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The use of adjoint-based error estimation in conjunction with a highly parallel and scal-
able, anisotropic, block-based, adaptive mesh refinement (AMR) technique is considered
for the more efficient prediction of three-dimensional compressible flows. In particular, a
comparison is made between the computational performances of output-based error esti-
mates, derived via two approaches, namely one based on mesh (or h) refinement and the
other based on order (or p) refinement, for directing the mesh refinement in anisotropic
AMR scheme. The AMR scheme allows enhancement of local mesh resolution, with pref-
erence given to directions as dictated by the flow solution. The proposed adjoint-based
error estimation technique provides a posteriori estimates of the error for an engineering
functional of interest in terms of estimates of the local solution error following from the
solution residual. The estimated error in the solution residual is obtained either via direct
refinement of the mesh in the preferred directions (here referred to as the h-derived error
indicator) or by using a higher-order spatial operator with anisotropic feature detection
based on the anisotropic smoothness indicator of an appropriate solution quantity (here
referred to as the p-derived error indicator). Both approaches are considered here. Addi-
tionally, two formulations of the adjoint-based error indicator are examined for directing
the output-based AMR. The first is the so-called computable correction (CC), where the
residual error is weighted by the corresponding adjoint solution for the functional of in-
terest, and the second is the so-called error in the computable correction (ECC), which is
comprised of a linear combination of the residual error weighted with the adjoint solution
and the adjoint residual weighted with the primal solution. The resulting output error
indicator is used to direct the mesh refinement, with regions of the solution domain con-
tributing most significantly to the functional error being selected for local enrichment of
the mesh. In this way, the computed accuracy of the functional is increased while poten-
tially greatly reducing the associated computational cost of performing the simulation. For
the cases of interest, both low- and high-order upwind finite-volume spatial discretization
schemes are applied in conjunction with the block-based AMR scheme to the solution of
the partial differential equations governing steady-state inviscid compressible flows. The
potential benefits of the proposed anisotropic block-based AMR with adjoint-based error
estimation are demonstrated for a range of compressible inviscid flow problems of varying
complexity. Comparisons of solution accuracy and relative computational costs for results
obtained using both h- and p-derived error estimates of the solution residual are examined
and discussed.

I. Introduction and Motivation

One approach to reducing computational costs of predicting complex physical flows having disparate
spatial scales is provided by adaptive mesh refinement (AMR) techniques.1–8 These techniques make use
of increased mesh resolution only in selected areas of the computational domain requiring higher spatial
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resolution, thereby significantly reducing the overall mesh size for problems with multiple scales while still
providing the desired solution accuracy. The parallel block-based AMR techniques proposed by Groth and
co-workers9–15 are of interest here and have been shown to be very effective for solving physically complex
flows on multi-block body-fitted hexahedral meshes using distributed memory parallel computers. The
isotropic block-based AMR, as originally proposed by Gao and Groth,9,12,13 makes use of an octree data
structure wherein each block flagged for refinement is refined equally in all directions. The isotropic block-
based AMR methods have been applied quite extensively to combustion problems by Groth and co-workers.
For example, Northrup and Groth10,16,17 used the isotropic block-based AMR for simulation of laminar
steady and unsteady premixed and non-premixed flames. Gao and Groth9,12,13,18–20 and Jha21 applied
isotropic block-based AMR to turbulent diffusion flames. Ivan et al.22,23 and Susanto et al.24 have also used
block-based AMR for magnetohydrodynamic simulations. An anisotropic version of the block-based AMR
based on a binary-tree data structure was more recently proposed by Zhang and Groth25 so as to increase
further the computational savings. When applied to convection-diffusion and the inviscid flow equations,
significant mesh savings were found. Williamschen and Groth26 extended this anisotropic block-based AMR
to 3D simulations of inviscid flows governed by the Euler equations. They used a uniform block approach
where the ghost cells for a block had the same refinement level as the block itself. More recently, an
anisotropic block-based approach making use of heterogeneous non-uniform blocks was proposed by Freret
and Groth.15 The latter has several advantages making it more efficient and better suited for high-order
spatial discretizations. The extension of the anisotropic AMR approach for use with the high-order central
essentially non-oscillatory (CENO) finite-volume scheme is considered in the recent study by Freret et al.27

