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A novel parallel, high-order, anisotropic, block-based, adaptive mesh re�nement (AMR),
�nite-volume scheme is proposed and developed herein for the numerical solution of physi-
cally complex ow problems having disparate spatial and temporal scales, and with strong
anisotropic features. A block-based AMR approach is used which permits highly e�cient
and scalable implementations on parallel computing architectures and the use of multi-
block, body-�tted computational grids for the treatment of complex geometries. Rather
than adopting a more usual isotropic approach to the re�nement of the grid blocks, the
proposed approach uses a binary hierarchical tree data structure that allows for anisotropic
re�nement of the grid blocks in each of the coordinate directions in an independent fashion.
This allows for the more e�cient and accurate treatment of narrow layers, discontinuities,
and/or shocks in the solutions which occur, for example, in the thin boundaries and mixing
layers of high-Reynolds-number viscous ows and in the regions of strong non-linear wave
interactions of high-speed compressible ows with shocks. The anisotropic AMR approach
is combined with a computationally e�cient, high-order, central, essentially non-oscillatory
(CENO), cell-centered, upwind, �nite-volume scheme and an e�cient parallel, implicit and
explicit scheme for the solution of general systems of partial di�erential equations gov-
erning both steady and time-varying problems. The CENO upwind scheme makes use of
Riemann-solver based ux functions and a solution smoothness indicator to provide ro-
bust, accurate, and monotonic treatment of shocks and under-resolved solution content.
The �nite-volume scheme is applied to the solution of both a model system, the advection-
di�usion equation, as well as the Euler equations governing compressible, inviscid, gaseous
ows in two space dimensions. The potential of the parallel adaptive scheme for dealing
with ows having disparate scales is clearly demonstrated.

I. Introduction and Motivation

I.A. Algorithm Design Needs for Physically Complex Flows

Computational uid dynamics (CFD) has proven to be an important enabling technology in many areas of
science and engineering. In spite of its relative maturity and widespread successes in aerospace engineering,
there remain a variety of physically-complex ows, which are still not well understood and have proven to
be very challenging to predict by numerical methods. Such ows would include but are not limited to: (i)
multiphase, turbulent, and combusting ows encountered in propulsion systems (e.g., gas turbine engines and
solid propellant rocket motors); (ii) compressible ows of conducting uids and plasmas; and (iii) micro-scale
non-equilibrium ows, such as those encountered in micro-electromechanical systems. These ows present
numerical challenges for they generally involve a wide range of complicated physical/chemical phenomena,
exhibit strong anisotropic solution features, as well as involve complex ow geometries.

Hand-in-hand with CFD algorithm development, the rapid increase in high-performance computing sys-
tems in the last 10{15 years has led to terascale and, more recently, petascale parallel distributed memory
clusters ranging in size from a few thousand to hundreds of thousands of cores and capable of up to more
than one petaop/s. These advances in computing hardware are, in turn, creating signi�cant opportunities
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for CFD of physically-complex ows. Nevertheless, advances in numerical methods are required to fully
exploit terascale and petascale, computing platforms and thereby enable the routine solution of physically-
complex ows for practical engineering applications. A recent assessment of the needs for large-scale and
high-performance scienti�c computing indicates that a number of fundamental issues in discretization design
must be addressed.1 Issues and challenges identi�ed included: (i) greater automation of mesh generation
via adaptive mesh re�nement (AMR) to reduce the time to generate high-quality meshes and for the treat-
ment of complex geometries; (ii) e�cient parallel implementations of fully implicit time-marching methods
for use in combination with AMR; (iii) e�cient high-order temporal and spatial discretizations for reduced
computational cost for a speci�ed level of accuracy; and (iv) accurate and robust treatments of multi-scale
anisotropic physics.

I.B. Block-Based Adaptive Mesh Re�nement

One approach to reducing the computational costs of physically-complex ow simulations is to use AMR.2{7

Computational grids that automatically adapt to the solution are very e�ective in treating problems with
disparate length scales, providing the required spatial resolution while minimizing memory and storage
requirements. The use of AMR in conjunction with �nite-volume schemes has produced some very power-
ful methods for the treatment of a wide variety of physically-complex ows with complex and/or moving
geometries. Moreover, block-based variants of these techniques have been proposed for parallel implementa-
tion.6,8, 9 In particular, Groth and co-researchers10{16 have developed a block-based parallel AMR method
for body-�tted multi-block mesh. Their block-based approach has been shown to enable e�cient and scalable
parallel implementations for a variety of complex ows, as well as allow for local re�nement of body-�tted
mesh with anisotropic stretching. In spite of these successes, fully reliable and accurate AMR strategies for
high-order schemes and viscous ows, as well as e�cient parallel implementations for unsteady ows with
dynamic adaptation, have yet to be devised.

I.C. High-Order Finite-Volume Schemes

The potential of high-order methods to reduce the cost of simulations for physically-complex ows is also
recognized. Standard lower-order methods (i.e, methods up to second order) can exhibit excessive numerical
dissipation for multi-dimensional problems and are often not practical for physically-complex ows. Im-
proved numerical e�ciency may be achieved by raising the order of accuracy of the spatial discretization,
thereby reducing the number of computational cells required to achieve the desired accuracy. For hyper-
bolic conservation laws and/or compressible ow simulations, the challenge has been to achieve accurate
discretizations while coping in a reliable and robust fashion with discontinuities and shocks.17 High-order
schemes for partial di�erential equations (PDEs) governing di�usion processes and having an elliptic nature
have also been considered. It is then desirable that the discretization of the elliptic operator remains accurate
while satisfying a maximum principle, even on stretched/distorted meshes. In the last decade, there have
been a number of studies of high-order schemes, including �nite-volume,17{26 discontinuous Galerkin,27{31

and spectral �nite-di�erence and �nite-volume methods,32{36 for both structured and unstructured mesh.
In spite of the these advances, there is still no consensus for a robust, e�cient, and accurate scheme that
fully deals with all of the aforementioned issues and is universally applicable to arbitrary meshes. For this
reason, development of e�ective high-order methods remains an active area of research.

In the essentially non-oscillatory (ENO) high-order �nite-volumes schemes proposed by Harten et al.,17

the use of computational stencils that contain discontinuities is avoided to achieve solution monotonicity.
Although a weighted ENO (WENO) scheme attempts to simplify the ENO procedure by adopting a stencil-
weighting approach, both ENO and WENO variants encounter di�culties when selecting appropriate stencils
for general multi-dimensional unstructured meshes,19,20,23,37 and they can result in poor conditioning of the
linear systems that are involved in the solution reconstruction using such stencils.23,37 These, along with the
associated computational cost and complexities involved in the ENO and WENO �nite-volume schemes, have
limited the range of applications where they may be applied. Ivan and Groth38,39 have recently proposed
a high-order central ENO (CENO) �nite-volume scheme which attempts to deal with these computational
issues. As a variant of the ENO scheme, the CENO scheme avoids the complexity associated with the other
schemes by using a �xed central stencil. A central stencil in general provides the most accurate reconstruction
due to cancellation of truncation errors. This hybrid scheme �rst performs an unlimited, high-order, k-
exact reconstruction using the least-squares technique,18 and then automatically reverts to a monotonicity
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preserving limited, piecewise, linear, least-squares reconstruction procedure in cells near shocks or with
under-resolved solution content. The switching is controlled by a solution smoothness indicator. The CENO
reconstruction is e�ective in eliminating the appearance of O(1) numerical oscillations in under-resolved
regions and in solutions that contain strong discontinuities and/or shocks. Although uniform accuracy
is not achieved for non-smooth solutions, the method is easily extendable to both multi-dimensions and
unstructured mesh.

