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An accurate, e�cient and scalable cubed-sphere grid framework is described for simu-
lation of magnetohydrodynamic (MHD) space-physics ows in domains between two con-
centric spheres. The unique feature of the proposed formulation compared to existing
cubed-sphere codes lies in the design of a cubed-sphere framework that is based on a gen-
uine and consistent multi-block implementation, leading to ux calculations, adaptivity,
implicit solves, and parallelism that are fully transparent to the boundaries between the
six grid root blocks that correspond to the six sectors of the cubed-sphere grid. Crucial
elements of the proposed approach that facilitate this exible design are: an unstructured
connectivity of the six root blocks of the grid, multi-dimensional k-exact reconstruction
that automatically takes into account information from neighbouring cells, and adaptive
division of the six root blocks into smaller blocks of varying resolution that are all treated
exactly equally for ghost cell information transfers, ux calculations, adaptivity, implicit
solves and parallel distribution. The approach requires signi�cant initial investment in de-
veloping a general and sophisticated adaptive multi-block implementation, with the added
complexity of unstructured root-block connectivity, but once this infrastructure is in place,
a simulation framework that is uniformly accurate and easily scalable can be developed
naturally, since blocks that are adjacent to sector boundaries or sector corners are not
treated specially in any way. The general design principles of the adaptive multi-block
approach are described and, in particular, how they are used in the implementation of
the cubed-sphere framework. The �nite-volume discretization, parallelization, and implicit
solves are also described. The adaptive mesh re�nement (AMR) algorithm uses an upwind
spatial discretization procedure in conjunction with limited linear solution reconstruction
and Riemann-solver based ux functions to solve the governing equations on multi-block
hexahedral mesh. A exible block-based hierarchical data structure is used to facilitate
automatic solution-directed mesh adaptation according to physics-based re�nement cri-
teria. The parallel implicit approach is based on a matrix-free inexact Newton method
that solves the system of discretized nonlinear equations and a preconditioned generalized
minimal residual (GMRES) method that is used at each step of the Newton algorithm.
An additive Schwarz global preconditioner in conjunction with local block-�ll incomplete
lower-upper (BFILU) type preconditioners provides robustness and improves convergence
e�ciency of the iterative method. The Schwarz preconditioning and block-based data
structure readily allow e�cient and scalable parallel implementations of the implicit AMR
approach on distributed-memory multi-processor architectures. Numerical test problems,
including grid convergence studies and realistic global modelling of solar wind conditions,
are discussed to demonstrate the accuracy and e�ciency of the proposed solution proce-
dure.
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I. Introduction & Motivation

With ever-increasing human activity in space and the dependency of human society on the well-functioning
of technological systems in space and on Earth, high-performance computational methods for space-physics
modelling are desirable for the real- or faster than real-time prediction of eruptive space-weather events
such as solar ares and coronal mass ejections (CME),1 and their inuence on the terrestrial environment.
Numerical solutions of the equations arising in the modelling of these very complex ows are computation-
ally intensive and feasible only on massively parallel computers.1{3 One of the main numerical challenges is
provided by the presence of a wide variety of temporal and length scales on which interesting plasma physics
occurs throughout the large domains associated with large-scale space-weather phenomena. Therefore, scal-
able high-performance algorithms capable of resolving the solution features of these ows with a reduced
number of computational elements and of greatly reducing the time required to obtain numerical solutions
of these problems are actively researched.

This work considers the development and application of an implicit second-order Godunov-type �nite-
volume method in a scalable massively-parallel three-dimensional block-based adaptive mesh re�nement
(AMR) implementation for prediction of compressible space-plasma ows governed by the ideal magnetohy-
drodynamics (MHD) equations and inuenced by gravitational �elds. Despite providing only an approximate
description of plasma behaviour (i.e., ideal MHD models neglect kinetic e�ects, ignore resistivity and di�u-
sion, and treat ions and electrons as a single uid), the equations of ideal MHD are relatively su�ciently
accurate to be used for global MHD simulations and have been successfully employed to simulate many
important space-plasma processes.2,3 As such, the computational framework proposed herein represents a
starting point for the development of an MHD-based capability that can be successfully applied on mas-
sively parallel computational clusters (i.e. on the order of 10,000-30,000 processing cores) to the prediction
of complicated space-physics ows of the type encountered in space-weather phenomena.

The simulation of many space-physics ows requires the discretization of spherical shell geometries,
and the choice of the grid is important in formulating an e�cient and accurate numerical method for
solving partial di�erential equations on such domains. Although they are a natural choice, spherical-polar
grids raise numerical di�culties associated with the presence of pole singularities and consequently, may
negatively impact the accuracy and performance of the numerical procedure.4,5 Alternatively, a potentially
more e�cient implementation can be obtained based on cubed-sphere grids,6 which recently emerged as a
technique aimed to overcome some of the disadvantages with current latitude-longitude grid constructs. In a
two-dimensional (2D) cubed-sphere grid, the surface of a sphere is represented free of any strong singularities
as the projection of a cube onto the spherical surface which results in six adjoining grid faces (or sectors)
that seamlessly cover the whole sphere. Although eight weak singularities are created at the projection
of the cube corners, the resulting cubed-sphere grid is still far more uniform than a polar grid in terms
of shape and size of the cells. The six grid faces lend themselves naturally to a multi-block mesh data
structure and allow the discretization to be carried out with structured grids, thereby permitting easier
implementation of competitive numerical schemes. In the same fashion, a three-dimensional (3D) cubed-
sphere grid is obtained by overlaying a sequence of concentric 2D spherical shell grids in the radial direction
and forming six three-dimensional blocks, each of which is enclosed by the union of four radial and two
spherical faces. Note that the quasi-uniform and self-similar multi-block nature of the cubed-sphere grid
makes it ideally suited for implementation on massively parallel architectures and for performing block-
based adaptive mesh re�nement. However, implementation of such algorithms is inherently di�cult due to
the complex inter-block connectivity embedded in adaptive cubed-sphere grids which can only be handled
with adequate three-dimensional unstructured connectivity and storage for the solution blocks. Moreover,
it is highly desirable that the numerical scheme employed for obtaining solutions to equations discretized
on cubed-sphere grids has a multi-dimensional character that provides both robustness and accuracy in
the computation of solution gradients, especially near the sector boundaries and in the presence of mesh
resolution changes, yet maintains a simplicity that makes it computationally e�cient.