In many of the aforementioned studies, physics- and/or gradient-based strategies were used to identify
regions for mesh refinement by monitoring solution quantity changes over spatial ranges. These approaches
are easily implementable and work well for many of the problems studied. However, the gradient-based
techniques have been shown to have limitations,15,28 some of which include the potential over-refinement of
regions in the vicinity of shocks and discontinuities, the potential lack of convergence for a measured solution
error-norm despite continued mesh refinement, and the challenge of correctly identifying refinement regions
where smooth solutions exist. To avoid the shortcomings of physics- and/or gradient-based refinement
strategies mentioned above, the use of adjoint-based error estimation is considered here for directing the
mesh adaptation. In particular, the application of adjoint-based error estimation as proposed by a number
of previous researchers29–39 is examined for directing mesh refinement in the anisotropic block-based AMR
approach of Freret and Groth15 as well as Freret et al.27 The adjoint-based error estimation is used to
evaluate the sensitivity of pre-defined engineering quantities or functionals of interest to corresponding local
estimates of the solution error. This output-based error estimate is calculated here via two approaches: one
based on mesh (or h) refinement and the other based on order (or p) refinement and these estimates are
then used to direct the mesh adaptation. A primary benefit of the proposed approach is the refinement of
relevant regions within the computational domain that have the highest sensitivity to errors in the functional
of interest, leading to a more rapid convergence of the predicted value for the functional as the mesh is refined.

II. Scope of Present Study

In the present study, a second-order limited upwind finite-volume spatial discretization scheme is used
along with the anisotropic block-based AMR scheme of Freret and Groth15 and Freret et al.27 for the solution
of compressible form of Euler equations on three-dimensional multi-block body-fitted meshes consisting of
hexahedral computational cells. High-order residual evaluation associated with p-refinement is carried out
using the high-order central essentially non-oscillatory (CENO) finite-volume scheme of Ivan and Groth40

that was recently extended for use with the anisotropic block-based AMR scheme. The low- and high-order
finite-volume schemes and anisotropic AMR method are first discussed and then a description of the proposed
adjoint-based error estimation strategy and output-driven refinement procedure are given. Both h- and p-
based strategies for evaluating the functional error and refinement criteria are discussed. This is followed by
a discussion of numerical results for a range of compressible inviscid flow problems of varying complexity.
The performance and suitability of the proposed output-based error estimation and AMR strategy are
demonstrated by comparing the results obtained using both the output-based anisotropic refinement and
previous gradient-based strategies, as well as to results obtained using uniform refinement. The reduction
in the estimated error in the functional is examined and compared as are the relative computational costs
of the various strategies.
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III. Finite-Volume Scheme and Anisotropic Block-Based AMR

III.A. Governing Equations

The proposed anisotropic AMR scheme is applied to the solution of three-dimensional Euler equations
governing inviscid compressible flows of a polytropic gas. These equations can be expressed in conservative
form as

∂U

∂t
+∇ · ~F = 0, (1)

where U is the vector of conserved variables reflecting conservation of mass, momentum, and energy for the
fluid and ~F is the flux dyad. For a three dimensional Cartesian coordinate system, the Euler equations can
be written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (2)

where column vectors F, G, H, are the inviscid flux vectors associated with the solution flux in the x, y,
and z directions, respectively, such that ~F = [F,G,H]. The solution and inviscid flux vectors are given by

U =



ρ

ρu

ρv

ρw

e


,F =



ρu

ρu2 + p

ρuv

ρuw

ρuh


,G =



ρv

ρvu

ρv2 + p

ρvw

ρvh


,H =



ρw

ρwu

ρwv

ρw2 + p

ρwh


. (3)

where ρ is the density, u, v, w are x, y, z velocity components, respectively, e = p/(ρ(γ − 1)) + u2/2 is the
specific total energy and h = e + p is the specific enthalpy. The ideal gas equation p = ρRT is used for
closure of the system where T is the gas temperature and R is the ideal gas constant. The ratio of specific
heats γ = Cp/Cv is assumed to be constant.

III.B. Limited Second-Order Finite-Volume Scheme and Semi-Discrete Form

Following application of a standard finite-volume method to a hexahedral computational cell or element,
(i, j, k), of a structured three-dimensional grid, Eq. (1) can be re-expressed in semi-discrete form as

dUi,j,k

dt
= −Ri,j,k(U) = − 1

Vi,j,k

Nf∑
f=1

(
~Ff .~nf∆Af

)
i,j,k

, (4)

where Ui,j,k is the averaged conserved solution for cell (i, j, k), and Ri,j,k is the discrete residual calculated

by summation of fluxes at the faces of cell (i, j, k). The variables Vi,j,k, ~Ff , ~nf and ∆Af denote the cell
volume, flux vector, outward pointing unit normal vector and the area of the cell face, f , respectively,
and Nf is an integer value representing the number of faces for cell (i, j, k). The spatial discretization is
accomplished herein by using a second-order cell-centered finite-volume scheme. Limited piecewise-linear
least-squares reconstruction is used for calculating primitive flow variables at the cell faces. A Godunov-type
flux function,41 namely the so-called HLLE approximate Riemann solver based flux function proposed by
Einfeldt,42 is used for inviscid flux evaluation at the cell faces.