I.D. Proposed Algorithm

With the preceding viewpoints in mind, a somewhat novel parallel, high-order, anisotropic, block-based,
AMR, �nite-volume scheme is proposed and developed herein. In most isotropic AMR methods, the mesh
resolution is doubled in all directions during each re�nement. This may not be e�cient in applications where
the solution is rapidly changing in one or more directions but not in the others. Therefore, rather than
adopting a more usual isotropic approach to the re�nement of the grid blocks, the proposed approach uses
a binary hierarchical tree data structure that allows for anisotropic re�nement of the grid blocks in each of
the coordinate directions in an independent fashion. Unlike the anisotropic extensions to AMR procedures
considered by other researchers in the past (see, for example, the paper by Ham et al.40), the proposed
anisotropic AMR approach allows block-based re�nement in a preferred direction, while still preserving
the parallel e�ciencies of block-based isotropic methods. This allows for the more e�cient and accurate
treatment of narrow layers, discontinuities, and/or shocks in the solutions which occur, for example, in the
thin boundaries and mixing layers of high-Reynolds-number viscous ows and in the regions of strong non-
linear wave interactions of high-speed compressible ows with shocks. In addition, the anisotropic AMR
method allows the aspect ratios of the computational blocks to vary unlike in isotropic AMR methods,
allowing the resulting mesh to better conform to the variation of the solution, even for problems that are
not strongly anisotropic.

This increase in exibility for re�nement leads to a further reduction in the number of computational
cells required to attain desired spatial accuracy. The anisotropic AMR approach is combined with the
computationally e�cient, high-order, CENO, upwind scheme of Ivan and Groth38,39 and a parallel, implicit
and explicit scheme for the solution of general systems of partial di�erential equations governing both steady
and time-varying problems. As was previously shown by Jameson,41 the combination of high-order spatial
discretizations with AMR may provide very e�ective means of obtaining high solution accuracy. The proposed
�nite-volume scheme is applied to the solution of both a model system, the advection-di�usion equation, as
well as the Euler equations governing compressible, inviscid, gaseous ows in two space dimensions. The
potential of the parallel adaptive scheme for dealing with ows having disparate scales is clearly demonstrated.

II. High-Order CENO Finite-Volume Scheme

II.A. Two-dimensional Advection-Di�usion Equation

A model advection-di�usion equation with a scalar solution variable, u, is �rst considered for the evaluation
of the proposed high-order anisotropic AMR scheme. This model equation is given by

@u

@t
+ ~r �

�
~V u
�

= ~r �
�
�~ru

�
+ � (x; y; u) : (1)

The �rst term of the equation is the time rate of change of u; the advective ux is represented by ~r � (~V u),
where ~V is the prescribed advective velocity �eld; the di�usive ux is represented by ~r � (�~ru), where � is
the di�usion coe�cient. The Peclet number, which is de�ned as Pe = aL=�, o�ers an indication of whether
a given problem is advection-dominated or di�usion-dominated. The last term of Equation (1) is a source
term, which may be non-linear if dependent on u.

II.B. Two-dimensional Euler Equations for Inviscid Compressible Gasdynamics

Application of the proposed numerical framework in solving the Euler equations allows the scheme to be
evaluated in the context of more interesting and realistic problems. The conservation form of the Euler
equations is given as follows:

@U
@t

+ ~r � ~F = 0 ; (2)
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which, in two-dimensions (2D), could be written as

@U
@t

+
@F
@x

+
@G
@y

= 0 : (3)

The vector of conserved solution variables, U, is given by

U = [ � ; �u ; �v ; �e ]T ; (4)

where � is the gas density, u and v are x and y components of the velocity vector, e = p=(�(� 1)) +u2=2 is
the speci�c total energy, p = �RT is the pressure, T is the gas temperature, R is the ideal gas constant and
 is the speci�c heat ratio. Furthermore, the ux vectors F and G, associated with the x- and y-direction
respectively, are each de�ned as

F =
�
�u ; �u2 + p ; �uv ; u (�e+ p)

�T
; (5)

and
G =

�
�v ; �uv ; �v2 + p ; v (�e+ p)

�T
: (6)

II.C. Semi-Discrete Form

After applying a �nite-volume spatial discretization to Equations (1) and (3) for a 2D quadrilateral cell
indexed (i; j), the following semi-discrete form can be obtained:

d �Ui;j

dt
= � 1

Ai;j

NfX
l=1

NGX
m=1

�
!~F � ~n�l

�
i;j;l;m

+ Si;j = Ri;j ; (7)

where
�Ui;j =

1
Ai;j

Z
A

Uk
i;jdA : (8)

This is achieved by integrating each term in the PDEs over the control volume of the cell, which is its area
Ai;j , and subsequently applying the divergence theorem. The cell solution average is denoted �Ui;j . Solution
state obtained by evaluating the k-order reconstruction polynomial, Uk

i;j , is used in calculating the interface
ux. The reconstructed solution Uki;j is determined using the CENO approach,38,39 which is constrained to
preserve �Ui;j when integrated over cell (i; j) of area Ai;j .The total ux through each face, ~F, is computed
using an NG-point Gauss Quadrature numerical integration procedure, after which the uxes through Nf = 4
faces of the cell are summed. Su�cient number of Gauss points are chosen per face such that the accuracy
of the high-order scheme is maintained. Finally, Ri;j is the cell residual.

II.C.1. Advection-Di�usion Equation

For the 2D advection-di�usion problem, Equation (7) reduces to a scalar equation, so that �Ui;j is replaced
by �ui;j . The source term Si;j for the advection di�usion equation is given by 1=Ai;j

R
A
�i;j(x; y; u)dA. The

scalar ux is given by ~F = ~V u� �~ru, which has an advective and a di�usive component. The hyperbolic,
or advective, ux is de�ned as ~Fa � ~n = u~r � ~n. An upwinding procedure is used such that

~Fa � ~n =

(
ul(~r � ~n) if ~r � ~n � 0 ;
ur(~r � ~n) if ~r � ~n < 0 ;

(9)

where ur and ul are the left and right solution states evaluated at each Gauss Quadrature point of the cell
interface. The elliptic, or di�usive, ux is de�ned as ~Fd � ~n = ��~ru � ~n. At every cell interface, it is taken
as the arithmetic average of the di�usive uxes from the left and right states. Therefore, it is expressed as

~Fd � ~n = ��
�

1
2

�
~rukl (~r) + ~rukr (~r)

��
� ~n ; (10)

and ~r is the position vector to the Gauss quadrature point. ~rukl (~r) and ~rukr (~r) refer to the solution gradient
computed analytically from the k-order accurate CENO reconstructions for the left and right states. Gradient
evaluation in the elliptic ux evaluation using a k-order CENO reconstruction is k-order accurate, hence the
scheme is globally k-order accurate.
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II.C.2. Euler Equations

The source term Si;j is zero for the Euler equations. The ux term ~F is given by ~F = Fî+ Gĵ, where F and
G are the ux vectors de�ned previously. The numerical ux could be written as follows in terms of the left
and right states:

~F � ~n = ~F (Uint(Ul;Ur; ~n)) � ~n : (11)

The interface solution at every Gauss Quadrature point of all cell faces, Uint, is obtained by solving a
Riemann problem in the direction indicated by the face normal ~n, and with initial states de�ned by Ul

and Ur on either side of the cell interface. CENO reconstruction of k-order is used to evaluate Ul and
Ur, in a similar fashion as the hyperbolic ux evaluation in the advection-di�usion equation. Since Euler
equations are purely hyperbolic, a k+1-order accurate spatial discretization could be achieved with a k-order
reconstruction, assuming a smooth solution. Both approximate42{45 and exact Riemann solvers46 have been
implemented. The Roe linearized Riemann solver42 has been used for studies in this paper unless otherwise
stated.

II.D. CENO Reconstruction

A piecewise k-order polynomial reconstruction within each computational cell is performed using a high-order
central ENO (CENO) method. The CENO method is a hybrid solution reconstruction procedure which
combines the high-order k-exact least-squares reconstruction technique by Barth18 using a �xed central
stencil, with a monotonicity preserving limited piecewise linear least-squares reconstruction algorithm.18

Switching in the hybrid procedure is determined by whether the solution is su�ciently resolved on the
computational mesh as indicated by a solution smoothness indicator.

