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2. Kinetic Theory of Gases

Coverage of this section:

I Conventional Fluid Dynamic Descriptions

I Flow Regimes for a Monatomic Gas

I Statistical-Based Microscopic Description

I Density Functions

I Macroscopic Averages and Moments

I Maxwell-Boltzmann Distribution

I Boltzmann Equation

I Boltzmann Collision Integral

I Maxwell’s Equation of Change

I Boltzmann’s H-Theorem
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2. Kinetic Theory of Gases

Focus:

I Single species monatomic gas

I No internal modes or degrees of freedom (i.e., translational
energy modes only)

I Monatomic gases: inert or noble gases, e.g., helium (He),
neon (Ne), and argon (Ar)

I Diatomic and polyatomic molecules with additional internal
energy modes associated with rotational and vibrational
energy will be briefly discussed
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2.1 Conventional Fluid Dynamic Descriptions

Before discussing the formalisms associated with kinetic theory, it is
useful to first review conventional continuum-based, macroscopic,
fluid dynamic mathematical models of gaseous behaviour. This
continuum approximation is a mathematical idealization for
modeling the response, or state, of a collection of gaseous particles
or molecules. Although fluid dynamic descriptions can be derived
directly from kinetic theory using the Chapman-Enskog technique
(as will be shown), they can also be derived using the Reynolds
transport theorem, also known as the Leibniz-Reynolds transport
theorem, and control-volume analysis (as was originally done).
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2.1 Conventional Fluid Dynamic Descriptions

2.1.1 Navier-Stokes Equations for a Compressible Gas

The basis for conventional fluid-dynamic descriptions of a gas is
the so-called Navier-Stokes equations. This is a non-linear set of
partial-differential equations (PDEs) governing the conservation of
mass, momentum, and energy of the gaseous motion. They consist
of two scalar equations and one vector equation for five unknowns
(dependent variables) in terms of four independent variables, the
three-component position vector, ~x or xi , and the scalar time, t.
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2.1 Conventional Fluid Dynamic Descriptions

2.1.2 Continuity Equation

The continuity equation represents the principle of conservation of
mass for the gas and has the form

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 ,

where ρ and ~u are the gas density and flow velocity, respectively.

2.1.3 Momentum Equation

The momentum equation represents the application of Newton’s
2nd Law of Motion for the gas and has the form

∂

∂t
(ρ~u) + ~∇ ·

(
ρ~u~u + p

~~I − ~~τ
)

= ρ~f ,

where p and ~~τ are the gas pressure and fluid stress dyad or tensor,
respectively, and ~f represents the action of external body forces.
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2.1 Conventional Fluid Dynamic Descriptions

2.1.4 Energy Equation

The energy equation represents the application of the 1st Law of
Thermodynamics to the gaseous motion. It describes the time rate
of change of the total energy of the gas (the sum of kinetic energy
of bulk motion and internal kinetic or thermal energy) and has the
form

∂

∂t
(ρE ) + ~∇ ·

[
ρ~u

(
E +

p

ρ

)
− ~~τ · ~u + ~q

]
= ρ~f · ~u ,

where E is the total specific energy of the gas given by
E =e + ~u · ~u/2 and ~q is the heat flux vector representing the flux
of heat out of the gas.
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2.1 Conventional Fluid Dynamic Descriptions
Summarizing, we have

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 ,

∂

∂t
(ρ~u) + ~∇ ·

(
ρ~u~u + p

~~I − ~~τ
)

= ρ~f ,

∂

∂t
(ρE ) + ~∇ ·

[
ρ~u

(
E +

p

ρ

)
− ~~τ · ~u + ~q

]
= ρ~f · ~u .

The Navier-Stokes equations as given above are incomplete (not
closed). Additional information is required to relate various
thermodynamic variables and specify the fluid stress tensor, τij ,
and heat flux vector, qi . The following must be specified:

• thermodynamic relationships;

• constitutive relations; and

• expressions for transport coefficients.
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2.1 Conventional Fluid Dynamic Descriptions

2.1.5 Thermodynamic Relationships

It is often assumed that the gas satisfies the ideal gas equation of
state, which relates ρ, p, and T , and is given by

p = ρRT ,

and behaves as a calorically perfect gas with

e = cvT =
p

(γ − 1)ρ
and h = e +

p

ρ
= cpT =

γp

(γ − 1)ρ
,

where R is the gas constant, cv and cp are, respectively, the
specific heats at constant volume and pressure (both are
constants), and

γ =
cp
cv

=
5

3
,

for a monatomic gas.
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2.1 Conventional Fluid Dynamic Descriptions

2.1.6 Constitutive Relationships

The Navier-Stokes relation, relates the fluid stress tensor to strain
rate and is given by

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
(τii = 0, traceless) ,

where µ is the dynamic viscosity. Fourier’s Law relates the heat
flux to the temperature gradient as follows:

qi = −κ∂T
∂xi

or ~q = −κ~∇T ,

where κ is the coefficient of thermal conductivity.
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2.1 Conventional Fluid Dynamic Descriptions

2.1.7 Transport Coefficients

In general, the transport coefficients, µ and κ, are functions of
both pressure and temperature:

µ = µ(p,T ) and κ = κ(p,T ) ,

and empirical-based expressions are often used.