III.C. Inexact Newton’s Method

For computing steady-state solutions to the Euler equations with dU/dt = 0, Newton’s method is applied to
the solution of the coupled non-linear algebraic equations that results from the preceding spatial discretization
procedure with R(U) = 0. The particular implementation applied here follows the algorithm developed by
Northrup and Groth,16 which is well adapted for computations on large multi-processor parallel clusters.
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In this approach, an inexact Newton’s method is used to solve the coupled system of non-linear algebraic
equations given by

dU

dt
= −R(U) = 0. (5)

These non-linear equations are linearized through the application of Newton’s method to arrive at the
following system of linear equations[

∂R

∂U

]
∆U(n) = J∆U(n) = −R(U(n)), (6)

where J = ∂R/∂U and U(n+1) = U(n) + ∆U(n). Thus, for a given initial estimate of the solution, U(n=0),

an improved approximation, U(n+1), is obtained by solving the system of linear equations at each step,
n, of Newton’s method. The linear system of equations is solved iteratively until the solution residual is
sufficiently small below a user-defined tolerance level.

Equation (6) is of the form
Ax = b, (7)

and can be solved using an iterative linear solver. Such systems are typically very large, non-symmetric, and
associated with sparse banded matrices. For large sparse systems, it is economical to use Krylov subspace
methods. The Generalized Minimum Residual (GMRES) method, a class of Krylov subspace methods,
initially developed by Saad and Schultz43 is used here. GMRES is implemented here in a parallel fashion
allowing use of parallel computer architectures having multiple processors using the Message Passing Interface
(MPI) library of subroutines.44,45 Refer to the paper by Northrup and Groth16 for further details of the
parallel Newton method used here.

The combined Newton method and limited-second-order finite-volume scheme are used here both for
obtaining the solution to the flow problems of interest on the adapted meshes as well as in evaluating the
solution residuals needed for computing the error indicators based on h-refinement of the mesh.

III.D. High-Order CENO Finite-Volume Scheme

The evaluation of error estimates for directing the anisotropic mesh refinement based on p refinement is
also considered here and, for this, the evaluation of the solution residual to high-order (i.e., p > 2) is
required. High-order evaluation of the solution residual is accomplished here by using the high-order CENO
finite-volume and reconstruction scheme of Ivan and Groth40 and Freret et al.27 The CENO scheme is a
hybrid approach that combines a high-order unlimited central scheme for fully resolved solution content
with a low-order limited linear method for under-resolved/discontinuous content. To ensure monotonicity,
switching from high- to low-order is controlled by a smoothness indicator. In contrast to other essential non-
oscillatory (ENO) schemes46,47 that require reconstruction on multiple stencils and present several additional
computational complexities, the CENO scheme uses a single central stencil and thereby affords high-order
accuracy at relatively lower computational cost. For the error estimation based on p-refinement considered
here, a third-order evaluation, p = 3, is compared to the baseline second-order accurate, p = 2, residual.

III.D.1. Smoothness Indicator

The proposed CENO scheme of Ivan and Groth40 preserves solution monotonicity in regions of non-smooth
or discontinuous solutions by reverting back to a limited linear piecewise reconstruction. In order to detect
regions where this should be done, a smoothness indicator is calculated for each variable within each cell
as a post-analysis step after the unlimited high-order K-exact reconstruction has been performed. The
smoothness indicator, S, is calculated based on a solution smoothness parameter, α, the number of unknowns
(degrees of freedom, DOF), and the size of the stencil, SOS, used in the reconstruction. It is taken to have
the form

S =
α

max ((1− α), ε)

(SOS −DOF )

(DOF − 1)
(8)
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n
face

cell (i,j,k)

∆Α
face

Figure 1: (a) Hexahedral cell at grid location i, j, k showing face normals. (b) Body-fitted adapted mesh after
several refinements. Grid blocks are shown with bold lines.

where α is determined in terms of the K-exact reconstructed solution variable, uKi,j,k, in each cell (i, j, k) as
follows

α = 1−

∑
γ

∑
δ

∑
ξ

(
uKγ,δ,ξ(~rγ,δ,ξ)− uKi,j,k(~rγ,δ,ξ)

)2
∑
γ

∑
δ

∑
ξ

(
uKγ,δ,ξ(~rγ,δ,ξ)− ūi,j,k

)2 (9)

and where the ranges of the indices, γ, δ, and ξ, are taken to include all control volumes in the reconstruction
stencil for cell (i, j, k), ~rγ,δ,ξ is the centroid of the cell (γ, δ, ξ), and the tolerance, ε, has been introduced in
order to avoid division by zero. A suitable value for ε is 10−8. It should be evident that the parameter α
compares the values of the reconstructed solution at the centroids of neighbouring cells used in the solution
reconstruction for cell (i, j, k). The range for α is −∞<α≤ 1 and it will approach unity as piecewise K-
exact solution reconstruction within each cell yields a smooth and continuous representation of the solution
between adjacent cells.

