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3. Classical Method of Moments for Monatomic Gas

Coverage of this section:
» Overview of Moment Closure Methods
» Chapman-Enskog Method
» Grad’'s Method of Moments (Moment Closures)
Recovery of Navier-Stokes Equations

>

» Order of Magnitude Approach

» Application of Classical Moment Methods
>

Summary of Classical Moment Methods
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3.1 Overview of Moment Closure Methods

3.1.1 Approximate Solution Method

» As discussed in the introduction to the course, moment
closure methods essentially provide a means of constructing
approximate solutions to the governing kinetic equation

» Generally involve approximating the NDF by some assumed
form involving a number of free parameters, the latter which
can be related to selected macroscopic quantities or moments
associated with the NDF solution

» Rather than solving the kinetic equation directly, solutions are
instead sought to the transport equations for the moments
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3.1 Overview of Moment Closure Methods

3.1.2 Desirable Properties and Characteristics

» Moment closures provide complexity reduction with reduced
models that bridge macroscopic and microscopic scales
» Moment equations present a number of other advantages:

» mathematical
» physical modelling
» computational
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Moment Closure Methods

Mathematical Advantages:

» reduction in dimensionality of the problem: much less complicated and
expensive than direct-discretization and particle simulation techniques
(e.g., DSMC and Lagrangian methods)

» if one is careful, mathematically elegant: well-defined entropy,
fully-realizable moments, strictly hyperbolic transport equations
(symmetric hyperbolic system, Godunov, 1961, classical Friedrichs-Lax
hyperbolic system, Friedrichs & Lax, 1971)

Physical Modelling Advantages:

» finite propagation speeds for transport of solution information

» provides description of both near-equilibrium and extended description of
more general non-equilibrium flows
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Moment Closure Methods

Computational Advantages:
» first-order, quasi-linear hyperbolic systems with relaxation (source terms
— potentially stiff)

» do not require discretization of second (or higher) derivatives (unlike
conventional fluid treatments)

» well-suited for solution by schemes devised for hyperbolic conservation
laws (e.g., Godunov-type finite-volume or discontinuous-Galerkin
schemes)

» development of schemes which handle conservation equations of mixed
type (i.e., with elliptic and hyperbolic nature) has proven difficult on
irregular meshes

» can gain an extra order of spatial accuracy for the same reconstruction
stencil when compared to PDEs involving second derivatives

P |ess sensitive to grid irregularities — more amenable to
adaptive-mesh-refinement or embedded-boundary techniques
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3.1 Overview of Moment Closure Methods

3.1.3 Maxwell's Equation of Change (Maxwell, 1867)

As a reminder, for a given macroscopic moment of interest, M,
given by
M(x,t) = (V(vi)F ),

Maxwell’s equation of change is given by
0 0 ov OF
— M)+ —[(viV(v —( a5 = V(vi)—/ ),
S )+ - [uvn Tl (a7 ) = (v’ )
where the moment flux, F;, is given by
F,' = < V,'V(V,').F> .

The preceding is the so-called conservation form of Maxwell's
equation of change.
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3.1.3 Maxwell's Equation of Change

The non-conservation form of Maxwell's equation of change can be
formulated for a macroscopic moment of interest, M,, expressed in
terms of the random particle velocity, ¢;, and given by

Mo(X;t) = (V(ci)F ) ,

Maxwell’s equation of change is given by

0 0 0
o (Mo) 5= (uie) + 5= [V () )

() (3] (52
~(ae7 ) = (V@)

where the next higher-order moment flux is now given by
< C,'V(C,')./T> .
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3.1 Overview of Moment Closure I\/Iethods
Boltzmann Equation W:huu-;u.i.l“ ’ L-;, % F) +_) o F) +<wh%>:<¢ (%)>

OF OF  OF _(iF
o P an e T \5 ), , ‘ v
‘ p(v)={l.v.v’ ...} (9)= /_ g(v)dv
Ja®
PDEs for W(x,#)

JU(W)  dF(W)
e/} * .

=S(W)

3.1.4 The Closure Problem
» Given a selected finite set of N velocity moments,
vV — (1,7, 77, v2

M) — m///v("’)f(x 7, )3 = <V(’V)]-">

» Resulting moment equations (first-order, quasi-linear, PDEs with
relaxation):

% (M) 49-( oV E ) (5 (V) F >:<V(N)%>

» Unfortunately, an infinite set of moments is required to describe an

arbitrary NDF associated with a non-equilibrium solution.
8
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3.1.4 The Closure Problem

F=F(W(x.1).v) Moment Equations
Boltzmann Equation i b 5 o oF e

W ={p.up..} }—‘3‘¢'F1‘+.—‘.’1':¢FI‘+ Pai— )= ’»‘"(—)
JF JOF OF §F ot 1T Bz / o ot ).
— vig— taie— = =
ot Vo Moe  \ Bt ), _ N

Y(v)={1,v.v } g)= _')_/V‘H]V
J

PDEs for Wi(x.#)
JU(W) N JF (W)
at dx;

=S(W)

» Closure problem: next highest-order velocity moment must be

specified E(N) _ < \7V(N).7-"> _
» As we will see, closure is generally achived by assuming a form for
7 F o~ FN (g 7, t; M)

» Closure is then provided by
FV) = < VV(N)]-"> ~ < 7 VM FN) (7 M(V)) >
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3.1 Overview of Moment Closure Methods

3.1.5 Difficulties and Challenges

» Formal convergence of the moment closure approach to the
solution of the Boltzmann equation is difficult to show
(general argument: the more moments the merrier!)

» \Which moments should be included in the selected set and is
there an optimal set?

» Closures can also suffer from some form of breakdown and/or
loss of hyperbolicity

» Validity of the closures for full range of physically realizable
moments can also be a challenge

» Finally, theres is a need for robust and efficient numerical
solution schemes for the resulting moment equations

10
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3.2 Chapman-Enskog Method

In this section of the course we will review so-called classical
moment closure methods as represented by the method of Grad
(1949). However prior to doing so, we will first review the
Chapman-Enskog method. As discussed previously, this
approximate solution technique for the Boltzmann equation
predates the moment methods and is based on a formal
perturbative expansion for the NDF, F, and results in a hierarchy
of increasingly more accurate approximate solutions to the kinetic
equation.

11
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3.2 Chapman-Enskog Method

3.2.1 BGK Kinetic Equation

Assuming that there are no external forces (i.e., a; = 0) and adopting a
relaxation time approximation for the collision operator of the type first
proposed by Bhatnagar et al. (1954), the Chapman-Enskog method will be
applied here to so-called BGK kinetic equation describing the time-evolution of
the NDF, F, given by

oOF OF _oF F-M

9t Viox T ot 1 7

(1)
where M is the Maxwell-Boltzmann distribution function and 7 is the

characteristic relaxation time for collision processes. The Maxwell-Boltzmann
distribution function is given by

P 1pc2) P ( 1C2)
M=——"""———exp|—z— | =——F5exp| —=— ], 2
m (27p/p)*/? p( 2 p m (2760)%/? P\ 279 @)

where 6 = p/p.

12
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3.2 Chapman-Enskog Method
3.2.2 Chapman-Enskog Perturbative Expansion Technique

In the Chapman-Enskog perturbative expansion technique approximate
solutions to a scaled version of the kinetic equation
oOF or _ F-M

9t TVige T T (3)

are sought which have the following form:
F=M(FO 401 0 4 60 4 ) (4)

where € is a scaling parameter introduced for the purposes of the perturbative
solution analysis with the understanding that ¢ < 1. In general, € o< Kn. This
implies that the relaxation time, 7, is small and that we are interested in
perturbative solutions from local thermodynamic equilibrium. The
corresponding solution to the unscaled kinetic equation (i.e., Eq. (1) given
above) is then given by

0 1 2 3
F=M(FO4 04 @40 ), (5)
13
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3.2.2 Chapman-Enskog Perturbative Expansion Technique

with the assumptions that
fO=0@1), D=0, A=0), fB=0(), et (6)

Substituting the scaled expansion into the scaled kinetic equation yields

W 5 (700) g (O0) f“)M]

T ot Xi T
+ € {% (f(l)./\/l) + vi% (f(l)./\/l) 4 f(2)TM]
+ & {% (f(z)/\/l) + ""a%,- (f(z)/\/l) + f(37)-M]
+
= 0. (7)

For non-trivial solutions, require each term of this expansion for the kinetic

equation in powers of € to vanish.

14
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3.2 Chapman-Enskog Method
3.2.2 Chapman-Enskog Perturbative Expansion Technique

At this point, it is very important to point out the distinctions between the
Chapman-Enskog and Grad-type (moment closure) expansion techniques! The
Chapman-Enskog approach is formally a perturbative expansion in a small
parameter, with each term adding only the next higher-order correction to the
solution. As will be shown, the Grad approach is a truncated power series
expansion where each term can contain solution content of all orders.