The k-exact reconstructed solution of variable u in cell (i; j) assumes a polynomial form of the following:38

uki;j(~r) =
N1X
p1=0

N2X
p2=0

(x� �xi;j)p1(y � �yi;j)p2Dk
p1p2 ; (12)

where N1 and N2 satisfy N1 + N2 � k; �xi;j and �yi;j are coordinates of the cell centroid; and Dk
p1p2 are

the coe�cients for each polynomial term.38 To determine the values of Dk
p1p2 , constraints are imposed

requiring that the average solutions of cell (i; j) and cells in its reconstruction stencil are conserved, or that
�ui;j = (1=Ai;j)

RR
Ai;j

uki;j(~r)dxdy. Additional neighboring cells are included in the reconstruction stencil
beyond what is required to uniquely determine all coe�cients, so that reconstruction is more robust for
stretched meshes or meshes that are not aligned with the solution gradients. The current reconstruction
scheme uses a �xed central stencil with 8 neighboring cells for k=1 and 24 neighboring cells for k=2, k=3
and k=4.38

The above formulation results in an overdetermined system of linear equations Ax = B, which is solved
using orthogonal decomposition by SVD method.47 This method involves the computation of a pseudo-
inverse matrix A�1, where A is unchanged for a �xed stencil in CENO.38 Therefore, the pseudo-inverse
matrix could be stored and reused to speed up the computation. This is another advantage of the CENO
method, in addition to the avoidance of reconstruction on multiple stencils and poorly conditioned coe�cient
matrices A which may occur in the other ENO and WENO schemes. Preservation of solution average in cell
(i; j) is explicitly enforced by expressing Dk

00 as a function of the other unknowns.38

II.D.1. Smoothness Indicator

The CENO scheme preserves solution monotonicity in regions of large gradients or discontinuities by reverting
the high-order k-exact reconstruction to a limited piecewise linear (k = 1) reconstruction. The slope limiters
of Barth-Jespersen and Venkatakrishnan could be used.18,48 The switching is triggered by a smoothness
indicator, which identi�es under-resolved regions that may require a drop in order. The smoothness indicator,
S, is calculated in terms of a smoothness parameter � in the following manner:38

S =
�

max((1� �); ")
(SOS �DOF )
DOF � 1

; where � =

X


X
�

�
uk;�

�
~�r;�

�
� uki;j

�
~�r;�

��2
X


X
�

�
uk;�

�
~�r;�

�
� �ui;j

�2 : (13)
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Figure 1: The graph of f(�) = �
(1��) .

In the above equation, SOS and DOF refer to the reconstruction stencil size and number of unknowns
respectively, whereas " is a tolerance added to prevent division by zero. The computation of � involves
comparing values of reconstructed solution at the centroids, ~�r;�, of all stencil cells indexed by  and �.38

Figure 1 illustrates the behavior of �
(1��) , which rapidly increases to 1 as � approaches 1, indicating a

smooth and well-reconstructed solution.38 Finally, a smoothness cuto� value Sc is speci�ed, so that if
S > Sc, the reconstruction is considered smooth, otherwise the order of reconstruction is dropped locally.

II.D.2. Reconstruction at the Boundaries

Correct high-order treatment of boundary conditions is crucial in maintaining the accuracy of the scheme. In
the current approach, extra rows of ghost cells are added beyond the geometric boundary of the computational
domain to impose high-order boundary conditions. Least-squares reconstruction in control volumes adjacent
to the boundary are constrained as described by Olivier-Gooch and Van Altera.26 Furthermore, geometric
data are computed to the same order of accuracy as that of the interior scheme. The Boundary constraints
in addition to the reconstruction conditions lead to an enlarged system of equations, which is solved using
Gauss elimination with pivoting followed by a Householder QR factorization for the remaining least-squares
problem.

II.E. Solution of the Semi-Discrete Form

For time-accurate simulation of unsteady problems, multi-stage explicit time-marching schemes have been
used to advance the ordinary di�erential equation described by Equation (7) in time. A fourth-order Runge-
Kutta scheme is used for k > 2 to preserve the global accuracy of the scheme. For most steady-state
problems, an implicit NKS method is used to speed up the solution process, which will be described in a
later section.

III. Anisotropic Adaptive Mesh Re�nement

III.A. Overview of Block-Based Adaptive Mesh Re�nement

Adaptive mesh re�nement (AMR) techniques ensure all regions on the domain are su�ciently resolved with-
out over-resolving low-gradient regions, and is therefore very e�ective in treating problems with disparate
spatial scales. The AMR technique described in this paper follows the approach by Groth et al. for compu-
tational magnetohydrodynamics.6,9 A block-based hierarchical data structure is used in conjunction with
the �nite-volume scheme described above to facilitate automatic solution-directed mesh adaptation on multi-
block mesh according to physics-based re�nement criteria. \Blocks" here refer to patches of adjacent cells
that are re�ned or coarsened as a group during AMR. The proposed AMR formulation borrows from pre-
vious work by Berger and co-workers,2,3, 5, 8 Quirk,49,50 and De Zeeuw and Powell4 for Cartesian mesh. It
is similar to the block-based approaches described by Quirk and Hanebutte,49 and Berger and Saltzman.8
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Figure 2: Multi-block quadrilateral mesh in block-based AMR with layers of overlapping ghost cells to
facilitate inter-block communication.

Cell-based Cartesian mesh adaptation procedures with more arbitrary quadrilateral and hexagonal mesh
have been considered by Davis and Dannenho�er,51 and Sun and Takayama.52 In comparison to a cell-based
approach, block-based AMR may at times be less exible and e�cient. However, a block-based approach
involves communications overhead required per block of cells instead of per cell, and less connectivity also
results in a simpler data structure. More importantly, the block-based approach most easily lends itself to
parallel implementation, and may thus be the preferred alternative especially for large-scale problems.

In the current approach, every block consists of a �xed number of Ni�Nj cells. Both Ni and Nj must be
even, but not necessarily equal. Cell-averaged solution states within each block are stored in an indexed array
which corresponds to the physical arrangement of the cells. In addition to these interior cells, there are layers
of \ghost" cells which store solution data of interior cells from neighboring blocks, as shown in Figure 2.
These overlapping data storage allow the �nite-volume calculations on each block to be carried out in a
more independent manner. A message passing routine updates the solution in ghost cells as solution in the
corresponding interior cells evolve. This may or may not involve restriction or prolongation of the solution
depending on the resolution change between adjacent blocks. Message passing procedures will be discussed
in more details later in this section. Additional inter-block communication is required to correct interface
uxes computed on coarser neighbors using uxes from their �ner neighbors, so that the ux conservation
properties of the �nite-volume scheme is strictly enforced across the interface.2,3

The adaptive procedure is directed by one or more re�nement criteria for each block. Percentage thresh-
olds are speci�ed by the user, such that blocks with re�nement criteria greater than the re�nement threshold
are agged to re�ne, while blocks with criteria lower than the coarsening threshold are agged to coarsen.
To ensure the accuracy of the scheme, mesh re�nement is constrained such that the grid resolution changes
only by a factor of 2 between any two adjacent blocks, and the minimum resolution is no less than that
of the initial mesh. Therefore, a check must be performed prior to re�nement to eliminate any cases that
violate such constraints. During mesh re�nement, each \parent" block is divided into multiple \children"
blocks with the same number of cells, thereby increasing the spatial resolution in the region of interest. This
process is reversed for over-resolved regions, where multiple \sibling" blocks are coarsened into their parent.
Standard multigrid-type restriction and prolongation operators are used to evaluate solution on all blocks
resulting from the coarsening or division processes.

Lastly, a hierarchical tree-like data structure is used to keep track of mesh re�nement and connectivity
between solution blocks. Example of such tree structure is depicted in Figure 4 for anisotropic mesh re�ne-
ment. Leafs on the trees represent all blocks on the current mesh, while the ancestor nodes and the branches
represent the division processes or re�nement histories which lead to the current mesh. The root of each tree,
therefore, represents a block on the initial mesh. The data structure may contain multiple trees, whose roots
are stored in an indexed array data structure. Recursive traversal of the multi-tree structure can be used to
determine block connectivity on the physical domain. However, in order to reduce overhead associated with
accessing solution information from adjacent blocks, the neighbors of each block are computed and stored
after each AMR so that direct access is possible. The hierarchical tree data structure has the advantages in
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Figure 3: Illustration of re�nement and coarsening of an 8 � 8 block, during (i) anisotropic AMR in �,
(ii) anisotropic AMR in � and (iii) isotropic AMR cell division. Their geometrical relationship are also
represented.

readily permitting local mesh re�nements. Local modi�cations to the multi-block mesh can be performed
without re-griding the entire mesh and re-calculating all solution block conductivities.

