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A high-order central essentially non-oscillatory (CENO) �nite-volume scheme in com-
bination with a block-based adaptive mesh re�nement (AMR) algorithm is proposed for
solution of the Navier-Stokes equations on body-�tted multi-block mesh. The spatial dis-
cretization of the inviscid (hyperbolic) term is based on a hybrid solution reconstruction
procedure that combines an unlimited high-order k-exact least-squares reconstruction fol-
lowing from a �xed central stencil with a monotonicity preserving limited linear recon-
struction algorithm. The unlimited k-exact reconstruction is used for cells in which the
solution is fully resolved and the limited lower-order counterpart is applied to computa-
tional cells with under-resolved/discontinuous solution content. Switching in the hybrid
procedure is determined by a solution smoothness indicator. The hybrid approach avoids
the complexity associated with other ENO schemes that require reconstruction on multiple
stencils and therefore, would seem to provide high-order accuracy at lower computational
cost and to be very well suited for extension to unstructured meshes. The high-order vis-
cous (elliptic) uxes are computed based on a k-order accurate gradient derived from the
same unlimited high-order reconstructions. A somewhat novel h-re�nement criterion based
on the solution smoothness indicator is used to direct the steady and unsteady mesh adap-
tation. The proposed numerical procedure is thoroughly analyzed for advection-di�usion
problems characterized by a full range of P�eclet numbers, and its predictive capabilities are
demonstrated for several laminar ows. The ability of the scheme to accurately represent
solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth
solution content is shown. Moreover, the ability to perform mesh re�nement in regions
of smooth but under-resolved and/or non-smooth solution content to achieve the desired
resolution is also demonstrated.

I. Introduction and Motivation

In spite of the rapid advances in high performance computing, there are a number of physically complex
ows for which the computational costs of numerical solutions methods can make the simulations of such
ows prohibitive and/or non-routine. Such ows would include but are certainly not limited to compressible
turbulent and turbulent reactive ows through aerospace propulsion systems. It is felt that e�ective numerical
solution methods for such complex ows may require both high-order discretizations and adaptive mesh
re�nement (AMR). Moin and Krishnan1 point out that even ENO schemes as high as sixth-order can be too
dissipative for the prediction of shock/turbulence interactions without re�nement of the mesh in the vicinity
of the shock wave and, in other work, Jameson2 has shown that high-order methods can be considerably
more e�cient than low-order AMR schemes for ows containing structures such as vortices, eddies and/or
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turbulence and concluded that high-order schemes combined with AMR may provide very e�ective means
of obtaining high solution accuracy.

In the last decades, there have been numerous studies of high-order schemes. For hyperbolic conservation
laws and/or compressible ow simulations, the challenge has been to achieve accurate discretizations while
coping in a reliable and robust fashion with discontinuities and shocks. The essentially non-oscillatory (ENO)
�nite-volume schemes �rst proposed by Harten et al.3 provide robust frameworks for high-order �nite-volume
discretizations of hyperbolic systems. The original ENO scheme of Harten et al. is based on an adaptive-
stencil strategy, in which the stencil leading to the \smoothest" reconstruction is selected and thereby stencils
containing discontinuities are avoided. Although original developed for structured regular mesh, Abgrall4

and Sonar5 have since extended the ENO concept for application to unstructured grids. In addition, so-
called weighted ENO (WENO) schemes have been developed for both structured and unstructured meshes.6{8

Nevertheless, the di�culty with these high-order approaches has been the extension of the method to multi-
dimensional problems and large systems of couple partial di�erential equations (PDEs). The computational
challenges are primarily related to the stencil selection, particularly in the case of unstructured grids,4,5, 9, 10

and the poor conditioning of the linear systems that de�ne the reconstructions for these stencils.9,10 The
requirement of using a di�erent stencil for each ow variable is also somewhat problematic, particularly
for systems with many dependent solution variables. Other perceived challenges associated with ENO and
WENO high-order �nite-volume schemes are the relatively large non-compact stencils which can give rise to
di�culties with the application of boundary data and e�cicient parallel implementation of the algorithm.
Although successful implementations of this class of �nite-volume scheme have been developed, in general the
computational costs and complexity of the schemes have limited their widespread application. Nevertheless,
combinations of high-order ENO and WENO schemes with AMR for both structured and unstructured
meshes have been developed and applied to engineering problems, such as the prediction of high-speed ows
as described in the recent work by Wolf and Azevedo.11

Other researchers have considered more exible high-order �nite-volume schemes, which may be more
easily extended to multi-dimensional problems and to unstructured meshes. For example, Barth and Fredrick-
son12,13 developed a high-order �nite-volume approach for unstructured mesh based on k-exact least-squares
reconstruction. Following on their work, Ollivier-Gooch14,15 has more recently proposed a data-dependent
weighted least-squares reconstruction procedure (DD-ENO), that uses a �xed stencil and seeks to enforce
monotonicity of the scheme by introducing data-dependent weights for each point in the stencil. To circum-
vent some de�ciencies in the DD-ENO procedure, Ollivier-Gooch et al. reconsidered the use of non-linear
limiters for controlling oscillations and de�ned a high-order limiting strategy in combination with a k-exact
reconstruction procedure.16,17 Capdeville recently revisited the DD-ENO concept and formulated a compact
Hermite least-square monotone (HLSM) reconstruction scheme in one-dimension.18 Additionally, Colella et
al.19 have developed a high-order �nite-volume method in mapped coordinates for discretization of linear
elliptic and hyperbolic PDEs. Their approach has been already extended to nonlinear systems of hyperbolic
conservation laws on locally-re�ned grids by McCorquodale and Colella.20 To suppress undesirable solution
oscillations, the latter authors applied a fairly elaborate combination of slope limiters, slope attening, and
arti�cial viscosity. Moreover, their proposed multidimensional limiting strategy employs a modi�ed version of
the one-dimensional limiter formulated by Colella and Sekora21 for preserving accuracy at smooth extrema.

High-order �nite-element schemes have also been considered for problems involving discontinuities. In
particular, the class of schemes now generally referred to as discontinuous Galerkin (DG) schemes have
gained in popularity. Cockburn et al.22{24 were the �rst to formulate a family of high-order total varia-
tion bounded schemes for nonlinear systems of conservation laws referred to as Runge-Kutta discontinuous
Galerkin (RKDG) methods. By combining elements from the �nite-element and �nite-volume methods,
Cockburn et al. have obtained a family of numerical schemes that improve the data locality and yet allow
for discontinuous solution spaces. Hence, a exible high-order spatial discretization with a greatly reduced
stencil size can be formulated. The reduced stencil is bene�cial for both boundary-condition implementation
and algorithm parallelization. To ensure non-oscillatory properties of the predicted solutions near discon-
tinuities and/or large gradients, DG methods have been considered in combination with di�erent limiting
strategies, such as TVB-24 and WENO-type25 limiters. Additionally, Barter and Darmofal26 formulated
a DG scheme with a PDE-based arti�cial viscosity model to avoid spurious numerical oscillations in the
proximity of shocks. Xu et al.27 have also recently applied a hierarchical reconstruction (HR) strategy to
DG methods in combination with a WENO-type linear reconstruction in each hierarchical level. Despite
the interest generated by DG methods over the last decade, high-order DG schemes do su�er from a more
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restrictive time-step stability limit that is exacerbated as the solution order is increased28 and from a rela-
tively high computational cost per cell associated with the solution of the additional unknowns within each
cell. The former can be particularly problematic for explicit time-marching schemes. Partly in response to
the latter, it is noted that Dumbser et al.29 have recently formulated a uni�ed framework for �nite-volume
and discontinuous Galerkin methods on unstructured mesh which introduces a new family of reconstructed
DG schemes denoted as PNPM methods.

In other work, Wang et al.30,31 and Liu et al.32 have proposed variants of the DG formulation, referred
to as spectral volume (SV) and spectral di�erence (SD) methods, for obtaining high-order solutions to
hyperbolic conservation equations. In fact, DG, SV and SD methods share many similarities, the main
di�erence consisting in how the degrees of freedom of each scheme are chosen and updated. A new perspective
regarding the DG, SV and SD methods has been introduced by Huynh,33 who was able to recover all these
methods in one-space dimension as particular cases of a general formulation based on a ux reconstruction
(FR) approach to high-order schemes for hyperbolic laws. For dealing with undesirable solution oscillations,
the SV and SD methods have been usually considered in combination with total variation diminishing
(TVD) limiting strategies. However, Yang and Wang34,35 have recently combined a SD scheme for arbitrary
unstructured grids with a compact high-order hierarchical moment limiter. More recently, Wang and Gao36,37

have generalized Huynh’s ux reconstruction approach to mixed grids and formulated a unifying lifting
collocation penalty (LCP) method for Euler equations and applied it to smooth ows. An advantage of their
uni�ed formulation is that the relative cost of LCP method with respect to a DG scheme was inferred easily
by simply comparing the main operations required for the two algorithms. In addition, the newly proposed
LCP formulation is shown to be more e�cient in both memory and CPU time than DG methods. Alternative
high-order schemes, such as residual distribution schemes38{41 and �nite-di�erence algorithms,42 have also
been developed and are currently being pursued for application on either unstructured and/or multi-block
structured meshes.

High-order schemes for PDEs governing di�usion processes and/or having a more elliptic nature have also
been considered. In these cases, it is desirable that the discretization of the elliptic operator remain accurate
while satisfying a maximum principle, even on stretched/distorted meshes.43,44 Standard lower-order spatial
discretizations may not even always have these characteristics. Sun et al.45 and May and Jameson46,47 have
considered the applications of the SV and SD methods, respectively, to viscous ows. The latter have also
applied their scheme in combination with AMR to the Navier-Stokes system of equations. More recently,
Gao and Wang48 and Haga et al.49 have applied the LCP formulation to Navier-Stokes equations on two-
and three-dimensional mixed grids, respectively. Barad and Colella have proposed a fourth-order-accurate
AMR scheme for Poisson’s equation50 and Ollivier-Gooch and van Altena51 describe a general high-order
framework for the solution of the advection-di�usion equation on unstructured mesh. In other work on
di�usion problems on unstructured grids, van Leer et al.52,53 proposed a recovery-based DG method that
eliminates the introduction of ad hoc penalty or coupling terms found in traditional DG methods. More
recently, Oliver and Darmofal54 applied the DG with a PDE-based arti�cial viscosity model to aerodynamic
ows governed by RANS equations. Finally, De Rango and Zingg55 have considered the application of
high-order �nite-di�erence methods to the prediction of turbulent aerodynamic ows.

In spite of the advances in high-order accurate methods, there is still no consensus for a robust, e�-
cient, and high-order accurate scheme that fully deals with all of the aforementioned issues and is applicable
to more arbitrary meshes and complex boundary-condition problems. In the current work, the high-order
central ENO (CENO) cell-centred �nite-volume scheme proposed by Ivan and Groth56 for inviscid ows is
extended to the solution of the Navier-Stokes equations governing two-dimensional, compressible, viscous
ows on body-�tted multi-block mesh. The CENO discretization of the inviscid (hyperbolic) ux is based
on a hybrid solution reconstruction procedure that combines the unlimited high-order k-exact least-squares
reconstruction technique of Barth12 based on a �xed central stencil with a monotonicity preserving limited
piecewise linear least-squares reconstruction algorithm.12 Switching in the hybrid procedure is determined
by a solution smoothness indicator that speci�es whether or not the solution is resolved on the computa-
tional mesh. The limited reconstruction procedure is applied to computational cells with discontinuous and
under-resolved solution content and the unlimited k-exact reconstruction scheme is used for cells in which
the solution is fully resolved. In order to guarantee a global k-order accurate numerical scheme on arbi-
trary meshes, the proposed discretization of the viscous (elliptic) ux is based on a k-order accurate average
gradient derived from a k+1-order accurate reconstruction (one order higher than what would be normally
required to obtain a k-order accurate inviscid ux). This same solution reconstruction is used in comput-
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ing both the inviscid and elliptic uxes. The high-order �nite-volume CENO scheme is combined with a
exible block-based hierarchical data structure to facilitate parallel implementation via domain decomposi-
tion and automatic solution-directed mesh adaptation on body-�tted multi-block quadrilateral mesh.57 An
h-re�nement criterion based on the solution smoothness indicator to control the re�nement of the multi-block
AMR mesh.