Other discretization approaches of spherical shell geometries are also possible either based on rectangular
Cartesian grids with embedded spherical boundaries2,7 or, more generally, based on completely unstructured
mesh connectivity. Examples of the latter approaches are the Cartesian cut-cell methods8 and the geodesic
grids generated with di�erent tessellation elements such as the icosahedron.9 An obvious advantage of the
cubed-sphere approach over these methods is that it not only easily allows the generation of fairly regular
tessellations of the sphere but it also avoids the numerical complexities and possible ine�ciencies, such as
irregular access to data in memory, raised by the unstructured nature of the latter methods. Hence, the
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logically Cartesian representation of the data structure within each block constituent of the cubed-sphere
mesh allows for performing optimizations based on proximate data residing in cache.

Cubed-sphere grids have been already successfully considered for applications to weather and climate
modelling10 as well as to computational astrophysics.5 More recently, Ullrich et al.11 have proposed a
fourth-order �nite-volume formulation and applied it to shallow-water equations on the sphere. In addition,
Yang et al.12 have also recently considered the solution of 2D shallow water equations on the cubed sphere,
and developed a fully implicit Newton-Krylov �nite-volume algorithm for this grid topology and carried
out parallel performance studies with up to 2,048 processing cores. In fact, Jacobian-free Newton-Krylov
methods have been already widely considered for MHD applications, as shown in the recent survey by Knoll
and Keyes,13 including for space-physics simulations on solution-adaptive Cartesian grids.3

The large-scale domain decomposition of 3D cubed-sphere meshes is typically obtained by generating mul-
tiple cuts in the radial direction, thereby increasing the number of partitioning blocks that can be farmed
to di�erent processors to 6 �Nc, where Nc is the number of radial blocks in each sector. For 2D spherical
geometries Putman and Lin4 used discretization with spherical patches. Although local enhancement of ow
features has been already widely considered in the context of h-adaptation on latitude-longitude spherical
grids (see, e.g.,14), formulations of three-dimensional adaptive mesh re�nement procedures on cubed-sphere
grids are not widespread and represent an ongoing research e�ort. Adaptive mesh re�nement is an e�ec-
tive approach for coping with the computational cost of large-scale numerical simulations, such as those
encountered in space-physics ows. Computational grids that automatically adapt to the solution of the
governing equations are e�ective in treating problems with disparate length scales, providing the required
spatial resolution while minimizing memory and storage requirements. A recent review of the impact of AMR
to space-physics simulations, numerical astrophysics and computational cosmology is given by Norman.15

An important aspect in the development of numerical algorithms on cubed-sphere grids is related to the
treatment of interfaces between adjacent grid blocks, along which grid lines have slope discontinuities. In
particular, the type of information shared between the blocks is important for the accuracy and robustness
of the numerical method. Several approaches have been proposed in the literature including the direct
information transfer from interior cells of neighbouring blocks to layers of overlapping \ghost" cells, the
one-dimensional interpolation known as cascade interpolation which makes use of some particular features
of the cubed-sphere grid,6 as well as a one-sided reconstruction followed by high-order Gaussian quadrature
to determine the average solution data within each ghost element.11 It should be obvious that within the
framework of Godunov-type �nite-volume methods the particular choice of interface treatment is ultimately
related to how accurate and robust the reconstruction procedure is to the presence of grid irregularities.

In the current work, the parallel block-based AMR framework recently proposed by Gao and Groth16 for
the prediction of turbulent non-premixed combusting ows is extended to space-plasma ows and adaptivity
on 3D cubed-sphere grids. Note that currently existing AMR frameworks for space-physics ows are generally
Cartesian or spherical-polar based and do not allow for arbitrary hexahedral meshes. Also, the solution
procedure described herein seems to be the �rst application of a block-based AMR algorithm to adaptivity
on 3D cubed-sphere meshes. Additionally, a parallel implicit AMR scheme based on the Newton-Krylov-
Schwarz algorithm proposed by Northrup and Groth for reacting ows17,18 is applied to the discretization of
the MHD equations on cubed-sphere grid topologies. In what follows, a detailed summary of the proposed
multi-block implementation of the cubed-sphere grid and the �nite-volume computational framework for
hexahedral elements is provided. The accuracy of the numerical procedure is then demonstrated with
analytical solutions and with comparisons to highly-accurate one-dimensional (1D) transonic ow solutions
obtained with the Newton Critical Point (NCP) method described in.19 Additionally, numerical results are
provided to illustrate the predictive capabilities of the AMR algorithm for magnetized and non-magnetized
space-plasma problems, such as spherically-symmetric transonic winds and supersonic bow-shock ows past
a sphere. Finally, a more realistic space-physics problem is considered by developing a global MHD model
similar to the one proposed by Groth et al.2 for the time-averaged solar wind at minimum solar activity.

II. Governing Equations

In this paper, numerical solutions of the three-dimensional ideal MHD equations for magnetized, inviscid,
fully ionized, quasi-neutral and compressible plasmas are considered, which can be expressed in the weak
conservation (divergence) form as

@U
@t

+ ~r � ~F = S + Q ; (1)
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where U, the conserved variable solution vector of density, �, momentum, �~V , magnetic �eld, ~B, and total
energy, �e, is written as

U =
h
�; �~V ; ~B; �e

iT
; (2)

the inviscid solution ux dyad, ~F, has the form

~F =

26664
�~V ;

�~V ~V + (p+ ~B � ~B=2)~~I � ~B ~B;
~V ~B � ~B~V ;

