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A high-order central essentially non-oscillatory (CENO) finite-volume scheme in com-
bination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for
solution of hyperbolic systems of conservation laws on body-fitted multi-block mesh. The
CENO scheme is based on a hybrid solution reconstruction procedure that combines an
unlimited high-order k-exact least-squares reconstruction technique following from a fixed
central stencil with a monotonicity preserving limited piecewise linear reconstruction algo-
rithm. Switching in the hybrid procedure is determined by a solution smoothness indicator
that indicates whether or not the solution is resolved on the computational mesh. The
hybrid approach avoids the complexity associated with other ENO schemes that require
reconstruction on multiple stencils which in some cases can produce poorly conditioned
coefficient matrices. A novel h-refinement criterion based on the solution smoothness in-
dicator is used to direct the refinement of the AMR mesh. The predictive capabilities of
the proposed high-order AMR scheme are demonstrated for the Euler equations govern-
ing two-dimensional compressible gaseous flows. The ability of the scheme to accurately
represent solutions with smooth extrema and yet robustly handle under-resolved and/or
non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range
of problems. Moreover, the ability to perform mesh refinement in regions of smooth but
under-resolved and/or non-smooth solution content until the desired resolution is achieved
is also demonstrated.

I. Introduction and Motivation

The potential of high-order methods to reduce the cost of numerical simulations is an active area of
research, particularly for large-scale scientific computing applications such as direct numerical simulations
(DNS) and large eddy simulations (LES) of turbulent non-reactive and combusting flows, numerical compu-
tation of complex unsteady aerodynamic flows, aeroacoustic modelling, and computational electromagnetics.
Standard lower-order spatial discretizations (i.e., methods up to second order) can exhibit excessive numer-
ical error and are therefore very often not practical for the applications listed above. Improved numerical
efficiency may be achieved by raising the order of accuracy of the spatial discretization, thereby reducing the
number of computational cells required to achieve the desired solution accuracy. Adaptive mesh refinement
(AMR) is another approach for coping with the computational cost of large-scale numerical simulations.
Computational grids that automatically adapt to the solution of the governing equations are very effective
in treating problems with disparate length scales, providing the required spatial resolution while minimizing
memory and storage requirements. For numerical simulations of physically complex flows having a wide
range of spatial and temporal scales both high-order discretizations and AMR are demanded. For example,
it is pointed out by Moin and Krishnan1 that even ENO schemes as high as sixth-order can be too dissipative
for the prediction of shock/turbulence interactions without refinement of the mesh around the shock wave.
In other work, Jameson2 has shown that high-order methods can be considerably more efficient than low-
order AMR schemes for flows containing structures such as vortices, eddies and/or turbulence and concluded
that high-order schemes combined with AMR may provide very effective means of obtaining high solution
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accuracy. Moreover, even if a combination of high-order discretization and AMR can reduce significantly the
cost of large-scale numerical simulations, a parallel implementation of these approaches is usually necessary
in order to make the solution of such problems affordable on currently available hardware. Large massively
parallel distributed memory computers can provide many fold increases in processing power and memory
resources beyond those of conventional single-processor computers and would therefore provide another ob-
vious avenue for greatly reducing the time required to obtain numerical solutions of large-scale scientific
computing applications and/or physically complex flows. Thus, it is felt that the design of a high-order
spatial discretization algorithm should be considered in the context of both mesh adaptation and parallel
implementation of the algorithm.

In the last decade there have been a number of studies of high-order schemes for both hyperbolic conser-
vation laws and compressible flow simulations. The challenge has been to achieve accurate discretizations
while coping in a reliable and robust fashion with discontinuities and shocks. The ENO schemes first pro-
posed by Harten et al.3 provide robust frameworks for high-order discretizations of hyperbolic systems. The
stencil leading to the “smoothest” reconstruction is selected and therefore stencils containing discontinuities
are avoided. Abgrall4 and Sonar5 have since extended the ENO concept for application to flow prediction
on unstructured mesh. In addition, so-called weighted ENO (WENO) schemes have been developed for both
structured and unstructured mesh.6–8 However, the difficulty with these approaches has been the extension
of the method to multi-dimensional problems and large systems of coupled partial differential equations.
The computational challenges are primarily related to the selection of stencils on multi-dimensional meshes,
particularly in the case of unstructured grids,4,5, 9, 10 and the poor conditioning of the linear systems that
define the solution reconstructions for these stencils.9,10 Although successful implementations have been
developed, in general the computational costs and complexity of implementing ENO and WENO schemes
have limited their widespread application. Despite these limitations, combinations of high-order ENO and
WENO schemes with AMR for both structured and unstructured meshes have also been developed and
applied to engineering problems such as the prediction of high-speed flow as described in the recent work by
Wolf and Azevedo.11

Other researchers have considered more flexible high-order schemes, which may be more easily extended to
multi-dimensional problems and to unstructured meshes. For example, Barth and Fredrickson12,13 developed
a high-order finite-volume approach for unstructured mesh based on k-exact least-squares reconstruction and
Cockburn et al.14–16 have formulated a family of high-order schemes for conservation laws referred to as
discontinuous Galerkin (DG) methods. More recently, Ollivier-Gooch17,18 has developed a data-dependent
weighted least-squares reconstruction procedure, that uses a fixed stencil and seeks to enforce monotonicity
of the scheme by introducing data-dependent weights for each point in the stencil. In addition, Wang et
al.19,20 and Liu et al.21 have recently proposed variants of the DG method, referred to as spectral volume
(SV) and spectral difference (SD) methods, for obtaining high-order solutions to hyperbolic conservation
equations. More recently, extensions of these methods to viscous flows have been considered by Sun et al.22

for the SV approach and by May and Jameson23,24 for the SD method. The latter have also applied their
scheme in combination with AMR to the Navier-Stokes system of equations. Note also that Barad and
Collela have proposed a fourth-order-accurate AMR scheme for Poisson’s equation.25 Finally, De Rango and
Zingg26 have considered the application of high-order finite-difference methods to the prediction of turbulent
aerodynamic flows. A recent summary of high-order schemes for the compressible Navier-Stokes equations
is given by Venkatakrishnan et al.27 Despite these advances in high-order accurate schemes for arbitrary
meshes, there remains as yet no robust and effective way of providing high-order accuracy without degrading
the solution monotonicity in the vicinity of discontinuities.