In what follows, the proposed high-order CENO �nite-volume method, block-based AMR procedure, and
high-order treatment of boundary data are all described. The properties of the proposed CENO scheme are
investigated by comparing numerical solutions to analytical solutions for a range of problems pertaining to the
simple advection-di�usion model equation. The accuracy of the hyperbolic ux discretization for systems
of equations is demonstrated for solutions of the Euler equations governing inviscid ows. Furthermore,
the predictive capabilities of the proposed approach for laminar viscous ows governed by the full Navier-
Stokes equations are demonstrated by comparing numerical predictions to numerical and experimental results
reported in the literature for ow past a circular cylinder. Finally, results obtained with the CENO scheme
in conjunction with AMR are also described to illustrate the capabilities of the proposed combined approach.

II. Conservation Equations

The proposed high-order �nite-volume method is applied herein to solutions of both the scalar advection-
di�usion and Navier-Stokes equations governing laminar compressible ows. The advection-di�usion equa-
tion is a very convenient mathematical model for the development of numerical solution algorithms for it
contains many of the features of more complicated PDEs, yet it retains a simplicity that readily permits
direct analysis. The particular form considered herein is given by

@u

@t|{z}
Transient term

+ ~r � (~V (~r; u) u)| {z }
Advective term

= ~r � (�(~r; u) ~ru)| {z }
Di�usive term

+ �(~r; u)| {z }
Source term

; (1)

where t is the time, u is the solution (a scalar quantity), ~V is the advection velocity vector, � is the di�usion
coe�cient, and � is a non-linear source term. In the most general case, ~V and � are functions of the
position vector, ~r, as well as the solution, u. Based on the relative magnitudes of the advective and di�usive
uxes, the solutions of this equation can range from those having a more hyperbolic nature and governed
by wave propagation phenomena to those having a more elliptic nature and governed by di�usive processes.
Therefore, it is very desirable that numerical schemes for the solution of this equation do not introduce
excessive arti�cial dissipation, large dispersive error, and spurious oscillations arising from the discretization
of the hyperbolic term, and provide accurate discretizations of the elliptic term while satisfying a maximum
principle.58,59

The Navier-Stokes equations governing viscous compressible gaseous ows can be written generally in
the following form:

@U
@t

+ ~r � ~F =
@U
@t

+ ~r � ~FH (U) + ~r � ~FE

�
U; ~rU

�
= 0 ; (2)

where U is the vector of conserved solution variables and ~F is the solution ux dyad. The solution ux,
~F, is the sum of a hyperbolic (inviscid) term, ~FH, which depends on the solution vector and accounts for
transport by wave phenomena and an elliptic (viscous) term, ~FE, associated with di�usion processes and
therefore, dependent on both the solution vector and its gradient. For two-dimensional planar ows, the
solution vector, U, is given by

U =
h
�; �vx; �vy; �e

iT
; (3)

where � is the gas density, vx and vy are the velocity components in the x- and y-coordinate directions,
e = p=(�(�1)) + (v2

x+ v2
y)=2 is the speci�c total energy, p = �RT is the pressure, T is the gas temperature,

R is the gas constant,  is the speci�c heat ratio. The components of the hyperbolic ux dyad, ~FH(F;G),
and elliptic ux dyad, ~FE(Fv;Gv), in this case are then given by

F = [�vx; �v2
x + p; �vxvy; vx(�e+ p)]T ; G = [�vy; �vxvy ; �v2

y + p; vy(�e+ p)]T ; (4)

and
Fv = �[0; �xx; �yx; vx�xx + vy�xy � qx]T ; Gv = �[0; �xy; �yy; vx�yx + vy�yy � qy]T : (5)
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(a) Geometric elements near
curved boundaries

(b) A straight-edge quadrilateral (c) A curved-edge quadrilateral

Figure 1. (a) Schematic representation of geometric elements at the boundaries of a body-�tted quadrilateral mesh;
and (b) the straight-edge and (c) the curved-edge convex quadrilateral elements considered in this work. Cardinal

directions (i.e., N, S, E, W) relative to the element centroid, ~Xi;j , are used to identify each face and node of the
quadrilateral. The �gure also shows the unit outward vector normal, ~n, at a given location and the length of a face, �‘.

The components �xx, �yy and �xy of the uid stress tensor, ~~� , are given by ~~� = 2�(~~S � 1
3

~~I ~r � ~V ), where �

is the dynamic viscosity and ~~S= 1
2

h
~r~V + (~r~V )T

i
is the strain rate tensor. The heat ux vector, ~q (qx; qy),

follows from Fourier’s law of heat conduction and is given by ~q = ��~rT ; where � is the thermal conductivity.
For a calorically perfect polytropic gas, the ratio of speci�c heats, , is a constant and the speci�c heats are
given by Cv = R=( � 1) and Cp = R=( � 1). All of the results included herein correspond to diatomic
gases for which =1:4.

III. High-Order CENO Finite-Volume Scheme

In the present work, a high-order central essentially non-oscillatory (CENO) cell-centred �nite-volume
scheme is proposed for solving the mixed type system of conservation laws given by Eq. (2) on body-�tted
multi-block quadrilateral mesh in conjunction with a block-based adaptive mesh re�nement technique. Use
of this particular grid structure and AMR strategy has been shown to allow highly e�cient and scalable
parallel implementations of �nite-volume methods.57

Each single-block mesh constituent of the body-�tted multi-block grid has associated a structured quadri-
lateral grid and the boundary geometry de�ned by four body-�tted curved boundaries which are provided
as piecewise Lagrange polynomial splines of an order consistent with that of the �nite-volume numerical
scheme. Note that inter-block boundaries are always represented by straight segments and only the physical
block boundaries need to be represented by body-�tted splines. A schematic representation of geometric el-
ements encountered near the curved geometric boundaries is depicted in Fig. 1(a). The convex quadrilateral
element types considered in this work are shown in Fig. 1(b) and (c). A distinctive feature of the current
algorithm as compared to previous lower-order implementations on similar meshes57,60{62 is the high-order
treatment of curved physical boundaries, obtained through the introduction of quadrilaterals having curved
edges as shown in Fig. 1(c), in which the connector between any two adjacent boundary mesh nodes is
a piecewise-smooth curved line. Note that straight-edge quadrilaterals are always used for interior cells
whereas curved-edged quadrilaterals may be required for representing the boundaries of body-�tted mesh
with high-order accuracy.

III.A. Semi-Discrete Form

The �nite-volume method used herein starts from the integral form of Eq. (2) for a two-dimensional polygonal
control volume, (i; j), and makes use of the divergence theorem to arrive at the following semi-discrete form:

dUi;j

dt
= � 1

Ai;j

NfX
l=1

NGX
m=1

�
!~F � ~n �‘

�
i;j;l;m

= Ri;j(U) ; (6)
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where
Ui;j =

1
Ai;j

ZZ
Ai;j

U da (7)

is the average value of the conserved solution vector for cell (i; j), the vector Ri;j is the so-called residual
vector, and Ai;j is the area of the cell. ANG-point Gaussian quadrature integration procedure is used evaluate
the solution ux along each of the Nf faces of the cell where ! is the quadrature weighting coe�cient and
�‘ and ~n are the length of the cell face and unit vector normal to the cell face or edge, respectively.

Equation (6) describes the time evolution of the solution, U. The proposed �nite-volume scheme involves
three major steps when integrating this equation forward in time: 1) reconstruction in which an approx-
imation to U( ~X) is obtained within each computational cell; 2) residual evaluation which the residual
vector, R, is evaluated in each cell based on the reconstructed solution; and 3) time integration, in which
a time-marching scheme is used to advance the solution to the next time level based on the solution residual.
The remainder of this section presents the details each of these steps with an emphasis on the methodology
used for obtaining high-order solutions.

III.B. Explicit Temporal Discretization Methods

As the e�ciency of the temporal descritization was not the focus here, the time integration of Eq. (6) is
carried out using standard explicit time-marching schemes. For steady, time-invariant problems, for which
Ri;j(U) = 0, explicit optimally-smoothing multi-stage scheme developed by van Leer et al.63,64 were used.
For time-accurate calculations, the time marching scheme was matched with the spatial accuracy and either
a two- or four-stage standard Runge-Kutta scheme65{67 was used, depending on the accuracy of the spatial
reconstruction.

III.C. Numerical Residual Evaluation

High-order accurate solutions of Eq. (6) are sought here in two space dimensions by applying a high-order
spatial discretization to the solution residual vector, Ri;j , in conjunction with high-order polynomial solution
reconstruction, upwind discretization of the hyperbolic ux and centrally weighting discretization of the
elliptic ux. Thus, the high-order CENO numerical procedure requires the computation with high-order
accuracy of the integrals making up the spatial residual while ensuring the stability of the numerical scheme.

The high-order accurate numerical computation of the net ux through the boundary of a computational
cell (i.e., the ux contour integral) starts with the selection in Eq. (6) of a number of Gauss quadrature points,
NG, dictated by the desired order of solution accuracy at which the numerical ux, ~F �~n, is evaluated.13 For
high-order accuracy the numerical ux representing the sum of the non-linear hyperbolic and elliptic uxes,
~F � ~n=~FH(U) � ~n+~FE(U; ~rU) � ~n, needs to be estimated at each quadrature point, m, of a cell face, l, with
a ux function that approaches the true ux at the rate imposed by the expected order of accuracy in the
asymptotic limit of in�nitely small mesh size. This requirement translates to a similar set of conditions on
the accuracy of the solution state, U, and solution gradient, ~rU, used to calculate both the hyperbolic, ~FH,
and elliptic, ~FE, uxes. Other than this, the ux function is required to produce a dissipative and stable
scheme.

In this work, the hyperbolic ux at each inter-cellular face is determined using a high-order upwind
formulation, originally pioneered by Godunov.68 Consequently, the procedure for computing the hyperbolic
ux at a cell interface is based on the wave structure emerging at an interface with discontinuous solution data,
which is equivalent to solving a local Riemann problem with the left and right solution states, Ul and Ur, as
initial data.69 Thus, the hyperbolic normal ux at each quadrature point is given by ~FH �~n = F(Ul;Ur; ~n) ;
where the numerical ux F is evaluated by solving the Riemann problem in a direction de�ned by the normal
to the face with Ul and Ur. In the present algorithm, both exact and approximate Riemann solvers can be
used to solve the Riemann problem and evaluate the numerical ux. Details of the ux functions considered
herein for each of the governing equation sets described in Sect. II are given in Sect. III.E.