(�e+ p+ ~B � ~B=2)~V � (~V � ~B) ~B

37775 ; (3)

and S, the so-called Powell source term, is given by

S = �

26664
0
~B
~V

~V � ~B

37775r � ~B = S r � ~B ; (4)

the role of which is not only to make the MHD equations Galilean invariant and symmetrizable, as proved
by Godunov,20 but also to provide a numerically stable way of controlling the errors in the divergence free
condition, r� ~B = 0, a technique �rst advocated by Powell and co-workers.21 The column vector Q contains
di�erent volumetric sources arising from the physical modelling of the studied problem as explained below.
Note that Eqs.(1)-(4) represent the non-dimensional scaled form of the MHD equations following from the
non-dimensionalization described by, e.g., Powell et al.21 and by Groth et al.2 for the solar wind. In Eqs.(2)
and (3) the speci�c total plasma energy is e= p=(�( � 1)) + V 2=2 + B2=(2�), where p is the pressure, V
is the speed of the ow and B is the magnitude of the magnetic �eld. The speed of the ow is calculated
as V =

q
v2
x + v2

y + v2
z based on the three Cartesian velocity components vx, vy and vz in the x-, y-, and

z-coordinate directions. Similarly, the total magnetic �eld B=
q
B2
x +B2

y +B2
z follows from the Cartesian

components Bx, By and Bz of the magnetic vector �eld. The ideal gas equation of state p=�RT is assumed,
where T is the gas temperature and R = 1= is the gas constant. For a polytropic gas (thermally and
calorically perfect), the ratio of plasma speci�c heats, , is a constant and the speci�c heats are given by
Cv=1=( � 1) and Cp==( � 1). Unless otherwise speci�ed, di-atomic gases are used throughout this
paper which corresponds to =7=5=1:4.

Herein, the volumetric source term Q=QG+QR+QH+QO accounts for sources associated with external
gravitational �elds, QG, rotational e�ects, QR, e�ects of coronal heating processes and heat and radiation
transfer, QH , as well as others, QO. Note that QR and QH are used only for solar wind modelling whereas
QO is used for obtaining a MHD manufactured solution, as described in Sect. V.B.1. A spherically symmetric
external gravitational �eld ~g=�g�=r2êr is considered, where g� is the non-dimensional gravitational force,
r is the normalized distance to the solar or planet center, and êr indicates the radial unit vector. The non-
dimensional gravitational force g� =GM�=(lo a2

o) is computed based on the gravitational constant, G, the
solar or planetary mass, M�, the reference length scale, lo, and the ion-acoustic wave speed, ao, of a suitable
reference solution state. Thus, the volumetric source term QG, which accounts for the e�ect of gravitational
acceleration, is expressed as a function of the radial position vector, ~r=rêr, in the following vector form

QG = ��g�
r3

h
0 ; ~r ;~0 ; ~r � ~V

iT
: (5)

For solar wind ow calculations, the MHD equations are solved in a frame rotating around the z-
coordinate direction with an angular velocity ~
 = 
o(lo=ao)êz, where 
o is �xed and represents an average
angular velocity of the Sun (see2 for details). Thus, the column vector QR for this problem includes the
e�ects of centripetal and Coriolis acceleration forces and takes the following form

QR = ��

"
0 ;
h
~
�

�
~
� ~r

�i
� 2~
� ~V ;~0 ; ~V �

h
~
�

�
~
� ~r

�i#T

: (6)
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To reproduce a realistic solar wind using the ideal MHD description, which neglects the thermal con-
duction that is so important in the vicinity of the Sun,22 and to allow the use of an ideal plasma gas with
a polytropic index = 5=3 throughout the computational domain such that adiabatic cooling at larger he-
liospherical distances is correctly modelled, Groth et al.2 have added an extra source term to the energy
equation that mimics the e�ects of heat conduction and energy dissipation above the transition region such
that to reproduce solar wind features determined by in situ observations. This solar wind model with addi-
tional heating source term has proved its use in several numerical simulations of CME evolution2,23,24 and
it is used herein as well, in the same form. Thus, the heating source term QH is given by

QH = ��
�
0 ;~0 ;~0 ; �q

�
To � 

p

�

��T
; (7)

where q(x; y; z) is an exponentially-decaying speci�c heat capacity function of the radial distance from the
Sun and To = To(x; y; z) is a prespeci�ed \target" temperature which has a particular spatial distribution.23

The aforementioned equations can be simpli�ed by considering the magnetic �eld, ~B, equal to zero, in
which case the ow of the non-magnetized plasma reduces to the Euler equations in non-dimensional form.
This simpli�cation has been used in this work for part of the accuracy assessment of the 3D cubed-sphere
computational framework using analytical and highly-accurate one-dimensional numerical solutions.

III. Cubed-sphere Grids

Over the last decade various grid generation techniques have been applied to cubed-sphere grids in a
quest to obtain the right balance between the degree of orthogonality and uniformity of the grid so as to
improve the overall accuracy of the numerical scheme. Starting from the original non-orthogonal cubed-
sphere grids6 based on gnomonic projections, one can produce quasi-orthogonal meshes in exchange of some
grid uniformity by using gridding techniques such as elliptic solver generators. Using a particular �nite-
volume implementation, Putman and Lin4 evaluate the relative accuracy of four di�erent cubed-sphere grids
and conclude that despite its non-orthogonality the gnomonic grid achieves comparable accuracy to that of
the conformal and quasi-orthogonal elliptic and spring grids due to its improved uniformity. The key element
herein is the ability of the numerical scheme to handle non-orthogonal discretizations.

The generation of the cubed-sphere meshes used in this work is also based on gnomonic projection due
to its implementation simplicity and minimum impact on the application of a block-based mesh re�nement
algorithm to these tessellations. In particular, the angularly equidistant mapping described in6 is used to
generate the initial six blocks of our mesh. In this equiangular projection, the equiangular coordinates, � and
�, are de�ned individually for each of the six cubed-sphere sectors and chosen to span the range [��=4; �=4]
to describe completely the spherical geometry of a particular sector for a given radius, r. An example of a
cubed-sphere grid with six blocks of 16�16�30 cells generated in this way is shown in Fig. 1. Although
this example depicts a uniform mesh in the radial direction, stretching techniques can be employed in our
implementation to improve the radial mesh resolution in di�erent domain areas. Note also that the multi-
dimensional character of our �nite-volume numerical procedure (see Sect. IV.A) allows for a non-di�erential
treatment of the highly non-orthogonal regions near the spherical projections of the eight cube corners.

