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A high-order central essentially non-oscillatory (CENO) finite-volume scheme combined
with a block-based anisotropic adaptive mesh refinement (AMR) algorithm is proposed
for the solution of the ideal magnetohydrodynamics (MHD) equations. A generalized La-
grange multiplier (GLM) divergence correction technique is applied to achieve numerically-
divergent free magnetic fields while preserving high-order accuracy. The cell-centered
CENO method uses a hybrid reconstruction approach based on a fixed central stencil.
Smooth and fully resolved solution data is interpolated using an unlimited high-order k-
exact reconstruction. In cells deemed to have under-resolved/discontinuous solution con-
tent based on a smoothness indicator, the high-order reconstruction reverts to a lower-order
limited linear approach. The high-order CENO finite-volume scheme is implemented with
fourth-order spatial accuracy within a flexible multi-block hexahedral grid framework. Par-
allel implementation and local anisotropic grid adaptivity are achieved by using a hierarchi-
cal block-based domain decomposition strategy in which the connectivity and refinement
history of grid blocks are tracked using a binary tree data structure. Physics-based re-
finement criteria are used for directing the mesh refinement. Numerical results, including
solution-driven anisotropic refinement of cubed-sphere grids are presented to demonstrate
the accuracy and efficiency of the proposed high-order solution method.

I. Introduction and Motivation

The aim of this paper is to combine a high-order spatial discretization scheme with an adaptive mesh
refinement technique to accurately capture disparate spatial and temporal scales as in space-physics prob-
lems.1–3 The high-order central essentially non-oscillatory (CENO) finite-volume scheme described in Ivan
et al.4,5 uses a hybrid reconstruction approach based on a fixed central stencil. An unlimited high-order
k-exact reconstruction is performed for all computational cells and the scheme reverts to a low-order lim-
ited linear approach for cells with under-resolved/discontinuous solution content. Switching in the hybrid
procedure is determined by a smoothness indicator. The high-order CENO scheme has been successfully
applied to a broad range of flows on multi-block structured meshes including inviscid flows,4 viscous flows,5

large-eddy simulation (LES) for turbulent premixed flames6 and magnetohydrodynamics (MHD) problems.4

The efficiency of the CENO scheme has also been assessed on cubed-sphere meshes.4 Moreover the method
has been extended to unstructured meshes for laminar viscous flows7 and turbulent reactive flows.8

Block-based adaptive mesh refinement (AMR) approaches9–11 are very attractive since they allow to refine
automatically the mesh for treating the disparate spatial scales while requiring an overall light data structure
due to grid connectivity being computed on a block level. Even if they can sometimes locally over resolve
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the domain in areas flagged for refinement, the domain decomposition of a block-based adaptively-refined
mesh is naturally suitable for parallel implementation and leads to highly scalable solution methods.

The multi-block AMR scheme considered here is based on the previous work by Gao and Groth12 for
reacting flows with isotropic refinement. It has also been applied to the solution of complex flow problems
such as non-premixed laminar13 and turbulent14 flames as well as turbulent multi-phase rocket core flows,15

MHD simulations,1,16 and micron-scale flows.17 The application of the isotropic AMR method to cubed-
sphere grids was also examined by Ivan et al.18 Additionally, it was originally extended to anisotropic
refinement by Williamschen and Groth19 for non-viscous flows with second-order accuracy. More recently,
Freret and Groth20 reformulated the second-order anisotropic AMR scheme using a non-uniform treatment
of the cells, both interior and ghost or halo cells, within a given block. The anisotropic approach makes
direct makes use of the neighboring cells as the ghost cells, even for those at different levels of refinement as
found at grid resolution changes. The resulting AMR multi-block scheme is more tractable and well suited
for high-order finite-volume schemes. In the present study, the anisotropic refinement criteria is restricted to
physics-based approaches as it is a good compromise between implementation simplicity and accuracy. For
the flow problems presented in Section V, gradient of the density or curl of the velocity are used to direct
the mesh refinement.

The goal of the present study is therefore twofold, namely: (i) to extend the enhanced anisotropic AMR
algorithm for use in conjunction with the CENO high-order finite-volume scheme by developing efficient
high-order accurate solution transfer operators; and (ii) to apply the proposed procedure to the solution of
the ideal MHD equations. It is also shown that the newly-formulated high-order, anisotropic AMR solution
procedure is amenable for application to the prediction of space-plasma flows. The solenoidal constraint
of the magnetic field is controlled using the generalized Lagrange multiplier (GLM) technique proposed by
Dedner et al.21 This avoids the computational cost associated with an elliptic cleaning step22,23 and the
possibly more complicated treatment of staggered fields required by constrained transport algorithms.24–26

The paper is organized as follows. The ideal MHD equations and the GLM formulation are described in
Section II. In Section III we provide a brief outline of the high-order CENO scheme. The proposed anisotropic
AMR block-based method is reviewed in Section IV with the necessary extension for use with the high-order
spatial discretization scheme. Finally, fully three-dimensional numerical results are presented in Section V
to demonstrate the accuracy and robustness of the fourth-order CENO method for Euler and MHD flows on
Cartesian and cubed-sphere grids. Results for steady-state non-magnetized and MHD plasma smooth flows
are presented to assess the accuracy of the scheme on a cubed-sphere grid. Robustness of the fourth-order
CENO method in the presence of 3D discontinuous flow features and the capability of the implementation
to dynamically refine the mesh in a time-dependent simulation are demonstrated.