The left and right solution states, Ul and Ur, are determined by performing piecewise k-order polynomial
solution reconstruction within each computational cell, which obviously makes the spatial accuracy of the
�nite-volume scheme very dependent on the order of the solution reconstruction. Since the truncation
error for k-order exact reconstruction is O(�xk+1), a (k+1)-order accurate spatial discretization can be
achieved based on this reconstruction for smooth hyperbolic problems. Consequently, the number of Gauss
quadrature points at which the numerical ux is evaluated is chosen on the basis of the order of the solution
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reconstruction. To determine the optimum number of quadrature points for a desired accuracy recall that
an N -point Gaussian quadrature rule integrates polynomials of degree 2N � 1 exactly, providing a 2N -order
accurate formula.70 Following this rule, the practise adopted here is to use one quadrature point (NG = 1)
for second-order schemes (piecewise linear, k = 1, reconstruction) and two quadrature points (NG = 2) for
third- and fourth-order schemes (piecewise quadratic, k=2, and cubic, k=3, reconstruction) to ensure that
the order of accuracy of the schemes is preserved. Ample details of the polynomial solution reconstruction
considered in this work are provided in Sect. III.D.

In a similar manner to hyperbolic uxes, numerical elliptic uxes, ~FE � ~n, must be evaluated at each
quadrature point of each computational cell face. High-order elliptic uxes can be calculated by using
information from the (k + 1)-order accurate solution approximation obtained in the reconstruction step.
Note that a (k + 1)-order accurate solution reconstruction will usually produce a k-order accurate gradient
(i.e., one order less due to di�erentiation), which should in turn lead to a k-order accurate ux evaluation and
�nally, a k-order accurate ux integral. It is thus inferred that a (k+1)-order accurate spatial discretization
scheme for both hyperbolic and elliptic terms on arbitrary meshes, implies the use of a k-order exact gradient
(i.e., a gradient with (k+1)-order truncation error) for the evaluation of elliptic uxes, which here is derived
from a (k+1)-order exact reconstruction. Thus, having determined the left and right (k+1)-order exact
piecewise solution reconstructions, Uk+1

l ( ~X) and Uk+1
r ( ~X), a unique k-order exact solution gradient at the

inter-cellular face is obtained as the arithmetic mean of the left and right reconstruction gradients. Note
that, the arithmetic mean procedure may provide a (k+1)-order exact gradient from two (k+1)-order exact
reconstructions if error cancellation occurs, a situation which can arise only for odd reconstruction orders
and for generally regular meshes.

Finally, to obtain a consistent and accurate scheme for both hyperbolic and elliptic operators with (k+1)-
order exact solution reconstruction and a k-order exact gradient, the optimum number of Gauss integration
points for the elliptic ux is used for each cell face. Consequently, consistent 3rd- and 4th-order accurate
schemes are formed here for piecewise cubic and quartic reconstructions (k=3 and k=4) with two quadrature
points (NG=2).

III.D. CENO Reconstruction

A high-order central ENO (CENO) method is used herein for performing the piecewise k-order polynomial
reconstruction within each of the computational cells. This new ENO variant aims to overcome some of
the practical drawbacks of other ENO and WENO schemes for application to multi-dimensional problems
with large numbers of unknowns, which are generally associated with the stencil selection algorithm, the
large computational cost resulting from carrying out multiple reconstructions on di�erent stencils, that may
also be di�erent for each solution variable, and the necessity to employ extra algorithms for dealing with
singular stencils10 and occurrence of negative weights,71 especially on unstructured meshes. In addition, the
original ENO-type reconstructions may lead to negative values of density and pressure due to their design
principle (i.e., selection of the \smoothest" stencil) which does not strictly enforce solution monotonicity4,72

and the WENO weights may require some tuning such that the central stencil, recognized to be the most
accurate one, is recovered in the smooth parts of the solution.73,74 Despite all these drawbacks, both ENO
and WENO schemes provide a solid starting point for the search for more e�ective high-order discretizations.

The proposed CENO variant is not based on either selecting or weighting reconstructions from multiple
stencils. Instead, a hybrid solution reconstruction procedure is used that combines the high-order k-exact
least-squares reconstruction technique of Barth12 based on a �xed central stencil with a monotonicity pre-
serving limited piecewise linear least-squares reconstruction algorithm.12 Due to cancellation of truncation
errors, use of the central stencil will generally provide the most accurate reconstruction. In case of unstruc-
tured mesh, the central stencil should be interpreted as a stencil that includes all nearest neighbour cells up
to a speci�ed order. In the CENO approach a limited reconstruction procedure is applied to computational
cells with under-resolved solution content, thereby avoiding undesirable solution oscillations (wiggles), and
the unlimited k-exact reconstruction scheme is used for cells in which the solution is fully resolved. Switching
in the hybrid procedure is determined by a solution smoothness indicator that speci�es whether or not the
solution is resolved on the computational mesh. This hybrid approach avoids the complexity associated with
other ENO and WENO schemes that require reconstruction on multiple stencils which in some cases can
produce poorly conditioned coe�cient matrices. Additionally, the same �xed stencil is used for each variable
and the solution of the least-squares problem for the reconstruction can then be made quite e�cient. For
this reason, the hybrid CENO algorithm would seem very well suited for application to unstructured mesh.
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Moreover, mesh adaptation can be directed based on the ability of the CENO scheme to di�erentiate between
resolved and under-resolved or non-smooth solution content.

The CENO reconstruction leads to a �nite-volume scheme for hyperbolic conservation equations that is
high-order accurate for smooth solutions even near extrema and avoids the appearance of O(1) numerical
oscillations in under-resolved regions and for solutions containing strong discontinuities and/or shocks. Note
however that in the proposed formulation the formal ENO property of uniform accuracy is lost for non-
smooth solutions. Accuracy to any order is possible by simply expanding the support for the cell-centred
reconstruction. Note that in earlier work, Harten and Chakravarthy75 have proposed a technique to obtain an
ENO reconstruction on a �xed central stencil by hybridizing the high-order reconstruction with a �rst-order
formulation. The switching in their proposed hybrid central ENO scheme was based on undivided di�erences
and the total variation diminishing (TVD) property76 and not directly on the smoothness of the reconstruc-
tions. More recently, Haselbacher10 has since explored the use of �xed stencil central reconstruction in the
formulation of WENO schemes for unstructured mesh, but Haselbacher’s approach is somewhat di�erent to
the current approach and schemes of accuracy higher than second order (k=1) were not formulated.

The reconstruction operation is a strictly-mathematical procedure in which no physical characteristics
of the problem are directly included and depends solely on the average solution states provided as input
data. Consequently, it can be equally applied to any of the independent solution variables regardless of their
physical meaning and of whether they represent conserved, primitive or characteristic quantities. In our
computational framework for multivariate PDEs we prefer to perform the reconstruction with the primitive
solution states whereas the solution update is carried out with the conserved variables. To map the average
conserved into average primitive states and vice-versa our algorithm applies the same relationships as those
used for pointwise mapping. An exact conversion between the two types of average quantities cannot be
obtained for non-linear relationships with this approach. Very recently, McCorquodale and Colella20 have
proposed a mapping which provides a fourth-order accurate conversion between the aforementioned solution
variables. Although no corrections have been considered herein, it seems that the error introduced by the
pointwise-based conversion of the average quantities does not seem to a�ect the order of accuracy of the
high-order scheme, a fact demonstrated in Sect. V.F by numerical experiments with both sets of variables.

In what follows, a summary of the high-order CENO reconstruction described in detail in77 is provided.

III.D.1. k-Exact Least-Squares Reconstruction

In piecewise k-exact polynomial reconstruction,12 it is assumed that a solution variable, u, at any location,
~X, in computational cell (i; j) has the general form

uki;j( ~X) =
kX

p1=0

kX
p2=0

(p1+p2�k)

(x� �xi;j)
p1 (y � �yi;j)

p2 Dk
p1p2 ; (8)

where (x; y) are the Cartesian coordinates of the position vector, ~X, at the point of interest, (�xi;j ; �yi;j) are the
coordinates of the cell centroid ~Xi;j , k is the order of the piecewise polynomial interpolant, the summation
indices p1 and p2 must satisfy the condition that p1 + p2 � k, and Dk

p1p2 are the coe�cients of the k-exact
polynomial approximation to be determined. The latter are in general functions of the mean or average
value solution, �ui;j , within the cell and its neighbours. For a 2D reconstruction, the number of coe�cients,
ND, for a particular order k and one solution variable is given by ND= (k+1)(k+2)

2 . For example, a cubic
reconstruction, k=3, has ND=10 unknown coe�cients for each solution variable.

To determine Dk
p1p2 the following conditions are required to be satis�ed by the reconstruction procedure:

1) the reconstruction procedure must reproduce exactly polynomials of degree N �k; 2) the reconstruction
must preserve the mean or average value within the computational cell; 3) the reconstruction must have com-
pact support. The �rst condition is equivalent to uki;j( ~X � ~Xi;j)� uexact( ~X) = O(�xk+1), which is assumed
to hold anywhere in the vicinity of cell (i; j). The second condition requires the integral of the piecewise
polynomial approximation to recover the cell average data, which gives �ui;j = 1

Ai;j

RR
Ai;j u

k
i;j( ~X)dx dy. Fi-

nally, the third condition involves the number and locality of the neighbouring solution states used in the
so-called reconstruction supporting stencil. The minimum size of the compact stencil is determined by the
number of required unknown coe�cients, but in practise, additional neighbours are included in order to
make the reconstruction more robust in the presence of stretched meshes and solution gradients not aligned
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with the mesh. For body-�tted quadrilateral mesh, the current k-exact reconstruction scheme uses a �xed
central stencil which includes 8 neighbour cells for k=1 and 24 neighbours for k=2; 3 and 4.

The evaluation of the coe�cients Dk
p1p2 requires the least-squares solution of an overdetermined system of

linear equations A x�B=E, where the coe�cient matrix, A, of the linear system depends only on the mesh
geometry and can be partially calculated in a preprocessing step. The average solution data at each time step
is contained in the matrix, B, and the mean value error in each control volume is in matrix, E, which has the
norm minimized in the least-squares sense. Geometric weights of the form wJ = j� ~XIJ j�� are assigned to
each neighbouring control volume, J , in order to have a more localized reconstruction and improve accuracy
for stretched meshes with surface curvature,78 where � ~XIJ = ~XJ � ~Xi;j and values considered herein for the
exponent � are either one or two. Depending on how many solution variables are present in the discretization
procedure, the matrices x, B and E can have either a single column if there is only one solution variable
or more columns for multiple solution variables with each column belonging to one solution unknown. The
preservation of the average value, �ui;j , within the reconstructed cell is either explicitly enforced by expressing
the coe�cient, Dk

00, as a function of the other unknowns, a procedure which reduces the dimension of the
linear system by one, or by solving a linear equality constrained least-squares problem with the complete set
of equations. The former technique provides a faster implementation and it is the preferred one herein.

Both Householder QR factorization algorithm79 and orthogonal decomposition by SVD method79 can be
used to solve the weighted least-squares problem A x�B=E and determine the polynomial coe�cients for
all solution variables concurrently, the latter being favoured for the computation of the left pseudo-inverse
matrix,80 A�1, as described below. Note that use of a �xed central stencil here avoids the complexities in-
troduced by performing reconstruction on multiple stencils. In addition, the use of a �xed stencil allows the
pseudo-inverse matrix A�1 to be stored and reused for the calculation of all solution variables at successive
time steps as long as the mesh is not modi�ed. Storage and re-use of the pseudo-inverse was found to reduce
signi�cantly the computational costs of performing high-order reconstructions compared to the situation in
which the coe�cient matrix, A, is formed and the least-squares problem is solved for each spatial recon-
struction. Although the procedure based on reusing the pseudo-inverse matrix requires additional storage,
the memory requirements are not that substantial and are generally readily available on most modern dis-
tributed memory architectures. Thus, the dimensions of the pseudo-inverse matrices encountered herein are
2�8 for linear (k=1), 5�24 for quadratic (k=2), 9�24 for cubic (k=3) and 14�24 for quartic (k=4), which
corresponds to storing 16, 120, 216 and 336 oating point numbers, respectively. Moreover, these memory
requirements do not depend on the number of solution variables since the same pseudo-inverse matrix is
employed for the computation of each solution unknown. This procedure therefore represents a practical
approach for reducing the cost of the proposed high-order reconstruction and is used here.

