
Parallel Implicit Adaptive Mesh Refinement Scheme

for Body-Fitted Multi-Block Mesh

C. P. T. Groth∗ and S. A. Northrup†

University of Toronto Institute for Aerospace Studies
4925 Dufferin Street, Toronto, Ontario, M3H 5T6, Canada

A parallel implicit adaptive mesh refinement (AMR) algorithm is described for the sys-
tem of partial-differential equations governing steady two-dimensional compressible gaseous
flows. The AMR algorithm uses an upwind finite-volume spatial discretization procedure
in conjunction with limited linear solution reconstruction and Riemann-solver based flux
functions to solve the governing equations on multi-block mesh composed of structured
curvilinear blocks with quadrilateral computational cells. A flexible block-based hierarchi-
cal data structure is used to facilitate automatic solution-directed mesh adaptation accord-
ing to physics-based refinement criteria. A matrix-free inexact Newton method is used to
solve the system of nonlinear equations arising from this finite-volume spatial discretization
procedure and a preconditioned generalized minimal residual (GMRES) method is used to
solve the resulting non-symmetric system of linear equations at each step of the Newton al-
gorithm. Right preconditioning of the linear system is used to improve performance of the
Krylov subspace method. An additive Schwarz global preconditioner with variable overlap
is used in conjunction with block-fill incomplete lower-upper (BFILU) type preconditioners
based on the Jacobian of the first-order upwind scheme for each sub-domain. The Schwarz
preconditioning and block-based data structure readily allow efficient and scalable parallel
implementations of the implicit AMR approach on distributed-memory multi-processor ar-
chitectures. Numerical results are described for several flow cases, demonstrating both the
effectiveness of the mesh adaptation and algorithm parallel performance. The proposed
parallel implicit AMR method allows for anisotropic mesh refinement and appears to be
well suited for predicting complex flows with disparate spatial and temporal scales in a
reliable and efficient fashion.

I. Introduction

In spite of the relative maturity and widespread successes of computational fluid dynamics (CFD), there
remain a variety of physically complex flows, which are still not well understood and which have proved to
be very challenging to predict by numerical methods. Such flows would include but are not limited to: 1)
turbulent flows in turbomachinery; 2) reactive flows associated with combustion processes; 3) compressible
flows of conducting fluids and plasmas; and 4) transition-regime non-equilibrium flows. These flows are par-
ticularly challenging as they involve a wide range of complicated physical phenomena and several numerical
challenges must be overcome in order to routinely solve such flows for both fundamental scientific research
and engineering design and development. They are:

i) The prediction of physically complex flows places heavy demands on computational resources, requiring
the solution of often large nonlinear systems of partial differential equations (PDEs).

∗Associate Professor, Email: groth@utias.utoronto.ca, Senior Member AIAA
†PhD Candidate, Email: northrup@utias.utoronto.ca, Student Member AIAA

1 of 17

American Institute of Aeronautics and Astronautics

17th AIAA Computational Fluid Dynamics Conference
6 - 9 June 2005, Toronto, Ontario Canada

AIAA 2005-5333

Copyright © 2005 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

ii) Mathematical descriptions of these flows include a variety of complex physical processes, each with their
own characteristic spatial and/or temporal scales. In many cases, the flows exhibit large disparities
in the characteristic scales and solution techniques must deal with numerical stiffness arising from
these disparities. For time-accurate calculations, allowable time steps are often dictated by stability
constraints and not by the characteristic frequencies of the relevant physics and, for the solution of time-
invariant problems, conventional schemes are generally non-optimal and convergence rates deteriorate
with increasing mesh refinement.

iii) Calculations of physically complex flows require robust schemes that preserve positivity and realizability
of a variety of solution variables.

Computational grids that automatically adapt to the solution of the governing PDEs are very effective
in treating problems with disparate length scales, providing the required spatial resolution while minimizing
memory and storage requirements. The use of adaptive mesh refinement (AMR) in conjunction with higher-
order variants of Godunov-type upwind finite-volume schemes has led to some very powerful and robust
methods for the treatment of flows with disparate length scales and complex and/or moving geometries.
In particular, AMR approaches for Cartesian mesh1–4 have proved to be very successful. Moreover, block-
based variants of these techniques have been proposed for parallel implementations,5–8 and other studies
have considered the extensions to more arbitrary body-fitted mesh.9–14

Krylov subspace methods are iterative techniques for the solution of large sparse linear systems that
when used in conjunction with Newton’s method have proved to be very effective in the solution of nonlinear
PDEs. Implicit methods based on the Newton-Krylov approach have gained widespread acceptance and
would seem very appropriate for dealing with the problem of numerical stiffness arising from disparate
temporal scales. In particular, the generalized minimal residual (GMRES) algorithm proposed by Saad and
co-workers15–18 for large sparse non-symmetric systems of linear equations has been successfully applied to
the prediction of aerodynamic flows.19–23 In addition, as indicated in the recent survey by Knoll and Keyes,24

Newton-Krylov methods have been applied to a wide range of other physical problems. Nevertheless, effective
parallel implementations of implicit Newton-Krylov methods are needed for performing practical scientific
and engineering computations of physically complex flows.

One possible approach to the parallelization of Newton-Krylov methods is offered by domain-based addi-
tive Schwarz preconditioning techniques.18 Keyes and co-researchers have achieved some impressive results
in parallel implementations of Newton-Krylov-Schwarz (NKS) algorithms for the transonic full potential
equations, low-Mach-number compressible combusting flows, and three-dimensional inviscid flows.25–28 Fur-
thermore, the Schwarz preconditioning technique would seem very compatible with multi-block AMR meth-
ods.12–14

This study focuses on the development of an effective solution strategy for physically complex steady flows
with disparate spatial and temporal scales. A parallel implicit method is proposed for multi-block body-
fitted mesh which combines a block-based AMR approach with a NKS solution of the discretized nonlinear
equations governing compressible flows. The proposed AMR algorithm allows for anisotropic refinement on
body-fitted meshes. Future research will focus on the further development of the algorithm for unsteady and
three-dimensional flows and for more complex systems of equations.