II. Ideal Magnetohydrodynamics Equations

The hyperbolic system of ideal MHD equations is solved herein using a high-order Godunov-type finite-
volume scheme with the GLM formulation proposed by Dedner et al.21 This approach21 couples the di-
vergence constraint, ∇ · ~B = 0, with the induction equation through the introduction of a new potential
variable, ψ. Thus, the system of conservation laws for which the solution is sought here may be expressed
in conservation form as

∂U

∂t
+ ~∇ · ~F = S + Q, (1)

where U is the conserved variable solution vector, ~F is the system flux dyad, and S and Q are volumetric
source terms. The conserved variable solution vector, U, has the form

U = [ ρ, ρ~V , ~B, ρe, ψ ]T , (2)

where ρ is the plasma density, ~V = (Vx, Vy, Vz) is the velocity field, ~B = (Bx, By, Bz) is the magnetic
field, ρe is the total energy and ψ is the so-called generalized Lagrange multiplier variable associated with
the treatment of the solenoidal condition, ~∇ · ~B = 0 for the magnetic field. Note that we use a standard
orthogonal x, y, z Cartesian coordinate system in the conservation law discretization. The flux dyad, ~F, is
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given by

~F =



ρ~V

ρ~V ~V + (p+
~B · ~B

2
)
~~I − ~B ~B

~V ~B − ~B~V + ψ
~~I

(ρe+ p+
~B · ~B

2
)~V − (~V · ~B) ~B

c2h
~B


. (3)

The specific total plasma energy is e = p/(ρ(γ − 1)) + V 2/2 + B2/(2ρ), where p is the molecular pressure,

V =
√
V 2
x + V 2

y + V 2
z is the magnitude of the fluid velocity, and B =

√
B2
x +B2

y +B2
z is the magnitude of

the magnetic field. The term pB =
~B· ~B
2 is known as the magnetic pressure. The numerical source term, S,

is due to the GLM-MHD formulation and given by

S = [0,~0,~0, 0,−c
2
h

c2p
ψ]T , (4)

in which the coefficients cp and ch control the relative rates of dissipation and transport of ψ, as well as the

corresponding advection speed of the ∇· ~B cleaning mechanism, respectively. The ideal gas equation of state
p = ρRT is assumed, where T is the gas temperature and R = 1/γ is the gas constant. For a polytropic
gas (thermally and calorically perfect), the ratio of plasma specific heats, γ, is a constant, and the specific
heats are given by Cv = 1/(γ− 1) and Cp = γ/(γ− 1). The column vector, Q, appearing in Eq.(1) generally
represents different volumetric sources arising from the physical modelling of space-physics problems such
as sources associated with gravitational fields.

II.A. Semi-Discrete Finite-Volume Formulation

The semi-discrete form of the finite-volume formulation applied to Eq. (1) for a hexahedral computational
cell (i, j, k) of a three-dimensional grid is given by

dUijk

dt
= − 1

Vijk

6∑
f=1

Ng∑
m=1

(
ω̃~F · ~n

)
i,j,k,f,m

+ (S)ijk + (Q)ijk = (R)ijk(U), (5)

where Ng is the number of Gauss quadrature points and ~n is the local normal of the face f at each of
the Ng Gauss quadrature points. The hexahedral cells are contained inside a single block with that block
being a part of a multi-block body-fitted mesh as shown in Figure 1. To accommodate complex meshes, as
the cubed-sphere grid in Figure 1-right, the connectivity between blocks in the multi-block mesh is defined
using an unstructured data structure.12 The total number of Gauss integration points, Ng, at which the
numerical flux is evaluated is chosen as the minimum required to preserve the desired order of solution
accuracy. In this work, standard tensor-product quadratures are used for each cell face, as described in Ivan
et al.4 For instance, four Gauss quadrature points per face are required for a fourth order accurate spatial
discretization, which is the targeted accuracy order for the scheme considered here. The numerical fluxes,
~F · ~n, at each Gauss quadrature point on each face of a cell (i, j, k) are determined from the solution of a
Riemann problem. Given the left and right interface solution values, Ul and Ur, an upwind numerical flux is
evaluated by solving a Riemann problem in the direction defined by the normal to the face. The values of Ul

and Ur are determined by performing a CENO polynomial reconstruction, as detailed in the next section.
The contributions of the volumetric sources Sijk and Qijk are evaluated to fourth-order accuracy by again
using a standard tensor-product Gauss quadrature with twenty-seven points for the volumetric integration.

III. High-Order CENO Finite-Volume Scheme

The hybrid CENO finite-volume method for conservation laws originally proposed by Ivan and Groth4,5 is
used to discretize the governing equations on a hexahedral computational grid. The hybrid CENO procedure
uses the multidimensional unlimited k-exact reconstruction of Barth27 in smooth regions and reverts to a
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n
face

cell (i,j,k)

∆Α
face

Hexahedral cell (i, j, k) showing face nor-
mal.

Cross-section of the cubed-sphere grid.
Grid block boundaries are shown with bold
lines

Figure 1. Three-dimensional hexahedral cell (left) and example of a cubed-sphere mesh composed of 6 blocks (right).

limited piecewise-linear reconstruction algorithm in regions deemed as non-smooth or under-resolved by a
solution smoothness indicator, thus providing monotone solutions near discontinuities. The k-order Taylor
series for the spatial distribution of a scalar solution quantity, Uijk, within a cell with index ijk about the
cell-centroid (xijk, yijk, zijk) can be expressed as:

Ukijk(x, y, z) =

k∑
p1=0

k∑
p2=0

k∑
p3=0

(x− xijk)p1(y − yijk)p2(z − zijk)p3Dp1p2p3 . (6)

The coefficients, Dp1p2p3 , are the unknown derivatives for the Taylor polynomial. A total of 20 unknown
derivatives needs to be computed for a piecewise cubic (k = 3) reconstruction, which is required to achieve a
fourth-order accurate solution procedure. They are obtained by solving a constrained least-squares problem
as detailed in Ivan et al.4 To obtain an exact determined or overdetermined set of equations to solve for the
unknown derivatives, the number of neighbors considered in the stencil must be at least equal to the number
of unknown derivatives, but it is not desirable to make the overdetermined system larger than necessary. In
this study a stencil including the first ring plus 6 extra cells is used giving a total of 33 cells when a uniform
mesh is used. Depiction of the stencil in the rather general case of a Cartesian uniform grid is provided in
Figure 2. In the stencil representation, cells colored yellow represent the interior domain of a block and the
blue colored cells represent ghost cells for that block.