To provide concrete examples concerning the condition number, �(A), of the coe�cient matrix, A, for the
least-squares problem corresponding to di�erent reconstruction orders, k, several representative quadrilateral
meshes have been analyzed herein. Thus, Table 1 depicts the maximum values of the condition number based
on L1 norm of the matrix, �1(A) = jjAjj1 jjA�1jj1, associated with the linear (k= 1), quadratic (k= 2),
cubic (k = 3) and quartic (k = 4) solution reconstructions on Cartesian grids with aspect ratio, ar, of 1,
240 and 14,012, respectively, and on two mesh types for the geometry depicted in Fig. 4, a regular smooth
mesh and another that is very irregular. The e�ect of di�erent geometric weighting formulations, wJ , on the
condition number has also been considered, and the results are also shown in the table. An analysis of the
data in Table 1 reveals that the condition numbers, �1(A), increase with the increase in the reconstruction
order, a trend somewhat expected considering how the elements of the coe�cient matrix, A, are generated.
Additionally, the data shows that larger and larger maximum values occur as the mesh deviates more and
more from the Cartesian square grid, the largest values encountered in this study corresponding to the
Cartesian grid with the highest aspect ratio. However, the data also reveals that signi�cant improvements in
the condition number can be obtained, even up to two orders of magnitude, by using some sort of geometric
weighting. For the current scheme and the meshes studied herein it seems that the inverse-distance geometric
weighting (i.e., wJ = j� ~XIJ j�1) provides the lowest condition number values for all reconstruction orders
analyzed. Moreover, although the condition numbers encountered on Cartesian meshes with a high aspect
ratio of ar = 14; 012 are very large, it is argued that a high-order scheme may not require such high aspect
ratios to accurately resolve solution features of thin boundary and/or shear layers in practice.

Therefore, it seems that for the reconstruction orders and the meshes considered in this work, the cor-
responding condition numbers can be dealt with, but caution should be exercised when considering both
higher than quartic reconstruction orders or very high grid aspect ratios.
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Table 1. The condition numbers of the coe�cient matrix, A, obtained based on L1 norm of the matrix for di�erent
geometric weighting formulations and for several representative meshes, which are as follows: the Cartesian grids with
aspect ratio, ar, of 1, 240 and 14,012; a regular smooth grid and a very irregular grid for the geometry shown in Fig. 4.

Geometric �1(A)
Mesh Weighting

wJ = j� ~XIJ j�� k=1 k=2 k=3 k=4

Cartesian Grid �=0 2.0 25.4 452.2 6,748.4

ar=1 �=1 1.7 22.0 273.2 3,223.8

�=2 1.3 32.6 335.3 4,007.2

Cartesian Grid �=0 227.6 292,335.1 5:71�108 9:69�1011

ar=240 �=1 1.8 1,116.6 1:72�106 2:01�109

�=2 239.0 245,311.9 3:15�108 4:03�1011

Cartesian Grid �=0 12,780.4 8:40�108 8:78�1013 1:10�1014

ar=14; 012 �=1 1.8 60,118.4 4:66�109 9:17�1013

�=2 15,047.1 8:32�108 5:40�1013 2:78�1014

Regular �=0 4.1 172.9 9,232.4 524,247.3

Smooth Grid �=1 2.2 77.5 3,815.2 171,418.2

�=2 3.2 141.9 4,928.2 192,885.6

�=0 5.2 191.7 10,552.5 699,826.2

Irregular Grid �=1 2.4 84.1 4,661.8 199,873.8

�=2 4.6 203.2 6,688.5 240,616.7

III.D.2. Monotonicity Enforcement via Smoothness Indicator

The proposed CENO scheme preserves solution monotonicity in regions of large gradients or discontinuities
by reverting the high-order k-exact reconstruction to a limited piecewise linear (k=1) reconstruction. This
approach of preserving solution monotonicity by \dropping" the reconstruction order leads to a non-uniformly
accurate reconstruction (i.e., reconstructions of lower and higher order coexist in the computational domain)
for under-resolved and/or non-smooth solution content. However, the reconstruction procedure remains
uniformly accurate, even in the presence of smooth extrema, as long as the solution is smooth everywhere.
In the current work, the slope limiters of Barth-Jesperson12 and Venkatakrishnan81 are used in the limited
reconstruction, but other limiters would do almost equally as well. In order to detect regions where the
order of the reconstruction should be reduced and the limiters applied, a smoothness indicator is computed
for every variable individually within each cell as part of a post-analysis step after the unlimited k-exact
reconstruction has been performed. The smoothness indicator is then used in the manner described below
to ensure that the limited linear reconstruction is applied to cells with under-resolved and/or non-smooth
solution content and the unlimited k-exact reconstruction scheme is where the solution is fully resolved.

The form of the smoothness indicator used here was inspired by the de�nition of multiple-correlation
coe�cients that are often used in evaluating the accuracy of curve �ts.79 The basic idea is to assess how
accurately the truncated polynomial expansion represents the solution data within the reconstruction stencil.
This is achieved by comparing the reconstructed solution to those in neighbouring cells.

The smoothness indicator, S, is calculated in terms of a smoothness parameter, �, as well as information
about the number of unknowns (degrees of freedom), DOF , and size of the stencil, SOS, used in the
reconstruction. The smoothness indicator, S, and the smoothness parameter, �, are taken to have the form

S =
�

max ((1� �); �)
(SOS �DOF )

(DOF � 1)
; � = 1�

X


X
�

�
uk;�(~�r;�)� uki;j(~�r;�)

�2
X


X
�

�
uk;�(~�r;�)� �ui;j

�2 ; (9)

where the ranges of the indices,  and �, are taken to include all control volumes in the reconstruction stencil
for cell (i; j), ~�r;� is the centroid of the cell (; �), and the tolerance, �, has been introduced in order to
avoid division by zero. A suitable value for � has been found to be 10�8. It should be evident that the
parameter, �, compares the values of the reconstructed solution at the centroids of neighbouring cells used
in the solution reconstruction for cell (i; j). Note also that the average value in the reconstructed cell is
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Figure 2. The graph of f(�) = �
(1��) .

used to normalize the relative predictions of the reconstructions. The range for � is �1<��1 and it will
approach unity as the solution becomes smooth and near perfect matching of the reconstructions in adjacent
cells is achieved. The quotient in the expression for � can become a ratio of two very small numbers or 0

0 in
situations with little or no solution variation encountered. This scenario would translate into the problem
that reconstructions of free-stream conditions are not deemed as smooth and a second reconstruction would
be required in these regions. Obviously, such situations can be easily avoided by computing � only in those
regions of the domain where a minimum level of solution variation relative to a reference solution value is
encountered. The variation of �

(1��) is depicted in Fig. 2 and the �gure shows that S rapidly becomes large
as � approaches unity.

Once evaluated, the smoothness indicator, S, is then compared to a pass/no-pass cuto� value, Sc. As
appropriate value for the cuto� was determined from a wide range of numerical experiments and values for
Sc in the range 1,000-5,000 seem to work well. It should be pointed out that smoothness indicators for
smooth solutions are typically orders of magnitude larger than the range of cuto� values (e.g., 100,000).
Moreover, typical values for cells located in the \middle" of discontinuities are close to 10. Thus for S<Sc,
the solution is deemed to be under-resolved and/or non-smooth and the high-order k-exact reconstruction
is replaced by limited linear reconstruction in that cell. For S>Sc, the unlimited high-order reconstruction
is deemed to be acceptable and retained. Additionally, the solution procedure of Euler and Navier-Stokes
equations that is based on the high-order reconstruction of the conserved variables should enforce positivity
of density and pressure by performing a limited reconstruction of the primitive variables in those regions
detected as non-smooth based on the conserved ones. Finally, it should be pointed out that the e�ect of a
reconstruction which contains discontinuous data is reected in the smoothness indicator calculation of few
neighbours and consequently, any solution discontinuity is typically con�ned to within at most 7 to 10 cells.

III.D.3. Reconstruction at Boundaries and Implementation of High-Order Boundary Conditions

Correct high-order treatment of boundary conditions is a crucial element for developing accurate numerical
schemes. It is especially important for high-order methods, where errors due to geometrical approximation
may dominate the discretization error, mitigating the full capabilities of a high-order scheme. One approach
to imposing high-order BCs is to make use of extra rows of ghost cells which are added beyond the geometric
boundary of the computational domain. Solution states are then imposed in the ghost cells in such a way
that the reconstructed solution and/or ux at the boundary ux interior cell approximates those associated
with the particular boundary condition. An alternative approach is to enforce the boundary conditions by
constraining the least-squares reconstruction in control volumes adjacent to the boundary as described by
Olivier-Gooch and Van Altena.51 In the current work, both procedures (i.e., ghost cells and constrained
reconstruction) for boundary-condition prescription have been implemented and are described herein.

In order to obtain high-order accuracy at boundaries, the geometric data (i.e., cell area, centroid, geo-
metric moments, normals, edge lengths, locations of the Gauss quadrature integration points) are computed
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to the same order of accuracy as that of the interior scheme.
Implementing BCs with additional layers of ghost cells can work well for relatively straight boundaries,

but may give rise to large errors when the geometry is more highly curved. The di�culty consists in specifying
accurate solution information in the ghost cells which then translates to accurate high-order reconstructions
that correctly resemble the solution variation required for the particular boundary condition. A better
alternative is to enforce the BCs using only information from the interior domain and from the required
boundary values at the Gauss integration points along the boundary. Thus, additional constraints are
added to the reconstruction procedure to ensure that the values taken by the polynomial approximations
of the interior cells next to the boundary at the Gauss integration points are exactly those required by the
particular boundary condition. By constraining the least-squares reconstruction in control volumes adjacent
to the boundary, complex boundary conditions can be enforced. In particular, two basic types of constraints
have been applied in this work: 1) Robin (i.e., linear combination of Dirichlet and Neumann) conditions
which can be applied individually to any reconstructed variable as the need may be; and 2) linear relations
among variables which are applied as coupling constraints to a set of reconstructed variables. Nevertheless,
for certain boundary conditions the constrained reconstruction approach might be too di�cult, and therefore,
in the current implementation both procedures (i.e., ghost cells and constrained reconstruction) are allowed.

Similarly to the derivation outlined in,51 the general constraint equation which must be satis�ed at a ux
calculation point, ~Xg, to impose Robin BCs in terms of the cell reconstruction, uk( ~X), can be expressed as

f( ~Xg) = f(a; b; fD; fN )
���
~Xg

(10)

=
kX

p1=0

kX
p2=0

(p1+p2�k)

�
�X(p1�1)

g �Y (p2�1)
g

�
a �Xg �Yg + b p1 �Yg ngx + b p2 �Xg n

g
y

��
Dk
p1p2

where �Xg = xg � �xi;j , �Yg = yg � �yi;j , and ~ng(ngx; n
g
y) is the normal unit vector at the point ~Xg. The

function f(a; b; fD; fN ; ~X) = a( ~X) fD( ~X) + b( ~X) fN ( ~X) provides the value of the Robin BC at each location
~X of interest. The coe�cients a( ~X) and b( ~X) de�ne the contribution of the Dirichlet, fD = u( ~X), and
Neumann, fN = @u( ~X)

@n , components respectively. The values of f(a; b; fD; fN ; ~X) are entries in the matrix B
of the linear system, as they are known at each integration point. Equation 10 is valid for any reconstruction
order k and the general term between braces can be used directly to generate the entries corresponding to
any combination of p1 and p2 in the matrix A of the linear system for a particular integration point, ~Xg.