Note that Freret et al.27 propose an anisotropic smoothness indicator to represent the smoothness of the
solution in a particular logical or computational coordinate direction of the grid. The anisotropic smoothness
indicator for a direction, γ, is evaluated using

Sγ =
αγ

max ((1− αγ), ε)
(10)

where αγ is determined as follows

αγ = 1−

∑
δ

∑
ξ

(
uKγ,δ,ξ(~rγ,δ,ξ)− uKi,j,k(~rγ,δ,ξ)

)2
∑
δ

∑
ξ

(
uKγ,δ,ξ(~rγ,δ,ξ)− ūi,j,k

)2 (11)

The proposed smoothness indicator provides a measure of solution smoothness in the logical coordinate
direction γ and can be used exploited in anisotropic refinement of the mesh.27 This anisotropic smoothness
indicator was utilized for determination of directional bias of the solution within the proposed output-based
anisotropic AMR procedure based on p-refinement, as described in section IV.

III.E. Anisotropic Block-Based AMR

Anisotropic adaptive refinement of the three-dimensional multi-block body-fitted hexahedral meshes is ac-
complished here using the approach recently proposed and developed by Freret and Groth15 and Freret et
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Figure 2: 3D binary tree and the corresponding blocks after several refinements

al.27 In this approach, the hexahedral computational cells are grouped into blocks and mesh refinement is
performed on a block basis, as opposed to individual cells. A schematic diagram of a hexahedral cell is shown
in Figure 1(a) while an example of a body-fitted mesh generated using block-based AMR is illustrated in
Figure 1(b). A hierarchical binary tree data structure is used to track the grid refinement and determine
the neighbouring blocks as shown in Figure 2. Solution information from adjacent grid blocks is shared by
utilizing layers of ghost cells in which the cell information for adjacent blocks is stored directly at the given
level of refinement. This so-called non-uniform block approach for the ghost cell treatment eliminates the
need for prolongation and restriction operators to fill ghost cells, also removes the need for flux corrections at
block interfaces with grid resolution changes, and generally simplifies the parallel implementation of the AMR
procedure, especially for the CENO high-order spatial discretization scheme. The resulting anisotropic AMR
scheme also readily facilitates parallel implementation of the proposed finite-volume solution method16,27

and provides the basis for performing the error-based mesh refinement considered herein.

IV. Adjoint-Based Error Estimation

Within the context of the proposed error-based AMR procedure, grid blocks of the computational mesh
are flagged for refinement if they contribute significantly to the solution error while those grid blocks which
have relatively minimal impact on the error are flagged for coarsening, thereby reducing unnecessary over-
resolution of the mesh. Thresholds for the solution error are specified for both refinement and coarsening,
providing control over the AMR procedure. In the adjoint-based approach considered herein, the mesh
adaptation is based on an engineering functional or output and, for the purposes of the present study, the
integrated pressure drag was used as the functional. The sensitivity of the pressure drag to local estimates
of the error in the solution residual is then evaluated using a discrete adjoint formulation. Two formulations
of the adjoint-based error indicator for the functional are examined herein. First is the so-called computable
correction (CC), where the solution residual error is weighted by the corresponding adjoint (dual) solution
for the functional of interest, and the second is the error in the computable correction (ECC), which is
comprised of a linear combination of the residual error weighted with the adjoint solution, and the adjoint
residual weighted with the primal solution as proposed by Venditti and Darmofal.32,33,48 In the present
work, evaluation of the adjoint-based error estimates are obtained based on both h- and p-refinement as
described below. The resulting error estimates arising from these two methods and their performance in
directing the AMR are also compared and contrasted to more commonly used gradient-based AMR strategies
here. For the latter, the gradient of flow density was used to direct the AMR.

IV.A. Calculation of Fine-Space Error Indicator via h-Refinement

The h-refinement strategy adopted herein for the calculation of the fine-space error measure largely follows the
dual-weighted residual approach that was originally advocated by Venditti and Darmofal.32,33,48 Within the
adjoint-based error estimation procedure, we are interested in the accurate evaluation of a scalar engineering
functional, J , here taken to be the pressure drag for the application of interest. In general, J is a function
of the ‘primal’ solution, U, and can be expressed as J = J(U). As a starting point, a converged steady-
state primal solution, UH , on a ‘coarse’ grid, ΩH , is obtained by solving the governing Euler equations
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in semi-discrete form using the limited second-order finite-volume scheme described above for which the
corresponding functional on the coarse space is evaluated as JH(UH) and where H here is a parameter that
refers to the characteristic length associated with the coarse computational grid. Error estimates for directing
mesh adaptation are then developed by considering an estimate for the value of a ‘fine’ space functional,
Jh(Uh), based on primal solution, Uh, evaluated on a corresponding ‘fine’ mesh, Ωh, where h is indicative
of fine mesh quantities. An estimate of the error in the functional, δJ , can be obtained without actually
solving for the primal solution on the fine grid and can be expressed as in terms of the solution residual, R,
and written as