II. Equations of Compressible Gas Dynamics

For the development of the proposed parallel implicit AMR algorithm, solutions of the equations governing
compressible flows of polytropic gases are considered. For two-dimensional planar flows, the conservative
form of the Euler equations of compressible gas dynamics reflecting the conservation of mass, momentum,
and energy can be summarized as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 (1)

2 of 17

American Institute of Aeronautics and Astronautics

where U is the conserved variable solution vector given by

U =
[

ρ, ρu, ρv, ρe
]T

, (2)

x and y are the spatial coordinates, t is time, ρ is the gas density, u and v are the velocity components in
the x- and y-coordinate directions, e = p/(ρ(γ − 1)) + (u2 + v2)/2 is the specific total energy, p = ρRT is
the pressure, T is the gas temperature, R is the gas constant, γ is the specific heat ratio, and F and G are
x- and y-direction solution flux vectors given by

F =

ρu

ρu2 + p

ρuv

u
(
ρe + p

)
 , G =

ρv

ρuv

ρv2 + p

v
(
ρe + p

)
 . (3)

For a polytropic gas (thermally and calorically perfect gas), the ratio of specific heats, γ, is a constant and
the specific heats are given by Cv = R/(γ − 1) and Cp = γR/(γ − 1).

III. Parallel Implicit AMR Algorithm

A. Finite-Volume Scheme

The proposed AMR algorithm uses an upwind finite-volume spatial discretization procedure in conjunction
with limited linear solution reconstruction and Riemann-solver based flux functions to solve the preceding
equations on multi-block mesh composed of quadrilateral computational cells. The semi-discrete form of this
finite-volume formulation applied to cell (i, j) is given by

dUi,j

dt
= − 1

Ai,j

∑
k

(
~F · ~n ∆`

)
i,j,k

= Ri,j(U) , (4)

where Ui,j is the conserved solution state for cell (i, j), ~F = (F,G) is the flux dyad, Aij is the area of the
cell, and ∆` and ~n are the length of the cell face and unit vector normal to the cell face or edge, respectively.
The vector, R, is referred to as the residual vector. The numerical fluxes at the faces, k, of each cell, ~F · ~n,
are determined from the solution of a Riemann problem. Given the left and right solution states, Ul and
Ur, at the cell interfaces, the numerical flux is given by

~F · ~n = F(Ul,Ur, ~n) , (5)

where the numerical flux F is evaluated by solving a Riemann problem in a direction defined by the normal
to the face with initial data Ul and Ur. The left and right solution states are determined via a least-squares
piece-wise limited linear solution reconstruction procedure in conjunction with either the Barth-Jesperson
or Venkatakrishnan limiters.29,30 In the present algorithm, both exact and approximate Riemann solvers
can be used to solve the Riemann problem and evaluate the numerical flux. The Roe linearized Riemann
solver,31 HLLE and modified HLLE flux function due to Linde,32–34 the HLLC flux function,35 and the exact
Riemann solver of Gottlieb and Groth36 have all been implemented and may be used.

B. Block-Based Adaptive Mesh Refinement

Following the approach developed by Groth et al. for computational magnetohydrodynamics,7,8 a flexible
block-based hierarchical data structure has been developed and is used in conjunction with the finite-volume
scheme described above to facilitate automatic solution-directed mesh adaptation on multi-block body-
fitted quadrilateral mesh according to physics-based refinement criteria. The approach readily permits

3 of 17

American Institute of Aeronautics and Astronautics

Figure 1. Multi-block body-fitted quadrilateral mesh of block-based AMR algorithm illustrating the layers of
overlapping ghost cells used to facilitate inter-block communication.

local refinement of the mesh for complex flow geometries and also allows for anisotropic mesh refinement
to resolve thin solution layers, such as boundary and free shear layers. The proposed AMR formulation
borrows from previous work by Berger and co-workers,1,3, 6, 37 Quirk,5,38 and De Zeeuw and Powell2 for
Cartesian mesh and has similarities with the block-based approaches described by Quirk and Hanebutte5

and Berger and Saltzman.6 Note that other researchers have considered the extension of Cartesian mesh
adaptation procedures to more arbitrary quadrilateral and hexagonal mesh. See for example the work by
Davis and Dannenhoffer9 and Sun and Takayama.10 Note that although the proposed block-based AMR
approach is somewhat less flexible and incurs some inefficiencies in solution resolution as compared to a cell-
based approaches (i.e., for the same solution accuracy, generally more computational cells are introduced
in the adapted grid), the block-based method can offer many advantages over cell-based techniques when
computational performance and parallel implementation of the solution algorithm is considered.

In this work, the solution of the conservation equations by the finite-volume method of the preceding
section provides area-averaged solution quantities within quadrilateral computational cells and these cells
are embedded in structured blocks consisting of Ncells = Nx ×Ny cells, where Nx and Ny are even, but not
necessarily equal integers. Refer to Figure 1. Solution data associated with each block are stored in indexed
array data structures and it is therefore straightforward to obtain solution information from neighbouring
cells within blocks. Mesh adaptation is accomplished by the dividing and coarsening of appropriate solution
blocks. In regions requiring increased cell resolution, a “parent” block is refined by dividing itself into four
“children” or “offspring”. Each of the four quadrants or sectors of a parent block becomes a new block having
the same number of cells as the parent and thereby doubling the cell resolution in the region of interest. This
process can be reversed in regions that are deemed over-resolved and four children are coarsened into a single
parent block. To ensure that grid lines of the body fitted mesh do not merge and/or cross, an elliptic mesh
smoothing algorithm39,40 is applied to the newly created blocks of the computational mesh after refinement
and coarsening.

Figures 1 and 2 illustrate the refinement and coarsening of the blocks. The mesh refinement is constrained
such that the grid resolution changes by only a factor of two between adjacent blocks and the minimum
resolution is not less than that of the initial mesh. Standard multigrid-type restriction and prolongation
operators are used to evaluate the solution on all blocks created by the coarsening and division processes,

4 of 17

American Institute of Aeronautics and Astronautics

Figure 2. Solution blocks of a computational mesh with four refinement levels originating from one initial
block and the associated hierarchical quadtree data structure. Interconnects to neighbours are not shown.

respectively. Although several approaches are possible, for this study, the coarsening and division of blocks
are directed using multiple physics-based refinement criteria.41 Refinement criteria based on a combination
of the density gradient, and divergence and curl of the velocity provide reliable detection of flow features
such as shocks, contact surfaces, stagnation points, and shear layers.