An example of coupled constraints is the implementation of inviscid solid wall condition or zero-shear
slip wall in viscous ows (i.e., symmetry plane BC), ~V � ~n = 0, which is imposed by solving a coupled
constrained reconstruction with the velocity components and requiring that the velocity vector is tangent
to the geometry at every Gauss integration point. Thus, the equation that needs to be satis�ed by the
reconstruction coe�cients of the x- and the y-velocity components, (Dk

p1p2)u and (Dk
p1p2)v respectively, is

kX
p1=0

kX
p2=0

(p1+p2�k)

�Xp1
g �Y p2g ngx(Dk

p1p2)u +
kX

p1=0

kX
p2=0

(p1+p2�k)

�Xp1
g �Y p2g ngy(Dk

p1p2)v = 0 : (11)

The matrix A for a constrained least-squares reconstruction in which two variables are coupled contains
entries for the relational constraints, for the individual constraints of each variable and for the exactly and
approximately satis�ed mean conservation equations provided by the reconstructed cell and the neighbours
that are part of the stencil, respectively. To solve the constrained least-squares problem, Gauss elimination
algorithm with pivoting can be applied to eliminate the constraints followed by the application of any of the
aforementioned algorithms to minimize the error in the least-squares sense for the rest of the equations.

The constrained reconstruction approach has been applied to Euler and Navier-Stokes equations by select-
ing the variables to be constrained such that to satisfy the particular boundary condition while maintaining
a well-posed mathematical problem. Note that for hyperbolic problems an upwind consistent selection of the
constrained variables is also possible by estimating the ow direction as described by Gottlieb and Groth.82
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III.E. Inviscid (Hyperbolic) and Viscous (Elliptic) Flux Evaluation

An upwinding formulation is used herein to evaluate the hyperbolic ux at each integration point. Thus,
the hyperbolic ux in the advection-di�usion equation, Eq. (1), at a quadrature point is given by

~FH � ~n =

8<:ul (~V � ~n) if ~V � ~n � 0,

ur (~V � ~n) if ~V � ~n < 0,
(12)

where the left and right solution states, ul and ur, at the inter-cellular face are determined by performing
piecewise k-order CENO solution reconstruction within each computational cell, as outlined in Sect. III.D.

For the Euler and the Navier-Stokes equations, the inviscid numerical ux, ~FH � ~n, at the quadrature
points is given by ~FH � ~n = F(Ul;Ur; ~n) ; where the numerical ux F is evaluated by solving a Riemann
problem in a direction de�ned by the normal to the face with initial data given by the left, Ul, and right,
Ur, high-order solution states. In the present algorithm, both exact and approximate Riemann solvers can
be used to solve the Riemann problem and evaluate the numerical ux. In particular, the linearized Roe
Riemann solver,83 HLLE and modi�ed HLLE ux function due to Linde,84{86 and the exact Riemann solver
of Gottlieb and Groth82 have all been implemented for systems of equations and may be used.

In a similar manner to hyperbolic uxes, numerical elliptic uxes in the advection-di�usion equation
given by Eq. (1), ~FE � ~n = �� ~ru � ~n , must be evaluated at each quadrature point of each control volume
face. Having determined the left and right (k+1)-order accurate scalar solution reconstructions, ukl ( ~X) and
ukr ( ~X), a k-order accurate solution gradient at the inter-cellular face is obtained as the arithmetic mean of the
left and right reconstruction gradients and thus, the elliptic ux at the calculation point, ~X, is evaluated as
~FE �~n = ��

h
1
2

�
~rukl ( ~X) + ~rukr ( ~X)

�i
�~n. Similarly, numerical di�usion uxes in the Navier-Stokes equations

are evaluated as ~FE �~n = ~FE

�
U; ~rU

�
�~n = ~FE

�
1
2

�
Uk
l ( ~X) + Uk

r ( ~X)
�
; 1

2

�
~rUk

l ( ~X) + ~rUk
r ( ~X)

��
�~n ; where

the 2D reconstruction gradient, ~rUk, at a given location ~X is given by ~rUk( ~X) = @Uk

@x

����
~X

{̂+ @Uk

@y

����
~X

|̂. In the

gradient expression, {̂ and |̂ are the Cartesian unit vectors and the derivative of the reconstructed polynomial
in the x- and y-direction, @U

k

@x and @Uk

@y , respectively, are computed based on the polynomial coe�cients as

@Uk

@x

����
~X

=
kX

p1=0

kX
p2=0

(p1+p2 6=0)

p1(x� �xi;j)p1�1(y � �yi;j)p2Dk
p1p2 ; (13a)

@Uk

@y

����
~X

=
kX

p1=0

kX
p2=0

(p1+p2 6=0)

p2(x� �xi;j)p1(y � �yi;j)p2�1Dk
p1p2 : (13b)

Clearly, computing the interface gradients by averaging the reconstructions used for the discretization of
hyperbolic operators, as described above, has important computational advantages but it also raises questions
about its usability, as similar formulations with second-order discretizations lead to several problems such as
odd-even solution decoupling.43,87 To shed some light on whether the current elliptic discretization su�ers
from any of the problems reported in the literature, a series of investigations have been performed for di�erent
reconstruction orders. While the accuracy of the interface gradient can be readily observed to be k-order
accurate based on the design of the scheme, other properties of the resulting discretization such as positivity
(related to local satisfaction of a discrete maximum principle) or odd-even solution decoupling can be only
inferred from more careful analysis.

For these purposes, it is convenient to apply the proposed elliptic discretization to the Laplace operator,
L(u) = r2u, and analyze the inuence coe�cient (i.e., the weight) of each entry in the supporting stencil.43

Hence, the su�cient condition for the discrete local Laplacian based on an N -point stencil, ~L(u)=
NP
n=0

�n�un,

to satisfy a discrete version of the maximum principle is to require that all weights satisfy �n�0 for n 2 [1; N ].
For a given elliptic discretization scheme and a supporting stencil the weights, �n, and consequently the
positivity of the scheme, depend only on the local mesh geometry and not on the actual solution. For
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arbitrary mesh geometries, a convenient and more generic way to compute the weights, �n, is by a �nite-
di�erencing approximation. As proposed by Coirier,43 the positivity and stability of the scheme can then be
characterized in terms of �0 and ~�min coe�cients. Ideally, �0 < 0 for stability and ~�min =0 for positivity.44

In the current work, di�erent mesh topologies were analyzed including Cartesian, stretched, and randomly
disturbed quadrilateral grids. Analysis of the proposed discretization procedure has shown that odd-even
solution decoupling does not occur. In terms of the stability and positivity, it was found that �0 < 0
(i.e., the schemes are stable) but also ~�min< 0 for discretizations of all order, unfortunately implying that,
while stable, none of the discretizations satisfy the discrete maximum principle. This result agrees with the
general perception that, for �nite-volume discretizations, accuracy and positivity are essentially conicting
properties.43 Note that for square Cartesian meshes, values for ~�min are found to be -0.823 for k=2, -0.362
for k=3 and -0.854 for k=4 when inverse distance geometric weighting is used in the k-exact reconstruction.
However, the positivity can be improved by using an inverse distance squared geometric weighting, for which
~�min was found to be -0.051 for k=2, -0.247 for k=3 and -0.324 for k=4. For non-Cartesian meshes, large
variations in the value of ~�min are possible (�5 < ~�min < 0), depending on the regularity and topology of
the mesh. It should be mentioned that for the test problems and the computational meshes discussed in
Sect. V, the lack of strict positivity of the elliptic discretization did not seem to represent an obvious issue.

IV. High-Order CENO with Parallel Adaptive Mesh Re�nement

The implementation of the proposed adaptive high-order CENO �nite-volume algorithm is considered
using the block-based AMR framework proposed and developed by Sachdev et al.,57 Gao and Groth,62,88

and Gao et al.89 for body-�tted mesh. Thus, a exible block-based hierarchical data structure is used in
conjunction with the CENO �nite-volume scheme to facilitate automatic solution-directed mesh adaptation
on 2D body-�tted multi-block quadrilateral mesh. The method allows for the use of anisotropic mesh and
is well suited to parallel implementation via domain decomposition. In contrast to the lower-order variant,
the high-order mesh adaptation procedure described herein requires the development of inter-block commu-
nication dependent on the order of solution accuracy and formulation of high-order treatment of physical
boundaries, boundary conditions and solution transfer between AMR grids. Aspects of the block-based
AMR algorithm for multi-block quadrilateral mesh and second-order �nite-volume method are described in
the work by Sachdev et al.,57 and the approach has been already successfully applied to the prediction of
various complex ows.60{62 Moreover, the combination of high-order CENO with this AMR strategy has
been already investigated by Ivan and Groth for inviscid ow simulation,56 and is considered for applica-
tion to viscous ow problems herein. As such, this section outlines the important elements of the high-order
solution-adaptive computational framework for the sake of completeness, while the rest of details are provided
in.56,77

In the block-based AMR algorithm considered herein, mesh adaptation is accomplished by the dividing
and coarsening of appropriate solution blocks. In regions requiring increased cell resolution, a \parent" block
is re�ned by dividing itself into four \children" or \o�spring". Each of the four quadrants or sectors of a
parent block becomes a new block having the same number of cells as the parent and thereby doubling the
cell resolution in the region of interest. This process can be reversed in regions that are deemed over-resolved
and four children are coarsened into a single parent block. The mesh re�nement is constrained such that
the grid resolution changes by only a factor of two between adjacent blocks. A hierarchical tree-like data
structure with multiple \roots", multiple \trees", and additional interconnects between the \leaves" of the
trees is used to keep track of mesh re�nement and the connectivity between solution blocks.

In the re�nement process of a grid block the geometry of the newly created cells belonging to the o�spring
is obtained by dividing the domain of each coarse interior cell into four �ne cells denoted as I; II; III and IV ,
as illustrated in Fig. 3. The new nodes represent the midpoint of each coarse face and the weighted average of
the four coarse corners. Note that a body-�tted mesh is simply obtained herein by ensuring that the inserted
points are on the boundary splines representing the physical curved boundaries. Note also that the utilization
of high-order boundary elements (i.e., curved-edge quadrilaterals) for curved boundaries, as seen in Fig. 3(b),
ensures naturally the equality of the coarse element area, A
, and the summation area of the o�spring. Based
on this property, the solution conservation equation �u
A
 = �uIAI + �uIIAII + �uIIIAIII + �uIVAIV can be
written for each average conserved solution quantity, �u
, of the coarse cell.