δJ = Jh(UH
h )− Jh(Uh)

≈ (ΨH
h )TRh(UH

h )︸ ︷︷ ︸
computable correction

+ (RΨ
h (ΨH

h ))T (Uh −UH
h )︸ ︷︷ ︸

error in computable correction

(12)

where Rh is the solution residual computed on the fine mesh. As described by Pierce and Giles,49 to
effectively reduce the functional error, both the primal and adjoint residuals need to be reduced. Two
formulations of an error indicator for mesh adaptation can be obtained from Equation (12). Firstly, the
so-called computable correction (CC) given by

εKH
=
∑
l(k)

{∣∣∣[(ΨH
h )TRh(UH

h )
]
l(k)

∣∣∣} (13)

where εKH
is summed over the fine spaces l(k) and secondly, the error in the computable correction (ECC)

as described by Becker and Rannacher29 and Venditti and Darmofal32,33,48 which replaces Equation (13)
with the next-order contributions of the primal residual error weighted by the adjoint and adjoint residual
error weighted by the primal solution. Venditti and Darmofal32,33,48 proposed a form of the error indicator
based on the ECC which can be expressed as

εKH
=
∑
l(k)

{
1

2

∣∣∣[QH
h ΨH − LHh ΨH

]T
l(k)

[
Rh(LHh UH)

]
l(k)

∣∣∣+
1

2

∣∣∣[QH
h UH − LHh UH

]T
l(k)

[
RΨ
h (LHh ΨH)

]
l(k)

∣∣∣}
(14)

where RΨ
h represents the residual of the discrete adjoint equations, UH , ΨH refer to the coarse space primal

and adjoint solutions, respectively, and QH
h and LHh are quadratic and linear interpolators, respectively, for

transferring the solution from the coarse to fine spaces (See Barth50). Since the ECC form of the error
indicator incorporates a measure of the adjoint residual (unlike the computable correction formulation), it
facilitates a more consistent reduction in the functional error estimate, thereby increasing the functional
accuracy when used as a driver for anisotropic AMR.

IV.B. Calculation of Fine-Space Error Indicator via p-Refinement

An alternative approach to the evaluation of the fine-space error indicator is also considered here based
on a p-refinement strategy wherein the high-order CENO finite-volume scheme described above is used to
evaluate the residual to higher spatial accuracy. This alternative procedure follows other similar strategies
proposed previously by Yano and Darmofal,51 Ceze and Fidkowski,39 and Woopen et al.52 In this case, the
initial coarse space primal solution, UH,P , and functional, JH,P (UH,P ), are evaluated on the coarse mesh
using the limited second-order (P = 2) finite-volume scheme, where P represents the order of the spatial
discretization scheme. The corresponding fine space estimates of these quantities are UP

H,p, and JH,p(U
P
H,p),

respectively, for p > P . In this case, the error indicator based on the computable correction becomes

εKH,P
=
∣∣∣(ΨP

H,p)
TRH,p(U

P
H,p)

∣∣∣ (15)

and the corresponding expression for the ECC-based error indicator is then

εKH,P
=

1

2

∣∣∣[ΨP
H,p −ΨH,P

][
RH,p(U

P
H,p)

]∣∣∣+
1

2

∣∣∣[UP
H,p −UH,P

][
RΨ
H,p(Ψ

P
H,p)

]∣∣∣ (16)

where UH,P and ΨH,P are the coarse space primal and adjoint solutions, RH,p(U
P
H,p) and RΨ

H,p(Ψ
P
H,p) are

the higher-order or fine-space estimates of the solution residual and adjoint residual respectively, UP
H,p is a
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(a) Close-up of final mesh utilizing
gradient based AMR, 9 levels
of AMR, 1523 blocks (3,119,104
cells).

(b) Close-up of final mesh utilizing
output-based AMR (h-derived
ECC error indicator). 12 lev-
els of AMR, 115 blocks (111,760
cells), resulting in up to 97%
mesh savings when compared to
the gradient-based AMR mesh.

(c) Close-up of final mesh using
output-based AMR (p-derived
ECC error indicator). 7 lev-
els of AMR, 197 blocks (201,728
cells), resulting in up to 53%
mesh savings when compared to
the gradient-based AMR mesh.

