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An anisotropic output-based adaptive mesh refinement scheme is proposed for the nu-
merical prediction of inviscid and viscous flows on three-dimensional multi-block meshes
using parallel distributed-memory computer architecture. A finite-volume discretization
procedure with limited piecewise linear reconstruction is used in combination with a second-
order implicit time-marching algorithm to solve the governing partial differential equations
on body-fitted hexahedral meshes. The anisotropic block-based refinement provides signif-
icant reductions in the size of the computational mesh by locally refining the grid only in
selected directions as dictated by the flow physics and the predicted solution. The adjoint-
based error estimation enables formal evaluation of a posteriori estimates of the errors in
solution-dependent engineering functionals in terms of local estimates of the truncation
error as measured by the solution residual error. These errors are calculated by solving
an adjoint problem related to the functional of interest and using the solution of the ad-
joint problem to appropriately weigh primal flow quantity residual errors evaluated on a
finer mesh using an h-refinement strategy. The resulting dual-weighted error estimate is
used to direct the local mesh adaptation and the error-driven refinement strategy creates
meshes which are customized for the accurate calculation of the functionals of interest.
The performance of the output-based mesh refinement scheme is demonstrated for several
representative steady time-invariant inviscid flows governed by the Euler equations and
viscous flows governed by the Navier-Stokes equations.

I. Introduction

I.A. Motivation

As the use of computational fluid dynamics (CFD) has become more routine with a greater breadth of
applications, the need for more efficient and accurate numerical techniques has also grown. In particular,

flows with a wide range of length and time scales present an inherent difficulty to numerical methods due to
the resulting stiffness of the governing partial differential equations. Common examples of such flows are: (i)
chemically reactive flows; (ii) turbulent flows; (iii) aerodynamic flows with detailed three-dimensional (3D)
wing-fuselage configurations; (iv) conducting flows involving electromagnetic phenomena; and (v) micro-scale
non-equilibrium flows.

There are several ways to decrease the computational cost of performing a simulation of multi-scale flows
without simplifying the mathematical models or compromising the accuracy of the computed solution. One
approach is to make use of adaptive mesh refinement (AMR),1–6 wherein the number of computational cells is
increased only in regions involving smaller length scales and correspondingly reduced in regions with solution
content having much larger length scales. In this way, the AMR is able to reduce both the overall size of the
computational mesh for a desired resolution as well as the computational cost of performing a simulation,
while also taking into account the possible disparate length scales present in the flow. It also automates the
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adaption of the computational meshes which greatly reduces the need for human intervention. Additionally,
AMR is potentially highly advantageous for unsteady problems where different regions of the flow domain
may display complex phenomena at different instances in time.

Solution-dependent AMR strategies can be broadly classified into four categories:

1. patch-based AMR (e.g, Berger and Colella,1 Quirk and Hanebutte,7 Pantano et al.8) in which individ-
ual cells of an initially coarse mesh are dynamically flagged and grouped together to form rectangular
patches;

2. cell-based AMR (e.g., De Zeeuw and Powell,9 Aftosmis et al.,6 Berger and LeVeque,10 Ripley et al.11)
where each cell is refined individually and the cell connectivity is typically stored in a tree data
structure;

3. block-based AMR (e.g., Berger and Saltzman,2 Groth et al.12,13) in which the computational domain
is represented by a multi-block mesh with subdomains or “blocks” containing a pre-defined number of
cells and during refinement, the blocks are subdivided into a number of blocks, each block containing
the same pre-defined number of cells; and

4. hybrid AMR (e.g., Holst and Keppens14) which involves a combination of patch-based and block-based
AMR methods.

The parallel block-based AMR techniques proposed by Groth and co-workers15–21 are of particular interest
here. They provide an effective treatment for the issues associated with disparate scales and have been
shown to lead to highly scalable on distributed memory parallel computers. Isotropic block-based AMR,
as originally proposed by Gao and Groth,15,18,19 is based on an octree data structure wherein each block
flagged for refinement is refined equally in all directions. The isotropic block-based AMR methods have
been applied quite extensively to combustion problems by Groth and co-workers. For example, Northrup
and Groth16,22,23 used the 3D isotropic block-based AMR for simulation of laminar steady and unsteady
premixed and non-premixed flames. Gao and Groth15,18,19,24–26 and Jha27,28 applied isotropic block-based
AMR to turbulent diffusion flames. Ivan et al.29–31 and Susanto et al.32 have also used block-based AMR for
magnetohydrodynamic simulations. An anisotropic version of the block-based AMR based on a binary-tree
data structure was more recently proposed by Zhang and Groth33 so as to increase further the computational
savings. When applied to convection-diffusion and the inviscid flow equations, significant mesh savings were
found. Williamschen and Groth34 extended this anisotropic block-based AMR to 3D simulations of inviscid
flows governed by the Euler equations. They used a uniform block approach where the ghost cells for a block
had the same refinement level as the block itself. More recently, an anisosotropic block-based approach
making use of heterogeneous non-uniform blocks was proposed by Freret and Groth.21 The latter has several
advantages making it more efficient and better suited for high-order spatial discretizations. Note also that
the extension of the anisotropic AMR approach for use with the high-order central essentially non-oscillatory
(CENO) finite-volume scheme is considered in the recent study by Freret et al.35

In most of the aforementioned studies of block-based AMR studies,15–21 heuristic physics- and/or gradient-
based criteria are used to direct the mesh refinement. These approaches are easily implementable and work
well for many of the problems studied. However, as discussed by Williamschen and Groth34 and Freret and
Groth,21 gradient-based methods do not necessarily directly respond to errors in the numerical solution,
hampering grid convergence and error control as the mesh refinement proceeds. Mesh refinement criteria
based on solution error would make the AMR significantly more effective.