The smoothness indicator, S, used to determine whether a flow variable in cell (i, j, k) is deemed non-

Figure 2. Example of cell stencil in a Cartesian uniform mesh for a cell (i, j, k) located at the block boundary such that
its stencil includes ghost cells from neighboring blocks. The interior domain is represented in yellow and blue color is
for the ghost cells. The stencil is composed of 27 first-ring cells plus 6 extra second-ring cells.
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smooth, is computed as following:18

S =
α

max(1− α, ε)
NSOS −ND
ND − 1

, α = 1−

∑
γ

∑
δ

∑
ζ

(uKγδζ( ~Xγδζ)− uKijk( ~Xγδζ))
2

∑
γ

∑
δ

∑
ζ

(uKγδζ(
~Xγδζ)− ūijk)2

, (7)

where NSOS stands for the size of stencil, ND degrees of freedom and the ranges of the indices (γδξ) are taken
to include either the whole or a subset of the supporting reconstruction stencil for the cell (i, j, k). Based
on the magnitude relative to a chosen cut-off value SC , a larger value of S indicates smooth variations while
a small value of S indicates non-smooth or under-resolved solution content. For all simulations presented in
Section V, the smoothness indicator cut-off value is SC = 1500.

III.A. Choice of Variables for Reconstruction

Like other Godunov-type finite volume methods, the proposed CENO scheme has the flexibility of carrying
out the solution reconstruction on either the conserved variable vector, U = [ ρ, ρ~V , ~B, ρe, ψ ]T , or the

primitive variable vector, W = [ ρ, ~V , ~B, p, ψ ]T . Other choices, such as the entropy variables are also
possible. While the use of conserved variables in the reconstruction would seem to be the natural choice,
it is known that the reconstruction in terms of this set provides the worst shock capturing fidelity when
compared to the reconstruction performed either in primitive or in characteristic variables.28 As a result,
the use of primitive variables have been preferred to date in the application of the CENO reconstruction and
limiting procedure (and indeed in many Godunov-type methods) so as to maintain tighter control on the
positivity of certain flow variables (density and pressure). Unfortunately, as demonstrated by Charest29 ,
the point-wise mapping to convert average conserved solution variables into average primitive solution values
introduces a temporal error that is at best of second-order, leading to a loss of accuracy for unsteady flow
problems. Charest29 and Ivan and Groth5 have shown that this error is not introduced for steady problems
and the expected formal accuracy is always recovered in this case.

To maintain a tight control on the flow variables and avoid the introduction of a temporal error, the
CENO scheme implementation has been reformulated in this work. An unlimited high-order reconstruction
of conserved variables is performed in regions of smooth flow and the scheme reverts to a limited second-
order reconstruction of primitive variables where the solution is non-smooth. In Section V.A this new set of
combined variables is evaluated and compared to the original 3D CENO scheme where primitive variables
are reconstructed with high-order and low-order accuracy. The convergence study provided for an unsteady
flow problem shows that the high-order accuracy is recovered in the asymptotic limit only for the set of
combined variables, while still allowing good control of monotonicity.

III.B. Hexahedral Elements and Trilinear Transformation

In order to obtain fourth-order accuracy on generic hexahedral volumes, the non-planar faces must be
carefully treated with regard to all geometric operations affecting the numerical procedure such as flux
integration and calculation of geometric properties (e.g., area, volume, centroid, moments, etc.). The solution
adopted by Ivan et al.4 in which general hexahedral cells are defined in terms of a trilinear mapping of the
faces is used in the present work. This allows geometric computations to be performed with high-order
accuracy by transforming the element to a reference cubic cell.

III.B.1. Trilinear Transformation

The trilinear transformation maps a hexahedron from physical space into a reference unitary cube in the
canonical space. Figure 3 illustrates the procedure to map a unitary cube to a generic hexahedron (with
non-planar faces) by the following trilinear transformation

~r(p, q, r) = ~A+ ~Bp+ ~Cq + ~Dr + ~Epq + ~Fpr + ~Gqr + ~Hpqr, (8)

where p, q and r are Cartesian coordinates in the canonical space of the reference cube, and ~A, ~B, ~C,
~D, ~E, ~F , ~G and ~H are the transformation vector coefficients that are computed by imposing the one-
to-one correspondence between the vertices of the hexahedron and those of the reference cube. Once the
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Figure 3. A general hexahedral cell in physical space having faces with non-planar vertices (left) to which a reference
unit cube (right) is mapped by applying a trilinear transformation ~r(p, q, r). Four local unit normals are also shown for
one face of the general hexahedron.

transformation coefficients are determined, any local or integrated quantities involving the geometry of
the hexahedron (e.g., centroid, volume, face normal, etc.) can be computed by carrying out the required
evaluations within the reference cube.