One of the primary constributions of kinetic theory to date has
been to provide expressions for the transport coefficients and
mixing rules for fluid dynamic descriptions of single and
multi-component gases.
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2.2 Flow Regimes for a Monatomic Gas

2.2.1 Knudsen Number
The Knudsen number, Kn, is a measure of a gas’ potential to
maintain conditions of thermodynamic equilibrium. It is defined as
the ratio of the mean free path (the average distance traveled by a
gas particle between collisions, λ) to an appropriate reference
length scale, `, characterizing the flow:

Kn =
λ

`
.
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2.2 Flow Regimes for a Monatomic Gas
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When the mean free path is small compared with the characteristic
length scale (i.e., for Kn� 1), the gas will undergo a large number
of collisions over the length scales of interest and assumptions of
near thermal equilibrium apply. In this case, the continuum
hypothesis applies and conventional fluid dynamic (macroscopic)
descriptions (i.e., the Navier-Stokes equations) are appropriate
(note that on average gas particles must undergo only about 3 to 4
binary collisions to equilibriate the translational energy modes).
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2.2 Flow Regimes for a Monatomic Gas
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When the mean free path is large compared to the characteristic
length scale (i.e., for Kn ≈ 1 and Kn > 1), thermal equilibrium
cannot be maintained and the continuum hypothesis fails.
Consequently, conventional fluid dynamic descriptions break down.
For such flows, a microscopic description of fluid behaviour is
required, such as that provided by gaskinetic theory. The latter is
valid for the full range of Knudsen numbers.
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2.2 Flow Regimes for a Monatomic Gas
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Four flow regimes may be identified:
I Continuum Regime

– Kn ≤ 0.01
– collision-dominated flow
– conventional fluid-dynamic equations (i.e., the Navier-Stokes

Equations) are valid
I Slip-Flow Regime

– 0.01 < Kn ≤ 0.1
– fluid dynamic equations can be augmented with slip boundary

conditions for the flow velocity and temperature
– Knudsen layer analyses are generally used to formulate

appropriate boundary conditions
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2.2 Flow Regimes for a Monatomic Gas
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I Transition Regime

– 0.1 < Kn ≤ 10–100
– collisions are less frequent but cannot be neglected
– very difficult regime to model

I Free-Molecular Flow Regime

– Kn > 10–100
– collisionless flow
– inter-particle collisions negligible, must only consider particle

interactions with flow field boundaries
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2.2 Flow Regimes for a Monatomic Gas

2.2.2 Flow Regimes in Terms of Mach and Reynolds Number

In general, the mean free path is related to the fluid viscosity, µ.
For hard sphere collisions, the mean free path is given by

λ =
16µ

5ρ

1√
2πRT

,

where ρ, T , and R are the density, temperature, and gas constant.
This expression can be used to evaluate the flow Knudsen number
given a characteristic length scale. `.
Some simple analysis can be used to relate the Knudsen number,
Kn, to the Reynolds number, Re = ρu`/µ, and Mach number,
Ma = u/a, where a =

√
γRT is the sound speed for the gas and γ

is the specific heat ratio.
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2.2 Flow Regimes for a Monatomic Gas

2.2.2 Flow Regimes in Terms of Mach and Reynolds Number

For low Reynolds number flows in the range 0 < Re < 100 such
that the inertial terms are small compared to viscous forces, can
write

Ma =
u

a
=

u

a

Reµ

ρu`
=

µ

ρa`
Re ≈ ρaλ

ρa`
Re = Kn Re ,

or as originally derived by von Karman

Kn =
Ma

Re
,

where, for this derivation, it has been assumed that µ ≈ ρaλ and
the characteristic length ` is chosen to be some typical body length.
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2.2 Flow Regimes for a Monatomic Gas

2.2.2 Flow Regimes in Terms of Mach and Reynolds Number

For intermediate Reynolds number flows in the range
100 < Re < 105, inertia effects become important and the flows
are typically laminar. Basing the Knudsen number on the thickness
of the laminar boundary layer, δl ≈ 10`/Re1/2 (valid for a
developing flat plate laminar boundary layer), then