III.A.1. Anisotropic Adaptive Mesh Re�nement

The proposed block-based AMR technique readily permits anisotropic mesh re�nement, yet most AMR
procedures in the past were carried out in an isotropic manner, where the mesh resolution doubles in all
directions. However, this is less exible, and certainly not the most e�cient for ows where solution varies
much rapidly in one or more directions than the others. In comparison, the anisotropic AMR technique
proposed in this research permits a directional preference in the re�nement process. Anisotropic AMR
divides each parent block into two children by splitting the parent blocks in either the �- or �-direction for
general body-�tted meshes, as illustrated in Figure 3. As a result, cell resolution doubles in a coordinate
direction of choice, but remains the same in the other direction. Implementation of anisotropic AMR follows
the general block-based AMR framework discussed above, with some new procedures and data structures to
handle the added complexities.

III.B. Hierarchical Tree Data Structure

A exible binary tree data structure is used to keep track of block connectivity during anisotropic mesh
re�nement, as compared to a quadtree data structure used in isotropic mesh re�nement. Figure 4 provides
an example of such binary tree structure. Each branch in the tree may indicate a split in either � or �.
The sequence of \splits" leading to speci�c � and � levels is not unique, although the number of splits is
unique. This property of the binary tree structure is exploited in a connectivity rearrangement algorithm
which allows anisotropic AMR to be more robust.

Ham et al.40 pointed out a disadvantage of using a structured hierarchical data-structure for anisotropic
AMR, in that coarsening is not always permitted unless it exactly reverts the re�nement history. This is the
case with blocks B and C as represented by the �rst tree structure in Figure 4, which could not be coarsened
in � because they are not linked by a �-split. This problem is overcome if the �rst �-split which connects the
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Figure 4: Computational mesh with 6 anisotropic re�nement levels originating from one initial block, iden-
tically represented by two di�erent binary tree structures.

branches containing blocks B and C, denoted as the \bridge", could be moved up the tree and made into
the immediate linkage between B and C, e�ectively turning the �rst tree structure into the second one. This
is in essence the goal of connectivity rearrangement. By recursively modifying the internal tree structure,
re�nement history is equivalently re-written without altering the current mesh.

A new neighbor searching algorithm has also been developed in conjunction with the binary tree structure
to compute connectivity of blocks in the physical space. The algorithm follows a similar approach as those
described in other literatures53,54 and for isotropic AMR.55 A common ancestor between the current block
and the neighbor is �rst identi�ed as the \bridge", which the algorithm crosses to reach the branch containing
the neighbor, and subsequently descends to the appropriate leaf node. The bridge is often found as a sibling
in the direction of the neighbor. However, there are no corresponding siblings for corner neighbors in
anisotropic AMR, in which case the search is carried out in two parts. Take the search of a northwest
neighbor for example, the �rst sibling encountered in either north or west will be treated as an intermediate
block, from which a search for a bridge in the remaining direction commences.

III.C. Anisotropic Mesh Re�nement Procedures

Anisotropic division and coarsening of blocks in � and � may be carried out sequentially, but this could lead
to the \deadlock" situation illustrated in Figure 5. The deadlock situation is a by-product of connectivity
rearrangement, where the re�nement history is re-written in such a way that it could not be reversed without
exceeding the maximum resolution di�erence between two neighbors in the intermediate step. The deadlock
situation could be avoided by eliminating the intermediate step and simultaneously coarsening in both � and
�. Hence the following anisotropic AMR procedure is proposed:

1. Directional re�nement criteria in both � and � are calculated for all blocks, according to which appro-
priate blocks are agged to either re�ne or coarsen in the respective direction;

2. Conict-checking procedure is carried out to ensure re�nement and coarsening for all agged blocks
are permissible;

3. Connectivity rearrangement is performed to ensure parents of all blocks agged coarsen are split in the
appropriate direction;

4. Reduce all blocks agged coarsen into their parent blocks;

5. Split all blocks agged re�ne in � into their west and east children;

6. Split all blocks agged re�ne in � into their south and north children;

7. Compute and store the new neighbor information;

8. Update geometry and solution information in ghost cells through message passing.
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Figure 5: Formation of a deadlock situation from connectivity rearrangement, where blocks A1, A2, and A3
are meant to be coarsened into one block, while B1, B2 and B3 into another, but it would not be permitted
if coarsening in � and � take place sequentially. Block boundaries of siblings are represented by dashed lines.

Note that the constraint of maximum resolution change across block interfaces could be violated before all
agged blocks are re�ned or coarsened. However, this constraint only needs to be reinforced during message
passing at the end. Connectivity rearrangement relies on the use of correct neighbor information, hence it
must be performed before re�nement or coarsening of any block. Anisotropic AMR could lead to isotropic
re�nement if a block is agged to re�ne in both � and �. Lastly, the e�ciency � of both isotropic AMR and
anisotropic AMR is calculated as 1�Ncells=Nuniform, where Nuniform is taken as the total number of cells
on an isotropic uniform mesh, which consists of cells at the same level as the higher of the maximum �- or
�-level on the current mesh.

III.C.1. Re�nement Criteria

For Euler equations for gas-phase ows, isotropic AMR has been directed by re�nement criteria based on
the magnitude of the density gradient, compressibility and vorticity, which would provide indications of any
shock waves, contact surfaces or shear waves present. These measures are scaled by the area of the cell
and normalized by the magnitude of the solution variables involved. The re�nement criteria for anisotropic
AMR must provide a separate indicator for the solution behavior in each direction. Partial derivatives
of the primitive solution variables with respect to each coordinate direction would be an intuitive choice.
Following a similar scaling and normalization in calculating the isotropic re�nement criteria, expressions for
the directional re�nement criteria would be as follows:

�� =
1
juj

�
~ru ��~X

�
; �� =

1
juj

�
~ru �� ~Y

�
: (14)

In Equation (14), u could represent any solution variable in general, while �~X is the vector di�erence between
the mid-points of the east and west faces of the cell, and � ~Y is the vector di�erence between the mid-points
of the north and south faces of the cell. For body-�tted meshes, the gradient vector ~ru is projected onto the
average dimensions of the cell in curvilinear coordinates to indicate the normalized solution change across
the cell along each coordinate direction. Therefore, �� and �� could provide a good indication to the needs
of re�nement by relating the physics of the solution to spatial resolution in the direction of interest. For
the single-variable advection-di�usion equation, Equation (14) simply involves the gradient of the solution
u. For Euler equations, gradient of the density is used as the re�nement criteria by default unless otherwise
speci�ed. Approximations to the gradient vectors are obtained via a second-order unlimited least-squares
reconstruction.

III.C.2. Conict Checking

The conict checking procedure essentially revises the list of re�nement ags to eliminate any cases of re�ne-
ment or coarsening that is non-permissible. Re�nement or coarsening would not permitted if it introduces
resolution changes of more than a factor of two between adjacent blocks. This type of conict is identi�ed
through level checks.

Level checks for � and � are independent, but are each carried out in a similar manner. By assigning values
of \+1", \0" and \-1" to denote \re�ne(R)", \no change(N)" and \coarsen(C)", level di�erence resulting
from AMR could then be calculated for each direction, such that if the resultant level di�erence is greater
than 1, there is a resolution conict. There are situations where the conict could not be resolved unless
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Figure 6: Examples of conicting scenarios during �-re�nement. The block with bold boundaries represent
the block being checked in relation to its neighbors, while changes resulted from conict resolution are
marked in red.