In the present work, a high-order central ENO (CENO) cell-centred finite-volume scheme is proposed
for solving hyperbolic systems of conservation laws on body-fitted multi-block mesh in conjunction with a
block-based adaptive mesh refinement technique. Use of this particular grid structure and AMR strategy has
been shown to allow highly efficient and scalable parallel implementations of finite volume methods.28 This
proposed variant of the original ENO scheme is not based on either selecting or weighting reconstructions from
multiple stencils. Instead, a hybrid solution reconstruction procedure is used that combines the unlimited
high-order k-exact least-squares reconstruction technique of Barth13 based on a fixed central stencil with a
monotonicity preserving limited piecewise linear least-squares reconstruction algorithm.13 Switching in the
hybrid procedure is determined by a solution smoothness indicator that indicates whether or not the solution
is resolved on the computational mesh. The limited reconstruction procedure is applied to computational
cells with under-resolved solution content and the unlimited k-exact reconstruction scheme is used for cells
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in which the solution is fully resolved. Due to cancellation of truncation errors, use of the central stencil will
generally provide the most accurate reconstruction. This hybrid approach avoids the complexity associated
with other ENO and WENO schemes that require reconstruction on multiple stencils which in some cases
can produce poorly conditioned coefficient matrices. Additionally, the solution of the least-squares problem
for the reconstruction is made more efficient with the use of a fixed stencil. For this reason, the hybrid
CENO algorithm would seem very well suited for solution reconstruction on unstructured mesh. Another
benefit of the CENO approach is that mesh adaptation can be directed based on the ability of the scheme
to differentiate between resolved and under-resolved or non-smooth solution content. A novel h-refinement
criterion based on the solution smoothness indicator is defined and used to control refinement of the body-
fitted multi-block AMR mesh.

The CENO reconstruction leads to a finite-volume scheme for hyperbolic conservation equations that
is uniformly accurate for smooth solutions (uniform accuracy is lost for non-smooth solutions), even near
extrema and avoids the appearance of O(1) numerical oscillations in under-resolved regions and for solutions
containing strong discontinuities and/or shocks. Accuracy to any order is possible by simply expanding
the support for the cell-centred reconstruction. Note that in earlier work, Harten and Chakravarthy29 have
proposed a technique to obtain an ENO reconstruction on a fixed central stencil by hybridizing the high-order
reconstruction with a first-order formulation. The switching in their proposed hybrid central ENO scheme
was based on undivided differences and the total variation diminishing (TVD) property30 and not directly
on the smoothness of the reconstructions. More recently, Haselbacher10 has since explored the use of fixed
stencil central reconstruction in the formulation of WENO schemes for unstructured mesh, but Haselbacher’s
approach is somewhat different to the current approach and schemes of accuracy higher than second order
(piecewise linear reconstruction) were not formulated.

In what follows, a detailed summary of the proposed high-order CENO finite-volume scheme is provided,
including discussions of the cell-centred finite-volume formulation, numerical flux evaluation using Riemann-
solver based flux functions, hybrid CENO solution reconstruction, boundary condition prescription, and
solution smoothness indicators for body-fitted multi-block quadrilateral meshes. The accuracy of the CENO
reconstruction is then demonstrated for both smooth and non-smooth analytical functions. Additionally,
the predictive capabilities of the proposed CENO finite-volume scheme is then demonstrated for both the
one- and two-dimensional forms of the Euler equations of gas dynamics by comparing numerical solutions to
analytic solutions for several problems, including Ringleb’s flow, and by comparing the numerical predictions
of the method to those of a standard second-order approach and the Harten’s original ENO scheme for
several flow problems. In addition, results obtained with the CENO scheme in conjunction with adaptive
mesh refinement are also described to illustrate the predictive capabilities of the proposed high-order AMR
scheme.

II. CENO Finite Volume Scheme

II.A. Hyperbolic Conservation Equations

The solution of hyperbolic systems of conservation laws of the form

∂U
∂t

+ ~∇ · ~F = 0 , (1)

will be considered here, where U is the conserved variable solution vector, ~F is the solution flux dyad, and
t is time. In particular, numerical solution of the one- and two-dimensional forms of the Euler equations
of inviscid compressible gas dynamics will be discussed. For one space dimension, the Euler equations are
given by

∂U
∂t

+
∂F
∂x

= 0 , (2)

where U has the form
U =

[
ρ, ρu, ρe

]T

, (3)

x is the spatial coordinate, ρ is the gas density, u is the velocity of the gas, e = p/(ρ(γ − 1)) + u2/2 is the
specific total energy, p = ρRT is the pressure, T is the gas temperature, R is the gas constant, γ is the
specific heat ratio, and

F = [ρu, ρu2 + p, u(ρe + p)]T , (4)
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is the solution flux vector. For a polytropic gas (thermally and calorically perfect gas), the ratio of specific
heats, γ, is a constant and the specific heats are given by Cv = R/(γ − 1) and Cp = γR/(γ − 1).

For two-dimensional planar flows, the Euler equations are as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 , (5)

where U is given by

U =
[

ρ, ρu, ρv, ρe
]T

, (6)

x and y are the two spatial coordinates, u and v are the velocity components in the x- and y-coordinate
directions, e = p/(ρ(γ − 1)) + (u2 + v2)/2, and

F = [ρu, ρu2 + p, ρuv, u(ρe + p)]T , (7)

and
G = [ρv, ρuv, ρv2 + p, v(ρe + p)]T , (8)

are the x- and y-direction solution flux vectors.

II.B. Semi-Discrete Form

High-order solutions of Eq. (1) are sought here in one- and two-space dimensions by applying a Godunov-
type finite-volume spatial discretization procedure31 in conjunction with high-order polynomial solution
reconstruction and Riemann-solver based flux functions. The semi-discrete form of the finite-volume for-
mulation applied to Eq. (1) for cell (i, j) of a two-dimensional multi-block mesh composed of quadrilateral
computational cells is given by

dUi,j

dt
= − 1

Ai,j

Nf∑
l=1

NG∑
m=1

(
ω~F · ~n ∆`

)
i,j,l,m

= Ri,j(U) , (9)

where here each cell has Nf =4 faces and a NG-point Gaussian quadrature numerical integration procedure
has been used to evaluate the solution flux through each face. The variable Ui,j is the conserved solution
state for cell (i, j), Ai,j is the area of the quadrilateral cell, ω is the quadrature weighting coefficient, and
∆` and ~n are the length of the cell face and unit vector normal to the cell face or edge, respectively. The
vector, Ri,j , is the residual vector.