Although the level of 3D connectivity required by the cubed-sphere grid has not been explored in previous
AMR applications with our framework,16,17 the exible block-based hierarchical tree-like data structure of
the AMR implementation allows for natural accommodation of the complex topology of the multi-block
cubed-sphere grids. As such, a list of pointers provides access to the data of each logically Cartesian (i.e.
structured) solution block while the exible octree data structure keeps track of the re�nement level and
connectivity between the solution blocks in an unstructured way. In particular, an unstructured root-block
connectivity is used to de�ne the relative relationships among the six initial cubed-sphere blocks which lie
at the top-level of the octree and form the so-called root blocks. To uniquely de�ne the orientation of the
geometric elements of the hexahedral blocks as well as the inter-block connectivity, an abstract notation
based on cardinal directions is used. Correspondingly, Fig. 1(b) illustrates the face connectivity for each of
the four faces (denoted as West (W), South (S), East (E) and North (N)) of all six blocks that make up the
basic cubed-sphere grid. Although the root blocks (i.e. the initial six) do not have any neighbours at the
top and bottom, as those faces represent the physical boundaries of the domain and correspond to the outer
and inner spheres, this is not true in general for a block created in the process of mesh adaptation.

For computational domains that do not completely cover the sphere it is still possible to obtain a dis-
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(a) Cross-section of the cubed-sphere grid (b) Illustration of connectivity among blocks

Figure 1. Three-dimensional cubed-sphere grid with six blocks and depiction of inter-block connectivity.

Figure 2. Cubed-sphere grid formed by only �ve root blocks, for simulation on one side of the sphere. A cut in the
outer spherical geometry allows a better view of the inner spherical cap.

cretization based on the cubed-sphere approach by eliminating the unnecessary blocks and modifying accord-
ingly the range of values for the equiangular coordinates, � and �, of the included blocks. An example of such
a domain discretization is shown in Fig. 2, in which case one root block is removed and the planar domain
boundaries are tilted at 15� relative to the Cartesian (y,z) plane. Note that this mesh thus contains only �ve
blocks instead of the typical six associated with a complete cubed-sphere mesh. This extra exibility in our
implementation allowed us to better resolve interesting ow features occurring in front of the sphere with a
smaller domain and fewer computational cells as compared to the case in which the domain at the back of
the sphere would have been included.

IV. Parallel Implicit AMR Scheme

IV.A. Finite-Volume Discretization

Numerical solutions of Eq. 1 are sought here by applying a Godunov-type �nite-volume spatial discretiza-
tion procedure25 in conjunction with second-order polynomial reconstruction and Riemann-solver based ux
functions. Thus, the set of coupled ordinary di�erential equations (ODEs) resulting from the application of
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a �nite-volume formulation to Eq. 1 for cell (i; j; k) of a multi-block mesh composed of hexahedral compu-
tational cells is given by

dUi;j;k

dt
= � 1

Vi;j;k

NfX
m=1

�
~F � ~n �A

�
i;j;k;m

+ �Si;j;k + �Qi;j;k = Ri;j;k(U) ; (8)

where Vi;j;k is the cell volume, Nf is the total number of faces, and ~n and �A are the unit outward normal
vector and the area of cell-face m, respectively. The numerical uxes, ~F � ~n, at the mid point of each face
of cell (i; j; k) are determined from the solution of a Riemann problem. Given the left and right interface
solution states, Ul and Ur, an upwind numerical ux is evaluated by solving a Riemann problem in the
direction de�ned by the normal to the face. The initial solution states, Ul and Ur, are determined by
performing the multi-dimensional limited piecewise linear solution reconstruction proposed by Barth26 in
conjunction with either Barth-Jespersen26 or Venkatakrishnan27 slope limiters. The least-squares solution
of the linear reconstruction is based on a symmetric three-dimensional supporting stencil which generally
includes 27 cells in total. For a corner cell near the point where three blocks meet the reconstruction stencil
is formed with only 24 cells. Note that this multi-dimensional reconstruction procedure seems to perform
both accurately and robustly on cubed-sphere grids, thereby allowing the use of direct information transfer
between neighbouring blocks for inter-block communication and avoiding any special treatment of the cells
near block sector boundaries. In our computational studies the Lax-Friedrichs28 and HLLE,29 including
the modi�ed HLLE version due to Linde,30 approximate Riemann solvers have been used. The numerical
procedure outlined above results in a second-order upwind �nite-volume scheme. The average value of the
Powell source term, �Si;j;k, of cell (i; j; k) is computed with second-order accuracy by estimating the quantity
S based on the appropriate cell-averaged solution variables (i.e., the value of the reconstructed polynomial
at the cell centroid) and multiplying it with the following discretization for r � ~B:

�
r � ~B

�
i;j;k

=
1

Vi;j;k

NfX
m=1

�
~Bf � ~n �A

�
i;j;k;m

; (9)

where ~Bf is an interface magnetic �eld computed as the arithmetic mean of the left and right reconstructed

values, that is ~Bf =
�
~Bl + ~Br

�
=2. The contribution of all other volumetric sources to the solution residual,

Ri;j;k, is also evaluated with second-order accuracy by computing the average source term �Qi;j;k at the
centroid of cell (i; j; k) .

To obtain the steady-state solutions of the problems considered in this work, the coupled system of
nonlinear ODEs given by Eq. 8 has been solved using the parallel implicit Newton-Krylov-Schwarz algorithm
described in Sect. IV.C in combination with multi-stage explicit time-marching schemes31 for the start-up.