3.2.3 Zeroth-Order Solution: The Euler Equations

To zeroth order in the small parameter, ¢, the solution of the kinetic equation

must satisfy
FO 1
./\/l—( ) =0

—— —o. (8)
This condition yields
=1, 9)
and
FraM, (10)
15
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3.2.4 Zeroth-Order Solution: The Euler Equations
where
M :M(p7 Ui,P):M(p, u,-,9). (11)

Thus, to zeroth-order in ¢, the particle NDF can be approximated by a local
Maxwell-Boltzmann distribution, M, which depends on the local values of p,
uj, and p (or #). This is the so-called local thermal equilibrium (LTE)
approximation. In this case, the unscaled kinetic equation can be written as

oM oM

ot i % 0, (12)
o oM oM 0 0 oM
uj uij .
W—i_(u;—i_Ci)a_Xi_ E‘i_(uj‘i‘cj)a—xj 8—C,—0 (13)

The latter is the non-conservative form of the kinetic equation expressed in
terms of the random particle velocity, c;. Note that the value of the BGK
collision operator is zero at this level of approximation. Moment equations
describing the transport of p, uj, and p (or 0) can be obtained taking the
velocity moments m, mc;, and mc2/2 of the approximate kinetic equation.

16



Moment Closures & Kinetic Equations 3. Classical Method of Moments for Monatomic Gas C. P. T.

3.2.4 Zeroth-Order Solution: The Euler Equations

These transport equations can be written as

op

0
aJra—Xi(PU:)—O,
ou; Oui 10p
ot Yo Toak O
op Op | 5 Ou
E“L '8X,-+3 0X; 0

These well-known moment equations are referred to as the Euler equations
governing inviscid gaseous flows and complete the specification of the
zeroth-order solution.

17
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3.2 Chapman-Enskog Method
3.2.5 First-Order Solution: The Navier-Stokes Equations

The first-order correction, f!), to the zeroth-order result given above must

satisfy
oM oM FOM _
ot IaX; T -
This condition yields
= M{&t Vi |

where the NDF is now approximated by

]—'z/\/l<1+f(1)) .

Groth (©2020

(14)

(15)

(16)

. Groth (©2020

(17)

(18)

(19)

Substituting this first-order approximation for the distribution function into the

unscaled kinetic equation yields the following approximate kinetic equation
0 0 fM
9 114D } e [ 14 Ff® ] _
o7 | M| v [ M -,

18
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(20)
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3.2.5 First-Order Solution: The Navier-Stokes Equations

or

% (L FM] + (w4 @) a%,- [(1+ FO)M]

ou; ou;| 0
_ | Z= ) N £ ]
S o) G| o [ A
FOM
= — . 21
- (21)
For consistency with the zeroth-order solution, it is required that
m< £ M > ~0, (22)
m<v,f(1)./\/l>:0, m<c,-f(1)/\/l>:O, (23)
%<v2f(”/vt>:o, %<c2f(1)/\/l>:0. (24)
19
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3.2.5 First-Order Solution: The Navier-Stokes Equations

These consistency conditions follow from the definition of the Maxwellian, M,

for which
m(M)=p, (25)
m{(viM)=pui, m{cM)=0, (26)
miamN=3,0 2 miey\N_3
§<VM>_2P+2"”’ 2<CM>_2P’ (27)
m{viyyM ) = puiuj + d;p, m{cigM) =d;p, (28)

and the definitions of the velocity moments of any distribution function, for
which we require that

m<(1—|—f(1))./\/l>:p, (29)
m< v,-(1—|—f(1))./\/l> = puj, m<c;(1—i—f(1))./\/l> =0, (30)
g<v2(1+f(1))/\/l>:gp+%pu2, g<c2(1+f(l))/\/l>: gp, (31)

in the case that F = M(1 4 ).

As with the zeroth-order approximation, if we now take velocity moments m,
mc;, and mc?/2 of the non-conservative form of the approximate kinetic
equation, the moment equations for the first-order solution can be obtained.

20
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3.2.5 First-Order Solution: The Navier-Stokes Equations

For the continuity equation one can write
9 &) Ly 9 M
<m8t [(1+f )M} > + <m(”’+c’)ax,- [(1+f )M]
_ Ou; yOui) O <1)
< lat +luta) 8)9} dc, 1+ )M >

< f(l)M>
= — m ,
-

which can then be evaluated in stages as follows:

2<m(1-|—f(1))./\/l> + ui— 4

: 2 () + 2 (e )
- (5 12:)<my [a+raq )

_ g—)‘;{<m o [(1+f(1)/\/l]>
= —l<mf(1)./\/l>,

T

21
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3.2.5 First-Order Solution: The Navier-Stokes Equations

9 ,@—%<mi [cj(1+f(1))/\/l]> 3“’< ac’(1+f(1))/\/l>:0,

ot ox; 0x; ac; 0 8c,
ap aop ou;
E + /a_ + 51] a 0,
op 0 _
E—l—a—xi(pu, =0. (32)

For the momentum equation one can write
< mca = [(1 + 0 )/\/l > < mce, (Ui + ¢i) 8 [(1 + f(l))/\/l] >

<mca {a“’ +(y+g) J] a% [(1+ f(l))M] >

(mea )
= —{( mcy, ,
-

22
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3.2.5 First-Order Solution: The Navier-Stokes Equations

which can then be evaluated in stages as follows:
0 0
at<mco[(1—|—f )./\/l>—|—u,8 <mca(1-|—f )./\/l>

6(‘1, < mecaci(1+ FAYM >

(G Jg”)<ma§c 7] )
_ g—)‘; < meacis- [(1+ FM] >

! < mca f M A > ,

T

23
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3.2.5 First-Order Solution: The Navier-Stokes Equations

2 s (st
(B ott) (o)
_< %Cca(Hf(”)M >)
2 (ot fecom )
~ (L leal+ ) ) )
—0,
e men (R
e A 10 (o ) o

24
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3.2.5 First-Order Solution: The Navier-Stokes Equations

And finally, for the energy equation one can write

<’;’ 20 [(1+f(1))/\/l}> + <EC2(Ui+Ci)i[(1+f(l))M}>
- (7| o) 3| 2 o ] )

_ ([ mafM
a 2 T ’

which can then be evaluated in stages as follows:

gt (Z+ M) + u,-a%l_ (Ze+ )M )
+ (,% < gc;cz(l + FfYM >
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3.2.5 First-Order Solution: The Navier-Stokes Equations

200+ 290 g ( FOEM)+ g (FacOM)

_ (% + ujg—:’:) << ga% [cz(l + f(l))M} >
(32 Bl o)

_ g_)‘;f << ga% [cjc2(1 + f(l)),/\/l} > - < %aic,- [cjcz] (14 FO)M >)
= 0,
% + 2 + ga%, ( Dacfim)
T (% + w?—i) < mei(1+ FYM >
+ 5 g“f < gc2(1+f(l))/\/l>
+ 22—1 < mcii(1 + )M >

= 0, 26
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3.2.5 First-Order Solution: The Navier-Stokes Equations

@+i@+gi<%' 1)M> %

ot Oxi  30x 5Xf
2 ouj 2 ouj
+ 5U 8 + = <mc,cjf(1./\/l>a—Xj:0,

op Op |5 Oui 20 < m (1)

ap Ou; 2O )

ot Yax T 3Pox 3ax, M -~

2 du;
Defining the fluid stresses, 7, and heat flux, g;, to be
m< c,-cjf(l)/\/l > = —Ti, (35)
% < a2 fO M > =qi, (36)
27
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3.2.5 First-Order Solution: The Navier-Stokes Equations

the continuity, momentum, and energy equations for the first-order solution can
be summarized as follows:

9p
a5¢ T a_x (pui) =0, (37)

ou; Oui 10p 101
Bt +J6xj+p8x, p@xj_o’ (38)

o, 9P 5,0u, 206 2 Ou
ot oxi 3 8x, 30x; 3 70x

These are the well-known Navier-Stokes equations, which describe the time
evolution of the velocity moments p, uj, and p.

=0. (39)

In order to complete the description of the first-order solution, all that remains
is to determine f") and calculate expressions for the fluid stresses and heat flux.

28
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3.2.5 First-Order Solution: The Navier-Stokes Equations
From Eq. (18) and using the fact that M = M(p, uj, 0), can write

f'(l) - _ T % @—{—V@ _|_8M auo‘+v.8ua
M | 9p \ Ot O Ou, \ Ot " Ox;
oM (00 00
+W (E-FVia—Xi)} )
_ T [OM(Bp 00 | OM (0us 10us
- M{ap (at””’“’] X,->+8ua <8t 1 ’+C’]a,)
LOM (B0 00
06 \ Ot T ox ’
_ T [OM(Bp 00 OM (Ous 12us
- M{@p (8t+[ it ’]a,->+aua (at +[“’+C’]ax,->
LOM (0p (o 0p\ _ pOM (9 o L 0p
t o0 \ar Tl T ’]ax,-) 7 og \ar Tluitelg o))
_ _ T (oM _ pOMY (Op 190
- TM [( op 2 00 ) <8t+[ '+C']6x,-)
OM (Ouy (0w 1OM (0p L 0p
+ au \or it ax,-) 06 (8t+[u'+cl]8x,-)}’(40)
29
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3.2.5 First-Order Solution: The Navier-Stokes Equations

The next step is to use the zeroth-order moment equations (i.e., the Euler
equations) to evaluate the convective derivatives of p, uj, and p. This is an
important approximation in the Chapman-Enskog technique. One can then
rewrite the expression for (%) given above as

oM oM Ou; 0
O - T (222 PO (g, O
M|\ oy T 2 o8 Pox; T S ox
OM ((10p , du) 10M (5 ou  _op
+8ua ( p OXa e 8X,->+,0 00 ( 3P ox; +C18X,'):|.(41)

Now, the derivatives of the Maxwell-Boltzmann NDF must be evaluated. From
Eq. (2), it follows that

. 3 1C2 3/2

InM—Inp—EInG—EE—In [m(27r) ] , (42)
and hence 1 IM )
=2 43
1 8/\/1 . Ci 8C,' Ci . PCi

Mou ~ 00w 0 p (44)

1LoM 3 & 3p  pc?
Mo - 2w 2pt o (45)

30
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3.2.5 First-Order Solution: The Navier-Stokes Equations

Substituting these expressions for the derivatives of M into the equation for

fO) can write

2
W _ S_ b\ (L,0uy O P (10p | Oua
= Tl <2 2p)< p8X;+ '8X,)+ p ( paxa+C8X;

pcicjﬁx,- = 5cc

Note the change of indices.