II.C. Numerical Flux Evaluation

The numerical fluxes, ~F · ~n, at the quadrature points, m, of faces, l, for each cell are determined from the
solution of a Riemann problem. Given the left and right solution states, Ul and Ur, at the quadrature points
of the cell interfaces, the numerical flux is given by

~F · ~n = F(Ul,Ur, ~n) , (10)

where the numerical flux F is evaluated by solving a Riemann problem in a direction defined by the normal
to the face with initial data Ul and Ur. In the present algorithm, both exact and approximate Riemann
solvers can be used to solve the Riemann problem and evaluate the numerical flux. The Roe linearized
Riemann solver,32 HLLE and modified HLLE flux function due to Linde,33–35 and the exact Riemann solver
of Gottlieb and Groth36 have all been implemented and may be used.

The left and right solution states, Ul and Ur, are determined by performing piecewise k-order polynomial
solution reconstruction within each computational cell. In the present work, a k-order CENO reconstruction
scheme is proposed and used. Details of this approach are given in the next section.

Note that the spatial accuracy of the finite-volume scheme is obviously very dependent on the order
of the solution reconstruction. For k-order reconstruction, a k+1-order accurate spatial discretization can
be achieved for smooth problems. Note also that the number of Gauss quadrature points at which the
numerical flux is evaluated is a function of the order of the solution reconstruction. Current practise is to
use one quadrature point (NG =1) for second-order schemes (piecewise linear, k=1, reconstruction) and two
quadrature points (NG =2) for third- and fourth-order schemes (piecewise quadratic, k=2, and cubic, k=3
reconstruction) to ensure that the order of accuracy of the schemes is preserved.
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II.D. Time-Marching Schemes

For all the test cases considered in this work, multi-stage explicit time-marching schemes have been used to
solve the system of ordinary differential equations given by Eq. (9). For time accurate problems, either a two-
or four-stage standard Runge-Kutta scheme is used, depending on the accuracy of the spatial reconstruction.

III. CENO Reconstruction

A high-order central ENO method is used for performing the piecewise k-order polynomial reconstruc-
tion within each of the computational cells. This variant of the original ENO scheme is not based on either
selecting or weighting reconstructions from multiple stencils. Instead, a hybrid solution reconstruction pro-
cedure is used that combines the high-order k-exact least-squares reconstruction technique of Barth13 based
on a fixed central stencil with a monotonicity preserving limited piecewise linear least-squares reconstruc-
tion algorithm.13 Switching in the hybrid procedure is determined by a solution smoothness indicator that
indicates whether or not the solution is resolved on the computational mesh. The limited reconstruction
procedure is applied to computational cells with under-resolved solution content and the unlimited k-exact
reconstruction scheme is used for cells in which the solution is fully resolved.

III.A. k-Exact Reconstruction

In piecewise k-exact polynomial reconstruction, it is assumed that a solution variable, u, at any location, ~r,
in computational cell (i, j) has the form

uk
i,j(~r) =

N1∑
p1=0

N2∑
p2=0

(x− x̄i,j)
p1 (y − ȳi,j)

p2 Dk
p1p2

(11)

where (x, y) are the Cartesian coordinates of the point of interest, (x̄i,j , ȳi,j) are the coordinates of the cell
centroid, k is the order of the piecewise polynomial interpolant, the upper bounds for the indices p1 and p2

must satisfy the condition that N1 +N2 ≤ k, and Dk
p1p2

are the coefficients of the polynomial approximation
to be determined. The latter are in general functions of the mean or average value solution, ūi,j , within
the cell and its neighbours. When determining the coefficients Dk

p1p2
, it is required that the following

conditions be satisfied by the reconstruction procedure: i) the solution reconstruction must reproduce exactly
polynomials of degree N≤k; ii) the solution reconstruction must preserve the mean or average value within
the computational cell; and iii) the reconstruction procedure must have compact support. The second
condition implies that ūi,j = (1/Ai,j)

∫∫
Ai,j

uk
i,j(~r)dxdy. The third condition involves the number and locality

of the neighbouring solution states used in the cell reconstruction. The minimum size of the compact stencil
is determined by the number of required unknown coefficients, but in practise, additional neighbours are
included in order to make the reconstruction more robust in the presence of stretched meshes and solution
gradients not aligned with the mesh. For body-fitted quadrilateral mesh, the current k-exact reconstruction
scheme uses a fixed central stencil which includes 8 neighbour cells for k = 1 and 24 neighbours for k = 2,
k = 3 and k = 4.

The evaluation of the coefficients Dk
p1p2

requires the least-squares solution of an overdetermined system
of linear equations A x = B, where the coefficient matrix A of the linear system depends only on the mesh
geometry and can be partially calculated in a preprocessing step. The preservation of the average value
within the cell is explicitly enforced by expressing the coefficient Dk

00 as a function of the other unknowns.
Both Householder QR factorization algorithm37 and orthogonal decomposition by SVD method37 can be used
to solve the weighted least squares problem and determine the other coefficients, the latter being favored
for the computation of the pseudo-inverse matrix A−1 as described below. Note that use of a fixed central
stencil here avoids the complexities associated with ENO and WENO schemes that require reconstruction on
multiple stencils as well as many of the difficulties associated with poorly conditioned coefficient matrices for
the least squares problems. In addition, the use of a fixed stencil allows the pseudo-inverse matrix A−1 to be
stored and reused at successive time steps as long as the computational grid is not modified. In particular,
it was found that such a procedure can provide a computational speed-up by a factor of about 5 for high-
order two-dimensional Euler computations compared with the situation in which the coefficient matrix A
is formed and a least-squares subroutine is called for each spatial reconstruction. Although the procedure
based on reusing the pseudo-inverse matrix requires extra storage, the additional memory requirements are
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Figure 1. The graph of f(α) = α
(1−α) .

not that substantial and are generally readily available on most modern distributed memory architectures.
This procedure therefore represents a practical approach for reducing the cost of the proposed high-order
reconstruction and is used here.

III.B. Smoothness Indicator

The proposed CENO scheme preserves solution monotonicity in regions of large gradients or discontinuities
by reverting the high-order k-exact reconstruction to a limited piecewise linear (k =1) reconstruction. The
slope limiters of Barth-Jesperson and Venkatakrishnan are used13,38 in the limited reconstruction. In order to
detect regions where the order of the reconstruction should be reduced and the limiters applied, a smoothness
indicator is computed for every variable individually within each cell as part of a post-analysis step after the
unlimited k-exact reconstruction has been performed. The smoothness indicator is then used in the manner
described below to ensure that the limited linear reconstruction procedure is applied to computational cells
with under-resolved and/or non-smooth solution content and the unlimited k-exact reconstruction scheme
is where the solution is fully resolved.

