangular enclosure test problem.

m) via the following distribution

Tc =

−5600x2 + 5600x+ 400, x < 0.5,

− 1000
12.25x

2 + 1000
12.25x+ 21800

12.25 , x ≥ 0.5.
(59)

Results of grid convergence analysis on the total radiative source term, for the DOM, as well as the M1,
M2, P1, and P3 moment closure techniques, are illustrated in Fig. 11. Moreover, predicted contours of total
radiative energy density, I(0), within the rectangular enclosure are shown in Figs. 12(a) and (b) for the
DOM and our non-gray M2 closure, respectively. As can be expected, the radiative energy density takes
its maximum values near the location of maximum temperature along the centreline, and then decreases
towards either the inlet or the outlet, or radially towards the relatively cold walls, and such a behaviour is
well captured by both the DOM and our non-gray M2 closure.

Numerical predictions of the total radiative energy density, total radiative heat flux, and total radiative
source term, along the centreline of the rectangular enclosure, obtained using our non-gray M2 closure, are
now compared to those of the M1, P1 and P3 moment closures, as well as those of the DOM, as shown in
Fig. 13. It is worth mentioning that, due to the lack of exact analytical solutions to the equation of radiative
transfer for this particular problem, solutions of the DOM are used as benchmark for the comparisons. The
numerical results presented here show that even the non-gray M1 closure provides solutions of the radiative
energy density and the radiative source term as least as accurate as to those of the P3 moment closure,
while being superior to the predictions of the P1 moment closure technique. Furthermore, the non-gray M2

closure yields improved predictions of the radiation solutions compared to its lower-order counterpart and is
in better agreement with the DOM, when compared to the M1, P1, and P3 radiation models.

IX. Conclusions

Inspired by the many desirable properties of maximum entropy closures, a new, computationally efficient
interpolative-based approximation of the second-order maximum-entropy, M2, moment closure for predicting
radiative heat transfer in non-gray participating media has been developed, thoroughly described, and applied
to a number of representative problems to investigate its predictive capabilities. By construction, the present
closure accurately mimics maximum entropy solutions for the third-order closing fluxes for all physically
realizable moments sets up to second order over the full spectrum of frequencies and also appears to be
globally hyperbolic. The latter was shown numerically but not proven. After describing the implementation
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(a) (b)

(c)

Figure 13. Predictions of (a) radiative energy density, (b) radiative heat flux, and (c) radiative source term for the
rectangular enclosure test case obtained using the DOM, the M1, M2, P1 and P3 moment closures, with the DOM used
as a benchmark for comparisons.

of our non-gray M2 closure in the context of existing state-of-the-art spectral radiation models, in particular
the statistical narrow-band correlated-k technique, its ability to predict radiative heat transfer in non-gray
participating media for various one- and two-dimensional canonical problems has been assessed by comparing
predicted solutions to those of other approximate radiation solution techniques, including the M1, P1, and
P3 moment closures, as well as the DOM. For virtually all the test problems considered, the solutions of the
proposed non-gray M2 closure were observed to be largely superior to those of either lower-order moment
closure (i.e., the M1 and P1 models). Furthermore, for almost all cases, the non-gray M2 closure was superior
to the P3 spherical harmonic moment closure, while achieving similar levels of accuracy compared to the
standard discrete ordinates method, as far as numerical predictions of the radiative energy density, the
radiative heat flux, and the radiative source term are concerned.

Future research will involve the extension of the assessment of our interpolative-based non-gray M2 closure
to both laminar and turbulent reactive flows with soot formation. Reynolds-averaged Navier-Stokes (RANS)-
based turbulent simulations will be considered, whereby suitable modelling of the turbulence-radiation inter-
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actions, arising from the highly nonlinear closure relations for the non-gray second-order maximum-entropy,
M2, moment closure, will be proposed. Implementation of the non-gray M2 closure will also be considered in
the context of the full spectrum correlated-k (FSCK) spectral radiation model. The FSCK is in fact expected
to provide more efficient approximate radiation solutions, relative to the SNBCK model, as the reordering
procedure for the spectral absorption coefficient is applied to the full spectrum of frequencies, such that the
total number of quadrature points required for integration over the full range of wavenumbers is reduced,
compared to the SNBCK treatment.
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