The hybrid CENO solution reconstruction procedure is used in conjunction with standard multi-grid-type
restriction and prolongation operators to evaluate the solution on all blocks created by the coarsening and
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(a) Low-order boundary representation (b) High-order boundary representation

Figure 3. Depiction of a coarse cell division into four �ne cells for low- and high-order block boundary elements.

division processes, respectively. The restriction and prolongation operators used herein are derived from
the conservation property of the solution content for overlapping cell domains. Additionally, a high-order
accurate solution transfer from the coarse cell to the �ne cells (i.e. prolongation) is provided here by incor-
porating information about the solution distribution over the coarse cell domain. In particular, to distribute
the average solution quantity among o�spring with high-order accuracy the high-order polynomial recon-
structions of all solution variables in the coarse cell are integrated over the domain of each �ne cell. Although
this prolongation operator automatically conserves the average solution of the coarse cell, �u
, it does not
enforce explicitly the positivity conditions, such as non-negative pressure and density, and consequently, in
case they are violated, a direct injection approach (i.e., �uI = �uII = �uIII = �uIV = �u
) is used herein.

For reconstructions performed with derived quantities such as primitive solution states, �W , the approach
considered in this work is to compute the average conserved state of each �ne cell by correcting the average
quantities, f

� �W 0i
�
, obtained from integration of the coarse reconstruction polynomials with any non-zero

solution error distributed uniformly over the coarse cell domain. Thus, the average conserved solution state
for a �ne cell s is given by

�Us = �U 0s + � �U = f
� �W 0s

�
+

1
A


"
�U
A
 �

IVX
i=I

f
� �W 0i

�
Ai

#
; (14)

where f(W ) represent the mapping function of the derived quantities into the conserved ones. As in the
previous case, direct injection is used if non-physical values are encountered.

In order that the �nite-volume scheme can be applied to all blocks in a more independent manner, some
solution information is shared between adjacent blocks having common interfaces. This information is stored
in additional layers of overlapping \ghost" cells associated with each block. Within the AMR approach,
additional inter-block communication is also required at interfaces with resolution changes to strictly enforce
the ux conservation properties of the �nite-volume scheme.90,91 In particular, the interface uxes computed
on more re�ned blocks are used to correct the interface uxes computed on coarser neighbouring blocks and
ensure the solution uxes are conserved across block interfaces.

In previous work, the coarsening and division of blocks was directed using multiple physics-based re�ne-
ment criteria.57,60{62 In this work, an h-re�nement criterion based on the solution smoothness indicator is
de�ned and used to control re�nement of the body-�tted multi-block AMR mesh. The form considered herein
for the CENO-based re�nement criterion is Rc = e�

max(0;S)
Us�Sc , where Us is a scaling coe�cient. Note that

the proposed re�nement criterion is non-dimensional and consequently, the relative importance of di�erent
variables for AMR can be easily assessed based only on their relative smoothness. Further details about the
h-re�nement criterion can be found in.56,77

Although the block-based AMR approach described above is somewhat less exible and incurs some inef-
�ciencies in solution resolution as compared to a cell-based approaches (i.e., for the same solution accuracy,
generally more computational cells are introduced in the adapted grid), the block-based method o�ers many
advantages over cell-based techniques when parallel implementation of the solution algorithm is considered
and computational performance issues are taken into account. In particular, the multi-block quadrilateral
mesh and quadtree data structure lends itself naturally to geometric domain decomposition as the solution
blocks can be easily distributed to the processors, with more than one block permitted on each proces-
sor. Thereby, it should enable e�cient and scalable implementations of the CENO �nite-volume scheme on
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(a) Exact solution (b) Quartic (k=4) solution reconstruction

Figure 4. Exact solution of function u(x; y) = 1:1 + cos(�x2 + 4�y) and the quartic solution reconstruction on a regular
mesh with 40�40 computational cells.

distributed-memory homogeneous multi-processor (identical processors) architectures, as demonstrated for
various 2nd-order algorithms.57,60{62 The parallel e�ciency for the proposed high-order CENO scheme is
examined in Sect. V.G.1.

V. Numerical Results

To demonstrate the capabilities of the proposed high-order CENO scheme described herein, numerical
results are now presented for solution reconstruction in two-space dimensions, as well as for various two-
dimensional ow problems governed by the advection-di�usion and the Navier-Stokes equations. Moreover,
the inuence of di�erent solution sets of reconstruction variables on the accuracy of the CENO scheme is
assessed based on Ringleb’s ow. Furthermore, the predictive capabilities of the CENO scheme are illustrated
with results on both �xed and AMR meshes.

V.A. Reconstruction of a Two-Dimensional Smooth Trigonometric Function

The properties of the CENO reconstruction for two-dimensional smooth solution variations are now illus-
trated with the trigonometric function u(x; y) = 1:1+cos(�x2+4�y) and the domain de�ned by the Ringleb’s
ow92 solution between the streamlines corresponding to k = 0:75 and k = 1:5, and the iso-velocity contour
q = 0:5 (see Sect. V.F for more details about the Ringleb’s ow). The exact solution for this problem and
the quartic (k=4) CENO reconstructed solution on a regular mesh with 40�40 cells are shown in Fig. 4. As
can be easily observed, the quartic CENO reconstruction captures all the smooth extrema of the function
very well on this relatively coarse mesh, generating a solution pro�le that is visually indistinguishable from
the exact solution. Note also that the solution gradients are not at all aligned with the mesh in this test.

To quantify the errors of the CENO reconstruction procedure for this problem convergence studies have
been carried out with di�erent parameters and two types of meshes ranging from 10� 10 to 160� 160
computational elements. The �rst sequence of meshes was represented by regular grids whereas the second
sequence was generated by disturbing randomly the nodes of the meshes in the �rst category. The perturbed
mesh with 40�40 computational cells used for this study is shown in Fig. 5(a). To evaluate the accuracy
of the CENO procedure the cubic (k=3) and quartic (k=4) reconstructions have been considered in three
cases: A) using only k-exact reconstruction, B) using CENO reconstruction with a pass/no-pass cuto� value
Sc = 1; 000 and C) using CENO reconstruction with Sc = 5; 000. In Fig. 5 the corresponding convergence
history in all these situations is presented for L1, L2, and L1 error norms. The results verify that the
theoretical convergence orders based on di�erent error norms which are four for the cubic and �ve for
the quartic reconstruction, respectively, are achieved at least in the asymptotic limit. Additionally, the
error norms obtained on the disturbed meshes are very similar to those corresponding to the regular grids,
although the absolute error is slightly larger, and they are both very close to the asymptotic convergence
rates indicated with the triangles depicted in the �gures.

The inuence of the cuto� value, Sc, can also be inferred from the plots. First, note that all considered
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(a) An irregular grid with 40�40 cells (b) Cubic (k=3) reconstruction on regular mesh

(c) Quartic (k=4) reconstruction on regular mesh (d) Quartic reconstruction on disturbed mesh

Figure 5. Cubic and quartic convergence history for L1, L2, and L1-norms of the reconstruction error of the function
u(x; y) = 1:1 + cos(�x2 + 4�y). Three cases are considered based on the cuto� value, Sc: A) k-exact, B) Sc=1; 000 and C)
Sc=5; 000. The irregular grid with 40�40 cells used in this study is shown in (a).

reconstructions produce similar errors on a mesh with 10�10 cells regardless of the cuto� value which
con�rms the fact that this mesh is well under-resolved. Next, a \transition" regime occurs in which not all
cell reconstructions are considered resolved based on the cuto� value and di�erences between the k-exact and
the CENO errors are observed. The extent of this transition regime is a function of the cuto� value but also
of the order of the reconstruction, as can be seen be comparing the plots in Fig. 5(b) and (c). Finally, after
a minimum resolution has been attained and all cell reconstructions are deemed to be smooth, the solution
maintains only the character of the k-exact reconstruction and becomes insensitive to cuto� values in the
recommended range (i.e. 1,000-5,000). Note that for the complex solution variation considered herein and a
cubic reconstruction, the minimum resolution corresponds to around 60 to 100 cells in one-space dimension.
However, the quartic reconstruction is able to capture more accurately the inections of the tested function
with fewer cells and consequently, enters into the �nal regime at a minimum resolution of around 40 to 60
cells.

V.B. Residual-Based Accuracy Assessment for Poisson Equation

To investigate the accuracy of the proposed algorithm for discretization of elliptic operators, convergence
studies based on the residual error to Poisson equation ~r � (~ru) = a e� u have been performed using the
exact solution u(x; y)= 1

�

h
ln
�

8C
a�

�
�2 ln j(x+A)2 + (y +B)2 � Cj

i
, where A=2:0, B=1:0, C=2:0, a=2:5

and �=0:001. The domain in this study was the rectangular box de�ned by 0:5�x; y�4:5. The L1, L2 and
L1 norms of the ux integral (i.e. the residual) errors obtained for a sequence of Cartesian and randomly
disturbed meshes are shown in Fig. 6(a) and (b), respectively, for quadratic (k=2), cubic (k=3) and quartic
(k=4) interpolants. The correspondent slopes of the L1-, L2- and L1-norms were determined based on all
measured error values and are shown in Table 2 for both Cartesian and disturbed meshes.
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(a) Error norms for Cartesian meshes (b) Error norms for distorted meshes

Figure 6. L1, L2 and L1 norms of the residual error to Poisson equation ~r � (~ru) = a e� u for piecewise quadratic (k=2),
cubic (k=3) and quartic (k=4) reconstructions versus the number of computational cells of (a) Cartesian meshes and
(b) randomly distorted meshes.

Table 2. The slope values corresponding to each convergence error plot shown in Fig. 6.

Mesh Reconstruction L1 L2 L1

Order

k=2 1.99 2.01 1.93

Cartesian Grid k=3 3.98 4.07 3.89

k=4 3.77 4.02 3.87

k=2 1.41 1.47 1.10

Distorted Grid k=3 1.99 2.05 1.86

k=4 3.35 3.53 3.18

The results of Fig. 6 and Table 2 show that both cubic and quartic interpolants produce a 4th-order
scheme for Cartesian meshes in all error norms, whereas the quadratic reconstruction generates a 2nd-order
one. The result for k=3 in Fig. 6(a) demonstrates that due to error cancellations a cubic interpolant is also
able to generate a 4th-order scheme for elliptic operator discretizations. However, an analysis of the error
norms in Fig. 6(b) reveals that the error cancellation e�ect does not occur on the randomly disturbed meshes
and as such, the error norms of cubic and quartic reconstructions di�er by more than one unit. Unfortunately,
this is not a rigorous convergence study due to the random disturbance of the nodes and as a result, the
error norms of both reconstructions are somewhat lower than the expected theoretical ones. However, the
numerical results provide support for the point made concerning the e�ects of error cancellation.

V.C. Solution of the Laplace Equation on Curved Boundaries

The numerical scheme was also investigated for solutions to the Laplace equation and geometries with
curved boundaries such as the annulus domain shown in Fig. 7(a). Dirichlet boundary conditions were
implemented along the domain contour based on the exact solution considered for this problem which was
u(x; y)=e�x (A cos(� y)+B sin(� y)), where A=1, B=2 and �=1:5. The predicted solution obtained using
the 4th-order (k= 4) high-order scheme on a curvilinear mesh with 40�40 cells is shown in Fig. 7(a). The
L1, L2, and L1 norms of the error in the predicted solution for cubic (k=3) and quartic (k=4) interpolants
are given in Fig. 7(b) for this problem. The slopes of the L1- and L2-norms reach in the asymptotic limit
-3.86 and -3.85 for k= 3 and -3.86 and -3.81 for k= 4, respectively. As can be easily observed, even if the
slope of the cubic and quartic polynomials are basically the same and both very close to the theoretical
value, there is about one order di�erence between the magnitudes of the errors, demonstrating the bene�ts
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(a) (b)

Figure 7. (a) Fourth-order (k = 4) solution to the Laplace equation on a mesh with 40�40 computational cells. (b)
L1, L2 and L1 norms of the error as a function of mesh density obtained with the cubic (k = 3) and quartic (k = 4)
polynomial interpolants.

of using quartic interpolants.