The form of the smoothness indicator used here was inspired by the definition of multiple-correlation
coefficients that are often used in evaluating the accuracy of curve fits.37 The smoothness indicator, S, is
calculated in terms of a smoothness parameter, α, and information about the number of unknowns (degrees
of freedom), DOF , and size of the stencil, SOS, used in the reconstruction. It is taken to have the form

S =
α

max ((1− α), ε)
(SOS −DOF )

(DOF − 1)
(12)

where α is determined as follows

α = 1−

∑
γ

∑
δ

(
uk

γ,δ(~̄rγ,δ)− uk
i,j(~̄rγ,δ)

)2

∑
γ

∑
δ

(
uk

γ,δ(~̄rγ,δ)− ūi,j

)2 (13)

and where the ranges of the indices, γ and δ, are taken to include all control volumes in the reconstruction
stencil for cell (i, j), ~̄rγ,δ is the centroid of the cell (γ, δ), and the tolerance, ε, has been introduced in order to
avoid division by zero. A suitable value for ε is 10−8. It should be evident that the parameter α compares the
values of the reconstructed solution at the centroids of neighbouring cells used in the solution reconstruction
for cell (i, j). The range for α is −∞<α≤1 and it will approach unity as the solution becomes smooth and
near perfect reconstruction is achieved. The variation of α

(1−α) is depicted in Fig. 1 and the figure shows
that S rapidly becomes large as α approaches unity.

The smoothness indicator, S, is then compared to a pass/no-pass cutoff value, Sc. The cutoff was
determined from a wide range of numerical experiments and values for Sc in the range 2,500-5,000 seem to
work well. It should be pointed out that smoothness indicators for smooth solutions are typically orders of
magnitude larger than the range of cutoff values (e.g. 100,000). Thus for S<Sc, the solution is deemed to
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be under-resolved and/or non-smooth and the high-order k-exact reconstruction is replaced by limited linear
reconstruction in that cell. For S>Sc, the unlimited high-order reconstruction is deemed to be acceptable
and retained.

III.C. Reconstruction at the Boundaries

Correct high-order treatment of boundary conditions is crucial for developing accurate numerical schemes. It
is especially important for high-order methods, where errors due to geometrical approximation may dominate
the discretization error, mitigating the full capabilities of a high-order scheme. One approach to imposing
high-order boundary conditions is to make use of extra rows of ghost cells which are added beyond the
geometric boundary of the computational domain. Solution states are then imposed in the ghost cells in
such a way that the reconstructed solution and/or flux at the boundary flux interior cell approximates those
associated with the particular boundary condition. An alternative approach is to enforce the boundary
conditions by constraining the least-squares reconstruction in control volumes adjacent to the boundary
as described by Olivier-Gooch and Van Altena.39 In the current work, both procedures (i.e., ghost cells
and constrained reconstruction) for boundary condition prescription have been implemented. In order to
obtain high-order accuracy at boundaries, the geometric data (i.e., cell area, centroid, geometric moments,
normals, edge lengths, locations of the Gauss quadrature integration points) are computed to the same order
of accuracy as that of the interior scheme. In order to solve the enlarged system of equations arising from
the constrained least squares reconstruction (boundary constraints plus reconstruction conditions), Gauss
elimination with pivoting is used to eliminate the rows associated with the boundary condition constraints,
and the remaining least-squares problem is again solved using Householder QR factorization.

IV. Adaptive Mesh Refinement

A flexible block-based hierarchical data structure is used in conjunction with the CENO finite-volume
scheme described above to facilitate automatic solution-directed mesh adaptation on body-fitted multi-block
quadrilateral mesh. The method allows for anisotropic mesh refinement and is well suited to parallel imple-
mentation via domain decomposition. Aspects of the block-based AMR algorithm for multi-block quadrilat-
eral mesh are described in the recent work by Sachdev et al.28 and the approach has been successfully applied
to the prediction of laminar and turbulent diffusion flames,40,41 micron-scale flows,42 and multi-phase rocket
motor core flows.28

As described above, the solution of the conservation equations by the CENO finite-volume method of
the preceding section provides area-averaged solution quantities within quadrilateral computational cells and
these cells are embedded in structured blocks consisting of Ncells = Nx × Ny cells, where Nx and Ny are
even, but not necessarily equal integer values. Solution data associated with each block are stored in indexed
array data structures and it is therefore straightforward to obtain solution information from neighbouring
cells within blocks. Mesh adaptation is accomplished by the dividing and coarsening of appropriate solution
blocks. In regions requiring increased cell resolution, a “parent” block is refined by dividing itself into four
“children” or “offspring” (see Fig. 2b). Each of the four quadrants or sectors of a parent block becomes a
new block having the same number of cells as the parent and thereby doubling the cell resolution in the
region of interest. This process can be reversed in regions that are deemed over-resolved and four children
are coarsened into a single parent block. The mesh refinement is constrained such that the grid resolution
changes by only a factor of two between adjacent blocks and the minimum resolution is not less than that of
the initial mesh. The hybrid CENO solution reconstruction procedure is used in conjunction with standard
multi-grid-type restriction and prolongation operators to evaluate the solution on all blocks created by the
coarsening and division processes, respectively.

In previous work, the coarsening and division of blocks was directed using multiple physics-based refine-
ment criteria.28,40–42 In this work, an h-refinement criterion based on the solution smoothness indicator
is defined and used to control refinement of the body-fitted multi-block AMR mesh. The form considered
herein for the CENO-based refinement criterion is:

Rc = e−
max(0,S)
Us∗Sc (14)

where Us is a scaling coefficient. Based on the range of S and the above definition for the refinement criterion,
it should be evident that Rc always takes values in the range (0, 1]. Each block is then assigned the maximum
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Figure 2. (a) Adaptive mesh refinement quad-tree data structure, and (b) associated solution blocks for a quadrilateral
body-fitted mesh.

Rc value of all cells within the block and in order to decide which blocks are to undergo mesh refinement,
refining and coarsening thresholds are used. The coefficient, Us, is introduced for convenience and provides
an easy way of adjusting the values of the coarsening and refining thresholds relative to the value of the
cutoff Sc.