In particular, adjoint-based error estimation techniques would enable the use of a formal error estimate
for directing mesh adaptation and providing sensitivities of engineering functionals to this error. Adjoint
methods for AMR have been considered by previous researchers.36–43 For example, Heuveline and Ran-
nacher36 applied adjoint-based error estimation in combination with AMR to the solution of second-order
elliptic equations. Becker et al.37 applied similar methods for problems involving computation of aerody-
namic forces. Venditti and Darmofal38–40 used error-estimation strategies to adapt unstructured triangular
meshes for computing two-dimensional (2D) flows over airfoils. Nemec and Aftosmis41,42 used the solution
of the discrete adjoint for performing mesh refinement on 3D polyhedral meshes for compressible inviscid
flows using cell-based AMR. Ceze and Fidkowski43 used adjoint methods for mesh and polynomial-order
adaptation for Navier-Stokes and RANS flows using cell-based AMR on body-fitted meshes(coarsening was
not permitted in their study). Finally, Yano and Darmofal44 have also used adjoint methods for perform-
ing anisotropic mesh adaptation on simplex meshes for advection-diffusion problems. A key advantage of
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these error-based refinement methods is that they, unlike gradient-based methods, can respond directly to
estimates of the solution error and they can be used for isolating only those regions of the flow which are
sensitive to the functional or output of interest. This results in specially tuned AMR meshes which are
customized for minimizing errors and accurately evaluating engineering functionals of particular interest.

I.B. Scope of Research

To overcome the shortcomings shown by previous gradient-based strategies for directing block-based AMR
methods, a new output-based AMR strategy is proposed which employs the a posteriori error-estimation
technique similar to that originally developed by Venditti and Darmofal38–40 combined with the recent
anisotropic AMR scheme of Freret and Groth.21 In the proposed combined approach, the solution of the
adjoint for a functional of interest is used to weigh estimated local errors in the solution residual thereby
selecting regions of the computational domain that most directly influence the functional. The proposed
method generates locally refined meshes which are customized for the accurate evaluation of the engineering
functional of interest. Examples of engineering functionals considered here include aerodynamic forces such
as lift and drag.

In what follows, the solution methodology comprising the governing equations, the second-order finite-
volume scheme, inexact Newton method, and the parallel block-based AMR approach are all first de-
scribed.21,22 The formulation and solution of the adjoint problem, calculation of error indicators and error-
driven mesh adaption are described next. Finally, numerical results are discussed for several steady inviscid
compressible flow problems governed by the Euler equations and steady viscous compressible flow problems
governed by the Navier-Stokes equations, obtained using the proposed AMR scheme, allowing the relative
performance of the proposed output-based anisotropic AMR method to be assessed. Comparisons with
uniformly refined mesh and physics-based AMR are also shown.

II. Solution Methodology

II.A. Governing Equations

The conservative form for the governing equations describing the compressible gaseous flows of interest can
be written in vector form as

∂U

∂t
+∇ · ~F = 0, (1)

where U is the vector of conserved variables and ~F is the flux vector. For a three-dimensional Cartesian
geometry, Eq. (1) can be written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (2)

where F, G, H are fluxes in the x, y, z directions, respectively. For viscous flows governed by the Navier-
Stokes equations, these fluxes can be further classified into inviscid and viscous components. Consequently,
the Eq. (2) can be rewritten as

∂U

∂t
+
∂(FI − FV)

∂x
+
∂(GI −GV)

∂y
+
∂(HI −HV)

∂z
= 0, (3)

where the solution and inviscid flux vectors are given by

U =



ρ

ρu

ρv

ρw

e


,FI =



ρu

ρu2 + p

ρuv

ρuw

ρuh


,GI =



ρv

ρvu

ρv2 + p

ρvw

ρvh


,HI =



ρw

ρwu

ρwv

ρw2 + p

ρwh


. (4)
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and where ρ is the density, u, v, w are x, y, z velocity components, respectively, e = p/(ρ(γ − 1)) + u2/2 is
the specific total energy and h = e+ p is the specific enthalpy. The ideal gas equation p = ρRT is used for
closure of the system where T is the gas temperature and R is the ideal gas constant. The ratio of specific
heats γ = Cp/Cv is assumed to be constant. The viscous fluxes are given by

FV =



0

τxx

τxy

τxz

−qx + uτxx + vτxy + wτxz


,GV =



0

τyx

τyy

τyz

−qy + uτyx + vτyy + wτyz


,HV =



0

τzx

τzy

τzz

−qz + uτzx + vτzy + wτzz


.

(5)
where qx, qy, qz are the heat flux components and τxx,τxy,τxz,τyy,τyz,τzz are the components of the stress
tensor. For inviscid flows, the components of the viscous vectors FV, GV and HV are identically zero and
the governing equations reduce to the usual Euler equations.

II.B. Finite-Volume Spatial Discretization and Semi-Discrete Form

The spatial discretization is accomplished herein by using a second-order cell-centered finite-volume scheme.
Following application of this finite-volume method to a hexahedral computational cell or element, (i, j, k),
of a structured three-dimensional grid, Eq. (1) can be re-expressed in semi-discrete form as

dUi,j,k

dt
= −Ri,j,k(U) = − 1

Vi,j,k

Nfi,j,k∑
f=1

(
~Ff .~nf∆Af

)
i,j,k

, (6)

where Ui,j,k is the averaged conserved solution for cell (i, j, k), and Ri,j,k is the discrete residual representing

the summation of the face fluxes for cell (i, j, k). The variables Vi,j,k, ~Ff , ~nf and ∆Af denote the cell volume,
flux vector, outward pointing unit normal vector and the area of the cell face, f , respectively, and Nfi,j,k
is an integer value representing the number of faces for cell (i, j, k). A schematic diagram illustrating a
hexahedral cell is provided in Figure 1(a). For the evaluation of the inviscid fluxes, limited piecewise-linear
least-squares reconstruction is used for calculating primitive flow variables at the cell faces. A Godunov-type
flux function,45 namely the so-called HLLE approximate Riemann solver based flux function proposed by
Einfeldt,46 is then used for evaluation of the inviscid fluxes at the cell faces. Viscous fluxes involving both
the solution and its gradients are calculated using a Green-Gauss integration procedure16 at the cell faces.