31
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3.2.5 First-Order Solution: The Navier-Stokes Equations

Finally, using the definitions of the fluid stresses and heat flux given by
Egs. (35) and (36), can write

T = —m<c,-ij(1)/\/l>
_ oL Ous | Oa) _ p 20Ua
- ’”T<C’C’ l2pc‘“cﬁ <axa " fm) 3¢ axa] M>

T ou OUq T Ouq
= p_m<c,-cjcac5j\/l) (8_XB+%) —g—pm<c,cjc M>6x

_pT p Oug  Ou
— pp [5U5a,8 + 610451,8 + 61/3’6041] ( X + 8X/3>

pT P [5u5ﬁﬁ + 25!651,3]

_ (3_u n 8_U> _ %Tp(;..%

1
aXJ Xi Y OXa

_ ou; 8uj 2 . Oua
B l ( Ox;  Ox ) 3 & OXa } ’ (48)

32
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3.2.5 First-Order Solution: The Navier-Stokes Equations

2
_ el (P2 O (P
= 27-<c,c (2p2cac 2pca> O (p)M>

2
_ _pT _ 4 0 p Spt , 2 0 P
— —4p2m<c,cac M>_(9xa (p) —|——4p m<c,cac M>_8xa (p)

rp? s, ( ) 5pT p> 0 (p)
TP 138610] o () + 22T P (510055 + 2015005] —— ( P
7 [ ] o \5 [0iadsp s 5] p

4 OXa 4p p
B _357'pi P 57p o0 (p
— 4 aX,' <p) [351a+261a] Xa P
_5tp 0 [p
2 0xi \p
oT
= _FLB_X,-’ (49)

where . = 7p is the dynamic viscosity and k = 5k7p/(2m) is the thermal

conductivity.

33
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3.2.5 First-Order Solution: The Navier-Stokes Equations

The preceding expressions for the fluid stresses and heat flux vector are identical
to those given previously for the Navier-Stokes equations and showing that the
first-order Chapman-Enskog solution recovers the conventional fluid-dynamic
limit as well as providing expressions for the transport coefficients.

An important limitation of the BGK or relaxation time collision operator is
revealed by determining the Prandtl number based on the transport
coefficients, p and k, given above. By definition the Prandtl number is

Pr = “TCP . (50)

For a monatomic ideal gas, the specific heat at constant pressure is
C, =7vR/(y —1) =5R/2 =5k/(2m). Using this value for C, and the
expressions for 1 and k given above can write

(5)2mkTp

Pr= (5)2mkTp

(51)
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3.2.5 First-Order Solution: The Navier-Stokes Equations

From this it can be seen that the use of a single relaxation time in
the BGK collision operator is equivalent to assuming that the
Prandtl number, which is essentially the ratio of relaxation time for
the diffusion of momentum to the relaxation time for the diffusion
of internal energy, is unity. As only one relaxation time is
introduced in the model this should be expected. In actuality, most
gases have a Prandtl number somewhat less than one. A value
near 0.70 is typical. The use of a hard sphere inverse potential for
the collision operator yields a Prandtl number of two thirds (2/3).

35
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3.2 Chapman-Enskog Method

3.2.6 Higher-Order Solutions

The Chapman-Enskog technique can be continued to include more and more
terms in the perturbative expansion. To second- and third-order in the small
parameter, ¢, the approximate solutions of the Boltzmann equation satisfy the
Burnett and super-Burnett equations, respectively, with a BGK collision
operator. However, one should be cautioned that the resulting expressions for
the constitutive relations become more complex and non-linear. For example,

Tij = 7',.5.0) + 7',-5-1) + 7',.5-2) ,

ORI Ka“f N %) _ 25..%] |

v Y Ox; | Oxi 377 0x
2 2
oy P PT ap p
Bpax,a T T o +52”’(a )ax,+ e

Furthermore, the inherent stability of the resulting equations has been shown to
be problematic.
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3.3 Grad's Method of Moments (Moment Closures)

The method of moments as originally proposed by Grad (1949) is
the best known alternative to the Chapman-Enskog method
described previously. Although the original approach was
formulated as either a 20-moment or 13-moment closure, Grad’s
method can actually be thought of as a hierarchy of moment
closures which includes:

» 26-Moment Closure

» 20-Moment Closure

» 13-Moment Closure

» 10-Moment Closure (equivalent to Gaussian Closure)

» 8-Moment Closure

» 5-Moment Closure (equilibrium solution, Euler Equations)

among others.
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3.3 Grad's Method of Moments (Moment Closures)

3.3.1 20-Moment Closure

We will begin the discussion of the Grad methods by considering
the 20-moment closure.
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3.3.1 20-Moment Closure

Selected Moments

In the Grad 20-moment closure, the following set of total velocity
weights is considered:

2 T
V( 0)(v,-) = m[l, v, vivj, vivjv]
or the following set of random velocity weights:

V(20)(Ci) = m [1, Ci, CiCj, C,'CJ'Ck]T
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3.3.1 20-Moment Closure

Selected Moments

These choices correspond to the following selected macroscopic
quantities:

m(F)=p,

m< >—pu,',

m (viv;iF') = pujuj + Py,

m ( vivivF ) = pujujui + Pjui + Ppcuj + Piu; + Qjik
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3.3.1 20-Moment Closure

Selected Moments

or
m(F)=p,
m(c,-]:>: ,
m{ciciF ) = Pj = pdjj — 7jj ,
m( cicickF ) = Qjjk ,

with

MO = [, pui, pujuj + Py, pujujug + Pyui + Pieuj + Pieu; + Qyie]

and
WD = [p,u;, Py, Q] " -

The former correspond to conserved variables and the latter will be
referred to as primitive variables.
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3.3.1 20-Moment Closure

Assumed Form for the NDF

Grad originally constructed the 20-moment closure by assuming an
approximate form for the NDF, F, in terms of polynomial series
expansion in velocity space in terms of Hermite polynomials, a
family of orthogonal polynomials. The use of Hermite polynomials
was helpful in determine where to truncate the polynomial series
expansion but is not required in order to derive the closure. Here a
regular polynomial approximation or truncated power series will be
used in deriving the closure.
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3.3.1 20-Moment Closure

Assumed Form for the NDF

In the Grad 20-moment closure, it is assumed that
2
F o~ F 0)(Xi>Ci, t; p, ui, Pij, Qjjk)

Pii
= M(p,ui,p = ?) [1+ Aq ca + Bag cacg + Dapy cacscy]

where the coefficients of the truncated power series, A, (3 values),
B, (6 values), and Dy~ (10 values), are specified by relating
them to the 20 selected or known moments for the closure. These
are the so-called moment constraints on the assumed form for the
NDF. Note that the preceding polynomial contains all terms up to
degree three in ¢; and all higher degree terms (i.e., degree 4 and
above) are dropped or neglected.
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3.3.1 20-Moment Closure

Moment Constraints on F(20)

The moment constraints on F(20) are as follows:
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Moment Constraints on F(20)

If we consider the first constraint, we have

p=m < F(20) >
=m(MI[L+ Ay co + Bag cacs + Dagy cacscy])
=m(M)+Asm{caM )+ Bygm(cocgM)
+ Dopym ( cacacy M)
=m (M) + Bagm(cacgM)

= p + Bagpdagp
= p+ Baap
0= BaaP,
or
Buo = 0. (52)
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Moment Constraints on F(20)

If we consider the second constraint, we have
0= m< C,'f(zo) >

=m(cM[l+ Aq ca + Bap cacs + Dapy cacscy])
=m(cM)+ Aam{(cica M)+ Bagm{ cicacgM )
+ Dapgym ( cicacpcy M)
= Aam{ cicaM ) + Dagym{ cicacgcy M)
2
= Aap5io¢ + Da,@*y% [6ia6,6"y + 5i6(5afy + 6ify5ocﬁ]

2 2 2
= A,p+ DI,BBP_ + Daiap_ + Daaip_
p p p

O:Ai‘{'%Diaa,
P

or 3
P p

Ai+ /'OcOzZO- 53
) (53)
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Moment Constraints on F(20)

If we consider the third constraint, we have

pdij — Tij = m< C,-Cj]:(20) >

=m{ccM[l+ Aa ca + Bap cacs + Dap~y cacscy])
=m{ccM )+ Aam{ cicicaM ) + Bagm{ cicicacgM )
+ Dapgym ( cigicacpcy M)
=m < C,'CJ'M > -+ Bagm < C,'CJ'CaCﬁM >
2
= pdj + Ba,s% [0ij0ap + biadjs + digdja]
2

2 2
—Tij = Baap_éij + BU% + Bji%

2
Tij = —2P—B,j,
P

or

7 =—22B;. (54)
p
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Moment Constraints on F(20)