In order that the finite-volume scheme can be applied to all blocks in a more independent manner,
some solution information is shared between adjacent blocks having common interfaces. This information
is stored in additional layers of overlapping “ghost” cells associated with each block. The number of ghost
cells required depends on the accuracy of the scheme and ranges from two (for the second-order scheme)
to three (for the fourth-order scheme). At interfaces between blocks of equal resolution, these ghost cells
are simply assigned the solution values associated with the appropriate interior cells of the adjacent blocks.
At resolution changes, restriction and prolongation operators, similar to those used in block coarsening and
division, are employed to evaluate the ghost cell solution values. Within the AMR approach, additional
inter-block communication is also required at interfaces with resolution changes to strictly enforce the flux
conservation properties of the finite-volume scheme.43,44 In particular, the interface fluxes computed on
more refined blocks are used to correct the interface fluxes computed on coarser neighbouring blocks and
ensure the solution fluxes are conserved across block interfaces.

A hierarchical tree-like data structure with multiple “roots”, multiple “trees”, and additional intercon-
nects between the “leaves” of the trees is used to keep track of mesh refinement and the connectivity between
solution blocks (see Fig. 2a). The blocks of the initial mesh are the roots of the forest which are stored in
an indexed array data structure. Associated with each root is a separate “quadtree” data structure that
contains all of the blocks making up the leaves of the tree created from the original parent blocks during
mesh refinement. Each grid block corresponds to a node of the tree. Traversal of the multi-tree structure by
recursively visiting the parents and children of solution blocks can be used to determine block connectivity.
However, in order to reduce overhead associated with accessing solution information from adjacent blocks,
the neighbours of each block are computed and stored, providing direct interconnects between blocks in
the hierarchical data structure that are neighbours in physical space. One of the advantages of the hierar-
chical quadtree data structure is that it readily permits local mesh refinement. Local modifications to the
multi-block mesh can be performed without re-gridding the entire mesh and re-calculating all solution block
connectivities.

Although the block-based AMR approach described above is somewhat less flexible and incurs some inef-
ficiencies in solution resolution as compared to a cell-based approaches (i.e., for the same solution accuracy,
generally more computational cells are introduced in the adapted grid), the block-based method offers many
advantages over cell-based techniques when parallel implementation of the solution algorithm is considered
and computational performance issues are taken into account. In particular, the multi-block quadrilat-
eral mesh and quadtree data structure lends itself naturally to domain decomposition and thereby should
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Figure 3. Piecewise cubic (k = 3) hybrid CENO reconstruction of the smooth trigonometric function
f(x) = sin(2x) + 2 cos(x) on a one-dimensional uniform mesh of 32 computational cells is compared to the exact func-
tion for −5 < x < 5.

enable efficient and scalable implementations of the CENO finite-volume scheme on distributed-memory
multi-processor architectures.28,40–42

V. Numerical Results

Numerical results are now described for solution reconstruction in one- and two-space dimensions, as well
as for various one- and two-dimensional flow problems governed by the Euler equations. Results for both
fixed and AMR mesh are described.

V.A. One-Dimensional Reconstruction on Fixed Mesh

To assess the accuracy of the hybrid CENO scheme, reconstructions of the smooth trigonometric function
f(x) = sin(2x)+2 cos(x) on cell-centred one-dimensional uniform meshes are compared to the exact solution.
In Fig. 3, the cubic (k = 3) reconstruction obtained with 32 computational cells for −5 < x < 5 is shown
together with the exact function. It can be seen in the figure that this smooth function features multiple
extrema and inflection points which can be accurately captured only with polynomials of appropriate order.
Low-order methods cannot properly resolve such solution features.

The L1, L2, and L∞ norms of the reconstruction error associated with hybrid CENO reconstruction
are shown in Fig. 4a and Fig. 4b. Results are given for piecewise linear (k = 1), quadratic (k = 2), cubic
(k=3), and quartic (k=4) reconstruction and compared to reconstruction errors obtained using the original
ENO scheme of Harten et al.3 It is evident that the reconstruction errors of the CENO scheme are quite
comparable to those of the ENO approach, and the expected theoretical asymptotic convergence rates of
the 2nd-, 3rd-, 4th-, and 5th-order accurate methods are achieved (the order of accuracy of k-exact CENO
schemes is k + 1 for smooth resolved functions).

A similar set of numerical results are shown in Fig. 5b for the reconstruction of the smooth function
f(x) = e−4x sin(5x) on −5 < x < 5. Results are depicted for cubic (k=3) and quartic (k=4) CENO recon-
structions and compared to ENO reconstructions. This function features a very large peak near x = −4.5
(refer to Fig. 5a). The proposed CENO scheme is able to handle this feature in both an accurate and robust
manner. For meshes containing less than 40-50 cells, the function is under-resolved and monotonic piecewise
linear reconstruction of the peak is obtained. As more cells are added, the function is then resolvable on
the mesh and a smooth 4th-order reconstruction of the function is achieved with the expected asymptotic
convergence rate of this 5th-order accurate scheme. Again, the reconstruction errors of the CENO scheme
are very comparable to those of the ENO approach.

The robustness of the CENO approach is now illustrated by considering the reconstruction of a discon-
tinuous step function on a one-dimensional uniform mesh for −1 < x < 4 containing 11 computational cells.
Results obtained using piecewise linear (k=1), quadratic (k=2), cubic (k=3), and quartic (k=4) ENO and
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(a) (b)

Figure 4. L1, L2, and L∞ norms of the reconstruction errors for ENO and hybrid CENO reconstructions of the function
shown in Fig. 3 as a function of the number of computational cells. (a) Piecewise linear (k = 1) and quadratic (k = 2)
reconstructions and (b) piecewise cubic (k=3) and quartic (k=4) reconstructions are shown.

(a) (b)

Figure 5. (a) Reconstruction of f(x) = e−4x sin(5x) on cell-centred one-dimensional uniform mesh for −5 < x < 5
containing 64 and 100 computational cells. Results obtained using piecewise cubic (k = 3) ENO and hybrid CENO
schemes are compared to the exact function; and (b) L1 and L∞ norms of the reconstruction errors for ENO and hybrid
CENO reconstructions of this function versus the number of computational cells (piecewise cubic (k = 3) and quartic
(k=4) reconstructions are shown).

hybrid CENO schemes are compared to a piecewise constant representation and the exact function (refer
to Fig. 6). It is quite evident that the discontinuous solution is not resolvable on any mesh and the hybrid
CENO scheme is able to recognize this and reverts to a monotonic piecewise linear representation of the
solution.