V.D. Two-Dimensional Channel Flow Problem on Fixed Mesh

The application of the proposed CENO scheme is now considered for problems involving both advection
and di�usion terms for a range of P�eclet numbers. Solution of the advection-di�usion equation Eq. (1) with
a constant velocity, ~V = (v0; 0), and constant di�usion coe�cient, �(x; y) = �0 = 0:01, on the rectangular
domain of length L=3 and unit width was considered for three di�erent P�eclet numbers, depending on the
value of v0. The studied P�eclet numbers correspond to Pe = 0:1, at which di�usion dominates the ow, to
Pe = 1, at which advection and di�usion are equally represented and to Pe = 10, which is representative for
an advection dominated problem.

The BCs for this problem, as shown in Fig. 8, are: u(x; 0)=u(x; 1)=0, u(0; y)=sin(� y) and @u(L;y)
@x =0.

A similar study was considered by Ollivier-Gooch and Van Altena for the evaluation of high-order �nite-
volume schemes in.51 The analytic solution to this problem can be determined by the method of separation
of variables and can be arranged such that to avoid numerical problems for convection dominated ows in

the form u(x; y) = sin(� y)

(R [eL(R�1)]r1�1)

�
R
�
e(RL+x�L)

�r1 � er2 x�, where r1;2 = v0
2�0
�
q

v20
4�2

0
+ �2 and R= r2

r1 .

The numerical solution obtained for Pe=10 on an 80�40 Cartesian mesh is shown in Fig. 8(a) and the
error norms for this advection-di�usion problem associated to each of the three P�eclet numbers are shown
in Fig. 8(b){(d). The results show that the errors generated by the quartic polynomial are consistently
lower than those of the cubic interpolant by at least one order of magnitude for all P�eclet numbers and
get the theoretical accuracy in all norms. Thus, the L1- and L2-norms for k = 4 are -4.02 and -4.08 for
Pe = 0:1, -4.30 and -4.46 for Pe = 1:0 and -3.92 and -3.95 for Pe = 10:0, respectively. In the case of cubic
interpolant, the error norms are -3.92 and -3.85 for Pe = 0:1, -3.88 and -3.81 for Pe = 1:0 and -3.53 and
-3.62 for Pe=10:0, respectively. It can be also seen in the error plots that, for the same accuracy level, the
cubic interpolant requires almost twice as many computational cells as the quartic one. Taking into account
that both polynomial reconstructions, quartic and cubic, use the same reconstruction stencil, the only extra
cost associated with quartic reconstruction is to determine �ve additional variables during the least-squares
reconstruction procedure.

V.E. Circular Advection of Inow Variation with AMR

The application of the proposed high-order CENO �nite-volume scheme to the solution of circular advection
at constant angular velocity is now considered in a square box. In this case the inow function was chosen
such that to test both the accuracy and robustness of the scheme as well as the capability of the high-order
scheme in conjunction with AMR. The inow variation was u(x; 0)=e2 d sin6(2� d) if d 2 [0 : 0:8], otherwise
0, where d=x� 0:4. The boundary conditions for this problem are inow and outow for the bottom
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(a) Convection dominated ow (Pe=10:0) (b) Di�usion dominated ow (Pe=0:1)

(c) Equal convection and di�usion (Pe=1:0) (d) Convection dominated ow (Pe=10:0)

Figure 8. (a) Numerical prediction of channel ow problem on an 80�40 Cartesian mesh. (b)-(d) L1, L2 and L1
norms of the solution error as a function of mesh density obtained with cubic (k=3) and quartic (k=4) interpolants for
di�erent P�eclet numbers.

and left boundaries, respectively, and far-�eld for the top and right boundaries. The predicted solution
obtained using the 4th-order CENO scheme (k= 3) on a �nal mesh consisting of 2,911 blocks and 291,100
computational cells is shown in Fig. 9(a). The solution pro�le along the cross-section A-A is compared
against the exact solution in Fig. 9(b). The initial mesh that consists of 16 10�10 solution blocks and the
�nal mesh are depicted in Fig. 9(c) and (e), respectively. The results clearly show that the proposed AMR
scheme in conjunction with the h-re�nement criteria based on the smoothness indicator of the hybrid CENO
reconstruction technique is capable of re�ning both under-resolved (in-accurate) and non-smooth regions
of the solution and will not unnecessarily re�ne resolved solution content. The smooth peaks are all well
captured by the high-order scheme whereas the solution discontinuity is well identi�ed by the smoothness
indicator and well resolved by the hybrid CENO scheme in conjunction with the AMR procedure.

V.F. Ringleb Flow

To demonstrate the accuracy of the CENO approach for the discretization of the hyperbolic operator in
the Navier-Stokes equations, numerical predictions of Ringleb’s ow on body-�tted multi-block quadrilat-
eral mesh have also been considered herein. Ringleb’s ow involves isentropic, expanding, irrotational ow
between two streamlines and exact solutions for this smooth continuous ow �eld can be determined by
analytical means.92,93 Therefore, this ow also represents a good test case to assess the inuence of di�er-
ent sets of reconstructed variables to the accuracy of the CENO scheme. In particular, the head-to-head
comparison of CENO schemes based on reconstruction of primitive and of conserved variables, respectively,
has been performed herein by carrying out systematic grid convergence studies and comparing the solution
accuracies in the density variable for each approach.

A transonic variant of Ringleb’s ow de�ned by kmin = 0:5, kmax = 1:2, and q = 0:3 is considered here.
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(a) (b)

(c) (d) (e)

Figure 9. (a) Fourth-order (k=3) CENO prediction to circular advection of a smooth and discontinuous inow variation
on �nal mesh; (b) Comparison of numerical and exact solutions along the cross section A-A; (c) Initial mesh with 16
10�10 blocks and corresponding regions in which CENO scheme uses limited linear reconstruction (shown in red); (d)
Re�ned mesh after 3 level of re�nement (d) Final re�ned mesh after 6 re�nement levels with 2,911 10�10 blocks and
re�nement e�ciency of �=0:955.

For this case, reection boundary conditions were applied along the streamline boundaries by enforcing
the inviscid (slip) condition, ~V � ~n=0, at all Gauss integration points via the constrained least-squares
reconstruction procedure outlined in Sect. III.D.3. The predicted Mach number distribution for this ow
obtained using the 4th-order CENO �nite-volume scheme on a 80�80 body-�tted mesh is given in Fig. 10(a)
and the L1, L2, and L1 norms of the error in predicted density and pressure obtained using the 3rd- and
4th-order versions of the CENO scheme are shown in Fig. 10(b) and (c).

For the Ringleb ow, the slopes of the L1- and L2-norms shown in Fig. 10(b) for the 3rd- and 4th-order
CENO schemes based on reconstruction of primitive variables approach -3.06, -3.00, -3.93 and -4.02, re-
spectively, illustrating that the accuracy of the scheme can be maintained at curved boundaries by using
constrained least-squares reconstruction and accurate boundary description. The error norms of the 4th-
order CENO schemes based on reconstruction of primitive (PV) and conserved variables (CV), respectively,
are also compared for this supersonic ow in Fig. 10(b) and (c). The results show that the convergence rates
for the two reconstruction methods based on primitive and conserved variables are again very similar and
both recover the expected convergence rate in the asymptotic regime. Additionally, it is easily observed by
inspecting Fig. 10(b) and (c) that the error norms in predicted solution pressure are merely a translation of
those obtained in predicted solution density, thereby con�rming that the same order of accuracy is recov-
ered for all primitive solution variables. Moreover, our numerical experiments demonstrate that the error
introduced by the mapping of average conserved to average primitive variables, as explained in Sect. III.D,
is relatively small and does not a�ect noticeably the order of convergence for the scheme.

V.G. Solution of the Navier-Stokes Equations

Finally, the application of the proposed high-order CENO �nite-volume algorithm to numerical simulation of
ows governed by the full set of Navier-Stokes equations described in Sect. II is considered herein to illustrate
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(a) 4th-order (k=3) CENO prediction

(b) Density error norms (c) Pressure error norms

Figure 10. (a) Predicted Mach number distribution for transonic Ringleb’s ow obtained using 4th-order CENO
scheme; and L1, L2, and L1 error norms in the predicted solution density (b) and pressure (c) for transonic Ringleb’s
ow obtained using the 3rd- and 4th-order CENO schemes as a function of mesh density. The error norms for the
4th-order CENO scheme are shown for both reconstruction of primitive variables (PV) and of conserved variables (CV).

the predictive capabilities of the high-order method for prediction of laminar viscous ows. Numerical
simulations for �xed mesh are presented next followed by AMR results later in this section.

V.G.1. Steady Laminar Subsonic Flow Past Circular Cylinder

The predictive capabilities of the proposed CENO scheme are further examined by considering the laminar
subsonic ow past a circular cylinder with a free-stream Mach number of M1=0:1. Numerical simulations
were carried out for two Reynolds numbers, Re=30 and Re=110, for which no three-dimensional e�ects are
present.94 For Re=30, the solution is a steady wake behind the cylinder as the one shown in Fig. 11(a). The
unsteady ow corresponding to Re=110 is solved in conjunction with AMR and discussed in Sect. V.G.2.

The geometry considered in the steady-state numerical simulations is the domain between two concentric
cylinders of which the inner cylinder has a diameter di =0:0001 and the outer cylinder has been positioned
at 40 inner diameters. Five uniform but stretched towards the inner cylinder O-grid meshes were used
during this study with the following resolutions: M1 = 3; 200, M2 = 12; 800, M3 = 51; 200, M4 = 204; 800 and
M5 = 3; 276; 800 computational cells. The investigation of the steady laminar subsonic ow past circular
cylinder has been carried out with two numerical methods: a 4th-order (i.e. quartic reconstruction) CENO
scheme and a second-order method which uses a combination of piecewise linear least-squares reconstruction
and a diamond path reconstruction for the discretization of the hyperbolic and elliptic operator, respectively,
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(a) Mach number prediction (b) Predicted drag coe�cients of both schemes

Figure 11. (a) Fourth-order CENO prediction of Mach number and streamlines for laminar ow over cylinder at
M1=0:1 and Re=30 on a mesh with 51,200 cells. (b) Comparison of drag coe�cients predicted by the 4th-order CENO
method and the 2nd-order scheme described in the text for the laminar ow over cylinder at M1=0:1 and Re=30. The
x-axis represents the equivalent mesh spacing determined as �x= 1p

N
.

the details of which can be found in.57 The imposed boundary conditions for the inner cylinder were no slip
and adiabatic wall, both being enforced for the CENO scheme with the constrained reconstruction algorithm
described in Sect. III.D.3. The CENO predictions of the drag coe�cients were compared against those of
the second-order scheme and against those calculated with the curve �ts proposed by Henderson95 which
are based on an thorough numerical investigation near the onset of vortex shedding. Note that Henderson’s
predictions are veri�ed against experimental data in the aforementioned paper.