Figure 7: Examples of permitted and non-permitted coarsening scenarios. Flags for the �-direction are in
blue, and ags for the �-direction are in red. Boundary between two sibling blocks are represented by dashed
lines. (a-e) �-coarsening is permitted without modi�cation of ags; (f, g) �-coarsening is permitted by forcing
sibling to re�ne in �; (h, i) �-coarsening is not permitted due to conicts in �; (j) �-coarsening is permitted
after conict in � is resolved; (k) �-coarsening is not permitted because siblings are too �ne; (l) Coarsening
is not permitted because direction for coarsening is ambiguous.

the ags to both blocks are changed to \N". They are when the level di�erence resulting from AMR is 3
as in Figure 6a. This type of conict is resolved �rst before any others. Otherwise, when a block agged
\C" conicts with one of its neighbors as in Figure 6c and 6d, it would be agged \N" instead; when a
block agged \N" conicts with a neighbor agged \R", the block will be automatically forced to re�ne as
in Figure 6b. This algorithm leads to a more general implementation which avoids counting all possible
combinations of resolution changes and re�nement ag values, and resolving each scenario individually.

Coarsening in � and � simultaneously does not only prevent the deadlock situation, it also permits
many more coarsening situations as it removes the limitation associated with the sequence of AMR in
di�erent directions. Some of the representative scenarios are depicted in Figure 7. The deadlock situation is
represented in Case (d), where a �-sibling of the coarse block emerges when its �ner neighbors are coarsened
in �, thereby allowing subsequent coarsening in �. Case (e) represents a situation that is somewhat opposite,
where the east neighbor is �rst re�ned in � to create two siblings in � for the �ner neighbors to the west.
In order to permit coarsening, the block and its potential \sibling(s)" must both be agged to coarsen;
furthermore, �- and �-level of any block and its sibling must both be the same at the end of AMR. Checking
of all blocks agged \C" against both of these conditions is another major component of the conict checking
procedure, but it can also be implemented in a general manner. In some cases, both conditions could be
satis�ed by forcing blocks originally agged \N" to re�ne, as in the cases of (h) and (i) in Figure 7.
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(a) x-re�nement of cell (b) y-re�nement of cell

Figure 8: Addition of new nodes during anisotropic cell division using metrics.

III.C.3. Grid Generation and Solution Transfer
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Figure 8 illustrates the cell division process in both � and �, where new nodes are added during re�nement.
For cells lying on the physical boundaries of body-�tted meshes, locations of new nodes are determined by
path-length splines representing the geometrical shapes of the boundaries. New interior nodes could be
approximated by the mid-points between existing nodes on the coarse mesh, or using grid metrics. Taylor
series expansion in Equation (15) is used to approximate the metrics which maps between physical domain
~x = (x; y) and a uniformly spaced Cartesian computational grid, (�; �). Derivative values are computed
using second-order central di�erence approximation, and third-order forward/backward di�erence at block
boundaries. New node locations are then computed by combining the Taylor series expansion from existing
nodes on the coarse mesh using a second-order averaging procedure. The mid-point approach is used by
default in grid-generation, while the metrics is made available if more accurate grid representation is necessary
during accuracy assessments.

Upon cell division, solution average from the coarse cell is transferred onto the two �ner cells via direct
injection. The cell division process is reversed during coarsening, and area-weighted sum of the �ner cells
solution average will be assigned to the coarse cell.

III.D. Message Passing

At interfaces between blocks of equal resolutions, solution values are directly assigned from cells to cells.
Otherwise, restriction and prolongation procedures are required to evaluate the ghost cell solution values.
The restriction procedure used during message passing is identical to what is done during interior cell solution
transfer after coarsening. However, the prolongation procedure in message passing requires more accuracy,
because the error introduced could not be reduced by solution processes. To preserve the high-order accuracy
of the proposed scheme, reconstruction in the coarse interior cell is integrated over, and divided by, areas of
the corresponding ghost cells to obtain the appropriate solution averages.

For anisotropic AMR, block resolutions in � and � are independent, hence a block could be �ner than its
neighbor in �, yet be of the same resolution or coarser in �, and vice versa. This results in 9 di�erent types
of resolution changes across block interfaces, which are summarized in Figure 9. 3 out of these 9 scenarios
are isotropic. Furthermore, Cases (a), (b), (d) and (e) involve prolongation or restriction in one of the two
directions, hence the procedures are almost identical to those in isotropic AMR with slight modi�cations.
The two remaining cases involve message passing from blocks which are �ner in one direction, but coarser in
the other. Hence message passing for these two cases would consist of prolongation in one direction, followed
by restriction in the other direction. Take Case (c) for example, the north subcell values of both cell (i; j)
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Figure 9: Summary of the di�erent message passing scenarios in anisotropic AMR with graphical illustration
of the prolongation/restriction required.

and cell (i+ 1; j) are �rst obtained through prolongation, following which solution in north sectors of both
cells are recombined via restriction.

IV. Newton-Krylov-Schwarz Method

Steady-state problems can be very e�ectively solved by application of Newton’s method to the resulting
nonlinear system of algebraic equations, and subsequently a Krylov subspace method, such as the generalized
minimal residual (GMRES) algorithm proposed by Saad,56 in combination with a domain-based additive
Schwarz preconditioning technique56 to solve the large, sparse, system of linear equations at each Newton
step. In addition, this Newton-Krylov-Schwarz (NKS) approach is well suited to exploiting the potential
of distributed-memory multi-processor machines because the Schwarz preconditioner breaks the problem
into a set of sub-problems. Rather e�cient parallel implementations of implicit algorithms via Schwarz
preconditioning have been developed by Keyes and co-researchers and successfully applied to a range of ow
problems.57{60 Following these ideas, Groth and co-researchers61{63 have developed a rather e�ective and
scalable parallel implicit method based on a Jacobian-free inexact NKS approach with additive Schwarz
preconditioning and domain partitioning following from the multi-block AMR mesh.

For all steady-state problems of interest, the described NKS method seeks numerical solution which
satis�es

R (U) = 0 : (16)

This often leads to large coupled non-linear systems of algebraic equations, to which Newton’s method o�ers
a robust and e�cient iterative technique to compute the solution. Starting with an initial estimate, U0,
successively improved estimates of the solution are obtained by solving�

@R
@U

�n
�Un = Jn�Un = �R (Un) ; (17)

at each step, n, of the Newton method, and an improved approximation of the solution is given by

Un+1 = Un + �Un ; (18)

where J = @R=@U is the residual Jacobian. The iterative procedure is repeated until an appropriate norm
of the solution residual is su�ciently small, i.e., kR(Un)k2 < �kR(U0)k2 where � is some small tolerance
value typically around approximately 10�12 � 10�10.

Each step of the Newton iterations requires the solution of a system of linear equations given by Equa-
tion (17). For most practical ow computations, this system is large, sparse, and non-symmetric. Therefore,
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the implicit algorithm involved in this paper uses a class of Krylov subspace iterative methods known as
GMRES methods, developed by Saad and co-workers,56,64{66 which are applied extensively in obtaining
the solutions to such large sparse non-symmetric linear equations.60,67{71 The GMRES method is used in
conjunction with Schwarz preconditioning as the Jacobian matrix is often ill-conditioned. A combination of
global and local preconditioning techniques is used, where the global additive Schwarz preconditioner for N
solution blocks is de�ned as follows:

M�1 =
NblocksX
k=1

BT
kM�1

k Bk : (19)

The gather operator or matrix, Bk, gathers the solution unknowns for the kth domain from the global
solution vector, and M�1

k is the local block preconditioner for the kth domain. The described block-based
anisotropic AMR �ts well with the use of Schwarz preconditioning in NKS, and is therefore able to readily
enable parallel implementation of the overall Newton method.

Application of GMRES leads to an overall solution algorithm with iterations within iterations: an \inner
loop" of iterations to obtain the solution of the linear system, within an \outer loop" of iterations associated
with the solution of the nonlinear problem. An inexact Newton method is used in this approach, in which
the inner iterations are carried out only until kRn + Jn�Unk2 � �kRnk2, where � is typically in the range
0.1-0.5.