V.B. Two-Dimensional Reconstruction on Fixed Mesh

The reconstruction of a non-smooth function in two dimensions by the proposed hybrid CENO scheme is
considered next. Reconstruction of the function examined in previous studies by Abgrall4 and Ollivier-
Gooch18 is considered. A contour plot of Abgrall’s function is given in Fig. 7a. A similar contour plot of a
fourth-order (k=4) CENO reconstructed solution of this function for a stretched 80×80 non-uniform mesh
is given in Fig. 7b and cross sections of the reconstructed solutions using the 2nd-order (k = 2), 3rd-order
(k = 3), and 4th-order (k = 4) CENO schemes for the 80×80 non-uniform mesh are depicted in Fig. 7c
and compared to the exact representation of the function as well as those for simple piecewise constant
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Figure 6. Reconstruction of a discontinuous step function on a one-dimensional uniform mesh for −1 < x < 4 containing
11 computational cells. Results obtained using piecewise quadratic (k =2), cubic (k =3), and quartic (k =4) ENO and
hybrid CENO schemes are compared to a piecewise constant representation and the exact function.

reconstruction. It is evident that the CENO reconstruction accurately represents the Abgrall’s function in
smooth regions while providing virtually non-oscillatory reconstructions near discontinuities.

V.C. One-Dimensional Euler Equations on Fixed Mesh

The application of the proposed high-order CENO finite-volume scheme to the numerical solution of a
hyperbolic system of nonlinear conservation laws has also been investigated. Here, numerical solutions of
the one-dimensional form of the Euler equations of compressible gas dynamics are considered for the blast
wave interaction problem of Woodward and Colella.45 Numerical results for this case are shown in Fig. 8 for
both the 4th-order CENO scheme with k = 3 hybrid reconstruction and a 4th-order version of the original
ENO scheme using locally defined characteristic variables. Results for a 2nd-order TVD scheme with limited
linear piecewise linear reconstruction are also depicted in the figure. A uniform mesh containing 400 cells
was used. The “exact solution” was generated with the 4th-order ENO algorithm on a mesh with 800 cells.
It can be seen that the predictions of the CENO scheme are very similar to those of the ENO method, and
both yield significantly improved results as compared to the TVD scheme for this very challenging problem
involving strong nonlinear wave interactions.

V.D. Two-Dimensional Euler Equations on Fixed Mesh

The application of the proposed high-order CENO finite-volume scheme to the solution of the two-dimensional
form of the Euler equations using body-fitted multi-block quadrilateral mesh has also been considered herein.
The accuracy of the high-order spatial discretization scheme is demonstrated by first considering numerical
predictions of Ringleb’s flow. Ringleb’s flow involves isentropic, expanding, irrotational flow between two
streamlines and exact solutions for this smooth continuous flow field can be determined by analytical means.46

As a first case, an entirely subsonic flow solution is considered for which the domain is defined by streamlines
corresponding to kmin = 0.4 and kmax = 1.0 and by the subsonic inflow boundary corresponding to q = 0.3.
In this case, inflow, outflow, and streamline boundary conditions based on the exact solution are prescribed.
The predicted Mach number distribution for subsonic Ringleb’s flow obtained using the 4th-order CENO
finite-volume scheme on a 40×40 body-fitted mesh is shown in Fig. 9a. The L1, L2, and L∞ norms of the
error in the predicted solution density for 3rd- and 4th-order versions (k = 2 and k = 3) of the proposed
CENO finite-volume scheme obtained on a series of grids ranging in size from 10×10 to 160×160 is given
in Fig. 9b for this subsonic flow. As the mesh is refined, the slopes of the L1- and L2-norms for the 3rd-
and 4th-order schemes approach -3.02, -3.05, -4.13, and -4.05, respectively, indicating that the expected
theoretical accuracy has been achieved in each case.

A transonic variant of Ringleb’s flow defined by kmin = 0.5, kmax = 1.2, and q = 0.3 has also been
examined here. In this case, reflection boundary conditions were applied along the streamline boundaries
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(a) (b)

(c)

Figure 7. (a) The exact solution of the non-smooth two-dimensional function of Abgrall;4 (b) contours of a fourth-
order (k = 4) CENO reconstructed solution of the Abgrall function for a stretched 80×80 non-uniform mesh; and (c)
cross sections of 2nd-order (k=2), 3rd-order (k=3), and 4th-order (k=4) CENO reconstructed solution of the Abgrall
function along the line shown in (a) and (b) above.

by enforcing the inviscid (slip) condition, ~V · ~n=0, at all Gauss integration points via the constrained
least-squares reconstruction procedure outline above. The predicted Mach number distribution for subsonic
Ringleb’s flow obtained using the 4th-order CENO finite-volume scheme on a 80×80 body-fitted mesh is
given in Fig. 10a and the L1, L2, and L∞ norms of the error obtained using the 3rd- and 4th-order versions
of the CENO scheme are shown in Fig. 10b. In this case, the slopes of the L1- and L2-norms for the 3rd- and
4th-order CENO schemes approach -3.04, -2.97, -3.99 and -3.74, respectively, illustrating that the accuracy
of the scheme can be maintained at curved boundaries by using constrained least-squares reconstruction and
accurate boundary representation.

The accuracy and performance of the proposed CENO schemes are now further examined by considering
subsonic flow past a circular cylinder with a freestream Mach number of M∞ = 0.38. The predicted Mach
number distributions obtained using the 2nd- and 4th-order CENO schemes are given in Figs. 11a and
11b, respectively. It is quite noticeable that, for the same mesh resolution, the 4th-order CENO solution is
significantly more accurate than the 2nd-order CENO one. To quantify these findings, the L2 norms of the
error in the predicted entropy (the flow is homentropic and the entropy is constant) are determined on a
sequence of four structured O-grids ranging in size from 20×10 to 160×80 and shown in Fig. 12. As the
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Figure 8. Numerical solutions of the one-dimensional blast wave interaction problem of Woodward and Colella.45

Predictions of flow density obtained using the 4th-order CENO finite-volume scheme are depicted and compared to
solutions obtained using a 4th-order ENO scheme and a 2nd-order TVD scheme with limited linear piecewise linear
reconstruction for a uniform mesh with 400 cells.