If we consider the fourth and final constraint, we have

Qik = m< cicick F0 >
=m{cicickM [l + Aa ca + Bas cacs + Dapy cacscy] )
= m{ciciaxM ) + Aam{ cicickcaM ) + Bopgm { cicjckcacgM)
+ Duogym { cicjckcacgcy M )
= Aam{ cicickcaM ) + Dopym { cicjckcacgcy M)

2 3
== Aoz% [6U6ka + 5ik6jo¢ + 6ia6jk] + Da,@’y% {5’15ka55'y}$£l¢67]

2 3

2 2
p p p P 15
= Ak?&j + Aj?(sik + Ai? jk + Daﬁ'y? {5U5ka55v}f,jkzy,37]

3
:6%Dijk,

or
P
Qijk = 6? Di . (55)
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3.3.1 20-Moment Closure

Final Form for 20-Moment NDF

Using the preceding expressions for the coefficients, A., Bag, and Dqs~ the
following expression can be obtained for F(%:

f(ZO)(X,', Gi, t;pv ui, PU7 Q'Jk)

Pii P
= M(p, ui,p==3) ll T (pij — Pdij) cacp

2
3
+6p— (Qa,BWC,BC'y an,BB) Ca} ,

or
f(zo)(x,', Ci, t; p, Ui, Tij, Qijk)
p
= M(p, ui, p) { 2p 55T CaCp
2

p p
+6 3 (Qaﬁvcﬁcv _Qa,@B) Ca} .
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3.3.1 20-Moment Closure

Moment Equations

The non-conservation form of the moment equations for the 20-moment
closure may then be derived by using the non-conservation form of Maxwell's
equation of change which, using the relaxation-time or BGK collision operator

and assuming a; = 0, is given by

(Mo) o O (M) o [< i V(c)F >]

‘ (%‘i' ()] (e8]
:——[MO—W(C, 1,

with

Mo(X, t) = < V(c)F®) > , and VeV®(c)=ml, 6, cq, cgal”,
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3.3.1 20-Moment Closure

Moment Equations

0 0
E(P)WL(?—XI_(PU:‘)—O,

%+u-%+lapﬁ_%+u.% 19p 107 _
ot 'ox;  p Ox, Ot TOxp  pOxi  pOx
8 auj+6Q,-jk_ 1

Py
5t -I- — (UkPU) + ija ~+ Pix axk O
8ka

0
ot + - (U/ka) + ij/ + Q:kl uj + QU/ X

Pix 3P:/ Pix 3PJ/ PU 3Pk/ n 8Rukl _

p 0x p Ox p Ox X

1
_;Qljk7

where the fourth-order moment, Rjy, given by
Rijxi = m< c,-cjckc/f(20) > ,

remains to be evaluated for closure.
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3.3.1 20-Moment Closure

Closing Relation for Rjj

Rijxi = m< cicicke F0 >

p ya 3p
= m< cicickeM { 2p27'u CaCpg + — 6p° (Qaﬁvcﬁcv - ?Qaﬁﬁ) } >
=m{ciciagM ) —

2
3
+ 6p 5 Qapy m{ cicickcicacpcy M) — ;Qagg m{ cicjckcica M)

=m{ccekaM) —

202 ~—Tij m(cicickcicacgM )

207 ——T1;; m{ cicjckcicacg M)

1
=5 [P P + PPy + PP — TijTw + TixTjt + TarTjx]
or

1
Rij = p [PijPu + PiPji + PiPjx — TjjTii + TiTjt + TirTjk] - (56)
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3.3 Grad's Method of Moments (Moment Closures)

3.3.2 13-Moment Closure

We will next consider the Grad 13-moment closure.
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3.3.2 13-Moment Closure

Selected Moments

In the Grad 13-moment closure, the following set of total velocity
weights is considered:

1 T
V() = m [1’ Vis Vivj, EV"V2] ,
or the following set of random velocity weights:

1 T
V(13)(c,-) =m [1, Ci, GiCj, §CiC2] .
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3.3.2 13-Moment Closure

Selected Moments

These choices correspond to the following macroscopic quantities:

m(F)=p,
m{ v;F ) = pu;j,
m{viv;F ) = puju; + Py,
m 1 3p
E < V,'V2.F> = pu; (§U2 + 5;) — Tjjuj +q;,
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3.3.2 13-Moment Closure
Selected Moments
or
m(F)=p,
m( C,'.7:> = 0,
m{ cic;F )= Pj = péj — 7,
m
S{ac’F)=ai,
with

1 3p T
M) = | p. puj, pujuj + Py, puj (§U2 + 5;) — Tjjuj + q,-] ,

and

W) = [p, u;, Py, qi]" = [p, ui, poij — Tij, @il
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3.3.2 13-Moment Closure

Assumed Form for the NDF

In the Grad 13-moment closure, it is assumed that
F = f(13)(xi7 Gi, t; p, uj, Pl_j7 ql)

P
_M(pauhp_? [1+A Ca+Ba,3CaCB+D CaC 2]7

where the coefficients of the truncated power series, A, (3 values),
B, (6 values), and D, (3 values), are specified by relating them
to the 13 moment constraints. Note that the preceding polynomial
contains all terms up to degree two plus selected third-degree
terms in ¢;.
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3.3.2 13-Moment Closure

Moment Constraints on F(13)

The moment constraints on F(3) are as follows:

m( FO ) = p,

m{ aF1 ) =0,
m<CCJ.7:(13>— Py = pdj — 7,
2 {er) <
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Moment Constraints on F(13)

If we consider the first constraint, we have

p:m<]:(13)>

m{ M |1+ Ay o + Bag cacs + Do cac2]>

=m(M)+ Asm{coM) + Bygm{( cacgM )
+Dam<cac2./\/l>

:m<M>—|—Ba5m<CaC/3M>

= p+ Bagpoags
= p+ Baap
0= Baap7
or
59
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Moment Constraints on F(13)

If we consider the second constraint, we have
0= m< ¢ F¥ >
= m< cM [1 + Aa €a + Bag cacs + Do cac2] >
=m(cM)+ Aam(cicaM )+ Bagm{ cicacgM )
- Dam< CiCaC° M >
= Aam( cicaM ) + Dam< CiCac’ M >

p°
== Aapéia + Da5_5io¢
p
P
= Aip+5D;—
p

0=A +2p,
p

or
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Moment Constraints on F(13)

If we consider the third constraint, we have
poij — Tij = m< c,-cj]-"(13) >
= m< ciciM [1 + Aq Ca + Bag cacs + Dqo cacz] >
=m(ccM)+ Aaom{cicicaM ) + Bagm( cicicacgM )
+ Dam< CiCjCac’ M >

=m{cicM )+ Bagm{ cicicacgM )
2
= P8+ Bag® - [3y0as + Biadjs + Bisbja]
2 2 2
p p p
—Tij = Baa_5i' + Bj— + Bji—
i ij i i

2
Tij = —2P—Bij ,
P

or
= —2%3,,-. (59)
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Moment Constraints on F(13)

If we consider the fourth and final constraint, we have
m
q= < i’ F) >

cic’ M [1 + Aa ca + Bag cacg + Do cacz} >

S

¢’ M > + Aag < CiCaC* M > + Bagg < Cicacsc® M >
m < Cicac' M >
CiCa M > + Doém < Cicact M >

Il
TSRS
S

S
R
|

Il
>
Q
|3
/\l\)

I
>
8
Nl O o
< |3,
S
3
+
O
Q
w
NS
T
N w

Il

>
N| Ol
SEEN

+

S

w

Il
o

bm|‘c
O

or
qi = 5P D; . (60)
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3.3.2 13-Moment Closure

Final Form for 13-Moment NDF

Using the preceding expressions for the coefficients, A, Bag, and D, the
following expression can be obtained for F(1%):

]:(13)(X,‘,Ci, t; p, Ui, P’Jaq’)

Pii P
=M , Ui, p = — 1 by iji — (5,"CC
(p, ui, p 3){ +2p2(pj Pdij) CaCs
2
p 1, p
Y -Cc — — aCa 9
s (5 p) I ]
or
]:(13)(Xf7 G, t; p, Ui, Tjj, ql)
P
= ./\/l(p, uj, p) |:1 — 2—'027','1' CaCB
2
p 1, p
— | =Cc — — aCa| -
T (5 p) I }
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3.3.2 13-Moment Closure

Moment Equations

The non-conservation form of the moment equations for the 13-moment closure
may then be derived by using the non-conservation form of Maxwell’s equation
of change (relaxation-time or BGK collision operator and a; = 0) given by

% (Mo) + 8%_ (uiMo) + 8%_ [ av(e)F™ )]

Oui  Ou\ |/ OV ray | Oui [/ OV a3
" (3t +UJ8XJ> K oa” >} T ox KCJ@G—F

1
=2 M—{(V(e)M)]

with

T
Mo (X, t) = < V() F™) > , and VeV®(g)=m ll, ci, CiGj, %c;cz} ,
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3.3.2 13-Moment Closure

Moment Equations

8p 8p 5 8u,- 2 au,' 2 8q,-

C. P. T. Groth (©2020

ot Yok T3P 3oy 30w
687—: + 83 (ukTu)+7-Jkg +leg;lk 5UTk/g—L:;
L2 2o L 2 ()
RGN
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3.3.2 13-Moment Closure

Note that the 13-moment closure can be derived directly from the

20-moment closure by merely assuming that

2
ka (qlé_jk + qj5/k + qk(sy) )

which is fully consistent with Q;;/2 = g;.
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3.3 Grad's Method of Moments (Moment Closures)