V. Parallel Implementation

The multi-block quadrilateral mesh and tree data structure lends itself naturally to domain decompo-
sition and enables e�cient and scalable implementations of both explicit and implicit solution algorithms
on distributed-memory multi-processor architectures.10,61 A parallel implementation of the block-based
anisotropic AMR scheme has been developed and is used to generate numerical results for both the 2D
advection-di�usion problem and the 2D Euler Equations in this paper. The test cases do not bene�t most
signi�cantly from the use of distributed-memory architectures due to the small scales of the problems. How-
ever, they can demonstrate the feasibility of combining the high-order and anisotropic AMR framework with
parallel implementation, which can be equally applied to larger scale problems. Existing parallel implemen-
tation uses the C++ programming language and the MPI (message passing interface) library.72 Domain
decomposition is carried out by farming the solution blocks out to the separate processors, with more than
one block permitted on each processor. For homogeneous architectures with multiple processors all of equal
speed, an e�ective load balancing is achieved by exploiting the self-similar nature of the solution blocks and
simply distributing the blocks equally among the processors. For heterogeneous parallel machines, such as
a network of workstations and computational grids, a weighted distribution of the blocks can be adopted
to preferentially place more blocks on the faster processors and less blocks on the slower processors. Inter-
processor communication is mainly associated with block interfaces and involves the exchange of ghost-cell
solution values and conservative ux corrections at every stage of the multi-stage time integration procedure.
Message passing of the ghost-cell values and ux corrections is performed in an asynchronous fashion with
gathered wait states and message consolidation.

VI. Numerical Results for 2D Advection-Di�usion Equation

VI.A. Advection-Di�usion in a Rectangular Channel

A problem involving both advection and di�usion in a rectangular channel is considered as the �rst validation
case for the presented numerical scheme. The rectangular channel has an inow at x = 0 described by
sin(�y). A constant di�usion �eld with �(x; y) = 0:01 smears the solution as a uniform velocity �eld
~V (x; y) = (0:1; 0) carries the inow towards the end of the channel. A uniform initial condition of u = 0 is
imposed at t = 0, which allows this case to be examined both as an unsteady and a steady-state problem. The
unsteady evolution of the solution will be obtained using explicit time-marching; whereas the the steady-state
solution alone is separately obtained through the implicit Newton-Krylov-Schwarz method. Both simulations
consist of 12� 12 blocks, as well as a fourth-order accurate spatial reconstruction (i.e. k = 4).
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(a) Isotropic AMR at t = 0:75s
N = 25632, � = 0:83

(b) Anisotropic AMR at t = 0:75s
N = 6048, � = 0:96

(c) Isotropic AMR at t = 1:5s
N = 26496, � = 0:82

(d) Anisotropic AMR at t = 1:5s
N = 9792, � = 0:93

(e) Isotropic AMR at t=5:0s
N = 36000, � = 0:76

(f) Anisotropic AMR at t=5:0s
N = 21024, � = 0:86

(g) Isotropic AMR at t=10:0s
N = 42048, � = 0:71

(h) Anisotropic AMR at t=10:0s
N = 24192, � = 0:84

(i) Isotropic AMR at t =1
N = 36864, � = 0:75

(j) Anisotropic AMR at t =1
N = 19872, � = 0:87

Figure 10: Comparison of isotropic and anisotropic AMR in simulating advection and di�usion in a rectan-
gular channel as a time-variant problem, with CENO k = 4 reconstruction.
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VI.A.1. Unsteady Results

The mesh for this simulation begins with four blocks, which undergo �ve levels of initial AMR before the
simulation starts. Successive re�nements are carried out every 200 time steps, although a higher re�nement
frequency of 50 is used near the beginning for anisotropic AMR. The CFL number is 0.5. The solution near
t = 0s is strongly anisotropic as the inow creates a sharp gradient in the x-direction, but the variation
becomes more gradual as t increases. This change of the solution distribution is well captured by anisotropic
AMR as observed in snapshots of the solution at t = 0:75s, t = 1:5s, t = 5:0s, t = 10:0 and t = 1 in
Figure 10. The re�nement and coarsening thresholds are 0.80 and 0.30 for anisotropic AMR, and 0.80 and
0.15 for isotropic AMR.

As expected, the advantage of anisotropic AMR is the most noticeable at t = 0:75s. Isotropic AMR
constrains the aspect ratios of the blocks according to those on the initial mesh, hence the mesh resolution in
y is forced to increased with that in x, resulting in 32 blocks near the west boundary of the channel at x = 0.
In the mesh generated by anisotropic AMR, the same resolution in x is achieved with only 12 blocks in the
y direction, whose dimensions in y are exibly determined by the variation of the solution along the y-axis.
Overall, a total of 42 blocks with 6048 cells were used in the anisotropic mesh with a re�nement e�ciency
of 0.96, while a total of 178 blocks with 25632 cells were used in the isotropic mesh with a re�nement
e�ciency of 0.83. Hence anisotropic AMR is able to provide a saving of 76% in terms of computational
cost. Although overall variation of the solution becomes more uniform with time, local variations remain
somewhat anisotropic, as seen particularly at the north and south boundaries of the rectangular channel
near the inow for t = 1:5s, t = 5:0s, t = 10:0s and t = 1. For regions in the domain where the gradient
in one direction is weaker, the gradient-norm re�nement criteria in isotropic AMR reduces the e�ect of the
strong gradient in the other direction. Hence these local anisotropic variations are captured much better by
anisotropic AMR.

VI.A.2. Implicit Results

The implicit simulation uses the same initial mesh as the unsteady case, but without the initial AMR.
Steady-state solution is �rst obtained on the coarse mesh using inexact Newton’s method, which is then
improved by increasing the mesh resolution through AMR and repeating the NKS-AMR cycles until the
mesh ceases to change. This speeds up the computation process as Newton’s method converges much faster
when the solution approaches steady-state. The steady-state solution and history of convergence for both
isotropic AMR and anisotropic AMR are shown in Figure 11. The resulting meshes for both AMR are slightly
di�erent from those in the explicit simulation, because the explicit and implicit solution procedures lead to
very di�erent re�nement histories. The NKS method appears to work quite well for this problem, where
the residual drops at least 12 orders of magnitude in mostly 8{10 Newton steps for both AMR methods.
Furthermore, a maximum of 474 GMRES iterations are required per Newton iteration for isotropic AMR,
whereas a maximum of 350 GMRES iterations are required for anisotropic AMR due to a smaller system
size overall.

VI.A.3. Accuracy Analysis

Convergence studies for the advection di�usion problem in a rectangular channel have been included to
more accurately reect the e�ectiveness of anisotropic AMR as compared to isotropic AMR and uniform
re�nements. Constrained reconstructions are enforced on all boundaries for this study to maintain high-order
accuracy. Result of the convergence studies is shown in Figure 12. Each point in Figure 12 corresponds to
the error assessed on meshes obtained either by 2, 3 or 4 uniform re�nements, or by applying isotropic and
anisotropic AMR with 2, 3, 4 or 5 maximum re�nement levels until the mesh ceases to change. Convergence of
the uniform mesh in Figure 12 is observed to have a slope of approximately 4 for fourth-order spatial accuracy
as expected. However, both AMR methods as observed in this study do not introduce any improvements to
the convergence of the uniform mesh. In the contrary, they appear to increase the number of cells required
without improving the solution accuracy. This is largely related to the fact that the advection-di�usion in a
rectangular channel is relatively smooth and lacking in scale disparity, hence the error distribution is likely
uniform throughout the domain and uniform re�nements are favored.
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(a) Steady-State solution with isotropic AMR
N = 37728, � = 0:74

(b) Steady-State solution with anisotropic AMR
N = 19584, � = 0:87

(c) Convergence History for Isotropic AMR

(d) Convergence History for Anisotropic AMR

Figure 11: Comparison of isotropic and anisotropic AMR in simulating advection and di�usion in a rectan-
gular channel as a steady-state problem, with CENO k = 4 reconstruction.
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Figure 12: Convergence comparison for anisotropic AMR against isotropic AMR and uniform re�nements
in simulating of advection-di�usion in rectangular channel using k = 4 CENO reconstruction.