IV. Parallel Anisotropic Block-Based AMR

A flexible block-based hierarchical binary tree data structure is used in conjunction with the spatial
discretization procedure described in Section II to facilitate automatic solution-directed mesh adaptation on
body-fitted multi-block mesh. The general AMR framework of Freret and Groth,20 based on extensions to
the previous work by Williamschen and Groth,19 is well suited and readily allows the use of high-order spatial
discretization by adopting a non-uniform representation of the cells within each block. Anisotropic mesh
refinement and efficient and highly scalable parallel implementation are achieved via domain partitioning.

In the proposed anisotropic AMR scheme, mesh adaptation is accomplished by refining and coarsening
grid blocks. Figure 4 shows the resulting binary tree after several refinements of an initial mesh consisting of
a single block. Each refinement produces new blocks called “children” from a “parent” block and the children
can be refined further. This refinement process can be reversed in regions that are deemed over-resolved and
two, four or eight children are coarsened or merged into a single parent block. A flexible hierarchical tree
data structure is used for tracking block connectivity and mesh refinement history. Within this structure,
each node of the binary tree stores references to two child nodes, corresponding to a grid block refinement in
one of three coordinate directions. Local refinement and coarsening of the mesh can be directed according to
adjoint error estimation strategies30–32 or so-called physics-based refinement criteria.19,20 While the former
are expected to be more optimal, the latter have been used extensively because of their relative simplicity.

The anisotropic block-based AMR scheme implemented in this study employs six steps. They are:

Figure 4. 3D binary tree and the corresponding blocks after several anisotropic refinements.
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1. Refinement Flags Evaluation: blocks are flagged to refine, coarsen or keep their refinement level
for each computational direction based on refinement criteria calculated for each block,

2. Conflict Checking: refinement flags are modified to ensure that there is no violation in refinement
or coarsening rules,

3. New Block Computation: blocks are refined and/or coarsened in the flagged directions. The binary
tree is updated to reflect the new grid topology,

4. Connectivity Rearrangement: connectivity rearrangement is performed to ensure that parents of
all blocks flagged to coarsen are split in the appropriate direction,

5. Neighbor Information Update: neighbor information or computation of solution block connectivity
is re-computed and stored for each block,

6. Message Passing: solution and geometry information is shared between adjacent blocks through
message passing procedure.

As outlined by Williamschen and Groth,19 restrictions on the assignment of the refinements flags are used
to eliminate and prevent undesirable mesh topologies including: 1) the maximum level difference in any
direction being greater than one, i.e., any neighbor can be only one level coarser or one level finer; 2) a block
being flagged to coarsen that does not have a neighbor/sibling flagged to coarsen or after refinement the
neighbor/sibling is not at the same refinement levels; 3) an invalid binary tree connectivity. In order to get
an optimal anisotropic mesh, faces associated with a given direction are allowed not to have the same level in
both tangential directions; an example of this configuration is given in Figure 5-a. A face is also allowed not
to span its neighbors; this configuration is represented in Figure 5-b. Being free of these constraints requires
extra care during the coarsening procedure as some connectivity rearrangements of the binary tree may be
required,19 and calculation of the numerical fluxes may occur through faces that are not a priori defined,
as shown in Figure 5-b. In terms of computation time, allowing these configurations adds very little to the
actual overall computational cost of the problem while greatly increasing the effectiveness of the anisotropic
AMR algorithm.

IV.A. High-Order Solution Transfer

In the refinement process of a grid block, the geometry of the newly created cells belonging to the offspring
is obtained by dividing the domain of each coarse interior cell into two, four or eight fine cells. In order to
maintain the high-order solution accuracy for combination of the CENO algorithm with the aforementioned
block-based AMR approach, accurate solution transfer operators must be formulated. One advantage of
using non-uniform blocks is that restriction and prolongation operators are only required in the interior
domain to transfer the solution content from coarse to fine cells, but not in the ghost cells for overlapping
cell domains. In particular, to distribute the average solution quantity among offspring with high-order
accuracy the high-order polynomial reconstructions of all solution variables in the coarse cell are integrated
over the domain of each new fine cell having a volume, Vfine,

ūfine =
1

Vfine

∫∫∫
Vfine

ukcoarse( ~X)dV, (9)

where the volume integral is computed exactly for the reconstruction polynomial with an appropriate-order
tensor-product Gauss quadrature volumetric integration technique (twenty-seven quadrature points are used
for fourth-order spatial accuracy).

(a) (b)

Figure 5. Examples of refined blocks that do not violate the 3D rules.
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ID

Edge ghost cells

ID

cell at the boundary block

Corner ghost cells

Figure 6. Example of a domain Ω divided into 11 blocks of 4× 8 cells (left) and illustration of a non-uniform structured
mesh block composed by the interior domain (ID) extended by a layer of 2 ghost cells provided by the neighboring
blocks (right). The resulting non-uniform block has 5 edge blocks and 4 corner blocks.

IV.B. Non-Uniform Blocks

In order to apply the finite-volume scheme to all blocks in a more independent manner, solution information
is shared between adjacent blocks having common interfaces. This information is stored in additional layers
of overlapping ghost cells associated with each block. The non-uniform representation of the blocks adopted
here within the multi-block structure uses directly the neighboring cells as the ghost cells, even for those
at different levels of refinement as found at grid resolution changes.20 An example of a non-uniform block
obtained from a multi-block structure is shown in Figure 6.