The predicted Mach number distribution for laminar viscous ow around the cylinder at Re=30 obtained
using the 4th-order (k=4) CENO �nite-volume scheme on the body-�tted mesh M3 is shown in Fig. 11(a).
The drag coe�cients computed based on the high-order numerical solutions for this problem were CD =1:7498
with M1, CD = 1:7512 with M2, CD = 1:7522 with M3, CD = 1:7528 with M4, and CD = 1:7541 with
M5, respectively. These values are in good agreement with Henderson’s prediction of CD = 1:737 and the
experimental data available in the literature.96,97

The drag coe�cients predicted by both 4th- and 2nd-order schemes are plotted in Fig. 11(b). An analysis
of these results reveals several observations worth discussing. First, the predictions of both high-order and
second-order methods converge to the same drag coe�cient value as the mesh is re�ned, thus providing
con�dence in the validity of the two approaches. At its minimum, the di�erence between the predictions of
the two schemes becomes only 6.5 drag counts, which is obtained on the �nest mesh. Secondly, the error
of the CENO predicted drag coe�cient on mesh M1 relative to the best estimation (i.e., the value obtained
on mesh M5), is only 0.245% while the mesh resolution is 1,024 times lower. In contrast, the 2nd-order
method exhibits a 1.966% relative error between its drag coe�cient predictions on the same meshes, which is
about 8 times larger than that corresponding to the high-order CENO scheme. Furthermore, the data shows
that in order to obtain the same drag coe�cient error as the CENO scheme on mesh M1 (i.e., 0.245%), the
2nd-order method requires a computational grid that is about 132 times �ner than M1.

It should be noted however, that no attempt has been made here to quantify the computational savings
generated by the high-order procedure as a result of a reduced mesh resolution due to ine�ciencies and
inequities in the time-marching schemes which may lead to unfair comparisons between the two spatial
discretizations. As the number of spatial residual evaluations required to converge to a steady-state solution
greatly depends on the employed time-marching strategy, a better alternative to assess the cost of the
two numerical methods is to compare the computational cost of only one spatial residual evaluation for
each computational cell. Thus, time measurements on single and multiple (i.e. four) Intel Xeon CPUs,
X5460@3.16GHz, with shared memory have been carried out for both high- and low-order schemes with
the mesh M3 which contains 128 blocks. The measurements indicate that the high-order CENO scheme
requires about 0:0524� 0:0024 ms for one residual evaluation per each computational cell which is about 2.9
to 3.4 times more expensive than the cost of the second-order counterpart. These numbers imply that the
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Figure 12. The parallel speedup and e�ciency achieved for the steady laminar ow past cylinder by the 4th-order
CENO algorithm as a function of the number of computing cores.

proposed high-order CENO scheme has the potential to provide large computational savings when accurate
drag predictions are required but they will ultimately depend on how e�ective the time-marching strategy
is in eliminating the transient component of the high-order solution.

The parallel performance of the proposed high-order CENO algorithm has also been assessed based on
the steady laminar subsonic ow past circular cylinder by measuring/evaluating the parallel speedup and
parallel e�ciency, which are de�ned as Sp= t1

tp
and Ep= Sp

p , respectively, where t1 and tp are the execution
times required to solve the problem by a single processor and by p processors, respectively. Herein, the
parallel speedup, also known as strong scaling, has been measured by considering a �xed problem size of
2,048 20�20 blocks and a �xed number of explicit time steps, and performing the simulation on an increasing
number of processors p, which had a maximum value of 1,024 in this study. Note that a perfect speedup
corresponds to the ideal situation in which the execution time of the simulation on p computing cores is p
times smaller than t1. In Fig. 12 the parallel speedup and e�ciency achieved by the CENO method as a
function of the number of computing cores is plotted against the corresponding ideal variations of the parallel-
performance parameters. The results show that the 4th-order CENO method has good parallel scalability
even for computational blocks of relatively-small number (e.g., 400) of cells and manages to achieve parallel
e�ciencies of 0.78 and 0.72 on 512 and 1,024 computing cores, respectively. The drop incurred in parallel
e�ciency with increasing the processor count is an expected one as not only additional inter-block parallel
communication is required as more processors are used but also the amount of computational work per
computing core decreases signi�cantly.

V.G.2. Unsteady Laminar Subsonic Flow Past Circular Cylinder with AMR

To demonstrate the predictive capabilities of the CENO scheme in conjunction with the block-based AMR
algorithm for solutions of the Navier-Stokes equations governing laminar viscous ows, the unsteady vortex
shedding ow over the cylinder corresponding to Re=110 is considered. The outer cylinder or boundary of the
computational domain has been positioned in this case at 80 inner diameters di instead of the previously used
value of 40 for the steady-state simulation in order to test the capabilities of the adaptive high-order CENO
algorithm to resolve accurately ow features occurring over a wide computational domain with a reduced
number of grid elements. To begin the computation, a periodic steady-state solution was obtained on an
initial O-grid mesh of 32 self-similar 8�8 solution blocks with 2,048 computational cells. The corresponding
drag coe�cient variation with respect to physical time for this initial under-resolved solution is depicted in
the lower left corner of Fig. 13. As can be seen, the mean drag coe�cient is well under-predicted.

Automatic mesh adaptation directed by the proposed h-re�nement criterion based on the CENO smooth-
ness indicator of the velocity components has been further applied to this very coarse solution in the way
described next to improve the representation of relevant ow features and the prediction of the drag coef-
�cient. The initial strategy employed up to physical time t = 0:006225 was to incrementally improve the

24 of 30

American Institute of Aeronautics and Astronautics



Figure 13. Variation of drag coe�cient for unsteady vortex shedding ow past the cylinder as a function of physical
time determined by the predicted ow �eld solution obtained using the 4th-order (k=4) CENO scheme in conjunction
with the block-based AMR algorithm. The detail plates show the mean CD value for the mesh with 221 (Detail A),
536 (Detail B) and 2,486 blocks (Detail C).

solution accuracy of the unsteady ow by generating a sequence of AMR meshes on which periodic steady-
state solutions are obtained. The �ve meshes generated by the block-based re�nement algorithm in this
simulation step consists of 80, 221, 536, 1,349 and 2,486 8�8 blocks and 5,120, 14,144, 34,304, 86,336 and
159,104 cells. The drag coe�cient variation following from the predicted solution on each of the �ve meshes
is depicted in Fig. 13, which also shows the mean CD value for the mesh with 221 (Detail A), 536 (Detail
B) and 2,486 blocks (Detail C).

Following the application of the �rst AMR strategy, automatic mesh adaptation has been further per-
formed for this problem dynamically at regular intervals of physical time. After an initial constant increase,
the �rst of which being to 4,175 blocks, the AMR algorithm generated and maintained a number of blocks
in the range of 10,000 to 11,000 which corresponds to 10-12 levels of re�nement and mostly varied their
location so as to \follow" the unsteady ow features and shed vortices. This fact can be observed in Fig. 14
in which the solution snapshots taken at physical time t=0:006269 is depicted to illustrate the distribution
of the AMR blocks in the vicinity of the inner cylinder and the wake behind it. As can be clearly observed
from the solution plot, the regions of boundary layer detachment and the vortices in the wake behind the
cylinder are better resolved by the multi-block AMR grid and the mesh resolution is increased especially
near and behind the inner cylinder. Notice that the domain covered by our plot span over 60 inner cylinder
radii and the wake behind the cylinder gets well resolved even at large distances from the trailing edge.
Notice also that the smoothness indicator recognizes the regions where interesting ow features occur such
as vortices, boundary layers, ow detachment zones, and other areas characterized by sharp solution vari-
ations, and the block-based AMR algorithm adequately resolves them so as to achieve the speci�ed level
of smoothness. Nevertheless, the level of mesh resolution imposes severe restrictions on the allowable time
step in the explicit time-marching scheme and consequently, a tremendous computational e�ort is required
to simulate the many vortex shedding periods necessary to transport the convective ow features resolved
near the cylinder into the far wake. Our current dynamic simulation extends over almost one period and
consequently, it is anticipated that better representation of the far vortices would have been possible if more
shedding periods were achieved.

The CD curve presented in Fig. 13 exhibits convergence to a grid-independent variation as the mesh
is re�ned by the AMR algorithm and shows that the improvements generated by the predictions on the
dynamically re�ned meshes are minor. Our best prediction of the mean drag coe�cient and Strouhal number
is CD = 1:3314 and St = 0:1696, respectively, which agrees well with values from the literature. Thus, the
Strouhal number based on the relationship proposed by Roshko98 to describe the best �t to experimental
data is St=0:1711. Furthermore, the predicted mean drag coe�cient compares well with the value CD=1:34
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Figure 14. Predicted instantaneous density contour lines and the entropy �eld for vortex shedding over the cylinder
on the AMR mesh with 10,787 blocks and 690,368 cells. The number of grid blocks is shown in the top right corner and
the block boundaries are depicted with dark green colour. The bottom left �gure is a zoom-in of the ow con�guration
near the interior cylinder.

reported in the computational study by Henderson.95 Note that Sheard et al.99 have also reported detailed
computations of the drag for the cylinder and have compared their predictions against Henderson’s and
the experimentally measured drag coe�cients from Wieselberger.97 Figure 15 shows the drag coe�cients
obtained for both the steady (Re=30) and unsteady (Re=110) laminar ows past circular cylinder studied
herein, plotted against the data from Sheard et al.99 The plot reveals that both predictions by CENO
algorithm compare very well with the previously reported values. Moreover, for Re = 110, it seems that
CENO prediction is slightly more accurate with respect to Wieselberger’s measurements than the curve �t
value by Sheard et al.99 Without overstating this result, as our study has been carried out for only one
Reynolds number corresponding to unsteady ow and not for the wide range covered by the other authors, it
is worth concluding that these �ndings provide strong support for the validity of the present implementation
and indicate that the high-order CENO scheme in combination with the block-based AMR algorithm has the
potential to provide reliable predictions of viscous laminar ows over complex geometries while signi�cantly
reducing the number of required computational elements.

VI. Discussion and Concluding Remarks

A new high-order CENO �nite-volume scheme with AMR has been proposed for solving compressible
laminar viscous ow problems on body-�tted multi-block mesh. The procedure represents an extension of
the CENO approach previously developed for inviscid ow simulations to the Navier-Stokes system of PDEs
governing laminar viscous ows of thermally and calorically perfect gases. The veri�cation and validation
of the proposed high-order adaptive algorithm has been accomplished by comparing predicted solutions
to a variety of available analytical results, previously reported computations and experimental data. The
analyzes and the results included herein con�rm that the proposed numerical algorithm has many of the
desirable features of a large-scale simulation framework for inviscid and viscous ows. The ability of the
scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or
non-smooth solution content (i.e., solutions with discontinuities) is demonstrated. The usefulness of an
h-re�nement criterion based on the smoothness indicator of the hybrid scheme has been evaluated and
shown to provide a robust and reliable mesh adaptation algorithm that is capable of re�ning both under-
resolved (in-accurate) and non-smooth regions of the solution and will not unnecessarily re�ne resolved
solution content. Finally, our extensive numerical experiments indicate that this algorithm has a great
potential to reduce the overall computational cost of large-scale numerical simulations thereby reducing the
grid resolution required to resolved accurately solutions. Future research will involve further investigation
of the CENO approach, the application of the algorithm to more complicated ows, the extension to three-
dimensional problems and to hybrid structured/unstructured meshes, and the development of e�ective time
integration techniques for the high-order CENO spatial discretization.
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Figure 15. Depiction of the steady and mean drag coe�cients predicted by the 4th-order CENO scheme for the ow past
circular cylinder at Re=30 and Re=110 relative to previously reported values. The data obtained from Sheard et al.99

includes, in addition to their computational predictions, the experimental measurements of Wieselberger (1921) and the
two- and three-dimensional computations by Henderson (1995 and 1997, respectively). Additionally, the transitional
Reynolds numbers from steady to unsteady ow (i.e., Re� 47) and from two- to three-dimensional ow (i.e., Re� 189)
are indicated with vertical lines.
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