3.3.3 10-Moment Closure

We will next consider further simplifications of the Grad closures.
Consider the 10-moment closure.
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3.3.3 10-Moment Closure

Selected Moments

In the Grad 10-moment closure, the following set of total velocity
weights is considered:

V) (v) = m[L, vi, viv] ",
or the following set of random velocity weights:

V(lo)(C,') = m [1, G, C,'Cj]T .
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3.3.3 10-Moment Closure

Selected Moments

These choices correspond to the following macroscopic quantities:
m(F)=p,

m{v;F ) = pu;j,
m{viv;F ) = puju; + Py,
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3.3.3 10-Moment Closure
Selected Moments
or
m(F)=p,
m( C,'./T"> = O,
m<C,CJ.7:> = P,'j:p5,'j—7','j,
with
T
M(lo) — [p7puiapuiuj+Pij] )
and

W(lo) - [p7 uj, PU]T .
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3.3.3 10-Moment Closure

Assumed Form for the NDF
In the Grad 10-moment closure, it is assumed that
F =~ FO(x. ¢, t; p, uj, Pj;)
= M(p, uj,p = %) [1 4+ Aa ca + Bag cacsl

where the coefficients of the truncated power series, A, (3 values)
and B, (6 values) are specified by relating them to the 10
moment constraints. Note that the preceding polynomial contains
all terms up to degree two, but nothing beyond that.
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3.3.3 10-Moment Closure

Moment Constraints on F(10)

The moment constraints on F(10) are as follows:

m<.7:(10)>:p,
m( Ft9 ) =0,

m< C,'CJ'.F(IO) > = Py = PCS/J' — Tij
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Moment Constraints on F(10)

If we consider the first constraint, we have

p:m<.7:(10)>
=m (Ml + Ay co + Bas cacsl)
=m(M)+Asm{caM )+ Bygm( cacgM)
:m<M>+Ba5m<CaC5M>

= p+ Bagpoags
= p+ Baap
0= Baap7
or
Boa = 0. (61)
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Moment Constraints on F(10)

If we consider the second constraint, we have

0= m< ¢; F(10) >
=m(cMI[l+ Ay co + Bap cacsl)
=m(cM)+Asm(cice M)+ Bygm( cicacgM )
= Aom{ cicaM)
= AaPdia
= Aip,

or
A =0. (62)
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Moment Constraints on F(10)

If we consider the third constraint, we have

pojj — Tij = m< ciq F10 >

m{ cicgcM[1l+ Aq ca + Bap cacsl)
m{cicgM )+ Aam{ cicicaM ) + Bagm ( cicicacgM )
m{ cicM )+ Boapm{ cicicacgM )

2
= pdj + Baﬁ [0ij0ap + biabjs + bigdjal

p2 2
—Tij = Baa_éU + Bij_ + Bji_
p p
2
P
7 =—22B;,
P
or
p2
TU:—2—BU. (63)
P
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3.3.3 10-Moment Closure

Final Form for 10-Moment NDF

Using the preceding expressions for the coefficients, A, and B,g,
the following expression can be obtained for F(10),

f(lo)(X,‘, G, t; P, Uj, P’J)
Pii

= M(p, uj,p = ?) [1 + 2—22 (pij — pdij) cac[j] ,

or
1
F( 0)(Xi7 Ci, t; p, Ui,T/_'j)

= M(p, uj, p) [1 — 2’%7,-1- cacﬂl )
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3.3.3 10-Moment Closure

Moment Equations

The non-conservation form of the moment equations for the 10-moment closure
may then be derived by using the non-conservation form of Maxwell's equation
of change (relaxation-time or BGK collision operator and a; = 0) given by

(Mo) o 0 — (uM.) + i [< V() FO >]

' (%i’ )2 (etm
= 2 Mo~ (V(e)M)]

with
Mo (%, t) = < V(c)FO > , and Ve V() =m[l, ¢, cql",

7
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3.3.3 10-Moment Closure

Moment Equations

0 0

E(P)Jr 8_><;(pui) =0,
au; au; 10 P,'j 8U,’ 8u,~ 1 ap 1 87’,)'
e S = e =0,
8 ox; p Ox; ot ox; pOxi p Ox;

aPU du; du; 8Q'Jk __1 NS _l .
ot —i— (ukPU)+PJka +P/kak+ Bxe (P P5u)—7_7'u:

where the thlrd—order moment, Qj, given by

Qik = m< cicick F10 > .

remains to be evaluated for closure.
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3.3.3 10-Moment Closure

Closing Relation for Qi
Qik = m< CiC:,'Ck]:(lo) >

= m < cicjckM ll — 2—';27','j cac/g} >

=m(ciciacM ) — 2—pz7'ij m{ cicjckCacg M)
=0,
or
Qi =0. (64)
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3.3.3 10-Moment Closure

Note that the 10-moment closure can be derived directly from the
20-moment closure by merely assuming that

Qiik =0,

i.e., by assuming the heat flux is zero.
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3.3 Grad's Method of Moments (Moment Closures)

3.3.4 8-Moment Closure

Consider also a Grad 8-moment closure.
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3.3.4 8-Moment Closure

Selected Moments

In the Grad 8-moment closure, the following set of total velocity
weights is considered:

8) 1,1 5"
V¥ (v;)) =m |l v, zv5, Zvjv ,
2 2

or the following set of random velocity weights:

Ve(c)=m|1,¢ lc2 1c-c2 '
[ Vi ] 2 9 2 I .
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3.3.4 8-Moment Closure

3. Classical Method of Moments for Monatomic Gas C. P. T. Groth (©)2020

Selected Moments

These choices correspond to the following macroscopic quantities:

m(F)=p,

m(v;F ) = puj,

moery =ty

5 (ViF ) =5pu"+35p,
1 3

g<v,-v2]:> = pu; (§u2 + 5%) — Tijuj + qi ,
83
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3.3.4 8-Moment Closure

Selected Moments

3. Classical Method of Moments for Monatomic Gas C. P. T. Groth (©)2020

or
m(F)=p,
m C,'F>Z ,
m 3
§<C2]:>:§Pa
m 21\
2<c,cf>—q,,
with

1, 3 B
M®) = 1o, pui, pujuj + Py, pu; (Euz + 5%) — Tijuj + QI] ;

and

W(S) = [p7 ui, p, qi]T
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3.3.4 8-Moment Closure

Assumed Form for the NDF

In the Grad 8-moment closure, it is assumed that

F = F(8)(Xi7 Ci, t; p, uj, p, ql)
= M(p, uj, p) [1 + A, cy+ Bc?+ D, Cacz} ,
where the coefficients of the truncated power series, A, (3 values),
B (1 value), and D, (3 values), are specified by relating them to
the 8 moment constraints. Note that the preceding polynomial

contains does not contain all terms up to degree three, only
selected terms in ¢;.
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3.3.4 8-Moment Closure

Moment Constraints on F(®)

The moment constraints on F(®) are as follows:
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Moment Constraints on F(8)

If we consider the first constraint, we have

p:m<.7:(8)>
=m{M[L+ Ay co+ Bc*+ Dy cac?])
=m(M)+Aym{caM) + Bm{ M)
+Dam<cac2./\/l>
=m(M)+Bm{c*M)

=p+3Bp
0=3Bp,
or
B=0. (65)
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Moment Constraints on F(8)

If we consider the second constraint, we have
0= m< G F® >

m<c,-/\/l [1+Aaca+Bc2—|—Dacac2]>

m{cM)+ Aam{cicaM ) + Bm< ¢’ M >
= Aam{ cicaM ) + Dam< CiCaC° M >
p?
== Aap(Sioz + Da5_5ia
p
e
= Aip+5D;—
p

0=Ai+5—pDi,
p

or 5
A,-+?'DD,-:0. (66)
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Moment Constraints on F(8)

If we consider the third constraint, we have
pdij — Tij = m< cic F® >
= m<c,-cj/\/l [1—|—Aa Ca + B + D, cacz] >
=m{ccM)+ Aam{cicicaM ) + Bm< cicc’ M >
+ Dam< CiCjCaC’ M >
=m(cgM)+ Bm< cicc® M >

2
— pd; +5B%55,-j

2

P
—Tij = 58—5,'j
P
T =0,
or
Tij = 0. (67)
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Moment Constraints on F(8)

If we consider the fourth and final constraint, we have
m
9= < cc*F® >

c,-cz./\/l [1 + A, co +B c? + D, cac2] >

N

cic’M > + Aoém < CicaC’ M > + BT < cic* M >

2 2

I
TEENERNERS
o -

Q
|
7~
O
oD
n-b
~—"

Il
>
Q
|3
w/\,\)
(9}
S
(9}
<
| ~~—”"
+
)
Q
|
T
o
>
ﬁ-b
<
~—

N O o

|"O

g

Q

_|_

S

Q

I
>
Q
N
N
)

Il Il
LS
bwrcw N| Ol
S T
+
S

or
qi = 5P D; . (68)
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3.3.4 8-Moment Closure

Final Form for 8-Moment NDF

Using the preceding expressions for the coefficients, A,, B, and
D.,, the following expression can be obtained for F(®):

2

1
‘F(8)(Xi7 Ci, t;pa ui, p, ql) - M(p7 U,‘,P) [1 + % <§C2 - E) q@Ca] .
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3.3.4 8-Moment Closure