II.C. Inexact Newton’s Method

An inexact Newton’s method is used to solve the coupled system of non-linear algebraic equations describing
steady solutions of the semi-discrete form of the governing equations above for all computational cells in the
mesh given by

dU

dt
= −R(U) = 0. (7)

These non-linear equations are linearized through the application of Newton’s method to arrive at the
following system of linear equations[

∂R

∂U

]
∆U(n) = J∆U(n) = −R(U(n)), (8)

where J = ∂R/∂U is the Jacobian of the residual and U(n+1) = U(n) + ∆U(n). Thus, for a given initial

estimate of the solution, U(n=0), an improved approximation, U(n+1), is obtained by solving the system of
linear equations at each step, n, of Newton’s method. The linear system of equations is solved iteratively
until the solution residual is sufficiently small below a user-defined tolerance level.

Equation (8) is of the form
Ax = b, (9)
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and can be solved using an iterative linear solver. Such systems are typically very large, non-symmetric, and
associated with sparse banded matrices. For large sparse systems, it is economical to use Krylov subspace
methods. The Generalized Minimum Residual (GMRES) method, a class of Krylov subspace methods,
initially developed by Saad and Schultz47 is used here. GMRES is implemented here in a parallel fashion
allowing use of parallel computer architectures having multiple processors using the Message Passing Interface
(MPI) library of subroutines.48,49 Refer to the paper by Northrup and Groth22 for further details of the
parallel Newton method used here.

II.D. Anisotropic Block-Based AMR

The mesh refinement strategy used here is a parallel anisotropic block-based AMR scheme which allows
automatic local mesh adaptation on a parallel multi-block body-fitted mesh consisting of three-dimensional
hexahedral computational cells. An example of a body-fitted multi-block mesh generated using block-based
AMR is illustrated in Figure 1(b). The computational domain is divided into subdomains called “blocks”,
each block containing a predefined number of cells. During isotropic refinement, a block marked for re-
finement is subdivided uniformly into four (2D) or eight (3D) blocks, each containing the same pre-defined
number of cells, although the volume of each cell is reduced by a factor of four in 2D simulations or by a
factor of eight in 3D simulations. During anisotropic refinement, a block is always divided into two blocks,
in a particular direction, doubling the mesh spacing or resolution only in that preferred direction. The
anisotropic block-based AMR scheme adopted here21,33–35 has been found to be highly efficient in terms of
reducing the overall mesh size for a given flow problem.

The data structure used to store the grid-block connectivity is a hierarchical flexible binary tree, which
is accessible to all processors participating in the simulation. This tree not only takes into account the
connectivity between individual blocks but also the splitting sequence of the block, which is not unique for
anisotropic refinement. Figure 2 shows the resulting binary tree after several refinements of an initial mesh
consisting of a single block. The binary tree for this anisotropic block-based AMR approach is relatively
light and compact in terms of memory, as it only has to account for the connectivity between blocks and not
the individual cells. As a result of this compact data structure, the block-based AMR approach is easier to
implement within a parallel solution framework.

Each computational block contains two layers of ghost cells around it which carry information from
the neighboring blocks. This information is exchanged between neighbouring blocks belonging to different
processors through the MPI. In this implementation, which makes use of the heterogeneous block, the ghost
cells for a block have the same refinement level as the neighbouring blocks overlapping the ghost cells. This
approach is illustrated in Figure 3 for clarity. The domain in Figure 3 consists of 11 blocks adjacent to each
other as shown in Figure 3(a). The ghost cells for the block at the centre (ID) are shown in Figure 3(b). The
ghost cells and their solution values are directly provided by the neighboring blocks. This eliminates the need
for prolongation of cell-averaged values from coarser to finer cells and restriction from finer to coarser cells,
when exchanging information between blocks. When there are non-confirming cells or so-called “hanging
nodes” where neighbouring blocks meet, the fluxes through the non-conforming faces are calculated in a
systematic way, the same for neighbouring blocks, so as to maintain the conservation properties of the finite
volume scheme.21,35 In this way, the need for flux correction strategies to ensure the conservation properties
of the scheme at block interfaces with resolution changes are also completely eliminated. This heterogeneous
block approach is also beneficial in the construction of the matrix for the adjoint problem. For all of these
reasons, the heterogeneous block approach with non-uniform refinement levels is used and exploited here.

III. Error Estimation Procedure and Output-Based Anisotropic AMR

III.A. Adjoint-Based Error Estimation

Evaluation of the solution adjoint combined with local solution error estimates enables calculation of an
error estimate for the engineering functionals as well as the determination of sensitivities of the output to
the solution error. These quantities can then be used to direct the mesh adaption. Adjoint methods have
been extensively used for aerodynamic shape optimization50–54 and mesh refinement.36–43 They have also
been applied to numerical simulation of reactive flows.55,56 The adjoint problem can be broadly classified into
the continuous and discrete adjoint formulations. The continuous adjoint equation is directly obtained from
the differential forms of the fluid dynamical conservation equations, and then discretized and solved using a
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n
face

cell (i,j,k)

∆Α
face

(a) (b)

Figure 1. (a) Hexahedral cell at grid location i, j, k showing face normals. (b) Body-fitted adapted mesh after several
refinements. Grid blocks are shown with bold lines.

Figure 2. 3D binary tree and the corresponding blocks after several refinements

numerical technique. In this paper, the discrete adjoint50–54 formulation is considered as it is believed to be
more consistent with the cost function as pointed out by Nadarajah.51 In the discrete adjoint formulation,
the adjoint equations are derived directly from the finite volume discretization of the conservation equations
through differentiation with respect to conserved variables.