IV.B. Parallel Block-Based AMR

As previously mentioned, a exible block-based hierarchical data structure is used in conjunction with the
spatial discretization procedure described above to facilitate automatic solution-directed mesh adaptation
on body-�tted multi-block cubed-sphere mesh. The general AMR framework allows for anisotropic mesh
re�nement and an e�cient and highly scalable parallel implementation has been achieved via domain par-
titioning.17 Mesh adaptation is accomplished by re�ning and coarsening appropriate solution blocks. In
regions requiring increased cell resolution, a \parent" block is re�ned by dividing itself into eight \children"
or \o�spring". Each of the eight octants or sectors of a parent block becomes a new block having the
same number of cells as the parent and thereby doubling the cell resolution in the region of interest. The
additional mesh nodes in the new �ne blocks are inserted in-between the nodes inherited from the parent.
This process can be reversed in regions that are deemed over-resolved and eight children are coarsened into
a single parent block. The mesh re�nement is constrained such that the grid resolution changes by only
a factor of two between adjacent blocks. An important fact with regard to cubed-sphere grids is that the
unstructured root block connectivity allows naturally to have three blocks meeting in a corner, which is
the case at the eight weak singularities. Local re�nement and coarsening of the mesh is directed according
to the so-called physics-based re�nement criteria. In particular, for the test cases considered here, density
gradient and divergence and curl of velocity are used in the decision to re�ne or coarsen a solution block.
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(a) Cross-section of a cubed-sphere grid with one re�nement
level

(b) Complex cut into an adapted cubed-sphere grid with
a few re�nement levels

Figure 3. Illustration of three-dimensional block-based adapted cubed-sphere grids showing the block boundaries and
the associated meshes.

The solution procedure is used in conjunction with standard multi-grid-type restriction and prolongation
operators to evaluate the solution on all blocks created by the coarsening and division processes, respectively.

In order that the �nite-volume scheme can be applied to all blocks in a more independent manner, some
solution information is shared between adjacent blocks having common interfaces. This information is stored
in additional layers of overlapping \ghost" cells associated with each block. Two layers of ghost cells are
su�cient for second-order accuracy. At interfaces between blocks of equal resolution, these ghost cells are
simply assigned the solution values associated with the appropriate interior cells of the adjacent blocks. At
resolution changes, restriction and prolongation operators, similar to those used in block coarsening and
division, are employed to evaluate the ghost cell solution values. Within the AMR approach, additional
inter-block communication is also required at interfaces with resolution changes to strictly enforce the ux
conservation properties of the �nite-volume scheme.32,33 In particular, the interface uxes computed on more
re�ned blocks are used to correct the interface uxes computed on coarser neighbouring blocks and ensure
the solution uxes are conserved across block interfaces. A detailed description of our block-based AMR
algorithm for multi-block hexahedral mesh is provided in the recent work by Groth and co-workers.16,17

Two illustrative examples for the application of the AMR algorithm described above to cubed-sphere grids
are shown in Fig. 3. Note that the AMR procedure in the cubed sphere case can be used both to enhance local
solution features but also to improve the parallelization of the algorithm via domain decomposition with more
than six blocks. Note also that a body-�tted mesh approach is obtained in this case by simply ensuring that
newly inserted mesh nodes at the inner and outer spherical boundaries belong to the appropriate spherical
shell.

An e�cient domain partitioning is achieved in our implementation by distributing equally the solution
blocks making up the computational mesh among available processors, with more than one block permitted
per processor. The combination of this scalable domain decomposition and the e�ective AMR-based block-
multiplication procedure allowed us to perform e�cient parallel calculations for this research with more than
2,000 processor cores.

IV.C. Newton-Krylov-Schwarz (NKS) Method

A parallel implicit approach is used to �nd steady-state solutions to the discrete form of the MHD equations
governing space-plasma ows. In our approach, which is based on the formulation of Northrup and Groth17,18

for laminar reacting ows, Newton’s method is used to solve the coupled set of nonlinear ODEs given by
Eq. 8. A preconditioned generalized minimal residual (GMRES) method is then used to solve the resulting
system of linear equations at each step of the Newton algorithm. An additive Schwarz preconditioner is used
in combination with local block incomplete lower-upper (BILU) preconditioning to improve performance of
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the linear iterative solver. A short description of the approach outlined above is provided next.
Applying Newton’s method to the residual equation, R (U) = 0, the following linear system of equations�

@R
@U

�n
4Un = Jn�Un = �R(Un); (10)

is obtained for the solution change �Un = Un+1�Un at Newton iteration level n. Using an initial estimate,
Un = U0, successively improved estimates for the solution, Un+1, are obtained by solving Eq. 10 at each
step, n, of the Newton method, where J is the modi�ed residual Jacobian. The iterative procedure is repeated
until an appropriate norm of the solution residual is su�ciently small, i.e., jjR(Un+1)jj2 < �jjR(U0)jj2 where
� is some small parameter (typically, � � 10�12{10�10). Each step of Newton’s method requires the solution
of a system of linear equations of the form Jx = b. This system is large, sparse, and non-symmetric and
a preconditioned GMRES method34,35 is used for its solution. Preconditioning is required for the linear
solver to be e�ective. Right preconditioning of the form (JM�1)(Mx) = b is used here where M is the
preconditioning matrix. An additive Schwarz global preconditioner with variable overlap13,35,36 is used in
conjunction with local BILU preconditioners for each sub-domain. The local preconditioner is based on a
block ILU(f) or BILU(f) factorization of an approximate Jacobian for each subdomain. Here, f is the level
of �ll. Note that the approximate residual Jacobian incorporates analytical knowledge only about the ux
Jacobian, @~F

@U , and the gravitational source Jacobian, @QG

@U , and as such the current preconditioner may be
less e�ective in the presence of other sources. As the GMRES algorithm does not explicitly require the
evaluation of the global Jacobian matrix, J, a so-called \matrix-free" or \Jacobian-free" approach can be
adopted and is used here. Thus, numerical di�erentiation based on Fr�echet derivatives is used to approximate
the matrix-vector product JM�1x.

V. Numerical Results

A set of numerical results demonstrating the accuracy and capability of the aforementioned approach
is now described for a range of ow problems obtained with the magnetized and non-magnetized plasma.
Results for both �xed and AMR meshes are included.