Moment Equations

The non-conservation form of the moment equations for the 8-moment closure
may then be derived by using the non-conservation form of Maxwell’s equation
of change (relaxation-time or BGK collision operator and a; = 0) given by

0 (M) + a%,- (uMs) + a%,- (Vi) 7]

Ouj  Ouj oV s Oui |/ OV
i (31“ +u’5’><f> K oa” >} T ox chacff
1
=M~ (V(e)M)]
with

1,17

Ms(X, t) = < V(c)F® > , and VeV®()=m {1, Gi, %c ,Ec,-c2] ,
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Moment Closures & Kinetic Equations

3.3.4 8-Moment Closure

Moment Equations

£ (0) + o (pu) =0,
% e J§:+§,§£ >
O
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3.3.4 8-Moment Closure

Note that the 8-moment closure can be derived directly from the
20-moment closure by merely assuming that

7i; =0,

and

2
Qijk = = (gidjk + qjdik + qrdij) -

The latter is fully consistent with Qj;;/2 = g;.
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3.3 Grad's Method of Moments (Moment Closures)

3.3.5 5-Moment Closure

Lastly, consider the 5-moment closure.
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3.3.5 5-Moment Closure

Selected Moments

In the Grad 5-moment closure, the following set of total velocity
weights is considered:

1 T
VO(v)) =m [1, Vi, §v2] :

or the following set of random velocity weights:

1 7
VO(c)=m [1, ci, §c2] :
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3.3.5 5-Moment Closure

Selected Moments

These choices correspond to the following macroscopic quantities:

m(F)=p,
m(v;F ) = puj,
m, , 1 5, 3
- f' — —p,
> (VIF)=geut5p
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3.3.5 5-Moment Closure
Selected Moments
or
m(F)=p,
m < C,',7:> = 0,
m, 5 3
- f = —p,
2 (T ) =3P
with .
1 3
M®) = 1o, pui, Spu® + Sp|
and

W(S) - [p7 uiap]T .
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3.3.5 5-Moment Closure

Assumed Form for the NDF

In the Grad 5-moment closure, it is assumed that

F%.F(S)(Xi,cl',t; P, U,',P) - M(p7 U,',P),

99

Moment Closures & Kinetic Equations 3. Classical Method of Moments for Monatomic Gas C. P. T. Groth (©)2020

3.3.5 5-Moment Closure

Moment Constraints on F(®)

The moment constraints on F®) are as follows:
m < F) > =p,
(aF®) =0,

m
2(am) -3
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3.3.5 5-Moment Closure

Moment Equations

0 0

E(P)JF Ox; (pu;i) =
ouj ,Oui , 10p _
ot Tox;  pOxi
op op 5 JOu;
a+u'8x,-+§ aX,' N

3. Classical Method of Moments for Monatomic Gas

0,

0,

=0.

C. P. T. Groth (©2020

Mass, momentum, and energy are collisional invariants and the
5-moment or Euler equations provides a description of flow in local

thermodynamic equilibrium.
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3.3.5 5-Moment Closure
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Note that the 5-moment closure can be derived directly from the

20-moment closure by merely assuming that
7ij =0,

and
Qijk = 0.
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3.4 Recovery of Navier-Stokes Equations

Consider 13-Moment Closure

Will consider the recovery of the Navier-Stokes equations
(continuum-limit approximation) from the Grad moment
equations. To do this will apply a Chapman-Enskog-like expansion
directly to the moment equations. Will consider the 13-moment
equations for this. It will be shown that the 13-moment closure
formally recovers the Navier-Stokes equations. A similar procedure
can be applied to the other Grad moment closures and it can be
shown that the 20-moment closure also recovers the Navier-Stokes
equations whereas the 10- and 8-moment closures do not. The
latter are defective in that they are either missing terms associated
with the heat flux or fluid stresses.
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3.4 Recovery of Navier-Stokes Equations

As a reminder, the moment equations of the Grad 13-moment closure are as

follows: 5 5
_(p)+6_><,-(pu"):0’
ou 0w 10p 10w
ot ox;i  pOxi p Ox;
op 0P 5 0u 2 Oui, 20q
9t TV T3Pax 3ok T3k O
oTjj 0 ou; ou;j Ou
Tt T o (UkTi) Tk g Tikg s = G
o (Qui Ou 25 Ouk 20qi , 20q; 4 0q) _ 1
p(8>g+8xi 6U8xk) (58)9 5 Ox; 155U8x/ -
aqi 0q; 8uJ 2 Ouj 7 Oui 5 0 (p
ot Yo T5%a T5%0% 5% T 2P0x

7
57

_§.i£ 0 (m\_,. 9 (m)__1_

2" 0 (p) 8&( ) T”3Xj<p>_ T
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3.4 Recovery of Navier-Stokes Equations

By expressing the 13-moment set in terms of transport equations
for the macroscopic moments p, u;, p, 7, and g;, there is a clear
distinction between collisional invariants (i.e., conserved quantities
associated with p, u;, and p) and quantities that satisfy a weak
conservation equation and are relaxing under the action of source
terms towards equilibrium conditions due to the inter-particle
collisional processes (7j; and g;) with a time scale, 7. One can
apply a Chapman-Enskog-like perturbative expansion technique to
the latter, assuming that the relaxation time, 7, is small (i.e.,

T L 1).
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3.4 Recovery of Navier-Stokes Equations

We will there for consider a perturbative expansion for the unscaled solutions
for both 7;; and g; of the form

R A

G=q" +aq  +q7 +q" +---,
satisfying the unscaled moment equations

8T,J+ 0 (u7-)+7-a 4 ou;j 5T8uk
ot | Ox L T R G ’kak T %,

% 4 94 Ouj 2 Ouy 20qi | 20q; 5 9q 1
oxj  Ox; T Oxic 50x;  50x 15 T ox

%+u.%+z .%4_2 auj+7 Ou; § i E
ot ax T 5%70x T 5%ax T 5% ax T 2Pax
5 0 (p\_ 0 (m\__ 0 (mk\__1_
2”0Xj<p) paxj'(p) 7”8&(/))_ 7
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3.4 Recovery of Navier-Stokes Equations

Similarly, we will consider scaled perturbative solutions for 7;; and g; of the form
=10 +erl + D 4 P 4

q=q" +eq” + 7 + g -

satisfying the unscaled moment equations

8(u7')+T8 + T Ouj (57’8uk
kTij Jka ik an ij Tkl aX/

ou; an 2 nauk N 2% %%_i % —_i -
( i ) (5axj+56x,- 15%0x) T e

ot N
ot Oxx

o Tox  3%0x

%+u'%+zq.8Uj+2 3uj+7 8u,+§ i(g)
ot  ax T 57ax T 5% x 2P5
5 9 (p 0 (i AN .
ol (2) - (2) - (2) -2

for which € <« 1.
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3.4 Recovery of Navier-Stokes Equations

Substition of the scaled solutions for 7;; and g; into their respective
scaled moment equations and then collecting terms of equal order
in € will result in the following conditions on the zeroth-order

solutions to zeroth-order in e:

T,-J(-O) =0,
g =0,

which corresponds to the local equilibrium solution for which p, uj,
and p satisfy the Euler equations.
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3.4 Recovery of Navier-Stokes Equations

Collecting terms to first-order in € will result in the following conditions on the
first-order solutions for 7 and g;:

(0w Ou 2. Quk| _ 1
p{(@)g+8x;> 36U8xk}_ 7

5 8 P . 1 (1)
2P ox: <p>_ o

1 _ Oup  Oup\ 25 Oue| N (Oui  Ouj) 2. Ouk
g _T”Ka><,-+ax,-> 36U8xk —H 8xj+8x,- 35U8xk ’

m__5pP0 (p\__0T
9= 2 Oxi \ p - ox;’

which correspond directly to the constitutive relations of the Navier-Stokes
equations with = 7p and kK = 5k7p/(2m). In this sense, it is evident that the

Navier-Stokes equations and limit is recovered by the Grad 13-moment system.

or

R
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3.5 Order of Magnitude Approach

In an attempt to assess the convergence of Grad moment closures
to the solution of the Boltzmann equation, the so-called order of
magnitude approach was proposed by Struchtrup (2004, 2005,
2006). The order of magnitude approach is a modification of the
consistently ordered extended thermodynamics (COET) method of
Miiller, Reitebuch, and Weiss (2003).
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3.5 Order of Magnitude Approach

The order of magnitude approach can be used to determining the
order of accuracy of the moment equations in Knudsen number
and consists of the following three steps:

» determination of the order of magnitude of the moments;

» construction of the moment set with minimum number of
moments for a given accuracy; and

» removal of all terms that contribute higher-order terms to the
momentum and energy equations.

A Chapman-Enskog expansion technique is applied to the moments
in order to accomplish the first step and the resulting expansions
are compared to the results of the Chapman-Enskog method.
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3.5 Order of Magnitude Approach

Main Findings:

» The Grad 13-moment closure formally recovers the first-order
Chapman-Enskog solution to first-order (i.e., the
Navier-Stokes equations); however, it does not recover all of
the terms in the second-order solution (i.e., the Burnett
equations).