(a) (b)

Figure 9. (a) Predicted Mach number distribution for subsonic Ringleb’s flow obtained using the 4th-order CENO
finite-volume scheme; and (b) L1, L2, and L∞ norms of the error in the predicted solution density for subsonic Ringleb’s
flow obtained using the 3rd- and 4th-order versions of the CENO scheme as a function of mesh density.

mesh is refined, the slopes of the L2-norms for the 3rd- and 4th-order schemes approach -2.74 and -4.02,
respectively.

To demonstrate the ability of the CENO schemes to handle robustly flows with both smooth and non-
smooth regions, the predicted Mach number distribution obtained on a 160×160 grid M = 1.5 flow past
a circular cylinder is shown in Fig. 13a. By reducing to limited linear reconstruction near the shocks in
the flow, a monotone solution is obtained using the 4th-order scheme. The regions of the flow in which the
CENO scheme uses the unlimited cubic and limited linear reconstruction procedures are shown in Fig. 13b.

Finally, the periodic linear advection of density variation is considered here in a rectangular box in order
to assess the computational cost of the 4th-order CENO scheme versus that of a limited 2nd-order method.
Since the computational work associated with each of the two schemes is definitely problem dependent and
involves other parameters too, such as the accuracy of boundary conditions, the time marching method
or the grid topology, a full comparison between the two methods would require a more elaborated study
than the present one. However, the model problem chosen for this test case is still relevant for providing
useful insight into the computational costs of the high-order CENO schemes as compared to a standard
2nd-order method. In Fig. 14a the exact representation of the chosen density variation is shown, which
is given by ρ(x, y) = 1.0 + 0.5 cos (3 T (x)) sin (5 π T (x)), where T (x) represents a linear mapping of the

13 of 23

American Institute of Aeronautics and Astronautics



(a) (b)

Figure 10. (a) Predicted Mach number distribution for transonic Ringleb’s flow obtained using 4th-order CENO finite-
volume scheme; and (b) L1, L2, and L∞ norms of the error in the predicted solution density for transonic Ringleb’s
flow obtained using the 3rd- and 4th-order versions of the CENO scheme as a function of mesh density.

(a) (b)

Figure 11. (a) Predicted Mach number distributions for M =0.38 subsonic flow past a circular cylinder obtained using
the 2nd-order CENO on a 80×40 grid; and (b) predicted Mach number distributions for M =0.38 subsonic flow past a
circular cylinder obtained using the 4th-order CENO on the same computational grid used to obtain (a).

domain [−100, 100] into the domain [−1, 1]. The predicted density solution obtained after one full period
for this problem using the 4th-order CENO scheme on a Cartesian grid with 200×20 computational cells is
shown in Fig. 14b. A visual comparison between the two density variations shown in Fig. 14 reveals that
the cubic interpolant used by the high-order k-exact reconstruction captures all the inflection points of this
smooth density variation very well and the solution is being recognized everywhere as smooth by the CENO
approach. The error norms as well as the simulation CPU time and memory requirements corresponding
to the limited 2nd-order and the 4th-order CENO schemes are presented in Table 1. Based on the data
shown in the table it can be seen that for the same mesh resolution the current 4th-order CENO scheme
requires about 10 times more computational work than the 2nd-order method and about 1.5 times more
memory. However, in order to obtain the same accuracy provided by the 4th-order CENO, a limited 2nd-
order scheme would require about 20 times more computational cells (e.g. 80,000 instead of 4,000) which, in
turn, necessitate approximately 47 times more computational work than the one of the high-order CENO.
As a further benefit, this large saving on the number of computational cells is translated into a decrease
in the memory requirements by a factor of about 6.5, which shows the potential benefits of the high-order
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Figure 12. L2 norms of the error in entropy for M =0.38 flow past a circular cylinder.

(a) (b)

Figure 13. (a) Predicted Mach number distribution for M =1.5 flow past a circular cylinder obtained using the 4th-
order CENO scheme on a 160×160 grid; and (b) regions in which the CENO scheme uses unlimited cubic and limited
linear reconstruction for M =1.5 flow past a circular cylinder.

method.

V.E. Two-Dimensional Reconstruction with AMR

Reconstruction of Abgrall’s function4 is now re-considered in conjunction with AMR. A contour plot of a
third-order (k = 3) CENO reconstructed solution of this function on an initial uniform 10×10 Cartesian
mesh consisting of 1 block and 100 computational cells is shown in Fig. 15a. The initial 10×10 mesh is given
in Fig. 16a. A sequence of refined mesh is then generated using the h-refinement criterion defined above.
The Abgrall function is re-imposed on each mesh level before the mesh is further refined. A sequence of
eight mesh refinements was carried out and the resulting multi-block AMR meshes are depicted in Fig. 16.
The final mesh consisted of 3,535 blocks 10×10 and 353,500 cells with a refinement efficiency of η =0.946.
The reconstructed solution on the finest mesh using the 4th-order CENO scheme is shown in Fig. 15b. A
cross section of the cubic CENO reconstructed solution along the section line shown in Fig. 15b is depicted
in Fig. 15c and compared to the exact representation of the Abgrall function. In addition, the regions in
which the hybrid CENO scheme uses the unlimited cubic and limited linear reconstruction procedures are
shown in Fig. 15d. It can be seen that the regions where limited piecewise reconstruction is used correspond
to regions where Abgrall’s function is either not C0 or not C1 continuous. The refinement of the AMR
mesh is automatically directed toward these regions. Another important observation is that the proposed
h-refinement criterion is capable of identifying all of the discontinuous regions, regardless of the strength of
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Figure 14. (a) Exact solution for the periodic linear advection of the density variation
ρ(x, y) = 1.0 + 0.5 cos (3 T (x)) sin (5 π T (x)); and (b) Predicted density distribution for the advection of density
variation shown in (a) after one full period using the 4th-order CENO scheme on a 200×20 Cartesian grid.

Table 1. Error norms, simulation CPU time and memory requirements associated with the limited 2nd-order and the
4th-order CENO schemes obtained for the periodic linear advection of the density variation shown in Fig. 14.

# Cells O(∆x2) O(∆x4)
L1: 2.68E-02 L1: 1.85E-04

4,000 L2: 3.26E-02 L2: 2.18E-04
(200x20) LMax: 7.36E-02 LMax: 9.46E-04

Time(h): 0:01:20 Time(h): 0:10:38
Mem(kB): 20,336 Mem(kB): 31,232

L1: 9.38E-03 L1: 1.32E-05
8,000 L2: 1.16E-02 L2: 2.02E-05

(400x20) LMax: 2.98E-02 LMax: 2.11E-04
Time(h): 0:04:18 Time(h): 0:41:03

Mem(kB): 30,000 Mem(kB): 50,816

L1: 1.10E-04 L1: -
80,000 L2: 2.20E-04 L2: -

(4000x20) LMax: 1.33E-03 LMax: -
Time(h): 8:23:38 Time(h): -

Mem(kB): 203,680 Mem(kB): -

the solution jumps.