V.A. Results for Non-Magnetized Plasma

V.A.1. Spherically Symmetric Transonic Wind

To illustrate the accuracy of the algorithm for solar wind-like solutions, the expansion of an inviscid com-
pressible non-magnetized plasma gas under the inuence of a gravitational �eld is now considered. Similar
test cases have been studied in19 and the method outlined there for one-dimensional problems has been used
here to provide a highly accurate reference solution for our 3D simulation. As in,19 normalization factors
have been used to provide non-dimensional variables. The spherically symmetric subsonic inow at the inner
sphere Ri= 1 is de�ned by the dimensionless density �= 5 and pressure p= 23. The gravitational invariant
has been chosen GM� = 14 which allows for a stationary transonic outow solution in which the radial
ow velocity is initially subsonic, then passes through a critical point where the local Mach number is one,
and subsequently takes on supersonic values beyond the critical radius. Although a crude approximation
of a real solar wind, the accurate capturing of the transonic behaviour outlined above is still representative
of this space-physics problem and it represents an important milestone towards performing more realistic
simulations.

The predicted Mach number distribution for this spherically symmetric transonic ow obtained on a
uniform cubed-sphere mesh M3 with 1,228,800 cells is shown in Fig. 4(a). In this case, 128 cells are used
to resolve the radial direction. Inow and outow boundary conditions have been speci�ed for this test
case and the solution of a Riemann problem at the boundaries ensures the correct propagation of the ow
characteristics, thereby allowing the solution residual to converge to machine accuracy. The result shows
that the steady-state transonic solution has been correctly captured and the Mach number contour lines are
close to circular indicating a good homogeneity of the ow solution at this grid resolution.

In Fig. 4(b) the ow properties of the predicted solution sampled along the X-axis are compared against
those obtained with the NCP method on a non-uniform grid so as to capture the sharp density and pressure
gradients near the inow boundary. Additionally, the radial velocity prediction in the same direction obtained
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(a) (b)

Figure 4. (a) Predicted Mach number distribution for spherically symmetric transonic wind obtained on the uniform
mesh M3 with 1,228,800 cells; and (b) variation of ow properties in the X-axis direction predicted on M3 are compared
against those obtained with the NCP method in one-dimension. The velocity prediction on meshes M1 and M2 (see
text) is also shown.

with the mesh M1 and M2 with 19,200 and 153,600 cells, respectively, has been also plotted. Note that
these two meshes have 32 and 64 cells, respectively, in the radial direction. It is quite noticeable that,
the solution signi�cantly improves as the mesh is re�ned and approaches in the convergence limit the 1D
transonic solution predicted by the NCP method. Note also that the density and pressure variables are
better predicted everywhere as compared to the radial velocity, most likely due to the fact that their values
have been imposed at the inow boundary.

To assess the capability of the computational framework to improve the prediction of ow properties
in regions of large solution gradients and the accuracy of the critical point location, the same transonic
wind problem has been reconsidered with automatic solution-directed mesh adaptation. The initial mesh in
this case consisted of 48 blocks, each of which with 6�6�16 cells. The contour plot of the Mach number
obtained on the re�ned mesh after �ve levels of re�nement applied to the 3D cubed-sphere grid is shown
in Fig. 5(a). The block boundaries shown in the same �gure indicate that a fairly symmetric re�nement is
automatically generated so as to improve the prediction of solution gradients near the inow boundary, and
demonstrate that the proposed AMR approach can be successfully applied to three-dimensional cubed-sphere
grids. However, a slight deviation from spherical symmetry also occurs most likely due to the fact that the
solution gradients used by the re�nement criteria are better resolved in those regions with smaller mesh
spacing, a direct consequence of the slight grid non-uniformity in a cubed-sphere mesh. Other re�nement
criteria which may avoid this are currently under investigation. The comparison of ow properties predicted
by the 1D NCP method and the 3D AMR algorithm described in this work along the X-axis are shown
in Fig. 5(b). It is quite obvious that the two solutions show excellent agreement in the transonic region
and only slight deviations are encountered close to the supersonic outow due to reduced resolution in the
adaptive grid. Note however that the under-resolved supersonic outow in this case is only a consequence
of the parameters used for the gradient-based re�nement criteria and does not represent a limitation of the
AMR framework.

V.A.2. Supersonic Flow Past Sphere

The application of the proposed AMR algorithm to the solution of supersonic ow past a sphere is now
considered to illustrate the predictive capabilities on 3D adaptive cubed-sphere grids. The free-stream Mach
number is M1 = 2:0 and the inner and outer spheres have been positioned at Ri=1 and Ro=32, respectively.
The predicted density distributions on the �nal mesh consisting of 10,835 blocks and 8,321,280 computational
cells is shown in Fig. 6. Each grid block consists of 8�8�12 cells and the AMR e�ciency after 7 levels of
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(a) (b)

Figure 5. (a) Predicted Mach number distribution for spherically symmetric transonic wind obtained on the adapted
cubed-sphere mesh after 5 re�nement levels and with 3,317,760 cells; and (b) the ow properties in the X-axis direction
are compared against those predicted with the NCP method.

re�nement is 0.993. The result clearly shows that the three-dimensional bow shock and shocks arising at
the base of the sphere are correctly identi�ed by the gradient-based re�nement criteria and well resolved by
the AMR procedure. However, the bow shock in front of the sphere is better resolved than on the sides,
where the gradients are smaller, pointing to the necessity to consider better re�nement criteria in the future.
Nevertheless, the application of the algorithm to this purely three-dimensional problem demonstrates the
validity of the proposed body-�tted block-based AMR approach to adaptation on cubed-sphere grids.