Ma =
u

a
=

u

a

Re1/2

Re1/2
≈ u

a

10`

δl

1

Re1/2
= 10

µ

ρaδl

ρu`

µRe1/2

≈ 10
ρaλ

ρaδl
Re1/2 = 10Kn Re1/2 ,

or

Kn =
1

10

Ma

Re1/2
.
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2.2 Flow Regimes for a Monatomic Gas

2.2.2 Flow Regimes in Terms of Mach and Reynolds Number

Finally, for Re > 105, flows are typically turbulent. Basing the
Knudsen number on the thickness of the turbulent boundary layer,
δt ≈ `/3Re1/5 (valid for a developing flat plate turbulent boundary
layer), then

Ma =
u

a
=

u

a

Re1/5

Re1/5
≈ u

a

`

3δt

1

Re1/5
=

1

3

µ

ρaδt

ρu`

µRe1/5

≈ 1

3

ρaλ

ρaδt
Re4/5 =

1

3
Kn Re4/5 ,

or

Kn = 3
Ma

Re4/5
.
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2.2 Flow Regimes for a Monatomic Gas

2.2.2 Flow Regimes in Terms of Mach and Reynolds Number

Summarizing, the Knudsen number can be related to the Reynolds
and Mach numbers as follows:

Kn =



Ma

Re
0 < Re < 100 ,

1

10

Ma

Re1/2
100 < Re < 105 ,

3
Ma

Re4/5
Re > 105 .
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2.2 Flow Regimes for a Monatomic Gas
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2.3 Statistical-Based Microscopic Description

I A fundamental assumption of gas kinetic theory is the
molecular hypothesis which implies that: (i) a gas is a
collection of very many discrete particles or molecules; (ii) all
molecules of a given gas are structurally alike and have a
molecular mass, m; and (iii) the molecules have a point-like
structure, and, for a monatomic gas, have no internal degrees
of freedom.
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2.3 Statistical-Based Microscopic Description

I A statistical-based approach is then adopted for describing the state of
this collection of gaseous particles.

I In the case of a single-species monatomic gas, the many microscopic
states of the gas are represented in terms of a probability density function
(PDF), f , with independent variables associated with the position
coordinates, ~x , of the atoms in physical space at time, t, as well as the
random variable associated with the translational velocity of the atoms, ~v .

I This statistical descriptions requires that a relatively large ensemble of
particles within the infinitessimal volumes of six-dimensional phase space,
(~x , ~v).
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2.4 Density Functions
2.4.1 Univariate Probability Density Function (PDF)

In the univariate case, the probability density function (PDF),
f (x), for a single continuous random variable, x , is a function
whose value provides a measure of the probability for the
occurrence of x = x∗. In particular, the probability of the random
variable falling in the infinitessimal interval [x , x + dx ],
P(x ≤ x∗ ≤ x + dx), is given by

P(x ≤ x∗ ≤ x + dx) = f (x) dx ,

or

P(x∗ ∈ [a, b]) =

∫ b

a
f (x) dx .

The PDF, f (x), is non-negative everywhere and its integral over
the entire space for the random varible is equal to 1 (i.e., the total
probability must be equal to unity).
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2.4.1 Univariate Probability Density Function (PDF)

For the random variable defined on a finite domain, i.e.,
x ∈ [−1, 1], then ∫ 1

−1
f (x) dx = 1 .

In the case of a semi-infinite domain, i.e., the positive real line with
x ∈ [0,∞), then ∫ ∞

0
f (x) dx = 1 .

Finally, for a fully infinite domain, i.e., the real line with
x ∈ (−∞,∞), have ∫ ∞

−∞
f (x) dx = 1 .

For gaskinetic theory, the latter is of primary interest.
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2.4.1 Univariate Probability Density Function (PDF)

For all of the cases above, the expected or mean value of the
random variable, x̄ , can be evaluated by integrating x against f (x)
over the full range of x . In the case of the infinite domain, x̄ is
given by

x̄ =

∫ ∞
−∞

xf (x) dx =

∫
∞

xf (x) dx = 〈 xf (x) 〉 ,

where the operator 〈 φ(x) 〉 denotes integration of the function,
φ(x), over the real line.
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2.4.1 Univariate Probability Density Function (PDF)
A well-known univariate PDF is the normal distribution given by

f (x ;µ, σ) =
1√
2πσ

e−
1
2( x−µ

σ )
2

,

where µ and σ are the mean and standard deviation, respectively,
and for which the first two non-central moments are

x̄ =

∫
∞

xf (x) dx = 〈 xf (x) 〉 = µ ,

∫
∞

x2f (x) dx =
〈
x2f (x)

〉
= µ2 + σ2 ,

and the central moments are∫
∞

(x − µ) f (x) dx = 〈 (x − µ) f (x) 〉 = 0 ,

∫
∞

(x − µ)2 f (x) dx =
〈

(x − µ)2 f (x)
〉

= σ2 .
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2.4 Density Functions
2.4.2 Multivariate Probability Density Function (PDF)

In the multivariate case, the PDF or so-called joint probability
density function, f (x1, . . . , xn), can be defined in terms of n
continuous random variables, x1, . . . , xn, with

P(x1, . . . , xn ∈ D) =

∫
. . .