In order that the finite-volume scheme can be applied to all blocks in a more independent manner, some
solution information is shared between adjacent blocks having common interfaces. This information is stored
in an additional two layers of overlapping “ghost” cells associated with each block as shown in Figure 1.
At interfaces between blocks of equal resolution, these ghost cells are simply assigned the solution values
associated with the appropriate interior cells of the adjacent blocks. At resolution changes, restriction and
prolongation operators, similar to those used in block coarsening and division, are employed to evaluate the
ghost cell solution values. Within the AMR approach, additional inter-block communication is also required
at interfaces with resolution changes to strictly enforce the flux conservation properties of the finite-volume
scheme.1,37 In particular, the interface fluxes computed on more refined blocks are used to correct the
interface fluxes computed on coarser neighbouring blocks and ensure the solution fluxes are conserved across
block interfaces.

A hierarchical tree-like data structure with multiple “roots”, multiple “trees”, and additional intercon-
nects between the “leaves” of the trees is used to keep track of mesh refinement and the connectivity between
solution blocks. This interconnected “forest” data structure is depicted in Figure 2. The blocks of the initial
mesh are the roots of the forest which are stored in an indexed array data structure. Associated with each
root is a separate “quadtree” data structure that contains all of the blocks making up the leaves of the tree
created from the original parent blocks during mesh refinement. Each grid block corresponds to a node of
the tree. Traversal of the multi-tree structure by recursively visiting the parents and children of solution
blocks can be used to determine block connectivity. However, in order to reduce overhead associated with
accessing solution information from adjacent blocks, the neighbours of each block are computed and stored,
providing direct interconnects between blocks in the hierarchical data structure that are neighbours in phys-
ical space. One of the advantages of the hierarchical quadtree data structure is that it readily permits local
mesh refinement. Local modifications to the multi-block mesh can be performed without re-gridding the
entire mesh and re-calculating all solution block connectivities.

An example illustrating the adaptation of a multi-block quadrilateral mesh for a NACA 0012 aerofoil is
shown in Figure 3. The figure shows a refined mesh derived from an initial C-type grid consisting of four
blocks and 2,048 cells (10×32 and 22×32 cell blocks were used) by applying three levels of refinement.
The resulting refined mesh consists of 22 blocks and 14,720 cells. The solution block boundaries (thick
lines) and computational cells (thin lines) for both mesh are depicted in the figure. Note that each level of
refinement in the grid introduces cells that are typically smaller by a factor two in each spatial dimension.

5 of 17

American Institute of Aeronautics and Astronautics

Figure 3. Illustration of AMR for two-dimensional multi-block quadrilateral mesh for NACA 0012 aerofoil.
Final 22-block (14,720 cells) refined mesh obtained from 4-block initial mesh (2,048 cells) after three levels of
refinement.

Practical calculations may have 10-15 levels of refinement. In the case of 15 levels of refinement, the finest
cells in the mesh are more than 32,000 (215) times smaller than the coarsest cells. Note also that the initial
mesh stretching, in this case applied to the mesh in a direction normal to the aerofoil surface and near the
leading and trailing edges, is retained by the mesh refinement procedure such that the refined blocks and
the cells within them are clustered near the aerofoil surface, with additional clustering near the leading and
trailing edges. Use of cell stretching and clustering in the initial mesh enables anisotropic refinement of the
multi-block grid, which will be particularly important for resolving boundary and shear layers in subsequent
studies of viscous flows.

C. Inexact Newton Method

The semi-discrete form of the governing equations given in Eq. (4) form a coupled set of non-linear ordinary
differential equations. In this work, steady-state solutions of these are of prime interest. For steady flows,
time-invariant solutions Eq. (4) are sought satisfying

R(U) = 0 , (6)

requiring the solution of a large coupled nonlinear system of algebraic equations. Newton’s method is a
common, robust, and efficient iterative technique for the solution of nonlinear systems of this type and is
used here. Starting with an initial estimate, U0, successively improved estimates for the solution are obtained
by solving (

∂R
∂U

)n

∆Un = Jn∆Un = −R(Un) , (7)

at each step, n, of the Newton method, and an improved approximation for the solution is given by

Un+1 = Un + ∆Un . (8)

Here J = ∂R/∂U is the residual Jacobian. The iterative procedure is repeated until an appropriate norm
of the solution residual is sufficiently small, i.e., ||R(Un)||2 < ε||R(U0)||2 where ε is some small parameter
(typically, ε ≈ 10−12–10−10).

6 of 17

American Institute of Aeronautics and Astronautics

Each step of the Newton iterations requires the solution of a system of linear equations given by Eq. (7)
which can be re-expressed as

Jx = b , (9)

where x=∆U and b=−R(U) are the solution and right-hand-side vectors, respectively. For most practical
flow computations, this system is large, sparse, and non-symmetric and iterative methods can be very effective
in its solution. Application of an iterative technique leads to an overall solution algorithm with iterations
within iterations: the “inner loop” iterations involving the solution of the linear system and the “outer loop”
iterations associated with the solution of the nonlinear problem. An inexact Newton method is adopted here
in which the inner iterations are not fully converged at each Newton step. The inner iterations are carried
out only until ||Rn +Jn∆Un||2 ≤ ζ||Rn||2, where ζ is typically in the range 0.1–0.5. As discussed by Dembo
et al.,42 an exact solution of the linear system is not necessary for rapid convergence of Newton’s method.