Returning to Eq. (6), the semi-discrete form of the spatially discretized differential equations of interest
is given by

dU

dt
= −R(U), (10)

where R(U) represents the residual. For a steady state, the solution has a residual R(U) = 0. The discretized
governing equations are solved on the coarse grid denoted by ΩH where H is the grid spacing on the coarse
grid. The discrete residual on the coarse grid is given by RH(UH) = 0 where UH is the discrete flow solution
on the coarse grid. The primal solution vector, U is used to estimate the functional of interest f(U). The
approximation of the functional on the coarse grid using the coarse grid solution, is represented as fH(UH).
The coarse grid solution is readily available and the functional is cheap to compute, but may not be accurate
enough for the desired purpose. Hence, a solution of the problem on a finer grid, Ωh, with a grid spacing
h, is considered. The cost of computing the fine grid solution Uh is naturally much higher than that of
the coarse grid solution UH . Calculation of the functional fh(Uh) by first evaluating the actual fine mesh
solution Uh would make the AMR approach pointless since the expensive computations would have been
already performed.
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(a) (b)

Figure 3. (a) Block under consideration (marked ID) surrounding by neighbouring blocks. (b) Ghost cells for the ID
block taken directly from the neighbouring blocks.

The output-based refinement strategy considered here must instead provide an estimate for the fine grid
solution in order to be able to produce a more accurate estimated value of the functional with respect to the
observed integrated quantity on the original mesh. For the method to be effective, the estimation of the fine
grid solution must be much less expensive than simply performing a uniform mesh refinement and solving
the problem on a fine grid. The coarse grid solution UH is prolonged to the fine grid as

UH
h = IHh UH , (11)

where IHh is a projection operator representing a limited piecewise linear least-squares reconstruction and
UH
h is the fine grid solution which has been prolonged from the coarse grid. The functional on the fine grid

fh(Uh) can be approximated using Taylor expansion on the prolonged solution UH
h . Neglecting higher order

terms, one obtains

fh(Uh) = fh(UH
h ) +

∂fh(UH
h )

∂Uh
(Uh −UH

h ) +O((Uh −UH
h )2) . (12)

The residual on the fine grid is Rh(Uh) = 0. This residual can also be expanded using Taylor expansion on
the prolonged solution UH

h as

Rh(Uh) = Rh(UH
h ) +

∂Rh(UH
h )

∂Uh
(Uh −UH

h ) +O((Uh −UH
h )2) . (13)

Note that Rh(UH
h ) 6= 0 on the fine grid because UH

h is the coarse grid prolonged solution and not the actual
fine grid solution Uh obtained by solving the fluid equations on the fine grid. Using Rh(Uh) = 0, this
becomes

(Uh −UH
h ) ≈

[
∂Rh(UH

h )

∂Uh

]−1
Rh(UH

h ) . (14)

Neglecting higher order terms and using Eq. (14), Eq. (12) can be then written as

fh(Uh) ≈ fh(UH
h ) +

(
ψψψh(UH

h )
)T

Rh(UH
h ), (15)

where ψψψh(UH
h ) is defined as the discrete adjoint solution on the fine grid. As can be seen from Eq. (15), this

term can also be viewed as the sensitivity of the functional towards the residual error on the fine grid. The
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second term
(
ψψψh(UH

h )
)T

Rh(UH
h ) in Eq. (15) is the error estimate required to drive the mesh adaptation.

The fine grid discrete adjoint, ψψψh(UH
h ), satisfies the discrete adjoint equation(

∂Rh

∂Uh

)T
ψψψh =

(
∂fh
∂Uh

)T
. (16)

on the fine grid.
Equation (16) is not solved due to its high computational expense. The fine grid discrete adjoint, ψψψh(UH

h ),
is instead approximated by an interpolated value ψψψHh given by

ψψψHh = JHh ψψψH , (17)

where ψψψH is the discrete adjoint on the coarse grid and the solution of the coarse grid discrete adjoint
equation given by (

∂RH

∂UH

)T
ψψψH =

(
∂fH
∂UH

)T
. (18)

Here, JHh is also a projection operator like IHh . Note that a finer mesh is used here to evaluate the primal
residual error. An alternate approach would be to estimate the residual error on the coarse grid itself by using
a higher-order spatial discretization or reconstruction procedure for the primal flow solution quantities.36,43,44

Such an approach is not considered here.
Equation (18) is a linear system of the form Ax = b. This system is a large sparse linear system and

is solved using GMRES. The Trilinos software package is used in combination with MPI for this purpose.
Trilinos57–61 contains subpackages like Epetra62 for the various matrix and vector classes for data distribution
over multiple processors and AztecOO63 for routines like GMRES and preconditioning for faster convergence
of linear systems.

III.B. Criteria for Output-Based Mesh Adaptation

One way to drive the grid refinement is to directly use the local correction
(
ψψψHh
)T

Rh(UH
h ) in the functional

calculated as described in Section III.A, as the refinement criterion. The interpolated adjoint described in
Equation (17) is used for this purpose. As described by Venditti and Darmofal38–40 , this approach can
also lead to unnecessary refinement in regions where the adjoint solution is not sufficiently resolved. Hence,
Venditti and Darmofal proposed a more conservative criterion for adaptation that takes into account not only
primal but also dual (adjoint) residual errors. In the current work, both choices of adaptation parameters
have been explored. Consider now the more conservative criterion.

Equation (15) can be written as

fh(Uh)− fh(UH
h ) ≈

(
ψψψHh
)T

Rh(UH
h )︸ ︷︷ ︸

Computable Correction

+
(
ψψψh(UH

h )−ψψψHh
)T

Rh(UH
h )︸ ︷︷ ︸

Error in Computable Correction

, (19)

whereψψψHh is the interpolated coarse-grid adjoint shown in Equation (17) whereasψψψh(UH
h ) is the more accurate

value of the adjoint calculated on the fine grid. Values forψψψh(UH
h ) are not calculated due to the relatively high

computational cost. Hence,
(
ψψψh(UH

h )−ψψψHh
)T

Rh(UH
h ) becomes the error in the computational correction.