The non-uniform block treatment presents many advantages as outlined by Freret and Groth:20 First no
restriction or prolongation operators at resolution changes are required to evaluate the ghost cell solution
values. Next, there is no need for an additional correction to enforce the flux conservation properties of the
finite-volume scheme. This property is automatically satisfied. Finally, as considered in the present work,
an efficient way to treat the ghost cells is proposed. In general, the number of ghost cell layers depends on
the size of the reconstruction stencil and the size of the stencil used in evaluating the smoothness indicator.
Assuming a two-layer stencil is used to compute the high-order reconstruction and a one-layer stencil for
evaluating the smoothness indicator, the total number of ghost cell layers required at each block boundary
is four. While in the original implementation of Ivan et al.4,18 four layers of ghost cells were used to get a
fourth-order accurate solution reconstruction for the cells in the interior domain and the first two layers of
ghost cells, just two layers of ghost cells are used in the current implementation. Instead of reconstructing the
solution in ghost cells, the new formulation relies on communicating any additional needed information (i.e.,
solution data, geometry, derivatives) from the corresponding interior cells of the neighboring block to the
ghost cells, which are used only as a storage space. In this way, the number of ghost cells is minimized at the
expense of increasing somewhat the size and number of the send/receive information between neighboring
blocks. For example, in the simulation presented in Section V.E, this implementation represents a memory
saving of 60% compared to the original approach.

The non-uniform block strategy is also very convenient when cubed-sphere meshes are considered. As
discussed by Ivan et al.,4 the cubed-sphere grids have degenerate corners characterized by missing ghost
cells. Since stencils need to be consistent between a cell located in the interior domain and the same cell
as a ghost cell in a neighboring block, Ivan et al.4 proposed a rotation mechanism for generating consistent
stencils near degenerate block edges. With the new non-uniform block treatment of the ghost cells, this
relatively complicated technique is no longer required.

One challenge with the present formulation is that the different refinement configurations that can occur
with anisotropic AMR have to be taken into account during the procedure for the construction of the
reconstruction stencil. As the current anisotropic AMR implementation is extremely flexible, there are up to
16 different types of resolution changes at block boundaries that can be summarized in four groups as shown
in Figure 7. In the stencil representation, cells colored yellow represent the interior domain of a block and the
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(a) 27 first-ring cells plus
6 extra second-ring cells:

33 cells

(b) 54 first-ring cells plus
9 extra second-ring cells:

63 cells

(c) 27 first-ring cells plus
6 extra second-ring cells:

33 cells

(d) 36 first-ring cells plus
7 extra second-ring cells:

43 cells

Figure 7. Examples of cell stencil construction in a Cartesian mesh for a cell (i, j, k) located at the block boundary
such that its stencil includes ghost cells from neighboring blocks. The interior domain is represented in yellow and
blue is for the ghost cells. (a) Neighbor has the same mesh refinement. Stencil is identical as an interior cell. (b) Two
neighbors with finer mesh are facing the block. Neighbor search direction includes more neighbors. (c) Neighbor has
a coarser mesh. Number of cells identical to uniform configuration. (d) Neighbor has a finer mesh in a direction and a
coarser mesh in the other direction. A total of 43 ghost cells are included in the stencil.

blue colored cells represent ghost cells for that block. All four different stencils are based on a 33-cells stencil
which has been found optimal for the CENO scheme.4 Figure 7(a) is a stencil obtained for a cell (i, j, k)
located at the boundary block facing a neighbor with the same mesh refinement. The shape of the stencil
is exactly the same as an interior cell stencil and counts 33 cells. Figure 7(b) represents a stencil built with
a neighbor having a finer mesh. Because the mesh is finer in both tangential directions, the number of cells
included in the stencil is equal to 63. With a finer mesh in one direction only, the number of cells included
in the stencil would be 43. Figure 7(c) depicts a stencil of a cell having a neighbor with a coarser mesh. The
shape of the stencil is different from the uniform case but the number of cells included in the stencil remains
33 since the neighboring mesh is coarser in the two tangential directions. With a mesh coarser in just one
direction, the number of cells would be 43. Figure 7(d) is specific to anisotropic AMR since the neighbor
represented in blue has a finer mesh in a direction and a coarser mesh in the other direction, a situation
which cannot occur with isotropic refinement. Again the shape of the stencil is very close to the uniform
reference stencil of Figure 7(a) but includes a total of 43 cells. Thus for all mesh refinement configurations
of a Cartesian grid, at least 33 neighbors are found in the cell stencil ensuring that Eq (6) is overdetermined.

As explained in Freret and Groth,20 the numerical flux evaluation also becomes more challenging when a
non-uniform mesh is used, more particularly at block boundaries. One must now account for the 16 different
types of resolution changes at block boundaries that can be summarized in three groups as shown in Figure 8.
In Figure 8, case (a) involves a cell which has a equal or finer mesh in one or several directions than its
neighbor ghost cell. Case (b) shows an example of a cell having a neighbor with a coarser mesh discretization
and case (c) illustrates two cells with 2 opposite resolution changes in two different directions, as also shown
in Figure 5-b. Numerical evaluations of the fluxes for case (a) and (b) are rather straightforward since they
represent a situation where a coarse face spans its finer neighbor. For case (a) all needed quantities for the
flux computation are based on the interior cell, as shown in Figure 8 (top). For case (b) the evaluation of the
fluxes is done through the faces of the ghost cells, taking the opposite of the normal vector, as depicted in
Figure 8 (middle). The high-order flux evaluation is done by summing the flux through the finer neighboring
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Interior cells Ghost cell
(i, j, k) (i , j , k )g g g

Flux evaluated at the Gauss 
quadrature points of the interior 

face           

(a) Example of an interior cell having a finer mesh than its neighbor ghost cell.
The intersection of their faces is the interior cell face.