D. Parallel GMRES with Schwarz Preconditioning

The class of Krylov subspace iterative methods known as GMRES methods has been developed by Saad and
co-workers15–18 and used extensively in many applications for the solution of large sparse non-symmetric
linear equations.19–24 For many practical applications the Jacobian, J, is however ill-conditioned and pre-
conditioning is required for GMRES to be effective. Although the preconditioner can be applied from either
side of J, right preconditioning will be considered here:

(JM−1)(Mx) = b , (10)

where M is the preconditioning matrix. Furthermore, a convenience of right preconditioning is that the
solution residual is unaffected by the preconditioning. Saad18 indicates that the choice of the side for
the preconditioner should not significantly impact GMRES convergence, provided M is itself not poorly
conditioned.

A variety of preconditioning methods are possible. The ideal preconditioner, M, will provide a good
approximation to J−1 (M−1≈J−1) while being significantly easier to invert than J. Obviously, there is a
trade-off between the cost of constructing and applying the preconditioner and the gain in convergence rate
of the GMRES algorithm. In the proposed algorithm, a combination of global and local preconditioning
techniques is used. In particular, an additive Schwarz global preconditioner with variable overlap is used
in conjunction with block-fill incomplete lower-upper (BFILU) local preconditioning. This combination
of preconditioning fits well with the block-based AMR described above and is compatible with domain
decomposition methods, readily enabling parallel implementation of the overall Newton method. Rather
efficient parallel implementations of implicit algorithms via Schwarz preconditioning have been developed
by Keyes and co-researchers and successfully applied to the prediction of transonic full potential, low-Mach-
number compressible combusting, and three-dimensional inviscid flows.25–28

Additive Schwarz preconditioning is similar to a block-Jacobi procedure. The solution on each subdomain
or solution block can be updated simultaneously, in a parallel fashion, and shared boundary data on the
subdomains is not updated until a full cycle of updates is completed on all domains. The global additive
Schwarz preconditioner for Nblocks solution blocks can be defined as follows:

M−1 =
Nblocks∑

k=1

BT
k M−1

k Bk , (11)

where Bk is the gather operator or matrix for the kth domain that gathers the solution unknowns for the
domain from the global solution vector. In general, domain overlap is permitted. The use of overlapping
subdomains can help to offset the loss of overall implicitness of the Newton iterative solver introduced by the
block-based Schwarz preconditioning. In Eq. (11), M−1

k is the local block preconditioner for the subdomain
k. Here the local preconditioner is based on ILU factorization18 of the Jacobian of the first-order (fully

7 of 17

American Institute of Aeronautics and Astronautics

limited) upwind scheme for each sub-domain, J̃k. A block-fill ILU(f) or BFILU(f) factorization of J̃k is
used where Mk is given by

Mk = LkUk ≈ J̃k , (12)

and where Lk and Uk are sparse lower and upper triangular matrices. The accuracy of the incomplete LU
factorization is determined by the level of fill, f . With higher fill levels, more non-zero entries are retained
in the Lk and Uk factors above the sparsity pattern of the local Jacobian matrix providing a more accurate
representation for J̃k; however, this is at the cost of greater computational work and storage. Although the
existence and stability of ILU(f) factorizations has only been established for a restricted class of matrices,43

the approach has been applied to a wide range of systems and McHugh et al.27 and Gropp et al.28 have
shown that ILU factorization can be an effective local preconditioner for parallel NKS algorithms.

A restarted version of the GMRES algorithm, GMRES(m), is used here to solve the additive Schwarz,
BFILU(f) preconditioned system of linear equations given in Eq. (10). Although the iterative GMRES
algorithm is guaranteed to converge for well-conditioned systems in at most N steps or Krylov subspace
search directions, where N is the system size, the storage requirements increase linearly with the number of
steps and the computational work increases quadratically. To provide control of storage, Saad and Schultz16

devised a variant of the GMRES algorithm, restarted GMRES(m), where the GMRES procedure is restarted
every m steps. Care must be taken in selecting a value for m to ensure good convergence properties of the
GMRES and Newton iterative methods. The application of the Schwarz preconditioning is straightforward
as the multi-block quadrilateral mesh has a natural block structure and provides a simple partitioning
of the problem into subdomains. The Schwarz preconditioning is in fact quite transparent and achieved
once the solution blocks have been established. The main challenge is to perform the necessary inter-block
communication to ensure that the global linear problem is solved.

The GMRES algorithm does not explicitly require the evaluation of the global Jacobian matrix, J =
∂R/∂U. It only requires the evaluation of the matrix-vector product JM−1x. Numerical differentiation
based on Fréchet derivatives provides an approximate expression for this matrix-vector product:17,21–23,25,27

JM−1x ≈ R(U + εM−1x)−R(U)
ε

, (13)

where R(U + εM−1x) is the residual vector evaluated at some perturbed solution state and ε is a small
scalar quantity. Use of this approximation yields a so-called “matrix-free” or “Jacobian-free” inexact Newton
method. Although the performance of the matrix-free method is sensitive to the choice of ε, Neilsen et al.21

have found that ε = ε◦/||x||1/2
2 seems to work well, with ε◦≈10−8–10−7, and this expression is used here.

The proposed matrix-free inexact Newton method with additive Schwarz/BFILU preconditioning and
restarted GMRES linear solver is a variant of the NKS algorithm of Gropp et al.28 From the preceding
discussion, it is evident that there are a number of parameters that can affect the numerical performance
and convergence of this iterative method, including subdomain overlap, fill level, f , number of GMRES
search directions, m, and convergence tolerance for the inner GMRES iterations, ζ. Other techniques such
as slope limiter and residual Jacobian “freezing” can be adopted to reduce computational work and improve
convergence. In general, it was found that m and ζ should be set to avoid restarts for optimal computational
performance. Gropp et al. suggest that fill levels f = 0, 1, or 2 with zero domain overlap is an effective
strategy.28 The influence of subdomain overlap was experimented with here and it was also found that for
fill levels of 0, 1, and 2, overlap did not provide any significant benefits. With higher levels of fill, overlap
was found to provide some benefits, but even then the computational savings were quite modest, at least for
the applications considered in the present work. In general, fill levels of 3 and 4 with zero domain overlap
were found to provide slightly superior performance to the lower fill levels, but for values of f greater than
five, the overall performance of the NKS method, in terms of computational time, was found to deteriorate
due to the greater costs of forming and using the ILU preconditioner. Slope limiter freezing was also found
to be quite helpful in avoiding convergence stall and is used in most cases considered herein.