Equation (19) can also be written as

fh(Uh)− fh(UH
h ) ≈

(
ψψψHh
)T

Rh(UH
h )︸ ︷︷ ︸

Computable Correction

+ Rψψψ
h (ψψψHh )

T

[
∂Rh(UH

h )

∂Uh

]−1
Rh(UH

h )︸ ︷︷ ︸
Error in Computable Correction

, (20)

where Rψψψ
h is the adjoint residual operator defined as

Rψψψ
h (ψψψ) =

[
∂Rh(UH

h )

∂Uh

]T
ψψψ −

(
∂fh(UH

h )

∂Uh

)T
. (21)
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Since ψψψh(UH
h ) is the value of the adjoint calculated by solving the adjoint problem on the fine grid, it satisfies

the equation [
∂Rh(UH

h )

∂Uh

]T
ψψψh(UH

h ) =

(
∂fh(UH

h )

∂Uh

)T
. (22)

Hence, its residual Rψψψ
h (ψψψh(UH

h )) is equal to zero. But, the fine grid residual Rψψψ
h (ψψψHh ) of the interpolated

coarse-grid adjoint ψψψHh would be non-zero. Calculation of this residual requires the construction of the matrix

[∂Rh(UH
h )/∂Uh] and vector (∂fh(UH

h )/∂Uh) on the fine grid; solution of the linear system on the fine grid
is not required.

Hence, as seen in Equation (20), the error in the computable correction can be written in terms of the
primal as well as adjoint residuals on the fine mesh level. Consequently, reducing the primal and dual
residuals simultaneously can reduce the error in the computable correction. The new parameter focuses on
attempting to simultaneously reducing the local residual errors in both the primal and adjoint solutions.
The new parameter tries to combine the two residuals into a single adaptation parameter for each cell, also
taking into account the fact that the primal and dual variables have different units and magnitudes and
hence need to be assigned weights appropriately. The criterion defined by Venditti and Darmofal38–40 for a
particular coarse grid cell i is given by

εεεi =
1

2

∑
l(i)

(∣∣∣[QHh ψψψH − LHh ψψψH ]Tl(i)[Rh(LHh UH)]l(i)

∣∣∣
+
∣∣∣[QHh UH − LHh UH ]Tl(k)[R

ψψψ
h (LHh ψψψH)]l(i)

∣∣∣). (23)

Here, QHh and LHh are quadratic and linear interpolation operators respectively, used for prolonging coarse
grid variables into the fine grid using reconstruction. The summation is performed over all fine grid cells l(i)
contained within the coarse grid cell i.

IV. Numerical Results for Invisicid and Viscous Flows

In this section, application of the proposed error-based anisotropic AMR scheme to several inviscid and
viscous flow problems is considered and the performance of the solution-dependent AMR strategy is assessed
through comparisons to results obtained using both uniform mesh refinement and other more standard
gradient-based AMR approaches.

IV.A. Supersonic Flow Past a Wedge

In the first example case, prediction of the oblique shock that forms when inviscid supersonic flow of air
is deflected by an inclined wedge is examined. A Mach number M=3 supersonic flow is considered, and
the wedge angle α is 9.5◦. Using the Rankine-Hugoniot relations, the angle of the shock and the analytical
solution can be determined. The angle of the shock is given by β = 26.9308◦. The ideal analytical solution
on the upstream and downstream sides of the shock in terms of ρ, p and M is given by ρp

M


left

=

 1.225

101325

3

 ,
 ρp
M


right

=

 1.98

201354.51

2.53

 . (24)

The functional used here for this oblique shock case is the pressure drag force on the inclined wedge in the
direction of the incoming flow. For a wedge of length l = 1 and width w = 0.25, the ideal value of the drag
force is given by Da = pright · w · l · sin(α) = 8308.27.

Figure 4(a) shows the predicted density distribution for this case after a converged solution has been
obtained after 7 gradient-based refinements on the initial mesh. Figure 4(b) shows the distribution for the
1st component of the adjoint solution vector after a converged solution has been obtained after 7 output-based
refinements on the initial mesh. Figure 6 shows the computational mesh for different levels of refinement
for the two mesh refinement methods. Comparisons are made between gradient-based and functional error-
based methods for driving the mesh refinement. The former refines the entire oblique shock whereas the

9 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Ju
ne

 2
7,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

41
13

 



latter refines only the portion of the shock that falls in the domain of influence of the functional where the
adjoint variable is non-zero. In terms of mesh savings, this represents 37.4% reduction is mesh size. Using
the criterion defined in Equation (23) leads to further reductions in mesh size. Figure 5 shows a plot of the
error in the functional, i.e., the difference between the ideal value Da and the computed value Dc against
3
√
Ncells where Ncells is the total number of grid cells in the computational domain. While it is evident

that the gradient-based approach outperforms the convergence rate obtained with uniform refinement, the
output-based methods provide further improvements in the convergence for this case.

(a) (b)

Figure 4. Predicted density (a) and density adjoint (b) distributions for a Mach number M=3 steady supersonic inviscid
flow past a wedge on refined anisotropic meshes. For (a), the total number of blocks is 890, the number of cells per
block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and the total number of cells is 227840. For (b), the total number of blocks is 557, the number
of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and the total number of cells is 142592.

Figure 5. Convergence of the predicted error in the drag force as a function of the mesh size (numbers of degrees of
freedom) for supersonic flow past an inclined wedge.

IV.B. Supersonic Flow Over a Bump

In the second inviscid flow problem, a Mach number M=1.4 supersonic flow enters a rectangular channel
and is intercepted by a sinusoidal bump. The functional used here is the pressure-induced drag force on the
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(a) Gradient-based ref. level 1 with 512 cells (b) Error-based ref. level 1 with 512 cells

(c) Gradient-based ref. level 2 with 1536 cells (d) Error-based ref. level 2 with 2048 cells

(e) Gradient-based ref. level 4 with 9472 cells (f) Error-based ref. level 4 with 12032 cells

(g) Gradient-based ref. level 6 with 52224 cells (h) Error-based ref. level 6 with 41984 cells

(i) Gradient-based ref. level 8 with 227840
cells

(j) Error-based ref. level 8 with 142592 cells

Figure 6. Stages of AMR for error-based refinement using computable correction (right) compared to those obtained
using gradient-based approach (left) for supersonic flow past a wedge.

bump in the direction of the incoming flow. The presence of the bump results in the formation of strong
oblique shocks and subsequent shock reflections from the upper and lower boundaries.