Figure 3: Final adapted meshes obtained via gradient- and output-based AMR results for supersonic flow (M=3.0)
over a wedge. The output-based approach led to significant cell count savings.

higher p-order reconstruction of coarse polynomial space UH,P , ΨP
H,p is a p-order reconstruction of coarse

space ΨH,P . For this study to date, the coarse space (ΩH,P ) was second-order accurate, and the fine space,
(ΩH,p) was based on the third-order accurate CENO scheme with p = 3.

IV.C. Criteria for Anisotropic Mesh Refinement

In order to allow for anisotropic refinement with the h-refinement approach described above, three different
coarse spaces are created by refining the mesh preferentially in each of the logical coordinate directions
associated with the mesh blocks of the multi-block body fitted mesh. A set of three directional dependent
error indicators are then calculated and then used to drive the mesh refinement in the preferred directions
that results in lower values of the error in the functional. Anisotropic refinement with the preceding p-
refinement approach is accomplished by utilizing the anisotropic smoothness indicator as proposed by Freret
et al.27 and given in Equations (10)-(11). Once the isotropic p-space error indicators are evaluated to identify
relevant blocks for refinement (or coarsening), the smoothness of the density solution variable is evaluated
using the anisotropic smoothness indicator. The logical coordinate direction having the largest measure of
non-smoothness determines the preferred direction for refinement.

V. Numerical Results for Inviscid Flows

Numerical results obtained using the proposed output-based anisotropic AMR scheme are now considered
for several steady inviscid compressible flow problems. In particular, results are discussed for steady inviscid
supersonic flow past a wedge, steady inviscid subsonic flow over a smooth bump in a channel, and steady
inviscid transonic flow past an airfoil. Results in terms of accuracy and computational cost (time and
storage requirements) will be compared for the grids refined via output-based methods, using, as a baseline,
results obtained via gradient-based AMR and uniform refinement. For all these approaches, the quantity of
interest to be calculated will be the pressure drag on selected geometry surfaces, and this will be utilized to
compare the accuracy of these approaches for various flow regimes. The output-based AMR approach will
utilize the evaluation of the adjoint and use this to weight the solution residual, thereby calculating an error
indicator which marks regions with the largest error for mesh refinement. The gradient-based approach will
mark regions for refinement based on the rates of change of density. Uniform refinement does not perform
selective refinement; the entire mesh is refined. In the following set of results, the h-derived error indicator
based on the error in the computable correction is referred to as h-ECC, while the corresponding error
indicator based on the computable correction is h-CC. For the error indicators based on the error in the
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(a) Contours of Mach Number on
mesh in Figure 3c adapted via
p−derived error estimates based
on the ECC.

(b) Contours of density adjoint on
mesh in Figure 3b adapted
via h−derived error estimates
based on the ECC.

(c) Contours of density adjoint on
mesh in Figure 3c adapted via
p−derived error estimates based
on the ECC.

Figure 4: Contours of Mach number and density adjoint for supersonic flow (M=3.0) over a wedge on meshes
adapted via output-based AMR.

computable correction and the computable correction based on the p-derived approach are referred to as the
p-ECC and p-CC error indicators respectively.

V.A. Steady Supersonic Inviscid Flow Past a Wedge

Numerical results are first considered for steady inviscid supersonic flow over a wedge similar to that carried
out by Hartmann and Houston,53 with a flow Mach number of 3.0. The wedge angle was set at 9.5◦ with a
total wedge surface dimension of 0.986 m length, and 0.25 m depth. The analytic value of the pressure drag
on the wedge surface was calculated to be 8308.27 N. The gradient-based approach utilized density gradient
as the refinement criteria, while for the adjoint-based approach, the functional of interest was taken to be
the pressure drag on the surface of the wedge.

The functional accuracy versus mesh size for gradient-based and adjoint-based error estimates based on
both the h- and p-refinement approaches were obtained and compared. The gradient of the density was used
as criteria for the gradient-based approach. To compare the output-based AMR results, the gradient-based
refinement AMR results and those obtained via uniform refinement were considered as a baseline result. For

Figure 5: Convergence plot of functional accuracy versus mesh size for supersonic flow (M=3.0) over a wedge.
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(a) Close-up showing final mesh
with gradient-based AMR, 4
levels of AMR, 130 blocks
(133,120 cells).

(b) Close-up showing final mesh
adapted via output-based h-
derived ECC. 7 AMR levels,
304 blocks (311,296 cells).

(c) Close-up showing final mesh
adapted via output-based p-
derived ECC. 6 AMR levels, 343
blocks (351,232 cells).