8 of 17

American Institute of Aeronautics and Astronautics

Figure 4. Morton ordering space filling curve used to provide nearest-neighbour ordering of blocks for more
efficient load balancing of blocks on multiple processors. The coloured blue line represents the space filling
curve passing through each of the solution blocks in the multi-block AMR mesh.

E. Multigrid Startup Algorithm

In order to increase the radius of convergence and ensure global convergence of the NKS method for almost
any initial data, a good startup startup algorithm is invariably required. Several different startup strategies
have been proposed in the literature.20,21,23 One approach that is often adopted and has proved to be an
effective startup procedure is an implicit Euler time-marching method with switched evolution/relaxation
(SER) as proposed by van Leer and Mulder.44 The application of an implicit Euler time-marching method
to the semi-discrete form of the governing equations given in Eq. (4) yields[

− I
∆tn

+
(

∂R
∂U

)n]
∆Un = −Rn . (14)

where ∆tn is the time step. As ∆tn →∞, Newton’s method of Eq. (7) is recovered. In the SER approach,
the time step is varied, starting from a finite-value and gradually increasing and becoming very large as
the desired steady solution is approached. As the time step approaches infinity Newton convergence is
achieved. In the present work, a parallel full multigrid algorithm with both V- and W-cycles has been been
developed using the underlying finite-volume discretization procedure coupled with the optimally-smoothing
multi-stage time marching schemes developed by van Leer et al.45 as a smoother. See Li46 for a description
of the multigrid solution algorithm. The parallel multigrid method is used as a startup procedure for the
NKS algorithm to obtain a good initial estimate for the solution. A small number of full multigrid cycles are
used to reduce the solution residual by one- or two-orders in magnitude before initiating the NKS solution
procedure. The multigrid strategy seems to be very effective in ensuring the global convergence of the
proposed algorithm and is fully compatible with the block-based AMR scheme and parallel implementation
advocated herein.

F. Parallel Implementation

By design, the multi-block body-fitted AMR scheme and NKS algorithm are well suited to parallel implemen-
tation on distributed-memory multi-processor architectures. A parallel implementation of the block-based
AMR scheme has been developed using the C++ programming language and the MPI (message passing
interface) library. For homogeneous architectures with multiple processors all of equal speed, the self-similar
nature of the solution blocks is exploited and parallel implementation is carried out via domain decomposi-
tion where the solution blocks are simply distributed equally among the available processors, with more than
one block permitted on each processor. A Morton ordering space filling curve, as shown in Figure 4, is used
to provide nearest-neighbour ordering of blocks for more efficient load balancing.4 A simple stack is used to

9 of 17

American Institute of Aeronautics and Astronautics

(a) (b) (c)

Figure 5. Computed solution of parallel NKS algorithm for supersonic flow past a circular cylinder; Mach
number M∞=2.5; showing (a) Mach number distribution and (b) single (128 × 128) and (c) 16 (32 × 32) block,
16,384 cell, meshes used in computations.

keep track of available (open or unused) processors. For heterogeneous machines, such as a computational
grids, a weighted distribution of the blocks can be adopted to preferentially place more blocks on the faster
processors and less blocks on the slower processors.

In order to carry out mesh refinement and inter-block communication, a complete copy of the hierarchical
quadtree data structure is stored on each processor. This is possible because, unlike cell-based unstructured
meshing techniques, the block-based tree data structure is not overly large. The structure need only retain
the connectivity between the solution blocks as opposed to a complete map of the cell connectivity required
by general unstructured mesh procedures. Inter-processor communication is mainly associated with block
interfaces and involves the exchange of ghost-cell solution values, residuals, and conservative flux corrections
at every step of GMRES and Newton iterative procedures. Message passing of the this information is
performed in an asynchronous fashion with gathered wait states and message consolidation.

IV. Numerical Results

The numerical results are now described for several flow problems. Supersonic flow past a cylinder and
transonic and supersonic flow in a channel containing a bump on the lower surface are considered.

A. Supersonic Flow Past a Cylinder

The first test case considered in the evaluation of the proposed parallel NKS algorithm is that of supersonic
flow past a two-dimensional circular cylinder with its axis of symmetry perpendicular to the free-stream
flow direction such that a stationary bow shock forms about the body. The free-stream Mach number is

10 of 17

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 6. Performance of parallel NKS algorithm for supersonic flow past a circular cylinder; Mach number
M=2.5; (a) convergence history showing 2-norm of density residual as a function of the number of equivalent
residual evaluations and total processor time and (b) relative parallel speed-up, Sp = (t1/tp)p, and parallel
efficiency, Ep, as a function of the number of processors used in the calculation.

M∞ = 2.5 for the case of interest. Numerical solutions are calculated on a 128 × 128 mesh consisting of
16,384 computational cells and several different blockings (partitionings) of the computational domain are
examined in order to investigate the influence of the Schwarz preconditioning. A single-block grid consisting
of one 128× 128 solution block is considered, along with 4-, 16-, and 64-block grids composed of 4 64× 64,
16 32 × 32, and 64 16 × 16 solutions blocks. The single- and 16-block computational mesh are shown in
Figures 5(b) and 5(c) for comparison. Mesh refinement is not considered for this problem.

The computed Mach number distribution for the M∞ = 2.5 blunt-body flow is shown in Figure 5(a) and
the convergence of the parallel NKS algorithm is given in Figure 6(a), where the 2-norm of density residual
is depicted as a function of the number of equivalent residual evaluations and total processor time residual
evaluation. The latter are related to one another by the CPU time required to evaluate the residual vector,
R, on the finest mesh. Convergence results are shown for the 1-, 4-, and 16-block cases in Figure 6(a). In
each of these cases, a 4-level, V-cycle full multigrid procedure, with 100 multigrid cycles on each successively
finer mesh, was used to provide a good estimate for the solution before initiating the NKS iterations. For
the NKS steps, the values of various solution parameters were ζ =0.2, m=40, f = 4, and no or zero domain
overlap was employed in the Schwarz preconditioning. In addition, the values of the slope limiters were
“frozen” and held constant after the norm of the solution residual was reduced by four orders in magnitude.