V.B. Results for Magnetized Plasma

V.B.1. Systematic Grid Convergence Studies Based on MHD Manufactured Solution

To assess the accuracy of the upwind �nite-volume scheme on cubed-sphere grids, uniform convergence
studies with a time-invariant axisymmetric manufactured solution for a magnetized gas at supersonic inow
conditions have been performed. In this problem, the volumetric source term Q in Eq.(1) includes only the

Figure 6. Predicted density distribution for M=2:0 ow past a sphere obtained on the �nal re�ned AMR mesh with
10,835 blocks. The block boundaries of the multi-block AMR grid are shown with solid line on the interior spherical
surface and with shaded lines in the rest of the domain. A few streamlines are also shown.
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Figure 7. L1, L2, and L1 error norms in the predicted solution density for the manufactured MHD solution described
in the text.

term QO, which represents the analytical residual obtained for the following exact solution:

U(x; y; z) =
h
r�

5
2 ; xp

r
; yp

r
; zp

r
+ �r

5
2 ; x

r3 ;
y
r3 ;

z
r3 + �; r�

5
2

iT
; (11)

where � = 0:017 is a perturbation parameter chosen such that the solution has signi�cant latitudinal variation
yet the ow remains free of any discontinuities. As can be easily observed from Eq.(11), the velocity and the
magnetic �elds have been chosen aligned everywhere such that ~V�~B = 0 and therefore, no source terms arise
in the induction equation. Moreover, the magnetic �eld has been constructed by considering a background
inverse squared radial function, ~B0 = r�2êr, plus a perturbation �eld, ~B1 = rf , derived from the �rst-order
spherical harmonic function f(x; y; z) = �z, and thus to automatically satisfy the divergence free condition.
This magnetic �eld is also irrotational and consequently, the magnetic pressure and magnetic tension in the
momentum equation are zero.

Thus, the �nal form of QO for a di-atomic gas is a function only of the space coordinates and can be
written as

QO =

2666666664

0;
1
2xr
� 5

2
�
r�1 � 5r�2 � �z

�
;

1
2yr
� 5

2
�
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�
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1
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� 5

2
�
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�
+ 5
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� 1
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1
2 ;

~0;
1
2r
�2 + �z(3:5r�1 + 2�z) + (�r)2

2 (7 + 5�rz)

3777777775
: (12)

The computational domain used for this convergence study is de�ned by the inner and outer spheres of ra-
dius Ri=2 and Ro=3:5, respectively, chosen such that the ow remains superfast everywhere. Consequently,
the inow boundary condition is speci�ed based on the exact solution and the outow is imposed based on
linear extrapolation. These particular choices greatly reduce the time required to obtain the converged
numerical solution with machine accuracy.

The L1, L2, and L1 norms of the error in the predicted solution density at cell centroids obtained on a
series of grids ranging in size from 8�8�10 to 256�256�320 cells for each of the six cubed-sphere blocks, which
corresponds to 3,840 and 125,829,120 total cells, respectively, are given in Fig. 7 for this supersonic ow. The
results show that the second-order theoretical accuracy for this smooth ow is achieved in all error norms as
the mesh is re�ned, indicating that the �nite-volume algorithm handles accurately the non-orthogonal grid
near the projection of the cube corners and at sector boundaries. As the mesh is re�ned, the slopes of the
L1-, L2- and L1-norms approach in the asymptotic limit -2.06, -2.10 and -2.05, respectively.

This test problem has also been used to determine the potential savings generated by the use of the NKS
implicit algorithm over an explicit solve. A comparison between the computational time and the equivalent
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Figure 8. Comparison of explicit and NKS implicit algorithms for the number of equivalent residual evaluations and the
computational time, obtained on Intel Xeon E5540 architecture, required to achieve a speci�c L2-norm of the solution
residual.

number of solution residual (i.e., R (U)) evaluations associated with each of the two algorithms versus the L2-
norm of the solution residual is depicted in Fig. 8 for a cubed-sphere computational mesh with 48 16�16�20
blocks and 245,760 cells. The results show that for relatively low norms of the solution residual (i.e., on the
order of 10�6�10�8) the implicit NKS algorithm improves the computational e�ciency of the calculation
by about a third of the CPU time required by an explicit solve. Improved computational e�ciency can be
expected from the NKS algorithm for this problem when used in conjunction with a more e�ective GMRES
preconditioner that accounts for all the source terms present, however this was not the focus of the current
work and will be considered in the future. Nevertheless, the current study highlights some of the potential
computational savings o�ered by the use of the implicit formulation in our 3D cubed-sphere framework.

V.B.2. Magnetically Dominated MHD Bow Shock

The application of the proposed AMR algorithm to the solution of uniform supersonic ow past a sphere
is considered again. In this case, 3D MHD bow-shock ows around a perfectly conducting sphere and
corresponding to magnetically dominated upstream conditions are investigated in conjunction with solution-
adaptive cubed-sphere grids. The inow parameters used for this problem have been selected from37 and
are �= 1, p= 0:2, Bx = 1, By = 0, vx = 1:4943 and vy = 0:1307, which correspond to an upstream plasma
characterized by �= 2p=B2 = 0:4, an Alfv�enic Mach number MAx= 1:49 along the upstream magnetic �eld
lines and an angle �vB = 5� between the upstream velocity and magnetic vector �elds. As shown in,37 this
particular upstream con�guration gives rise to 3D intermediate shocks and multiple interacting shock fronts,
that are sought here to be well resolved by an adaptive mesh re�nement procedure.

The computational domain for solving this problem is similar to the one depicted in Fig. 2 and de�ned
by the inner and outer spheres of radius Ri = 1 and Ro = 8. Reection boundary conditions (BCs) are
imposed along the inner sphere while a free-stream boundary condition is applied to the outer one. Linear
extrapolation BCs are implemented for the back panels of the outer boundary based on the fact that the ow
is superfast at those locations and all eight characteristic waves leave the domain. The initial multi-block
grid for this problem consists of a total of 20 8�8�10 blocks which are equally divided among four spherical
radial cuts, each of which contains �ve blocks.

The predicted Mach number and density distribution in the Cartesian (x,y) plane obtained after 7
re�nement levels on the �nal re�ned mesh consisting of 22,693 blocks and 14,523,520 computational cells is
shown in Fig. 9. The results show that all shocks arising in front of the sphere are captured by the re�nement
criteria and are well resolved by the 3D adaptation procedure on cubed-sphere grids, especially in the region
corresponding to the bifurcation of the shocks.
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(a) (b)

Figure 9. Predicted (a) acoustic Mach number and (b) density distribution in the Cartesian (x,y) plane for a magneti-
cally dominated supersonic ow past a sphere obtained on the adapted cubed-sphere mesh after 7 re�nement levels and
with 22,693 blocks and 14,523,520 computational cells, respectively. Additionally, the block boundaries are depicted
with solid black lines.