Interior cell Ghost cells
(i, j, k) (i , j , k )g g g

Flux evaluated at the Gauss 
quadrature points of the ghost cell 

faces

(b) Example of an interior coarse cell spanned with 2 ghost cells. The intersection
of the interior cell and the ghost cells faces are the ghost cells faces.

Interior cells Ghost cells
(i, j, k) (i , j , k )g g g (i , j , k )n n n

Flux evaluated at the Gauss 
quadrature points of new cell faces

(c) Example of a cell extruded from a mesh that is coarser in one direction and
finer in the other direction compared to its neighbor mesh. The intersection of
their faces are new cell faces.

Figure 8. Three scenarios to evaluate the numerical flux through a face of an interior cell depending on its mesh
resolution and its neighbor cell mesh resolution.

cells to get the total flux of a coarser cell. In Figure 8 (bottom), case (c) requires some extra considerations
since new Gauss quadrature points and associated weights have to be evaluated on the face that intersects
both cells with opposite resolution changes. The total high-order numerical flux is obtained by summing the
flux computed on each sub-face.

V. Numerical Results

A number of numerical results are now presented to demonstrate the accuracy of the overall high-order
CENO finite-volume scheme with adaptive mesh refinement. Results for uniform, isotropic and anisotropic
AMR meshes are included as well as cubed-sphere grids to provide a broad range of evaluation of the AMR
scheme. In Section V.A two sets of reconstruction variables within the CENO scheme are first studied for
the 3D iso-density vortex transient problem. Euler and MHD results are next considered to evaluate grid
convergence for smooth steady flows (Sections V.B and V.C) and robustness of the high-order method at
shocks (Section V.D). In Section V.E, the AMR procedure is applied for the 3D iso-density magnetized vortex
unsteady problem to show the ability of the AMR scheme to capture some features or quantities of interest
even for a smooth flow. For steady time-invariant problems the multi-stage optimal smoothing scheme33

with local time stepping is used. For time-accurate calculations, the standard four-stage fourth-order Runge-
Kutta time-marching scheme is employed. The HLLE and Lax-Friedrichs numerical flux function are used
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for the Euler and MHD equations, respectively. The stencils based on 33 cells from Figure 7 are used to
obtain the high-order results.

V.A. Choice of Reconstruction Variables

As a first evaluation of the CENO scheme, the numerical convergence of the local and global error norms
of different flow quantities for an unsteady flow problem is examined. The MHD flow problem of interest
consists of a magnetized vortex structure in force equilibrium advected by a uniform flow field from Mignone
et al.34 This is a smooth time-dependent 3D test problem with an exact solution. The stationary 3D
iso-density MHD vortex flow is given by

ρ = 1,
~V = (−y, x, 0)κ exp(q(1−R2)),

~B = (−y, x, 0)µ exp(q(1−R2)),

p = 1 +
1

4q
(µ2(1− 2q(R2 − z2))− κ2ρ) exp(2q(1−R2)),

where µ = κ = 1/(2π), and q = 1. This solution is translated with a background velocity that equals (1, 1, 2).
This flow problem is simulated on a periodic Cartesian box with x, y and z varying between [-5,5]. Figure 9
depicts the flow solution on the Cartesian grid. Initially the vortex center is positioned at (0, 0, 0) and the
simulation runs until time t = 10 (the vortex has done one period and is back to its original position). A
convergence study is performed to assess the accuracy of the CENO scheme for unsteady flow problems.
Each block contains 8 × 8 × 8 cells and the initial grid of 64 blocks is uniformly refined to reach 262,144
blocks for the largest simulation.

The first series of simulations for the iso-density vortex problem was performed herein in which recon-
struction of the primitive variables was considered for both the high-order unlimited reconstruction and
the low-order limited reconstruction of the hybrid CENO method. The numerical results for these cases
are presented with dashed lines in Figures 10(a)-(c). The L1, L2 and L∞ error norms for the solution ob-
tained on the sequence of uniformly refined grids are shown for a subset of the primitive variables vector
Sprim = {u, Bx, p}. For the initial mesh (323 cells), 56% of the cells are deemed as non-smooth and a limited
linear reconstruction is performed for all variables in these cells. For the second mesh (643 cells), only 17%
of the cells are detected with a non-smooth content and reverted to a second-order limited reconstruction.
Hence a global second order accuracy is observed for all variables for the two coarsest meshes in Figure 10(a)-
(c). For the next refined meshes, all cells are flagged as smooth and a fourth-order unlimited polynomial
reconstruction is performed in all cells. However, the theoretical fourth-order accuracy is not achieved. In-
stead, the effective order of convergence is close to 2 for the three variables and for all error norms. This
result agrees with the findings of Charest29 which indicates a loss a accuracy when high-order reconstruction
of primitive variables is used in the solution of unsteady problems, even though formal accuracy is retained
for steady problems.5,29

A second series of simulations was performed in which a high-order reconstruction of the conserved
variables was performed and, where the flow was deemed as non-smooth, low-order reconstruction of the
primitive variables was carried out. The corresponding numerical results are presented with solid lines in

Figure 9. Magnetic field iso-surface (B = 0.18) and contours of the initial flow solution obtained on a Cartesian grid.
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(a) Error norms in the velocity (dashed
lines) and momentum (solid lines) versus

grid size.

(b) Error norms in the magnetic field as a
primitive variables (dashed lines) and

conserved variables (solid lines) versus grid
size.

(c) Error norms in the pressure (dashed
lines) and energy (solid lines) versus grid

size.
Figure 10. Comparison of L1, L2 and L∞ error norms with high- and low- order reconstruction with primitive variables
(dashed lines) and a mixed polynomial reconstruction with high-order reconstruction using conserved variables and
low-order reconstruction using primitive variables (solid lines).