The computed Mach number distributions of Figure 5(a) demonstrate the prediction capabilities of
the proposed algorithm for this class of flow problem. The structure and position of the bow shock are
well resolved and the subsonic region in the vicinity of the stagnation point on the cylinder is accurately
represented. It is also evident from the convergence histories Figure 6(a) that the multigrid startup algorithm
is very effective in providing a good initial estimate of the steady solution for the parallel NKS algorithm.
Furthermore, the matrix-free inexact Newton method rapidly converges to the steady-state solution. Just
33 Newton steps are required to reduce the solution residual by 12 orders in magnitude on the single block
128 × 128 mesh. This number drops slightly to 29 for the 4-block mesh and only increases to 54 for the
16-block mesh. It is clear that there is some deterioration of the Newton method performance produced by
the increased partitioning used in the additive Schwarz preconditioning. The results for this case indicate
that the 16-block partitioning leads to approximately a 40% increase in the overall computational costs of
the Newton method as compared to the single partition case. Note that in all cases, the number of GMRES
iterations required to reduce the residual for the linear problem by a factor of ζ = 0.2 is typically between
10 and 30. In some cases the number of search directions can be fewer than 5 and, in only a few instances,

11 of 17

American Institute of Aeronautics and Astronautics

Figure 7. Computed solution of parallel NKS algorithm for transonic channel flow past a bump; Mach number
M=0.8; showing Mach number distribution and adapted mesh after 6 levels of refinement; final mesh consists
of 182 (8× 8) blocks and 11,648 computational cells.

does the iteration count exceed m=40 requiring a restart.
Parallel implementation of the proposed algorithm has been carried out on parallel cluster of 4-way

Hewlett-Packard ES40, ES45, and Integrity rx4640 servers with a total of 244 Alpha and Itanium 2 processors.
A low-latency Myrinet network and switch is used to interconnect the servers in the cluster. Estimates of the
parallel performance and scalability of the proposed method on this parallel architecture for the blunt-body
flow problem are shown in Figure 6(b). The figure depicts both the relative parallel speed-up, Sp, given by

Sp =
t1
tp

p , (15)

and the relative parallel efficiency, Ep, given by

Ep =
Sp

p
, (16)

for a fixed-size problem (fixed total computational work) as a function of the number of processors, p,
where tp is the total processor time required to solve the problem using p processors and t1 is the processor
time required to solve the problem using a single processor. Two separate performance curves are shown
and compared to the idealized values of each performance measure for up to 32 processors. The results
correspond to two different domain decomposition scenarios for the blunt-body flow problem: the 16- and
64-block partitionings of the computational domain. It is evident from the performance curves of Figure 6(b),

12 of 17

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 8. Convergence histories of parallel NKS algorithm for transonic and supersonic channel flow past a
bump; showing (a) 2-norm of density residual as a function of the number of equivalent residual evaluations
and total processor time for Mach number M=0.8 with six successively refined adapted mesh consisting of from
512 to 11,648 computational cells and (b) 2-norm of density residual as a function of the number of equivalent
residual evaluations and total processor time for Mach number M=1.4 with seven successively refined adapted
mesh consisting of from 512 to 32,000 computational cells.

that while there are indeed some inefficiencies in parallel implementation of the NKS algorithm and parallel
performance for larger numbers of processors remains to be fully investigated, the relative parallel speedup is
nearly linear in both cases and the parallel efficiency remains above 85%. It is felt that further investigation
of the influences of the various solution parameters is required to fully optimize the parallel performance of
the algorithm. Nevertheless, these results are certainly very encouraging.

B. Transonic Flow Past a Bump in a Channel

The application of the parallel implicit AMR algorithm to predicting steady inviscid flows through a channel
with a bump is now considered. The bump flow problem consists of a rectangular shaped flow domain
with a circular-arc-shaped bump on the south boundary. A transonic flow case is first considered where the
upstream channel inlet flow Mach number is M=0.8.

The initial grid for this problem consisted of eight 8 × 8 solution blocks with a total of 512 cells. Six
levels of mesh refinement were performed and the final mesh, shown in Figure 7, consisted of 182 blocks and
11,648 cells. The predicted Mach number distribution on the final mesh is also given in Figure 7, depicting
the steady shock structure which forms at the rear of the bump. The convergence of the combined multigrid
startup and parallel NKS algorithm on the seven grids for this case is shown in Figure 8(a). The solution
parameters used in this case are similar to those used in the blunt-body flow problem described above. Rapid
convergence of the Newton method is obtained on each mesh level. The number of Newton steps required to
reduce the residual by eight orders in magnitude varies from 25 to 65, with a maximum of 65 Newton steps
required on the finest mesh, and this is for a relatively fine partitioning of the problem where there can be
hundreds of subdomains and each subdomain consists only of 8× 8 cells.

The computational mesh of Figure 7 illustrates the ability of the body-fitted multi-block AMR procedure
to adapt automatically to solution features without significant user input. Mesh refinement is carried out in
the vicinity of the rear of the bump, providing accurate resolution of the stationary shock that forms above
the surface of the bump. A measure of the efficiency of the block-based AMR scheme for this problem can
be defined by a refinement efficiency parameter, η, given by

η = 1−Ncells/Nuniform (17)

13 of 17

American Institute of Aeronautics and Astronautics

Figure 9. Computed solution of parallel NKS algorithm for supersonic channel flow past a bump; Mach number
M=1.4; showing Mach number distribution and adapted mesh after 7 levels of refinement; final mesh consists
of 500 (8× 8) blocks and 32,000 computational cells.

where Ncells is the actual number of cells in the mesh and Nuniform is the total number of cells that would have
been used on a uniform mesh composed of solution blocks all at the finest level. The efficiency of the AMR
scheme is η = 0 for the initial mesh, where all solution blocks at the same level of refinement, but rapidly
improves as the number of refinement levels increases. A refinement efficiency of η = 0.91 is achieved on
the finest mesh, indicating the ability of the block-based AMR approach to deal with flows having disparate
spatial scales by reducing the number of computational cells required to solve a problem while maintaining
solution resolution in areas of interest.