» The so-called regularized 13-moment (R13) closure of
Torrilhon and Struchtrup (2004) recovers formally the
second-order Chapman-Enskog solution, as does the Grad
26-moment closure. Regularization can also be applied to the
26-moment closure (R26) to recover even greater accuracy

within the order of magnitude approach (Gu and Emerson,
2009).
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3.6 Assessment/Application of Classical Moment Methods

In order to access the capabilities of classical moment methods and
in particular, the Grad moment methods, the following problems
will be considered:

» eigenstructure of Grad moment equations;
» stationary one-dimensional planar shock structure; and

» high-frequency sound propagation.
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3.6.1 Eigenstructure of Moment Equations

As stated previously, moment closure methods result in a
quasi-linear hyperbolic system of non-linear partial-differential
equations with relaxation source terms which govern the time
evolution and transport of the macroscopic moments of interest.
The hyperbolicity of the moment equations is an important
consideration.
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3.6.1 Eigenstructure of Moment Equations

The moment equations of the Grad closures can all be written in
the following form:

N N N N
avgﬂ A avgl( - B(,\,)_agv + C(N)_ag/v = s,
t X y z

where WV) s the N-component primitive solution vector for the
closure and A(N), B(N), and CM) are N x N coefficient matrices.
The hyperbolicity of the moment equations can be examined by
considering the eigenstructure of A(N), B(N), and C(M).
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3.6.1 Eigenstructure of Moment Equations

For one-dimensional flows in the x-direction

» the moment equations are hyperbolic if the eigenvalues of
AN are all real;

» the moment equations are strictly hyperbolic if the
eigenvalues of AMN) are all real and distinct;

» the alternative for the latter is a degenerate hyperbolic system.

The eigenstructure is defined by the right and left eigenvalue
problems:
AN p=xr, 1AM =\,

where X is the eigenvalue and r and [ are the right and left
eigenvectors, respectively.
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3.6.1 Eigenstructure of Moment Equations

5-Moment Closure

For the Grad 5-moment equations, the resulting moment equations
correspond to the Euler equations and

WO = [p, u, v, w,p] T,

and _ -
u p 0 0 O
1
0O v 0 0 -
p
5
AB) =10 0 v 0 0
0 0 0 v O
5
0O -p 0 0 w
L 3 i
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3.6.1 Eigenstructure of Moment Equations

5-Moment Closure

A characteristic analysis reveals that the eigenvalues \ of A®) correspond to
the roots of the fifth-order polynomial equation

det (A(5) — )\I) - 3ip (u—2)° (3p)\2 — 6pu + 3pu® — 5p)

3 2 D5
X(X 3) ,

and are

where x = u— X and 0 = /p/p.
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3.6.1 Eigenstructure of Moment Equations

5-Moment Closure

The related right eigenvectors, r, are

560 5
ri = [1, —\/;;, O, O, 592

r2:[17 07 07 07 0]T7 I’3:[0, 07 ]-7 Oa 0]T7 r4:[07 Oa 07 17 O]Ta

T

Y

T
—[1.4/2% 0.0, 2
rs = ’ a5 v Y Yy o
3p 3
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3.6.1 Eigenstructure of Moment Equations

5-Moment Closure

The left eigenvectors, I, are

I, = [o, —\/Epe, 0, 0, 1] :
3
5

12 - [__927 07 07 O; ]':| ) I3 - [07 07 17 07 O] 9 I4 = [07 0’ 07 1’ 0] )

3
Is = [o, \/gpe, 0, 0, 1] .

The eigenstructures of B®) and C® are similar.
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3.6.1 Eigenstructure of Moment Equations

5-Moment Closure

The eigenvalues, \; are all real for p > 0 and p > 0, and, as the
eigevectors are complete and linearly independent, the moment
equations of the Grad 5-moment closure are strictly hyperbolic.
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

For the Grad 10-moment equations, have

W(lo) = [pa u, v, w, P, nya Pz, Pyya PyZa PZZ]Ta

and
[ U P 0 0 0 0 0 0 0 0
0 1 0
P 1
0 0 u 0 O = 0 0 0 o
P 1
0 0 0 0 u O 0 = 0 0 O
A0 — p
0 3P« 0 0 u 0 0 O 0 O
0 2P, P« 0 0O w O O O O
0 2P, 0 Pe 0 O w 0 O O
0o P, 2P, 0 0O 0 0 w O O
0 Py, P.. P, 0 O O O u O
| 0 P 0 2P, 0 0 0 O O w |
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

A characteristic analysis reveals that the eigenvalues A of A®% correspond to
correspond to the roots of the polynomial equation

2
det (A(l") — ,\l) = % (u—N)* (pAZ — 2pul + pu® — PXX)
(p)\2 — 2pul + pu2 — 3PXX)
2
= x (x2 — 9)20() (X2 — 30)2<X) =0,

where x = u — X and O = \/Px«/p.
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

The 10 eigenvalues are the roots of the preceding characteristic

polynomial and are
>\1 =u-—- \/§9XX7

A2 = A3 = u — Oy,
M =Xs =X =Ny =u,
Ag = Ag = U+ Oy,
A10:u+\f39XX.
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

The right eigenvectors, r, are

r 1 \/§9XX \/§HXX P Xy \/§9XX P Xz 3P XX 3P Xy 3P Xz
1 = ’y T y T y T s ’ ) )
p p P p Pu p P p
1 o 1
pP—)o((PXXPyy + 2PXy), pTXX(PXXPyZ +2P,, Py,),
1 T
P Pzz + 2P2 :
5 (PoPue 2P)
i T
2P, P
=10,0,1,0,0, —pb,, 0, ——2 -2 0|
r i sy Uy Ly Uy Uy P GXX GXX |
i T
Py, 2P
=10,0,0,1,0,0, —pb,, 0, -, ——* )
rs i sy Yy Uy Ly Uy Uy P Hxx Hxx ]
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

ra=11,0,0,000000 0",
rs=1[0,0,0,0,00,01 00",
r¢=1[0,0,0,0,0,0,0,0 10",
r7=100,0,0,0,0,00,0,0 1"
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

[ 2P, P
=10,0, 1,0, 0, pb,,0, Xy, XZ,O
rs i ,» U, 1, U, U, p GXX Qxx
[ P, 2P
=10,0,0,1, 0,0, p,0, =%, =<
g i , U, U, L, U, U, p QXX QXX
\/§0XX \/§0XX PXy \/§9XX PXZ 3IDXX 3PXy 3IDXZ
rio = 17 9 ) ) ) ) )
p p P« p P« p p p
1 , . 1
pP—XX(PxxPyy +2P,), E(Pxxpyz + 2Py Pez),
1 T
P P,, + 2P?
p (PoPue +2P2)
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

The left eigenvectors, I, are
Il = [0, V3phe, 0,0, =1, 0,0, 0,0, 0],

_p?

XX

l> = [0, PPy,
Is = [0, P«Pxz, 0, —P2

XX

07 _nygxx, Pxxexx, 0, O, 0, O] s
_szexx, O; PXXHXX, 0, O, 0] R

PXX
I, = [—3—, 0,0,0,1,0,0,0,0, 0] :
p

Is = [4P;, — PPy, 0, 0, 0, 0, —2pP,,, 0, pPy, 0, 0] |
16 = [4'nysz - 'DxxPy27 07 07 Oa 07 _pr27 —Pny, 07 ,OPxan] )
Iz = [4P%, — PwP,,, 0,0, 0, 0, 0, —2pPy,, 0, 0, pPu] ,
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

I8 = [07 _'Dxxny7 P§x7 Oa _nyexxy Pxxexm 07 07 07 O] )
ly = [07 —PyxPxz, 0, P; —Puz0xx, 0, Puxxx, 0, 0, O] )

XX

lo = [o, V3ply, 0,0, 1, 0,0, 0, 0, 0} .

Again, the eigenstructures of B9 and € are similar to that of A1),
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3.6.1 Eigenstructure of Moment Equations

10-Moment Closure

Letting ©,3 = Pap/p, and A = det(®). More specifically,

1 P XX P xy P Xz
®=- PXy Pyy PyZ ,
Pl P, P, P,

Pszz_P)%z szPyz_'ny'Dzz XyPyz_'sz'Dyy

Y
9_1 = —p21A szPyz_ nyPzz PxxPzz_ P)%z nysz— PXX2P)/Z 9
nyPyZ_szPyy nysz_PxxPyz PXXPyy_ny
1

A= 5 (PcPyy P2z + 2Py, Pz Py, — P P2, — Py PS, — P2, P2

such that ®@ 1P = pl. It can be shown that the moment equations of the
10-moment closure are strictly hyperbolic provided that p > 0, @ is a
positive definite, and A > 0.
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3.6.1 Eigenstructure of Moment Equations

13- and 20-Moment Closures
For the Grad 13- and 20-moment equations, have
(13) _ T
w = [p, u,v,w, Py, ny7 Pz, Pyy7 'Dyz, P.., qx, dy, qz] )

and
W(20) = [pa u,v,w, Py, nya Pz, 'Dyya Pyz’ P..,
T
Qxxx, Qxxy, Qxxz, Qxyy, Qxyza szza nyya nyza Qyzza szz,] .
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3.6.1 Eigenstructure of Moment Equations

13- and 20-Moment Closures

Unfortunately, the characteristic polynomials for both A(3) and
A9 do not factor and explicit analytical expressions for the
eigenvalues of each cannot be obtained (the characteristic
polynomials of A13) and A would fill several screens of this
presentation!). The eigenstructure can be determined numerically.
For near equilibrium conditions, the eigenvalues are all real and the
equation sets are hyperbolic. However, experience has shown that
the moment equations of the Grad 13- and 20-moment closures do
not remain hyperbolic for the full range of physically realizable
moments.
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3.6.2 Stationary One-Dimensional Planar Shock Structure