Figures 10(a)-(c). Figure 10 shows the L1, L2 and L∞ error norms for a subset of the conserved variables
Scons = {ρu, Bx, ρe} obtained on these series of grids. As the solution content is deemed as non-smooth
for the two coarsest meshes, a low-order reconstruction is performed in these cells and a global second-order
accuracy is provided. However, for further uniformly refined meshes where all solution content is detected as
smooth, the fourth-order theoretical accuracy is recovered for all solution variables and for all error norms.
Hence, for unsteady flow problems, the CENO scheme does not suffer from the temporal error introduced
by the transformation from primitive to conserved variables.29 Instead, a high-order accuracy is provided
in case of smooth unsteady flow problem by considering conserved variables reconstruction and, the scheme
reverts automatically to a low-order accuracy with a tight control on the flow quantities by reconstructing
primitive variables. The possibility of switching reconstruction variables within the hybrid CENO scheme is
certainly an attractive feature of the method when monotonicity of the solution is a concern.

V.B. Steady Supersonic Outflow of Non-Magnetized Plasma

To assess the accuracy of the finite-volume scheme on cubed-sphere grids, numerical convergence studies for
a spherically symmetric expanding supersonic non-magnetized plasma flow have been performed and are now
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Figure 11. L1, L2, L∞ error norms of the solution density obtained with the fourth-order CENO scheme with anisotropic
AMR (solid lines) compared to isotropic AMR (dashed lines).

considered. The accuracy of the fourth-order CENO scheme for a series of isotropic and anisotropic refined
AMR meshes was determined and is compared here. The computational domain of interest is defined by inner
and outer spheres of radius Ri = 1 and Ro = 4, respectively. The initial mesh is composed of 128× 128× 16
cells for each of the 6 sectors forming the cubed-sphere grid. The mesh undergoes three adaptive mesh
refinements and is converged to machine accuracy on each level of grid. The refinement criteria is based on
the gradient of density for both anisotropic and isotropic refinements. For boundary data, the exact solution
is imposed on the inner sphere: ρi = 10, Vr,i = 4.5, ~V||,i = ~0 and pi = 26. An outflow supersonic boundary
condition is imposed at Ro. As described by Ivan et al.,18 the analytical solution of this flow problem can
be obtained in spherical coordinates as the solution of the following equation

C3 −
1

r2Vr

[
(C2 − V 2

R)
1

γ−1

] = 0, (10)

where C2 and C3 are constants depending on the inflow conditions. The resulting L1, L2 and L∞ norms of
the error in the predicted solution density obtained on a series of grids are given in Figure 11.

The convergence results of Figure 11 show that both isotropic AMR (dashed lines) and anisotropic AMR
(solid lines) provide a convergence rate higher than the theoretical fourth-order accuracy. For anisotropic
refinement of the mesh, the effective convergence rate approaches 19 and for isotropic AMR it is close to 5. As
noted previously19,20 , the solution varies only along the radial direction and the anisotropic AMR exploits
this feature by refining only in the radial direction, thus avoiding the introduction of an unnecessary large
number of computational cells. For an error target L1 = 10−4, the memory requirement of the anisotropic
AMR is only 58% of the memory requirement of the isotropic AMR. A theoretical fourth-order accuracy of
the uniform refinements leads to a mesh saving of 88% for the anisotropic AMR compared to uniform AMR.
Finally it is worth mentioning that the physics-based refinement criteria does not control any reduction in the
error norms. For that reason a plateau in L2 and L∞ error norms is observed with the isotropic refinement
for the second level of refinement. To improve this behavior an error-based refinement strategy can be used
as the one developed by Venditti and Darmofal30,31 and Narechania et al.32

V.C. Steady Supersonic Outflow of Magnetized Plasma

The 3D steady-state axi-symmetric solution of a MHD plasma is now considered on a spherical shell domain
flowing outward at superfast speeds as proposed by Ivan et al.18 The exact solution is given by

ρ = R−5/2,

~V = (
x√
R
,
y√
R
,
z√
R

) + κR−5/2,
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Figure 12. Error norms versus grid size for the first component of the magnetic field Bx.

~B = (
x

R3
,
y

R3
,
z

R3
) + κ,

p = R−5/2,

and corresponds to the solution having the additional source term in the governing equations given by

Q =



0
1
2xR

−5/2(R−1 − 5R−2 − κz)
1
2yR

−5/2(R−1 − 5R−2 − κz)
1
2zR

−5/2(R−1 − 5R−2 − κz) + 5
2R
−1/2κ(1 + κRz) + κR−1/2

0
1
2R
−2 + κz(3.5R−1 + 2κz) + (κR)2

2 (7 + 5κRz)


.

As suggested by Ivan et al.,4,18 the perturbation parameter is taken as κ = 0.017 such that the solution has
significant latitudinal variation. In this flow, the magnetic field is irrotational and aligned everywhere with
the velocity. The computational domain used for this convergence study is defined by inner and outer spheres
of radius Ri = 2 and Ro = 4. To achieve high-order accuracy for this problem, it is necessary to provide a
high-order approximation to the average source term, (Q)ijk, in the numerical residual by integrating the
analytical expression of the source term with high-order accuracy. Moreover, high-order boundary conditions
must be imposed, which we achieved by specifying both the inflow and outflow boundary conditions using
high-order accurate integration of the exact solution in ghost cells to determine the ghost cell averages.