The gradient-based refinement method for this case refines heavily in the regions containing the shocks
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(a) (b)

Figure 7. Predicted density (a) and density adjoint (b) distributions for a Mach number M=1.4 steady supersonic
inviscid flow over a bump obtained on refined anisotropic meshes. For (a), the total number of blocks is 6940, the
number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256,and the total number of cells is 1776640. For (b), the total number of blocks
is 265, the number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and the total number of cells is 67840.

Figure 8. Convergence of the predicted error in the drag force as a function of the mesh size (numbers of degrees of
freedom) for supersonic flow over a bump.

and their reflections, increasing the computational cost drastically without a commensurate increase in the
accuracy of the computed value of the functional as can be seen in Figure 9-left. The error-based refinement
method, on the other hand, focuses on refining the portion of the shock which influences the flow over the
bump as outlined in Figure 9-right. In terms of mesh savings, this represents a 96% reduction in mesh size.
A further 30% reduction in mesh size is achieved using the more conservative refinement criterion defined
in Equation (23). The regions downstream of the bump have no influence over the functional since no
information travels upstream in a supersonic flow. Figure 7(a) shows the predicted density distribution for
this case after a converged solution has been obtained after 7 gradient-based refinements on the initial mesh.
Figure 7(b) shows the distribution for the 1st component of the adjoint solution vector after a converged
solution has been obtained after 8 output-based refinements on the initial mesh. Figure 8 shows a plot
of the error in the functional, i.e., the difference between the ideal value Da and the computed value Dc

against 3
√
Ncells where Ncells is the total number of grid cells in the computational domain. The ideal value

Da is approximated by obtaining a solution on a uniformly refined mesh at the finest level of refinement.
The gradient-based refinement strategy initially slightly outperforms the uniform refinement strategy but
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after 4 refinements, it reaches a plateau and the uniform refinement strategy produces more accurate results.
However, the output-based refinement approaches continue to produce more accurate predictions of the
functional as the mesh is further refined.

(a) Gradient-based ref. level 1 with 2048 cells (b) Error-based ref. level 1 with 2048 cells

(c) Gradient-based ref. level 2 with 6912 cells (d) Error-based ref. level 2 with 3840 cells

(e) Gradient-based ref. level 4 with 76544 cells (f) Error-based ref. level 4 with 14848 cells

(g) Gradient-based ref. level 6 with 389632 cells (h) Error-based ref. level 6 with 41472 cells

(i) Gradient-based ref. level 8 with 1776640 cells (j) Error-based ref. level 8 with 67840 cells

Figure 9. Stages of AMR for error-based refinement using computable correction (right) compared to those obtained
using gradient-based approach (left) for supersonic flow past a bump.

IV.C. Supersonic Flow Past a Diamond-Shaped Airfoil

In the next case of interest, inviscid supersonic flow is intercepted by a symmetrical diamond-shaped airfoil.
A Mach number M=2 supersonic flow is considered. The chord length of the airfoil is assumed to be unity
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(a) (b)

Figure 10. Predicted density (a) and density adjoint (b) distributions for a Mach number M=2 steady supersonic
inviscid flow past a diamond-shaped airfoil on refined anisotropic meshes. For (a), the total number of blocks is 9551,
the number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and the total number of cells is 7640800. For (b), the total number of
blocks is 2314, the number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and the total number of cells is 1851200.

Figure 11. Convergence of the predicted error in the drag force as a function of the mesh size (numbers of degrees of
freedom) for supersonic flow past a diamond-shaped airfoil.

and the far-field boundary is located 32 chord lengths away from the airfoil in a radially outward direction.
The angle of attack of the airfoil is given by α = 10◦. Each of the flat sections of the airfoil makes an angle
γ = 5◦ with the chord line of the airfoil. Oblique shocks are formed at the bottom leading edge and the
upper trailing edge of the airfoil. Prandtl-Meyer expansion fans are also generated at the upper leading edge
and bottom trailing edge of the airfoil. In addition, expansion fans are generated at the intersection of the
flat sections of the airfoil where the airfoil thickness is the greatest. The functional used here is the pressure
drag force on the airfoil in the direction of the free-stream flow. The flow solution adjacent to the airfoil can
be calculated using the Rankine-Hugoniot relations across the oblique shocks and isentropic flow relations
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(a) (b)

(c)

Figure 12. Computational meshes for Mach number M=2 steady supersonic inviscid flow past a diamond-shaped airfoil
showing: (a) a refined anisotropic mesh after 10 refinements obtained using a gradient-based refinement strategy (total
number of blocks is 9551, number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and total number of cells is 7640800); (b) a refined
anisotropic mesh after 10 refinements obtained using an error-based refinement strategy with computable correction
(total number of blocks is 2314, number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and total number of cells is 1851200); and
(c) a refined anisotropic mesh after 10 refinements obtained using an error-based refinement strategy with Venditti-
Darmofal criterion (total number of blocks is 822, number of cells per block is 8× 8× 4 = 2568× 8× 4 = 2568× 8× 4 = 256, and total number of cells
is 210432).

across the Prandtl-Meyer expansion fans. Thus, an analytical ideal value of the drag force can be calculated.
The drag coefficient is given by

CD =
2D

ρ∞V 2
∞
, (25)

where D is the drag force, ρ∞ is the free-stream density and V∞ is the free-stream velocity. The analytical
value of the drag coefficient is found out to be 0.0926.

Figure 10(a) shows the predicted density distribution for this case after a converged solution has been
obtained after 9 gradient-based refinements on the initial mesh. Figure 10(b) shows the distribution of the
1st component of the adjoint solution vector after a converged solution has been obtained after 9 output-
based refinements on the initial mesh. The gradient-based technique refines extensively in the regions of
the shocks and also significantly in the regions containing the sharp expansion fans. On the other hand,
the error-based method refines only a small portion of the leading shock and expansion fan and the central
expansion fans. The trailing edge shock and expansion fan are not refined significantly, leading to huge
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savings in mesh. Using the computable correction as the refinement criterion achieves an 82% reduction in
mesh size as compared to the gradient-based approach. The more conservative refinement criterion achieves
a 97% reduction in mesh size for the same accuracy. Figure 11 shows a plot of the error in the functional,
i.e., the difference between the analytical value CD,a and the computed value CD,c against 3

√
Ncells where

Ncells is the total number of grid cells in the computational domain. The error-based refinement technique
has a convergence rate comparable to that of the gradient-based technique but has an offset, while the more
conservative error-based approach has a steeper convergence rate. As further evidence of the performance
of the proposed output-based anisotropic AMR scheme, Figure 12(a) shows a refined anisotropic mesh after
10 refinements obtained using the gradient-based criteria. For comparison, Figure 12(b) and 12(c) show the
adapted anisotropic meshes after 10 refinements obtained using the proposed output-based approach.