VI.B. Circular Advection Problem

The second problem considered for the 2D advection-di�usion equation involves pure advection by a constant
angular velocity of 5 rad/s. The circular advection takes place within a square box with initially four 20�20
blocks, where the block interface along y = 0 and 0 � x � 1 represents an inow/outow boundary. The
inow variation is de�ned by sin2(4�(r � 0:375)) for r 2 [0:375; 0:625] and 0 otherwise. A uniform initial
condition of u = 0 is again imposed, which creates a discontinuous ow front starting at � = 0. The ow
front makes an angular displacement of 2� before the solution connects at the inow/outow boundary to
form a continuous ring of circular ow. Anisotropic AMR is expected to work best when the direction of
solution variation is aligned with the coordinate directions. In the extreme case when the solution varies
gradient is exactly 45 degrees from the main coordinate axis, anisotropic AMR simply reverts to isotropic
AMR. Hence it would be interesting to observe how anisotropic AMR attempts to capture the solution for
this problem as it goes through all possible angles of variation.

VI.B.1. Unsteady Results

Snapshots of the time-variant results have been plotted in Figure 13. The CFL number is again 0.5. To
capture the discontinuous wave front, both isotropic and anisotropic AMR are allowed a maximum of 8
re�nement levels through 2 levels of uniform re�nements and 6 levels of initial AMR, followed by subsequent
re�nements every 10 time steps. Re�nement threshold is 0.80 for isotropic AMR, and 0.60 for anisotropic
AMR to encourage x-re�nements near t = 0 of the simulation. Coarsening threshold is 0.20 for both AMR
methods.

At t = 0:01s, the sharp gradient created by the discontinuous ow front is approximately aligned with
the y-axis, again allowing anisotropic AMR to be very advantageous. Although both AMR methods have
high e�ciency of almost 1, anisotropic AMR is able to introduce an additional 65% saving when compared
to isotropic AMR, as shown in Figure 13b and Figure 13c. The next snapshot occurs at t = 0:157s, which is
when the wave front is 45 degrees from both axis. As anticipated, the mesh produced by anisotropic AMR
near the ow front is very similar to that by isotropic AMR. Anisotropic AMR is still observed to o�er some
advantage in optimizing the number of blocks required in regions away from the wave front, which are re�ned
to satisfy the constraint of maximum resolution change across block boundaries. In the next two snapshots,
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(a) Solution at t = 0:01s (b) Isotropic AMR
N = 23040, � = 0:997

(c) Anisotropic AMR
N = 8064, � = 0:999

(d) Solution at t = 0:157s (e) Isotropic AMR
N = 35136, � = 0:996

(f) Anisotropic AMR
N = 29088, � = 0:997

(g) Solution at t = 0:628s (h) Isotropic AMR
N = 61488, � = 0:993

(i) Anisotropic AMR
N = 48240, � = 0:995

(j) Solution at t = 0:942s (k) Isotropic AMR
N = 166896,
� = 0:982

(l) Anisotropic AMR
N = 80496, � = 0:993
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(m) Solution at t =1 (n) Isotropic AMR
N = 607536, � = 0:742

(o) Anisotropic AMR
N = 236016, � = 0:90

Figure 13: Comparison of isotropic and anisotropic AMR in simulating circular advection in a rectangular
circular as a time-variant problem, with CENO k = 3 reconstruction.

(a) Solution at t =1 (b) Isotropic AMR
N = 769968, � = 0:67

(c) Anisotropic AMR
N = 460080, � = 0:80

Figure 14: Comparison of isotropic and anisotropic AMR in simulating circular advection in a rectangular
box as a steady-state problem, with CENO k = 3 reconstruction.

the wave front wave is again aligned with the coordinate axis. This transition is well captured by anisotropic
AMR, which also reects the e�ectiveness of mesh coarsening after each AMR.

After the wave front has reached the outow boundary at t = 1:26s, the maximum level of re�nement
is reduced to 7 to avoid over re�nement. The re�nement threshold for both isotropic and anisotropic AMR
is increased to 0.90. Coarsening threshold increased to 0.30 for anisotropic AMR and reduced to 0.05 for
isotropic AMR. AMR frequency is reduced to 100 time steps as the solution is time-marched towards steady-
state. In the �nal mesh depicted in Figure 13n and Figure 13o, anisotropic AMR places blocks with higher
aspect ratios at locations where the solution variation is more aligned with the coordinate axis, and blocks
with lower aspect ratios close to the 45 degree lines. The mesh resolution produced is for the most part
similar to that of isotropic AMR in all directions of variations.

VI.B.2. Implicit Results

The steady-state solution for the circular advection problem is obtained following a similar approach as
described in Section VI.A.2. The coarse-mesh steady-state solution is obtained on 64 blocks resulting from
2 uniform re�nements on the initial mesh. Both isotropic and anisotropic AMR are allowed a maximum
re�nement level of 7, with a re�nement threshold to 0.40 and a coarsening threshold to 0.10. The �nal
steady-state solution is plotted in Figure 14. The mesh for both AMR methods are denser than in the

20 of 29

American Institute of Aeronautics and Astronautics



explicit results, again due to the very di�erent re�nement histories from the explicit and implicit procedures.
However, distributions of the mesh blocks follow a similar trend.

VI.B.3. Accuracy Analysis

Accuracy assessments have been performed on the steady-state meshes for both the explicit and the implicit
results, where the L1, L2 and Lmax norms of the solution error are summarized in Table 1. When examining
the explicit results alone, anisotropic AMR appears less e�ective in reducing error in the solution, and the
case is similar with the implicit results alone. However, if the anisotropic mesh from the implicit result
is compared with the isotropic mesh from the explicit result, then it becomes evident that anisotropic
AMR does in fact improve the solution accuracy while maintaining a signi�cantly lower cell-count. It is
important to note that this problem is not at all anisotropic, and that anisotropic AMR uses less than half
of the computational cells in isotropic AMR with similar re�nement and coarsening thresholds speci�ed.
Therefore, if the di�erence in cell count could be used towards increasing both the maximum re�nement
level and re�nement thresholds for anisotropic AMR, it is believed that anisotropic AMR will likely produce
more accurate results than isotropic AMR.

VII. Numerical Results for 2D Euler Equations

VII.A. Shock-Box Simulation

The shockbox problem is an important application of the 2D Euler Equations for inviscid compressible
gases. It is also strongly anisotropic, making it an excellent practical application of the proposed high-
order �nite-volume scheme with anisotropic AMR. The shockbox problem considered herein consists of air
initially rest. The left state, initially occupying x < 0 and y < 0, is at standard atmospheric condition (i.e.
p = 101:325kPa, � = 1:225kg=m3); and the right state, initially occupying x � 0 and y � 0, is at four times
the standard atmospheric condition (i.e. p = 405:300kPa, � = 4:9kg=m3). Reection boundary conditions
are imposed on all four sides of the domain. Time-accurate solution for the unsteady simulation is obtained
via the fourth-order Runge-Kutta time-marching method, with a CFL number of 0.25. Flux evaluation at cell
boundaries makes use of the Roe approximate Riemann solver, combined with a fourth-order space-accurate
reconstruction (i.e. k = 3). To fully capture the discontinuity in the initial states, the simulation begins by
performing 1 uniform re�nements and 7 initial AMR on a single block consisting of 10� 10 cells. The mesh
is updated once every 20 time steps using both isotropic and anisotropic AMR.

The required mesh resolution for the shockbox problem, especially near the start of the simluation at t =
0:045s, is driven by the rapid solution change at the discontinuities, which could be satis�ed by re�ning the
mesh only in the direction of wave propagation along either x or y. As a result, the performance of isotropic
AMR becomes relatively poor by unnecessarily increasing the mesh resolution along the discontinuities,
where the solution changes are minimal. In comparison, anisotropic AMR e�ectively achieves the same mesh
resolution as isotropic AMR across all discontinuities, while keeping the mesh coarse in the other direction.
In doing so, anisotropic AMR is able to introduce a signi�cant 87% reduction in the number of computational
cells.