Figure 6: Final meshes for subsonic flow (M = 0.1) over a Gaussian bump obtained using gradient- and adjoint-based
AMR.

the adjoint-based methods, error indicators were based on the computable correction (CC) and the Venditti-
Darmofal formulation of the error indicator based on the error in the computable correction (ECC). The
final refined meshes for both the gradient-based and adjoint-based AMR strategies are shown in Figure 3.
It can be observed that the adapted mesh of the gradient-based approach as shown in Figure 3a has the
highest resolution in the vicinity of the shock, whereas the adjoint-based methods produce meshes which
are adapted primarily in the vicinity of the leading edge of the wedge. The adjoint depicts sensitivity to
perturbations in regions lying upstream of the geometrical surface changes for the wedge, at approximately
the wedge angle (9.5◦), as seen in Figures 4b and 4c.

The convergence of the functional error (pressure drag on the wedge surface) as a function of mesh density
for the various refinement strategies is given in Figure 5. From this, it is observed that the adjoint-based
approach, particularly, the ECC formulation, would seem to provide the most effective refinement of the
mesh, (up to 97% savings), leading to adapted meshes with the most accurate computed functional for the
same mesh density. Although the uniform approach obviously leads to an accurate functional as shown in
Figure 5, the resulting mesh size would be very large as compared to those obtained using AMR, in particular,
those achieved with the output-based AMR strategies. It is also worth noting that it was found that the
evaluation of the p-refinement based error indicator based on the high-order CENO scheme residual required
up to about 4-5 times less computational effort than the corresponding evaluation of h-refinement based
error indicator. The computational and memory requirements of the various strategies will be explored in
greater in follow-on studies.

V.B. Steady Inviscid Subsonic Flow Over a Bump in a Channel

Next, numerical results are considered for steady inviscid subsonic flow over a Gaussian bump, at a Mach
number of 0.1. The channel has dimensions 3 m length, 0.8 m height and 1 m depth. The profile of the
bump is given by y = 0.0625e−25x2

. The pressure drag acting on the bump was taken as the function of
interest. The final adapted meshes for both the gradient-based and adjoint-based AMR strategies are shown
in Figure 6a, Figure 6b and Figure 6c. The spatial rate of change of the density was used as mesh refinement
criteria for the gradient-based approach. For the adjoint-based methods, error indicators were based on both
the CC and the ECC formulations. The predicted distribution of adjoint for this problem exhibits variations
in regions of the computational domain corresponding to the largest density variation adjacent to the bump
surface as shown in Figures7b and 7c.

Convergence of the estimated error in the computed functional as a function of mesh density for the
various refinement strategies is depicted in Figure 8. Interestingly, the numerical results indicate that the
effectiveness of the simple gradient-based AMR is at least comparable if not somewhat superior to that of
the output-based approaches for this case. This may not be too surprising as this low-Mach-number flow
as possesses a very smooth and regular solution for which the regions of high solution gradients would be
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(a) Close-up showing Mach num-
ber contours on output-based
AMR mesh shown in Figure 6c
obtained via p-derived output-
based error indicators.

(b) Close-up showing contours of
density adjoint on output-based
AMR mesh shown in Figure 6b
obtained via h-derived output-
based error indicators.

(c) Close-up showing contours of
density adjoint on output-based
AMR mesh shown in Figure 6c
obtained via p-derived output-
based error indicators.

Figure 7: Contours of Mach number and density adjoint for supersonic flow (M=0.1) over a Gaussian bump in a
channel on meshes adapted via output-based AMR.

expected to correlate well the error. Nevertheless, as for the supersonic wedge flow, the performance of all of
the AMR strategies considerably outperforms the uniform mesh refinement approach, requiring significantly
larger meshes for the same accuracy. In comparing the performances of the ECC and the CC formulations
of the error indicator for directing the output-based AMR for this case, it can be seen that both methods
yielded similar estimates of the functional accuracies with neither being more preferential by a significant
margin. As for the previous wedge flow, it was found that the evaluation of the p-based indicators required
only about 4-5 times the computational cost of the corresponding evaluation of h-refinement based error
indicator while providing similar performance in terms of refinement efficiency and accuracy, which is rather
significant.

V.C. Steady Inviscid Transonic Flow Past a NACA 0012 Airfoil

Finally, numerical results for steady inviscid transonic flow at Mach 0.8 over a NACA 0012 airfoil, represented
in a C-grid type mesh, of 1 m chord length at an angle of attack of 1.25◦ were investigated. The functional

Figure 8: Convergence plot of functional accuracy versus mesh size for subsonic flow (M = 0.1) over a Gaussian
bump.
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(a) Close-up showing final gradient-
based mesh after 12 levels of
AMR, 1945 blocks (1,991,680
cells).

(b) Close-up showing final output-
based AMR mesh after 4 levels
of AMR refined via h-derived
ECC error indicator, 285 blocks
(= 291,840 cells), representing
85% cell count savings when
compared to the gradient-based
AMR mesh.