IV.D. Steady Supersonic Spherical Outflow

(a) (b)

Figure 13. Predicted density (a) and cross-section of density adjoint (b) distributions for a steady supersonic spherical
outflow problem on a portion of the spherical domain. For (a), the total number of blocks is 18, the number of cells per
block is 6× 6× 24 = 8646× 6× 24 = 8646× 6× 24 = 864, and the total number of cells is 15552. For (b), the total number of blocks is 18, the number
of cells per block is 6× 6× 24 = 8646× 6× 24 = 8646× 6× 24 = 864, and the total number of cells is 15552.

The last inviscid flow case considered is that of steady supersonic spherical outflow. A spherical compu-
tational domain is used for this case with a cubed-sphere multi-block mesh as described by Ivan et al.29,30

The domain consists of six blocks connected, forming an inner hollow sphere and an outer spherical shell.
We consider a spherical inflow with radius Ri = 1 m and a spherical outflow with radius Ro = 4 m. Air at
a supersonic speed enters through the inner sphere with a velocity vector pointing in the radially outward
direction. The air subsequently expands and exits supersonically through the outflow sphere. The inflow is
fixed with a flow density ρi = 10 kg/m3, radial velocity V r, i = 4.5 m/s, and pressure

C3 −
1

r2Vr

[
(C2 − V 2

r )
1

γ−1

] = 0, (26)

where

C3 =
1(

2γ
γ−1

pi
ρi

1
γ−1

)
R2
iVr,i

, C2 =
2γ

γ − 1

pi
ρi

+ V 2
r,i, (27)

are constants depending on the inflow conditions. The functional used here is the volume-integrated average
temperature of the air contained in the portion of the spherical domain contained between the radii 2 m and
3 m. The ideal value of the functional can be calculated analytically and is 0.31560688.

Figure 13(a) shows the density distribution for a portion of the spherical domain for this case after a
converged solution has been obtained after 2 gradient-based refinements on the initial mesh. Figure 13(b)
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Figure 14. Convergence of the predicted error in the functional as a function of the mesh size (numbers of degrees of
freedom) for steady supersonic spherical flow.

(a) (b)

Figure 15. Computational meshes for steady supersonic spherical outflow problem showing: (a) a cross-sectional view
of a refined anisotropic mesh after 6 refinements obtained using a gradient-based refinement strategy (total number
of blocks is 1824, number of cells per block is 6× 6× 24 = 8646× 6× 24 = 8646× 6× 24 = 864, and total number of cells is 1575936); and (b) cross-
sectional view of a refined anisotropic mesh after 5 refinements obtained using an error-based refinement method using
computable correction (total number of blocks is 3582, number of cells per block is 6× 6× 24 = 8646× 6× 24 = 8646× 6× 24 = 864, and total number
of cells is 3094848).

shows a cross-sectional view of distribution for the 1st component of the adjoint solution vector after a
converged solution has been obtained after 2 output-based refinements on the initial mesh. The error-
based approach is able to detect errors in the azimuthal direction whereas the gradient-based approach
is not. Figure 14 shows a plot of the error in the functional, i.e., the difference between the ideal and
computed values against 3

√
Ncells where Ncells is the total number of grid cells in the computational domain.

Figure 15(a) shows a cross-sectional view of the refined anisotropic mesh after 5 refinements using a gradient-
based approach whereas Figure 15(b) shows a cross-sectional view of the refined anisotropic mesh after 5
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refinements using an error-based approach.

(a) (b)

Figure 16. Initial computational mesh for Mach number M=0.5 steady subsonic viscous flow past a NACA0012 air-
foil showing: (a) mesh for entire computational domian (total number of blocks is 4, number of cells per block is
16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 4096); and (b) close-up view of initial mesh.

IV.E. Subsonic Viscous Flow Past an Airfoil

(a) (b)

Figure 17. Predicted Mach number (a) and energy adjoint (b) distributions for a Mach number M=0.5 steady subsonic
viscous flow past a NACA0012 airfoil on refined anisotropic meshes. For (a), the total number of blocks is 160, the
number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and he total number of cells is 163840. For (b), the total number of
blocks is 160, the number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and the total number of cells is 163840.

In the first of two viscous flow cases considered here, a horizontal viscous Mach number M=0.5 subsonic
flow at a Reynolds Number Re = 5000 is intercepted by a NACA0012 airfoil at an angle of attack given by
α = 0◦. A C-shaped grid with stretching initially composed of 4 blocks as shown in Figure 16 was used for
this case. The chord length is taken to be unity and the far-field boundary is located 32 chord lengths away
from the airfoil boundary in the radially outward direction. A no-slip boundary condition is imposed on
the airfoil boundary. The main feature of this case is the creation of a viscous boundary layer on the airfoil
surface. The functional used here is the total drag force on the airfoil in the direction of the free-stream flow
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Figure 18. Convergence of the error in the predicted drag coefficient as a function of the mesh size (numbers of degrees
of freedom) for subsonic viscous flow past a NACA0012 airfoil.

which comprises the pressure and viscous drag components. The ideal drag coefficient is taken to be 0.0555
based on simulations performed by Ivan.64 This case has also been examined in several previous studies.65–68

Figure 17(a) shows Mach number distribution for this case after a converged solution has been obtained
after 6 output-based refinements on the initial mesh. Figure 17(b) shows the distribution of the 1st component
of the adjoint solution vector on the same mesh. The density gradient-based method refines excessively in
the region near the leading edge of the airfoil as compared to the error-based method. The velocity gradient-
based method focuses on refining the region containing the boundary layer. Figure 18 shows a plot of the
error in the functional, i.e., the difference between the ideal value CD,a and the computed value CD,c of the
drag coefficient against 3

√
Ncells where Ncells is the total number of grid cells in the computational domain.