V.F. Two-Dimensional Euler Equations with AMR

The application of the proposed high-order AMR CENO finite-volume scheme to the solution of supersonic
flow past a circular cylinder is again considered. In this case the freestream Mach number is M∞ = 2.1
and the capability of the high-order scheme is examined in conjunction with AMR. The predicted pressure
distributions obtained using the 4th-order CENO scheme on a final mesh consisting of 2,150 blocks and
215,000 computational cells is shown in Fig. 17a. Corresponding to this solution, the regions of the flow in
which the CENO scheme uses the unlimited cubic and limited linear reconstruction are shown in Fig. 17b.
The sequence of adaptively refined meshes leading to the final refined mesh starting with an initial mesh that
consists of 8 10×10 solution blocks is depicted in Fig. 18. The results clearly show that the proposed AMR
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(a) (b)

(c) (d)

Figure 15. (a) Contour plot of a third-order (k=3) CENO reconstructed solution of the Abgrall’s function on an initial
uniform 10×10 Cartesian mesh consisting of 1 block and 100 computational cells; (b) the cubic reconstructed solution on
the mesh obtained after eight mesh refinements which consists of 3,535 blocks and 353,500 cells; (c) Cross section of the
cubic CENO reconstructed solution is compared against the exact solution of the Abgrall’s function along the section
line shown in (b); and (d) regions in which the CENO scheme uses unlimited cubic and limited linear reconstruction.

scheme in conjunction with the h-refinement criteria based on the smoothness indicator of the hybrid CENO
reconstruction technique is capable of refining both under-resolved (in-accurate) and non-smooth regions of
the solution and will not unnecessarily refine resolved solution content. The bow shock and shocks arising
at the base of the cylinder are well identified by the smoothness indicator and well resolved by the AMR
procedure.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16. (a)-(h) Sequence of AMR meshes generated by the block-based refinement algorithm for the refinement
of the Abgrall’s function (refer to Fig. 15). The initial mesh (a) consisted of 1 block and 100 computational cells. The
final mesh (h) had 3,535 blocks 10×10 and 353,500 cells with a refinement efficiency of η=0.946.
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(a) (b)

Figure 17. (a) Predicted pressure distribution for M = 2.1 flow past a circular cylinder obtained using the 4th-order
CENO scheme on the final refined AMR mesh; and (b) corresponding regions in which the CENO scheme uses unlimited
cubic and limited linear reconstruction for M =2.1 flow past a circular cylinder.

(a) (b) (c)

(d) (e) (f)

Figure 18. Sequence of adaptively refined AMR mesh for supersonic flow past a circular cylinder: (a) initial mesh
with 8 10×10 blocks; (b) first refined mesh with 32 10×10 blocks; (c) second refined mesh with 110 10×10 blocks; (d)
third refined mesh with 320 10×10 blocks; (e) fourth refined mesh with 908 10×10 blocks; (g) final refined mesh with
2150 10×10 blocks and refinement efficiency of η=0.737.
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(a)

(b)

Figure 19. (a) Representation of initial density variation ρ(x) = 1− tanh2(x− xo), xo(10, 10), on the starting Cartesian
and disturbed AMR meshes; (b) Final solution representation on both Cartesian and disturbed AMR meshes at the
end of the advection.
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Figure 20. L1, L2 and L∞ norms of the error at the end of the advection (see Fig. 19b) as a function of mesh density
obtained using a 2nd-order limited scheme and the 4th-order CENO method on both uniform and dynamically refined
AMR Cartesian meshes.

Finally, in order to estimate the accuracy of the CENO algorithm in conjunction with the AMR procedure,
the linear advection of the density variation ρ(x) = 1− tanh2(x− xo) from xo(10, 10) along a 30◦ direction
is considered in a rectangular box. The Mach number of the advecting flow is M =0.7 and the final time of
interest is t=100 ms. The initial condition as well as the starting meshes are shown in Fig. 19a. In Fig. 19b
it is shown the final solution and the meshes at the end of the advection. The error norms based on the error
measurements at the end of the advection are shown in Fig. 20 for uniform and dynamically refined AMR
Cartesian meshes. The plot of the error norms of this problem shows that for targeted solution accuracies less
than 10−3, the number of computational cells required by the 4th-order CENO scheme applied in conjunction
with AMR is about 10 to 20 times smaller in each coordinate direction than what a limited 2nd-order scheme
on uniform mesh would require. This would imply a reduction in mesh requirements by a factor of 100-400
for two-dimensional problems and by a factor of 1,000-8,000 in three dimensions, thus further demonstrating
the great potential of the high-order AMR approach. The plot also reveals the fact that if low solution error
is required, the high-order scheme on uniform mesh may require fewer computational cells than a 2nd-order
method used in conjunction with AMR, which confirms Jameson’s findings2 mentioned earlier in the paper.
Note that this comparison has not taken into account the computational costs of the AMR and high-order
schemes as compared to their uniform mesh and low-order method counterparts. In particular, this was not
attempted here due to inefficiencies in the time marching schemes which may lead to unfair comparisons.
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VI. Discussion and Concluding Remarks

A new high-order CENO finite-volume scheme with AMR is proposed for solving hyperbolic systems of
conservation laws on body-fitted multi-block mesh. The ability of the scheme to accurately represent solutions
with smooth extrema and robustly handle under-resolved and/or non-smooth solution content (i.e., solutions
with shocks and discontinuities) is demonstrated. The usefulness of an h-refinement criterion based on the
smoothness indicator of the hybrid scheme has also been evaluated and shown to provide a robust and
reliable mesh adaptation algorithm that is capable of refining both under-resolved (in-accurate) and non-
smooth regions of the solution and will not unnecessarily refine resolved solution content. For large systems
and multi-dimensional problems, the proposed CENO scheme would seem to provide high-order accuracy
at a lower computational cost as compared to other similar approaches. Future work will include further
investigation of the high-order CENO scheme, the efficient parallelization of the algorithm and extension
to three-dimensional problems, and the application of the method to partial differential equations having
elliptic behaviour.
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