(c) Close-up showing final output-
based AMR mesh after 8 lev-
els of AMR refined via p-derived
ECC error indicator, 334 blocks
(= 342,016 cells), representing
72% cell count savings when
compared to the gradient-based
AMR mesh.

Figure 9: Final meshes for gradient- and output-based AMR results for transonic flow over a NACA 0012 airfoil.

was again taken to be the pressure drag, and convergence of the drag coefficient, Cd was monitored. The
functional accuracy versus mesh size for gradient-based and output-based error estimates based on both
the h- and p-refinement approaches were obtained and compared. The density gradient was used as mesh
refinement criteria for the gradient-based AMR. For the output-based methods, error indicators were based
on the CC and the ECC.

The final refined meshes for both the gradient-based and output-based AMR strategies are shown in
Figure 9. The gradient-based mesh adaptation strategy clearly focuses the mesh resolution in the vicinity of
the shock that forms on the upper wing surface where the gradients are very large, while the output-based
approach results in a mesh that has the highest resolution around the leading edge stagnation point, as
well as at the trailing edge. While the shock is identified by the gradient-based method as a region for
refinement, the pressure drag on the airfoil surface is not dependent on the accuracy of the solution of this

(a) Close-up showing Mach number
contours on mesh obtained via
output-based p-derived ECC er-
ror indicator for AMR shown in
Figure 9c.

(b) Close-up showing density ad-
joint contours on mesh ob-
tained via output-based h-
derived ECC error indicator for
AMR shown in Figure 9b.

(c) Close-up showing density ad-
joint contours on mesh obtained
via output-based p-derived ECC
error indicator for AMR shown
in Figure 9c.

Figure 10: Mach number and density adjoint contours for transonic flow (M = 0.8) over a NACA0012 Airfoil at an
angle of attack of 1.25◦.
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Figure 11: Convergence plot of functional accuracy versus mesh size for transonic flow (M = 0.8) over a NACA
0012 airfoil.

region and hence the mesh enrichment there is wasted. Conversely, the predicted distribution of the adjoint
captures the high sensitivity of the functional to errors in the primal solutions in a region just upstream and
downstream of the leading edge stagnation point near the leading edge of the airfoil as depicted in Figure 10.
This leads to enhance resolution near the leading edge as the mesh is refined and a correspondingly more
accurate estimate of the pressure drag.

The convergence of the estimated error in the functional versus the mesh density for the various refinement
strategies is given in Figure 11 for the NACA 0012 airfoil case. The results show that the output-based
AMR approach, particularly the ECC formulation, led to the most accurate and efficient evaluation of
the functional. As with the other two cases described above, the computational effort associated with the
evaluation of the p-based refinement indicators were found to be considerably less than those associated with
the evaluation of the h-based indicators.

VI. Conclusions

A number of representative solutions to inviscid compressible flows governed by the Euler equations have
been considered. An output-based error estimation strategy has been developed and combined with an
efficient and highly scalable parallel anisotropic block-based AMR technique for the prediction of inviscid
compressible three-dimensional inviscid flows. The evaluation of error indicators for the target function based
on both h- and p-refinement procedures has been considered and the computational efficiencies associated
with the p-refinement approach have been identified. The output-based error estimation for directing the
AMR was found to offer performance benefits when compared to physics-based methods, particularly in the
presence of discontinuities and sharp gradients. In majority of the flow problems considered, particularly
those with sharp solution gradients, the output-based methods led to the most accurate functional for the
smallest mesh size in comparison to the reference gradient-based AMR and uniform refinement approaches.
For the supersonic wedge flow case, the gradient-based AMR strategy yielded the largest mesh sizes with
relatively lowest accuracy and, for the transonic NACA0012 airfoil flow, the gradient-based directed AMR
method failed to produce a converged estimate of the functional. Of the output-based approaches, the
Venditti-Darmofal formulation of the ECC-based error indicator led to the most accurate calculations of the
functional for the wedge and airfoil cases. Additionally, the adaptation method based on the h-derived error
estimates provided the more accurate calculations of the functionals, as compared to corresponding those of
the p-refinement based strategy. Nevertheless, the latter was found to perform well and incurred considerably
less computational cost. For the p-derived error indicator, the proposed anisotropic smoothness indicator
was shown to identify successfully the appropriate directional bias for mesh refinement. As may be expected,
the output-based approaches did not offer considerably higher functional accuracy for reduced mesh sizes

13 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Fe
br

ua
ry

 3
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
08

29
 



for the smooth inviscid subsonic flow case considered. Follow-on research will consider the application of the
combined output-based error estimation and anisotropic AMR schemes to three-dimensional compressible
viscous flows.
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