The performance of the output-based AMR strategy employing the computable correction as the refinement
criterion is better than that of the density gradient-based refinement technique, but worse than that of
the velocity gradient-based refinement technique. The conservative error-based approach employing the
criterion defined in Equation (23) has the best performance with maximum mesh savings. Figure 19 depicts
a comparison of the AMR meshes obtained after six successive refinements using the various refinement
criteria/strategies.

IV.F. Supersonic Viscous Flow Past an Airfoil

As a last case, horizontal viscous Mach number M = 1.2 supersonic flow at a Reynolds Number Re = 1000
is intercepted by a NACA0012 airfoil at an angle of attack given by α = 0◦. The C-shaped grid shown in
Figure 16 was used for this case. The chord length is taken to be unity and the far-field boundary is located 32
chord lengths away from the airfoil boundary in the radially outward direction. A no-slip boundary condition
is imposed on the airfoil boundary. Since the flow is just slightly supersonic, the bow shock formed is located
at some distance from the leading edge of the airfoil. There are also two weak shocks emanating from the
trailing edge. A viscous boundary layer is also formed on the airfoil surface. The functional used here is
the total drag force on the airfoil in the direction of the free-stream flow which comprises the pressure and
viscous drag components. The ideal drag coefficient is taken to be 0.20882 based on simulations performed
by Hartmann and Houston.69

Figure 20(a) shows the density distribution for this case after a converged solution has been obtained after
8 gradient-based refinements on the initial mesh. Figure 20(b) shows the distribution of the 1st component
of the adjoint solution vector for this case after a converged solution has been obtained after 5 output-based
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(a) (b)

(c) (d)

Figure 19. Computational meshes for a Mach number M=0.5 steady subsonic viscous flow past a NACA0012 airfoil
showing: (a) a refined anisotropic mesh after 6 refinements obtained using a density gradient-based refinement strategy
(total number of blocks is 776, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 794624);
(b) a refined anisotropic mesh after 6 refinements obtained using a velocity-gradient-based refinement strategy (total
number of blocks is 246, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and the total number of cells is 251904); (c)
a refined anisotropic mesh after 6 refinements obtained using an error-based refinement strategy with computable
correction (total number of blocks is 334, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is
342016); and (d) a refined anisotropic mesh after 6 refinements obtained using an error-based refinement strategy with
Venditti-Darmofal criterion (total number of blocks is 154, total number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and the
total number of cells is 157696).

refinements on the initial mesh. The gradient-based refinement method extensively refines the leading edge
bow shock and also a substantial portion of the two weak trailing edge shocks. The error-based method, on
the other hand, focuses primarily on a small portion of the leading edge bow shock where the adjoint variable
is a non-zero value and does not refine the downstream trailing edge shocks at all, leading to significant mesh
savings. Figure 21 shows a plot of the error in the functional, i.e., the difference between the ideal value
CD,a and the computed value CD,c of the drag coefficient against 3

√
Ncells where Ncells is the total number

of grid cells in the computational domain. The error-based methods perform better than the gradient-based
method in terms of savings in the computational mesh, leading to a reduction in the mesh size by about
70%. Using the criterion defined in Equation (23) leads to further reductions in mesh size. Figure 22 depicts
a comparison of the AMR meshes obtained after six successive refinements using the various refinement
techniques.
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(a) (b)

Figure 20. Predicted density (a) and density adjoint (b) distributions for a Mach number M=1.2 steady supersonic
viscous flow past a NACA0012 airfoil on refined anisotropic meshes. For (a), the total number of blocks is 6188, the
number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and the total number of cells is 6336512. For (b), the total number of
blocks is 436, the number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and the total number of cells is 446464.

Figure 21. Convergence of the error in the predicted drag coefficient as a function of the mesh size (numbers of degrees
of freedom) for supersonic viscous flow past a NACA0012 airfoil.

V. Conclusions

An adjoint-based error estimation and anisotropic mesh refinement technique that provides local solution-
dependent adaptation of the computational mesh based on estimated errors in engineering functionals has
been proposed and developed for the efficient prediction of three-dimensional compressible flows on hexahe-
dral multi-block meshes using distributed-memory parallel computing systems. Results have been obtained
for steady inviscid flow cases governed by the inviscid Euler equations and steady viscous flow cases governed
by the Navier-Stokes equations. The potential and computational performance of the proposed output-based
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(a) (b)

(c) (d)

Figure 22. Computational meshes for a Mach number M=1.2 steady supersonic viscous flow past a NACA0012 airfoil
showing: (a) a refined anisotropic mesh after 6 refinements obtained using a density gradient-based strategy (total
number of blocks is 1374, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 1406976); (b) a
refined anisotropic mesh after 8 refinements obtained using a density gradient-based strategy (total number of blocks
is 6188, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 6336512); (c) a refined anisotropic
mesh after 6 refinements obtained using an error-based refinement strategy with computable correction (total number
of blocks is 840, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 860160); and (d) a refined
anisotropic mesh after 7 refinements obtained using an error-based refinement strategy with Venditti-Darmofal criterion
(total number of blocks is 252, number of cells per block is 16× 16× 4 = 102416× 16× 4 = 102416× 16× 4 = 1024, and total number of cells is 258048).

mesh refinement method has been demonstrated. It was found that the output-based anisotropic AMR ap-
proach is beneficial in terms of the mesh savings as compared to more standard gradient-based methods and
can furnish highly accurate calculations of engineering functionals. Future research will consider the appli-
cation of the proposed output-based anisotropic AMR scheme to reactive flow problems, such as premixed
and non-premixed steady laminar flames, as well as to the simulation of space physics phenomena governed
by the equations of ideal magnetohydrodynamics.
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