Figure 12 depicts the error norms in density as a function of grid size for the supersonic outflow problem.
The theoretical fourth-order of convergence is obtained with the CENO scheme on the cubed-sphere for all
error norms with successive uniformly refined grid. With anisotropic AMR, the convergence rate reaches the
value of 14. In terms of computational cells, to reach L1 = 5e−08, the anisotropic AMR simulation uses only
6.25% of the total number of cells of the uniform AMR. This validates the approach to obtain high-order
accuracy using non-uniform stencils at different mesh refinement levels and a minimal ghost cells strategy
that ensures consistent stencils near boundaries and corners.

V.D. Non-Magnetized Bow Shock

The application of the proposed AMR algorithm to a 3D non-magnetized bow-shock flow around a perfectly
conducting sphere is considered next. The inflow solution parameters used for this problem are ρ = 1,
vx = 1.4943, vy = vz = 0 and p = 0.2. The computational domain is defined by inner and outer spheres
of radius Ri = 1 and Ro = 4. The mesh contains only five sectors instead of the typical six associated
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Figure 13. Initial mesh with five sectors higlighting the boundary conditions

Figure 14. Slice z = 0 of the anisotropic mesh and density field obtained on the fifth level of mesh (left) and solution
smoothness indicator (in blue) indicating cells deemed as non smooth (right).

with a cubed-sphere grid to reduce the number of computational cells and focus on the upstream side of
the sphere, as shown in Figure 13. Reflection boundary condition is imposed on the inner sphere, inflow
boundary condition is applied on the outer sphere and an outflow boundary condition is used for the back
panels of the outer spheres. The initial grid consists of a total of 320 blocks of 8× 8× 16 cells with 8 blocks
in the radial direction.

The predicted density distribution and the smoothness indicator in the Cartesian plane {(x, y), z = 0}
obtained after 5 adaptive refinement levels are shown in Figure 14. This final mesh consists in 7986 blocks
and 8,177,664 computational cells. This steady-state solution is obtained by iteratively getting a converged
solution on a given mesh and then adapt the grid according to the refinement criteria based on the gradient
of the density. This procedure is repeated five times. As shown in Figure 14-(left), refinement of the mesh
occurs along the shock profile and near the stagnation point. The refinements is mostly anisotropic and
aligned with the bow shock. The outer regions of the bow shock are isotropically refined. The number
of cells deemed as non-smooth is around 10% for the initial mesh and up to 16% for the final mesh. In
Figure 14-(right), the smoothness indicator is shown in blue for the final mesh. As can be seen, only cells
located near the shock are detected as non-smooth. The smoothness indicator thus provides a very good way
to identify the shock. This makes it a very good candidate for directing the mesh and it will be considered
for future work.
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V.E. 3D Iso-density MHD Vortex in a Cartesian Box

As a final example, the ability of the AMR procedure to follow the advection of a 3D iso-density vortex in
a velocity background is evaluated. The problem setup is identical to that described in Section V.A. The
number of root blocks in the initial mesh was modified so as to contain 3×3×3 blocks and the overall size of
the domain was [−20, 20]3 such that the vortex represents a smaller volume of the domain Ω. This provides
a domain of sufficient size to evaluate properly the performance of the AMR scheme. The final time was
selected to be t = 40 such that the vortex has done one period and is back to its initial position. All other
parameters are unchanged. Before the simulation begins, the initial mesh with 27 root blocks containing
8×8×8 cells was refined five times based on the initial conditions and a maximum refinement level of five is
assigned. Since this problem is mostly isotropic, a refinement based on the curl of the velocity field is used
as an isotropic refinement criteria.

Figure 15 shows 6 slices of the magnitude of the magnetic field with the mesh refinement plotted at
t = 0 (a), t = 8, (b) and t = 16, (c) from top-left to top-right and t = 24 (d), t = 33, (e) and t = 40,
(f) from bottom-left to bottom-right. Following the initial refinements, the AMR refinement and coarsening
procedures are repeated every 10 time-steps until the maximum time t = 40 is reached. Throughout the
simulation, the AMR tracks the vortex well, clustering the blocks in the vortex area. It is worth mentioning
that the final mesh has the same number of blocks with the same repartition of the blocks as the initial
mesh. There is no deterioration of the quality of the mesh. An overall reduction of 99% in the cells number
is obtained compared to that of the usual uniform mesh with a resolution equal to that on the finest level.

VI. Conclusions

A high-order CENO finite-volume method combined with an efficient anisotropic block-based AMR
scheme has been proposed and described for the solution of the compressible form of the ideal MHD equations
on three-dimensional multi-block body-fitted hexahedral meshes. The proposed high-order AMR scheme is

(a) slice z = 0 at t = 0
664 blocks

(b) slice z = −17 at t = 8
916 blocks

(c) slice z = −4.5 at t = 16
867 blocks

(d) slice z = 8 at t = 24
923 blocks

(e) slice z = −19.5 at t = 33
867 blocks

(f) slice z = 0 at t = 40
664 blocks

Figure 15. Isotropic mesh and magnitude of the magnetic field obtained at (a) t = 0, (b) t = 8, (c) t = 16, (d) t = 24, (e)
t = 33 and (f) t = 40 in a XY plane of a periodic 3D box.
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readily applicable to cubed-sphere meshes and has considerable potential for the global MHD solution of
space plasmas. Numerical results have been presented and compared to analytical solutions for several
benchmark problems. For these cases, the formal accuracy of the high-order CENO method has been es-
tablished. Furthermore, the ability of the anisotropic AMR technique to provide efficient local refinement of
the multi-block grid has been demonstrated for smooth unsteady flow problems as well as for steady flows
with strong shocks.
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