For the later snapshots at t = 0:145s, t = 0:3s and t = 0:745s, the interference pattern produced by
intersecting waves become more dominant as time increases. Discontinuities in the interference region are
not aligned with the x or y axis, in a similar manner as in the circular advection problem, where anisotropic
AMR is observed to revert to isotropic AMR. Therefore, the computational saving from anisotropic AMR at
t = 0:745s is 47%, much lower than that at t = 0:045s, but still quite signi�cant. A detailed accuracy analysis
could not be performed due to the lack of an exact solution. However, by the observation that anisotropic

Table 1: Accuracy Comparison for Circular Advection Simulation

Explicit Results in Figure 13 Implicit Results in Figure 14

AMR N L1 L2 Lmax N L1 L2 Lmax

Isotropic 607536 1:5� 10�4 7:26� 10�4 7:81� 10�3 769968 8:14� 10�6 4:62� 10�5 6:67� 10�4

Anisotropic 236016 2:66� 10�4 1:21� 10�3 1:17� 10�2 460080 5:01� 10�5 2:6� 10�4 3:77� 10�3
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(a) Solution at t = 0:045s (b) Isotropic AMR
N = 338200, � = 0:948

(c) Anisotropic AMR
N = 43800, � = 0:993

(d) Solution at t = 0:145s (e) Isotropic AMR
N = 290200, � = 0:956

(f) Anisotropic AMR
N = 59900, � = 0:991

(g) Solution at t = 0:300s (h) Isotropic AMR
N = 271000, � = 0:959

(i) Anisotropic AMR
N = 93900, � = 0:996

(j) Solution at t = 0:745s (k) Isotropic AMR
N = 314800, � = 0:952

(l) Anisotropic AMR
N = 167400, � = 0:974

Figure 15: Comparison of isotropic and anisotropic AMR in simulating the unsteady shock-box problem,
with k = 3 CENO reconstruction. 22 of 29
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AMR achieves similar spatial resolution as isotropic AMR in critical regions with most continuities and rapid
solution changes, it could be concluded that the accuracy of anisotropic AMR and isotropic AMR are likely
on par.

VII.B. Supersonic Flow Past a Cylinder

The second simulation considered for the Euler equations involves supersonic ow past a blu� body, which
causes a bow shock to form at a distance away from the blu� body surface. Directly in front of the blu�
body, the supersonic freestream ow becomes subsonic behind the shock and the ow comes to a full stop
at the stagnation point. The ow behind the shock elsewhere could be supersonic depending on the angle
at which the freestream ow crosses the bow shock. Due to the absence of viscous e�ects in the Euler
equations, the ow velocity along the blu� body surface away from the stagnation point is non-zero. The
blu� body simulation examined here involves freestream ow at standard atmospheric pressure and density
(i.e p = 101:325kPa and � = 1:225kg=m3), with a Mach number of 2. The blu� body is a 2D cylinder
with radius r = 1, and with its axis of symmetry perpendicular to the freestream ow. The simulation is
carried out on a body-�tted mesh with the south boundary representing the surface of the blu� body and a
curved north boundary shaped according to an estimated blu� body Mach number of 1.5. A �xed boundary
condition was imposed at the north boundary for the freestream inow; a reection boundary condition at the
south and west boundaries for the subsonic regions; and a boundary condition with constant extrapolation
at the east boundary for the outow. A k = 3 CENO reconstruction is used for this simulation. High-order
boundary treatment is reinforced by representing curved boundaries using splines, as well as by applying
constraint reconstruction at the south boundary. The Rusanov ux evaluation is used for added dissipation.

The initial mesh consists of a single block with 20�20 cells, which undergoes 1 uniform re�nement before
the simulation begins. Grid generation for this problem uses the mid-point approach. An implicit method
similar to that used in Section VI.A.2 is applied to obtain the steady-state results shown in Figure 16.
Convergence history of this study was plotted in Figure 17. Although accuracy assessment is again not
available due to the lack of an analytical solution, the predicted shape and location of the bow shock, as well
as the distribution of the density, Mach number and pressure in the subsonic region as shown in Figure 16 all
appear very similar for isotropic and anisotropic AMR. Due to the setup of the initial mesh, the bow shock is
not perfectly aligned with the grid lines and anisotropic AMR did not re�ne solely in one coordinate direction.
Nevertheless, by optimizing the number of blocks along the bow shock, the application of anisotropic AMR
has prevented coarser blocks in the more uniform regions of the domain from re�ning due to resolution
conicts. Hence anisotropic AMR still introduces a signi�cant 70% reduction in the number of cells.

VII.C. Ringleb Flow

The last numerical example considered for this paper involves the simulation of Ringleb’s ow. Ringleb’s ow
consists of isentropic and irrotational ow expanding between two streamlines, where analytical solutions are
available. Therefore, this serves as an excellent test case where accuracy of the proposed high-order block-
based anisotropic AMR scheme could be assessed and compared. Unlike the other two cases considered for
the Euler equations, Ringleb’s ow is much smoother in the solution distribution. Therefore, a transonic
variant of Ringleb’s ow has been chosen for this study, where the supersonic region near the southwest
corner of the domain is expected to require higher mesh resolution. The domain for this problem is de�ned
by streamlines corresponding to kmin = 0:5 and kmax = 1:2, and subsonic inow at the north boundary
corresponding to q = 0:3. Fourth-order accurate space reconstruction is used, with exact solution imposed
as boundary conditions on all boundaries. Grid generation makes use of the grid metrics to ensure that
the quality of the mesh does not a�ect accuracy of the solution. Lastly, re�nement criteria for this problem
involve gradients of the pressure �eld, such that variations in the supersonic region could be emphasized.

Result of the convergence study has been plotted in Figure 18. All accuracy assessment studies begin
with an initial mesh consisting of one 10� 10 block. Solution accuracy with 2, 3, 4 and 5 levels of uniform
re�nements are again included as a reference, which show a fourth-order convergence for both density and
pressure as anticipated. Accuracy assessments with the use of isotropic and anisotropic AMR are performed
on the converged meshes with maximum re�nement levels set to 2, 3, 4, 5 and 6 respectively. Steady-
state solutions are obtained using a multi-stage method with optimal smoothing. Both AMR methods are
observed to improve the convergence quite signi�cantly up to 5 levels of re�nement, with anisotropic AMR
being more superior. Upon reaching 5 levels of re�nements, AMR ceases to provide any advantage as the
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(a) Density, Mach number and pressure distribution with mesh using isotropic AMR: N = 242800, � = 0:963.

(b) Density, Mach number and pressure distribution with mesh using anisotropic AMR: N = 74000, � = 0:989.

Figure 16: Steady-state simulation of Mach 2 ow past circular cylinder with radius r = 1, with CENO
k = 3 reconstruction.
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(b) Convergence history with anisotropic AMR.

Figure 17: Steady-state simulation of Mach 2 ow past circular cylinder with radius r = 1, with CENO
k = 3 reconstruction.
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Figure 18: Convergence comparison for anisotropic AMR against isotropic AMR and a uniformly re�ned
mesh in simulating of Ringleb’s ow using k = 3 CENO reconstruction.

(a) Mach number distribution (b) Isotropic AMR
N = 16900, � = 0:834

(c) Anisotropic AMR
N = 11600, � = 0:89

Figure 19: Mach number distribution for a transonic Ringleb’s ow, shown with the �nest grids from isotropic
and anisotropic AMR as used in the convergence studies.

error becomes more distributed throughout the domain. Meshes resulting from both AMR methods with a
maximum re�nement level of 6 are shown in Figure 19.

VIII. Conclusion

In summary, this study describes in some details a novel parallel, high-order, anisotropic, block-based,
AMR, �nite-volume scheme. Its application to both steady and unsteady problems described by the
advection-di�usion equation as well as the Euler equations have also been examined. It has been shown
that the proposed scheme has great potential in reducing the computational costs associated with accurately
resolving numerical solution of physically complex ow problems having disparate spatial and temporal
scales, especially ones which exhibit strong anisotropic features. Meanwhile, it preserves many advantages
of the previous block-based isotropic AMR technique, in particular its parallel performance. Future research
will involve the development of more sophisticated directional re�nement criteria based on error estimation
techniques, the extension of the proposed algorithm to multi-dimensional problems, and �nally applications
of this technique in more challenging ow problems described in the introduction of this paper.
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