The application of the classical Grad moment closures to the
prediction of planar shock structure for a monatomic gas is now
considered. Shock profile prediction is a challenging problem that
features significant departures from local thermodynamic
equilibrium (LTE), yet it is unencumbered with difficulties
associated with complex geometries and/or boundary condition
prescription. For these reasons it is useful for evaluating the
capabilities of moment methods. Included in the investigation are
results for the Grad 10-, 13- and 20-moment closures with
comparisons to the solutions of the Navier-Stokes and Burnett
equations. Comparisons are also made with Direct Simulation
Monte Carlo (DSMC) results using the method of Bird (1994).
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3.6.2 Stationary One-Dimensional Planar Shock Structure

For the shock structure study, so-called ellipsoidal statistical
collision operator of Holway (1966) is used to describe collisional
processes for monatomic gases. This collision operator, often
referred to the ellipsoidal statistical model, preserves much of the
simplicity of relaxation-time models, while allowing for a realistic
and selectable Prandtl number. For the monatomic gases of
interest, it is assumed that Pr = 2/3 and the viscosity is taken to
have a power-law dependence on the temperture, T, of the form

H = NO(T/ To)w )

where 1, and T, are reference values and the exponent w depends
on the form for the forces governing inter-particle collisional
processes (taken to be w = 1 for Maxwell molecules here).
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3.6.2 Stationary One-Dimensional Planar Shock Structure

The moment equations of the Grad moment closures applied to
the prediction of one-dimensional shock-structure flows can be
expressed in weak conservation form as

N N
oMW) N OFN) §(V)
ot Ox ’

where M(V) is the solution vector of N macroscopic velocity
moments for the closure, F(V) is the corresponding moment flux
vector, and S(M) is the source vector describing the time rate of
change of the velocity moments produced by collisional processes.
A standard Godunov-type finite-volume scheme with piecewise
limited linear reconstruction and Riemann-solver-based flux
functions is used to solve the moment equations for each closure.
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3.6.2 Stationary One-Dimensional Planar Shock Structure
5-Moment Closure

The most elementary Grad moment closure is the 5-moment
Maxwellian model for which N = 5. In this approximation, it is
assumed that the gas is everywhere in LTE and that the
phase-space velocity distribution function is given by the
Maxwell-Boltzmann distribution, M, which for the
one-dimensional planar flows of interest has the form

M= p 1p(ck +2¢7)
= 3/2 exp —5
m (2mp/p) P

The closure results in the well-known Euler equations of inviscid
compressible gas dynamics that describe the time evolution of p, u,
and p.
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3.6.2 Stationary One-Dimensional Planar Shock Structure
5-Moment Closure

The solution vector, M(S), and source vector, 5(5), of the Euler
equations for a monatomic gas can be expressed as

P 0
5) _ pu (5) _
M L M | S 8
P TP

Note that the discontinuous solutions for shock wave structure
provided by the Euler equations are fully understood (i.e., the
Rankine-Hugoniot conditions); however, the Euler equations are
used in the shock profile computations to prescribe initial and
boundary data.
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3.6.2 Stationary One-Dimensional Planar Shock Structure

20-Moment Closure

For the one-dimensional shock structure flows, the approximate
form for the distribution function of the Grad 20-moment closure is
given by

(20) _ o QXXX Qxyy 3
d M [1 (2/)93 i 093> 0

L (Pa=Py) [& 5
302 02 92

2
Qxxx C_i Qxyy 3 C_y]
Y

_|_

6p03 03 pd3 0 62

where 6 = p/p and the solution and source vectors of the system
of moment equations for the six dependent variables p, u, Py,

Py, Qux, and R, may be written as
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3.6.2 Stationary One-Dimensional Planar Shock Structure

20-Moment Closure

P
pu

pU2 + Py

Pyy ’

pU3 + 3uPy + Qxxx
uPyy + Quy

0

0
2
137(
?(PXX - yy)

2 Pr
- PXX_P T Wixxx
7_“( ) - Q

1 Pr
i ?”(Pxx - Pyy) - ?Qxyy

5(20) PXX - Py}’)
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3.6.2 Stationary One-Dimensional Planar Shock Structure

13-Moment Closure

The approximate form for the distribution function of the Grad
13-moment closure in the one-dimensional case is given by

13 _ gl 9 &
F M[ =5
L PPy (S G
302 02 92

2 2

qX CX CX Cy

X ox Loy
5030 (92 + 92>] ’

where again 6 = p/p and the solution and source vectors of the
system of moment equations for the five dependent variables p, u,
P, Pyy, and gx can be written as
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3.6.2 Stationary One-Dimensional Planar Shock Structure

13-Moment Closure

p
pu
M3 — pu” + P
Pyy

1 1
i §Pu3 + EU(3PXX + 2Pyy) + gx

0

0

(13) _ 2
S B _§(PXX_ vy)
1
2 g( P
r
_§“(PXX_Pyy)_?QX

PXX—P)’}/)
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3.6.2 Stationary One-Dimensional Planar Shock Structure

10-Moment Closure

Finally, the approximate form for the distribution function of the
Grad 10-moment closure in the one-dimensional case is given by

1o (Poc= Pyy) 2 g
302 2 92 )|

with 6 = p/p and the solution and source vectors of the system of
moment equations for the four dependent variables p, u, Py, and
P,, can be written as

F10 = m
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3.6.2 Stationary One-Dimensional Planar Shock Structure

10-Moment Closure

,0U2+'Dxx ’

g(10)

2

3—T(Pxx — Pyy)
1

] 3—T(Pxx — Pyy) |
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3.6.2 Stationary One-Dimensional Planar Shock Structure
Mg = 1.25, Density Profile, p
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 1.25, Temperature Profile, T
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3.6.2 Stationary One-Dimensional Planar Shock Structure
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M. = 1.25, Heat-Flux Profile, Q..
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3.6.2 Stationary One-Dimensional Planar Shock Structure

M = 1.55, Density Profile, p
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 1.55, Temperature Profile, T

I T T T T T
1

= !' —

L / 4
0.8 i —
L i i

L i i

L i i
06— i —
L ; 4

b~ - -'- B
L ; i
0.4 Y B .
L 1; ; i

L I i 4

- ‘g Navier Stokes

0.2 - ! H - = = = Burnett -
B ’ HEEC T 10-moment

r p 4 / " \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 13_m0men‘t b

| v i =——=—=20-moment

B ‘ - DSMC f_

| ! ! | ! |
-10 0 10
X
149
Moment Closures & Kinetic Equations 3. Classical Method of Moments for Monatomic Gas C. P. T. Groth (©2020

3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 1.55, Fluid-Stress Profile, 7., = —2(Px — P,y)/3
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M. = 1.55, Heat-Flux Profile, Q..
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M = 2.00, Density Profile, p
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 2.00, Temperature Profile, T
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 2.00, Fluid-Stress Profile, 7. = —2(Px — Pyy)/3
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M. = 2.00, Heat-Flux Profile, Q..
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M, = 3.80, Density Profile, p
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 3.80, Temperature Profile, T
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 3.80, Fluid-Stress Profile, 7, = —2(Px — P,y)/3
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M. = 3.80, Heat-Flux Profile, Q..
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M = 9.00, Density Profile, p
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3.6.2 Stationary One-Dimensional Planar Shock Structure
M, = 9.00, Temperature Profile, T
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3.6.3 High-Frequency Sound Propagation

The propagation of sound waves can be studied in an acoustic
resonator as a function of frequency. The high-frequency (short
wave length) limit corresponds to a high-Knudsen number limit.
Sound propagation as a function of frequency has been studied
experimentally and Miiller and Ruggeri (1993) have considered the
application of Grad-type moment closures to this problem.
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3.6.3 High-Frequency Sound Propagation
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Figure 11.1 Acoustic resonator (schematic)

Schematic of acoustic resonator (taken from Miiller and Ruggeri, 1993)
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3.6.3 High-Frequency Sound Propagation
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Figure 11.3 Phase speeds and attenuations in the NSF theory.
Experimental points by Meyer & Sessler [126]

Navier-Stokes description compared to experiments (taken from Miiller and Ruggeri,

1993)
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3.6.3 High-Frequency Sound Propagation
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Figure 11.4 Phase speeds and attenuations of extended thermodynamics of 13 variables.

Grad 13-moment description (taken from Miiller and Ruggeri, 1993)
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3.6.3 High-Frequency Sound Propagation
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Figure 11.5 Phase speed of the sound mode in theories with more and more moments.
(Note the change of scale in Figure 11.5d.)

High-order Grad-type closures compared to experiments (taken from Miiller and
Ruggeri, 1993)

166



Moment Closures & Kinetic Equations 3. Classical Method of Moments for Monatomic Gas C. P. T. Groth (©)2020

3.7 Summary of Classical Moment Methods

3.7.1 Difficulties and Challenges with Grad Closures

» Formal convergence of the Grad moment closure approach to
the solution of the Boltzmann equation can be assessed via
order of magnitude approach

» How many moments should be considered? \Which moments
should be included in the selected set and is there an optimal
set? These questions remain open.

» Approximate form for NDF in Grad moment closures is not
strictly positive

» higher-order members of Grad closures suffer from loss of
hyperbolicity (as illustrated for shock structure simulations)

» Validity of the Grad closures is therefore questionable for full
range of physically realizable moments
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