C. Supersonic Flow Past a Bump in a Channel

Supersonic channel flow is now considered where the upstream channel inlet flow Mach number is M=1.4.
The initial grid again consisted of eight 8× 8 solution blocks with 512 cells. Seven levels of mesh refinement
were performed and the final mesh, given in Figure 9, consisted of 500 blocks and 32,000 cells. The shocks
that form at the leading and trailing edges of the bump and the reflected shock structures that arise at
the upper surface of the channel are all depicted in the computed Mach number distribution of Figure 9.
Convergence of the parallel NKS method on the eight grids is given in Figure 8(b). Again, rapid convergence
of the Newton method is observed for each mesh level, with the number of Newton steps required to reduce
the residual by eight orders in magnitude varying from 22 to a maximum of 51. The computational mesh of
Figure 9 further illustrates the capabilities of body-fitted multi-block AMR procedure. Accurate resolution
of the multiple shocks is achieved with a mesh refinement efficiency of η=0.76 on the finest grid.

14 of 17

American Institute of Aeronautics and Astronautics

V. Conclusions

A highly parallelized implicit AMR algorithm has been developed for predicting two-dimensional com-
pressible gaseous flows on body-fitted multi-block mesh. The parallel implicit method allows for anisotropic
mesh refinement and appears to be well suited for predicting complex flows with disparate spatial and tem-
poral scales in a reliable and efficient fashion. Future research will focus on the further development of the
algorithm for unsteady and three-dimensional flows and for more complex systems of equations. In addition,
alternative preconditioning techniques will be explored, including multi-level preconditioning techniques.
The possibility of re-using or re-cycling the Krylov subspaces to reduce computational costs as proposed by
Gosselet and Rey47 and Parks et al.48 will also be investigated.

VI. Acknowledgments

This research was supported by a Premier’s Research Excellence Award from the Ontario Ministry of
Energy, Science, and Technology and by the Natural Sciences and Engineering Research Council of Canada.
Funding for the parallel computing facility used to perform the computations described herein was obtained
from the Canadian Foundation for Innovation and Ontario Innovation Trust (CFI Project No. 2169). The
authors are very grateful to these funding agencies for this support.

References

1Berger, M. J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” Journal of Computational
Physics, Vol. 53, 1984, pp. 484–512.

2De Zeeuw, D. and Powell, K. G., “An Adaptively Refined Cartesian Mesh Solver for the Euler Equations,” Journal of
Computational Physics, Vol. 104, 1993, pp. 56–68.

3Aftomis, M. J., Berger, M. J., and Melton, J. E., “Robust and Efficient Cartesian Mesh Generation for Component-Base
Geometry,” AIAA Journal , Vol. 36, No. 6, 1998, pp. 952–960.

4Aftomis, M. J., Berger, M. J., and Murman, S. M., “Applications of Space-Filling Curves to Cartesian Methods for
CFD,” Paper 2004-1232, AIAA, January 2004.

5Quirk, J. J. and Hanebutte, U. R., “A Parallel Adaptive Mesh Refinement Algorithm,” Report 93-63, ICASE, August
1993.

6Berger, M. J. and Saltzman, J. S., “AMR on the CM-2,” Applied Numerical Mathematics, Vol. 14, 1994, pp. 239–253.
7Groth, C. P. T., Zeeuw, D. L. D., Powell, K. G., Gombosi, T. I., and Stout, Q. F., “A Parallel Solution-Adaptive Scheme

for Ideal Magnetohydrodynamics,” Paper 99-3273, AIAA, June 1999.
8Groth, C. P. T., De Zeeuw, D. L., Gombosi, T. I., and Powell, K. G., “Global Three-Dimensional MHD Simulation of a

Space Weather Event: CME Formation, Interplanetary Propagation, and and Interaction with the Magnetosphere,” Journal of
Geophysical Research, Vol. 105, No. A11, 2000, pp. 25,053–25,078.

9Davis, R. L. and Dannenhoffer, J. F., “Decomposition and Parallelization Strategies for Adaptive Grid-Embedding
Techniques,” International Journal of Computational Fluid Dynamics, Vol. 1, 1993, pp. 79–93.

10Sun, M. and Takayama, K., “Conservative Smoothing on an Adaptive Quadrilateral Grid,” Journal of Computational
Physics, Vol. 150, 1999, pp. 143–180.

11Hartmann, R. and Houston, P., “Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler
Equations,” Journal of Computational Physics, Vol. 183, 2002, pp. 508–532.

12Sachdev, J. S., Groth, C. P. T., and Gottlieb, J. J., “Parallel Solution-Adaptive Scheme for Multi-Phase Core Flows in
Rocket Motors,” Paper 2003–4106, AIAA, June 2003.

13Northrup, S. A. and Groth, C. P. T., “Solution of Laminar Diffusion Flames Using a Parallel Adaptive Mesh Refinement
Algorithm,” Paper 2005–0547, AIAA, January 2005.

14Sachdev, J. S., Groth, C. P. T., and Gottlieb, J. J., “A Parallel Solution-Adaptive Scheme for Predicting Multi-Phase
Core Flows in Solid Propellant Rocket Motors,” International Journal of Computational Fluid Dynamics, Vol. 19, No. 2, 2005,
pp. 157–175.

15Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear
Equations,” SIAM Journal for Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–869.

16Saad, Y., “Krylov Subspace Methods on Supercomputers,” SIAM Journal for Scientific and Statistical Computing,
Vol. 10, No. 6, 1989, pp. 1200–1232.

15 of 17

American Institute of Aeronautics and Astronautics

17Brown, P. N. and Saad, Y., “Hybrid Krylov Methods for Nonlinear Systems of Equations,” SIAM Journal for Scientific
and Statistical Computing, Vol. 11, No. 3, 1990, pp. 450–481.

18Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
19Wigton, L. B., Yu, N. J., and Young, D. P., “GMRES Acceleration of Computational Fluid Dynamics Codes,” Paper

85-1494, AIAA, July 1985.
20Venkatakrishnan, V. and Mavriplis, D. J., “Implicit Solvers for Unstructured Meshes,” Journal of Computational Physics,

Vol. 105, 1993, pp. 83–91.
21Nielsen, E. J., Anderson, W. K., Walters, R. W., and Keyes, D. E., “Application of Newton-Krylov Methodology to a

Three-Dimensional Unstructured Euler Code,” Paper 95-1733-CP, AIAA, June 1995.
22Barth, T. J. and Linton, S. W., “An Unstructured Mesh Newton Solver for Compressible Fluid Flow and Its Parallel

Implementation,” Paper 95-0221, AIAA, January 1995.
23Pueyo, A. and Zingg, D. W., “An Efficient Newton-GMRES Solver for Aerodynamic Computations,” Paper 97-1955,

AIAA, June 1997.
24Knoll, D. A. and Keyes, D. E., “Jacobian-Free Newton-Krylov Methods: A Survey of Approaches and Applications,”

Journal of Computational Physics, Vol. 193, 2004, pp. 357–397.
25Knoll, D. A., McHugh, P. R., and Keyes, D. E., “Newton-Krylov Methods for Low-Mach-Number Compressible Com-

bustion,” AIAA Journal , Vol. 34, No. 5, 1996, pp. 961–967.
26Cai, X.-C., Gropp, W. D., Keyes, D. E., Melvin, R. G., and Young, D. P., “Parallel Newton-Krylov-Schwarz Algorithms

for the Transonic Full Potential Equations,” SIAM Journal on Scientific Computing, Vol. 19, No. 1, 1998, pp. 246–265.
27McHugh, P. R., Knoll, D. A., and Keyes, D. E., “Application of Newton-Krylov-Schwarz Algorithm to Low-Mach-Number

Compressible Combustion,” AIAA Journal , Vol. 36, No. 2, 1998, pp. 290–292.
28Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F., “High-Performance Parallel Implicit CFD,” Parallel

Computing, Vol. 27, 2001, pp. 337–362.
29Barth, T. J., “Recent Developments in High Order K-Exact Reconstruction on Unstructured Meshes,” Paper 93-0668,

AIAA, January 1993.
30Venkatakrishnan, V., “On the Accuracy of Limiters and Convergence to Steady State Solutions,” Paper 93-0880, AIAA,

January 1993.
31Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational

Physics, Vol. 43, 1981, pp. 357–372.
32Einfeldt, B., “On Godunov-Type Methods for Gas Dynamics,” SIAM Journal on Numerical Analysis, Vol. 25, 1988,

pp. 294–318.
33Linde, T. J., A Three-Dimensional Adaptive Multifluid MHD Model of the Heliosphere, Ph.D. thesis, University of

Michigan, May 1998.
34Linde, T., “A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws,” International

Journal for Numerical Methods in Fluids, Vol. 40, 2002, pp. 391–402.
35Toro, E. F., Spruce, M., and Speares, W., “Restoration of the Contact Surface in the HLL-Riemann solver,” Shock

Waves, Vol. 4, No. 1, 1994, pp. 25–34.
36Gottlieb, J. J. and Groth, C. P. T., “Assessment of Riemann Solvers for Unsteady One-Dimensional Inviscid Flows of

Perfect Gases,” Journal of Computational Physics, Vol. 78, 1988, pp. 437–458.
37Berger, M. J. and Colella, P., “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” Journal of Computational

Physics, Vol. 82, 1989, pp. 67–84.
38Quirk, J. J., An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, Ph.D. thesis, Cranfield Institute of

Technology, January 1991.
39Sorenson, R. L., “A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes by the

Use of Poisson’s Equation,” Technical Memorandum 81198, NASA, May 1980.
40Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., Numerical Grid Generation—Foundations and Applications,

North-Holland, New York, 1985.
41Powell, K. G., Roe, P. L., and Quirk, J., “Adaptive-Mesh Algorithms for Computational Fluid Dynamics,” Algorithmic

Trends in Computational Fluid Dynmaics, edited by M. Y. Hussaini, A. Kumar, and M. D. Salas, Springer-Verlag, New York,
1993, pp. 303–337.

42Dembo, R. S., Eisenstat, S. C., and Steihaug, T., “Inexact Newton Methods,” SIAM Journal on Numerical Analysis,
Vol. 19, No. 2, 1982, pp. 400–408.

43Meijerink, J. A. and van der Voorst, H. A., “An Iterative Solution Method for Linear Systems of Which the Coefficeint
Matrix is a Symmetric M-Matrix,” Mathematics of Computation, Vol. 31, 1977, pp. 148–162.

44Mulder, W. A. and van Leer, B., “Experiments with Implicit Upwind Methods for the Euler Equations,” Journal of
Computational Physics, Vol. 59, 1985, pp. 232–246.

45van Leer, B., Tai, C. H., and Powell, K. G., “Design of Optimally-Smoothing Multi-Stage Schemes for the Euler Equa-
tions,” Paper 89-1933-CP, AIAA, June 1989.

46Li, E. L., A Parallel Multigrid Method for Predicting Compressible Flow in Turbomachinery, Master’s thesis, University
of Toronto, 2004.

16 of 17

American Institute of Aeronautics and Astronautics

47Gosselet, P. and Rey, C., “On a Selective Reuse of Krylov Subspaces in Newton-Krylov Approaches for Nonlinear
Elasticity,” Proceedings of the Fourteenth International Conference on Domain Decomposition Methods, Cocoyoc, Mexico,
January 6–11, 2002 , edited by D. E. Keyes, O. B. Widlund, and R. Yates, National Autonomous University of Mexico, Mexico
City, Mexico, 2003.

48Parks, M. L., De Sturler, E., Mackey, G., Johnson, D. D., and Maiti, S., “Recycling Krylov Subspaces for Sequences of
Linear Systems,” Technical Report UIUCDCS-R-2004-2421, University of Illinois at Urbana-Champaign, March 2004.

17 of 17

American Institute of Aeronautics and Astronautics