V.B.3. Time-Invariant Solar Wind Solution

Finally, the application of the algorithm to a more realistic space-physics problem is considered. Global
MHD models for solar wind modelling and CME propagation have been already developed and investigated
in di�erent con�gurations.1,2, 23,38,39 Thus, the global MHD simulation attempted herein does not aim
to improve the predictions already reported for this very challenging space-physics problem, but rather to
represent a more comprehensive test for the cubed-sphere simulation framework proposed herein. As such,
it represents an initial step towards developing more sophisticated models for the solar wind and carrying
out more advanced and complete studies with our algorithm.

A numerical solution of the \steady" solar wind representative of solar minimum conditions (i.e., for
the quiet Sun) has been obtained in this research based on the global 3D MHD model of Groth et al.2

Di�erent from the ideal MHD formulation employed in2 the equations solved in the current implementation
do not include a separation of the magnetic �eld into intrinsic and deviatoric components, an approach �rst
employed by Tanaka40 to alleviate the necessity of resolving the often large spatial magnetic �eld gradients
present in space physics. The steady-state solar wind from 1 Rs (i.e., solar radius) to nearly 1/2 AU is
modelled here by assuming that, at 1 Rs, the inner solar corona is a large, rigidly rotating reservoir of
hot plasma with an embedded magnetic multipole �eld described by a multipole expansion that includes
terms up to the octupole moment (see2,23 for details). The plasma temperature (the sum of the ion and
electron temperatures) of the reservoir is assumed to be Ts = 2:0�106 K, and the plasma density is taken
to be 1:5�1014 m�3. The solar magnetic �eld is azimuthally symmetric about the magnetic axis which is
aligned with the rotational direction, and both axes coincide with the Cartesian z-coordinate direction. The
multipole expansion has been chosen such as to obtain a maximum �eld strength of 8.4 G at the magnetic
poles and a strength of 2.2 G at the solar magnetic equator. The single-uid plasma has the average particle
mass taken to be �=0:6mp to account for the small quantity of helium present in the mixture,22 where mp

is the proton mass, and a polytropic index  = 5=3 is used everywhere in the domain.
For this numerical simulation the computational domain was the spherical shell de�ned in the rotating

frame by the inner and outer spheres of radius Ri = 1 and Ro = 100, which represent distances normalized
by the solar radius, Rs. The cubed-sphere computational grid was stretched with a higher density of grid
cells towards the inner sphere and consisted of 48 self-similar 24�24�26 blocks and 718,848 cells, providing
an average angular resolution of 3.75� and a minimum cell size at the solar surface of 1/10 Rs. Boundary
conditions are implemented at the inner sphere, where the ow is subslow, according to the propagation of
the characteristics, to conservation principles for radial mass and magnetic uxes, and to physical conditions
for the directions of velocity and magnetic �eld vectors in perfectly conducting uids (see, e.g.,39 for details).
Moreover, linear extrapolation of density and pressure gradients at inner boundary has been used and plasma
was permitted to freely leave the reservoir, but no \backow" was allowed. At the outer boundary, the ow
is superfast and consequently all variables are simply extrapolated. The initial condition for the simulation
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Figure 10. Representation of the steady-state solar wind solution in the (y,z) meridional plane. The colour shading

represents the magnitude of the velocity vector, jj~V jj2, in km=s and the solid lines are magnetic �eld lines coloured
based on the magnitude of log(B). The magnetic polarity chosen for this problem is also indicated in the �gure.

was provided by Parker’s isothermal solar wind41 and the magnetic �eld variation has been obtained with
the aforementioned multipole expansion.2

Figure 10 shows a meridional cut through the numerical solution of the steady-state solar wind obtained
using the algorithm described above. The shading represents the magnitude of the velocity �eld, jj~V jj2, and
the solid lines correspond to the predicted �eld lines which have been coloured based on the logarithm of
the magnitude of the magnetic �eld, log(B). Inspection of Fig. 10 reveals a bimodal outow pattern with
slow wind leaving the Sun near the equator, and high-speed solar wind of around 800 km=s in the regions of
open magnetic �eld lines emanating from the coronal holes. This is an important feature of the solar wind
which has been con�rmed by in situ observations.2 Other noticeable features present in the solution are the
formation of a \helmet streamer" con�guration with associated neutral point and equatorial current sheet.
It can also be observed that in the regions of close �eld lines near the solar surface the predicted plasma
velocity is very small and subsonic, in the range of 50-100 km=s.

VI. Discussion and Concluding Remarks

A parallel block-based adaptive simulation framework has been proposed for three-dimensional cubed-
sphere grids and space-physics ows. The method represents an extension of the recently proposed AMR
approach for combusting ows by Gao and Groth.16 The gnomonic cubed-sphere grid in conjunction with
body-�tted block-based AMR has been shown to provide a suitable framework for multi-dimensional �nite-
volume discretization on three-dimensional spherical shells. The approach calls for better re�nement criteria
which are less sensitive to the non-uniformity of the cubed-sphere grid and reliably capture three-dimensional
ow features. The accuracy of the algorithm has been assessed based on a MHD manufactured exact
solution and shown to achieve the theoretical second-order convergence. Moreover, the ability of the scheme
to adequately handle and resolve strong discontinuities/shocks has been demonstrated. Furthermore, the
predictive capabilities of the proposed framework have been illustrated for simple but relevant transonic
solutions obtained for non-magnetized space plasmas. The algorithm has been shown to provide accurate
predictions for such problems as compared to highly accurate one-dimensional results. Finally, a global 3D
MHD model has been applied on cubed-sphere mesh to obtain steady-state solar wind predictions to distances
up to 1=2 AU. The last case study represents a �rst attempt towards performing more complex and detailed
investigations of space-physics problems with the proposed framework, including CME propagation from
the solar surface out to distances beyond 1 AU, on three-dimensional time-dependent adaptive cubed-sphere
grids. Furthermore, future research will involve application of the algorithm to other complex space-physics
problems, the evaluation of the parallel performance of the algorithm on thousands of computing cores,
the formulation of more e�ective GMRES preconditioners for the NKS algorithm and the extension of the
numerical scheme to high-order accuracy (i.e., accuracy higher than second-order).
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