∫
D

f (x1, . . . , xn) dx1 . . . dxn

=

∫
. . .

∫
D

f (x1, . . . , xn) dnx ,

and, for xi ∈ (−∞,∞),∫ ∞
−∞

. . .

∫ ∞
−∞

f (x1, . . . , xn) dx1 . . . dxn =

∫
. . .

∫
∞

f (x1, . . . , xn) dnx

= 〈 f (x1, . . . , xn) 〉 = 1 .
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2.4.2 Multivariate Probability Density Function (PDF)

In the multivariate case, the marginal density function, fXi
(xi ) for

i = 1, 2, . . . , n, can also be defined as

fXi
(xi ) =

∫
. . .

∫
∞

f (x1, . . . , xn) dx1 . . . dxi−1 . . . dxi+1 . . . dxn ,

and the conditional probability density function,
f(X1,Xi−1,Xi+1,Xn)|Xi

({x1, xi−1, xi+1, xn}|xi ), for {x1, xi−1, xi+1, xn}
given xi then follow as

f{X1,Xi−1,Xi+1,Xn}|Xi
({x1, xi−1, xi+1, xn}|xi ) =

f (x1, . . . , xn)

fXi
(xi )

,

or

f (x1, . . . , xn) = f{X1,Xi−1,Xi+1,Xn}|Xi
({x1, xi−1, xi+1, xn}|xi )fXi

(xi ) .
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2.4.2 Multivariate Probability Density Function (PDF)

For two random variables, x , y , the joint PDF is

f = f (x , y) ,

and can write

fX (x) =

∫
∞

f (x , y) dy , fY (y) =

∫
∞

f (x , y) dx ,

with

fY |X (y |x) =
f (x , y)

fX (x)
, fX |Y (x |y) =

f (x , y)

fY (y)
,

and finally that

f (x , y) = fY |X (y |x)fX (x) = fX |Y (x |y)fY (y) .
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2.4.2 Multivariate Probability Density Function (PDF)
In the case that the n random variables are all independent of each
other (i.e., random variables are all independent variables, as is the
case in gaskinetic theory), the joint PDF, f (x1, . . . , xn), can be
written as a product of n factors, fi (xi ),

f (x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn) ,

where fi (xi ) are univariate functions. In this case, the marginal
distribution function is given by

fXi
(xi ) =

∫
. . .

∫
∞

f1(x1) . . . fn(xn) dx1 . . . dxi−1 . . . dxi+1 . . . dxn

= fi (xi )

∫
. . .

∫
∞

f1(x1) . . . fi−1(xi−1)fi+1(xi+1) . . . fn(xn) dx1 . . . dxi−1 . . . dxi+1 . . . dxn

=
fi (xi )∫

∞

fi (xi ) dxi

.
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2.4 Density Functions

2.4.3 Probability Density Function (PDF)

In gas kinetic theory, the PDF for a monatomic gas is taken to
have the form

f = f (~x , ~v , t) ,

where ~x is the position vector for the particles (molecules) in
physical space, ~v is the total velocity vector for the particles
(random variables defining velocity space), and t is the time. In
this description, f is the dependent variable and a key assumption
in the description offered by kinetic theory is that ~x , ~v , and t are
all fully independent variables. This assumption will be discussed
further in what follows later in the course.
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2.4.3 Probability Density Function (PDF)

The PDF can evolve with time within phase space (the space
represented by the union of the physical and velocity space) and
satisfies the condition for the total probability in the random
variable space:∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

f (~x , ~v , t) dv1dv2dv3 =

∫ ∫ ∫
∞

f (~x , ~v , t) d3v

= 〈 f (~x , ~v , t) 〉 = 1 .

The PDF is related to the probability of finding a gaseous particle
at location ~x and time t having velocity ~v .
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2.4 Density Functions

2.4.4 Number Density Function (NDF)

It is also convenient to define a number density function (NDF), F ,

F = F(~x , ~v , t) = n(~x , t)f (~x , ~v , t) ,

where n is the number of particles (molecules) per unit volume of
physical space such that

〈 F(~x , ~v , t) 〉 = 〈 n(~x , t)f (~x , ~v , t) 〉 = 〈 nf 〉 = n 〈 f 〉 = n .

The NDF is related to the number of gaseous particle that may be
found at location ~x and time t having velocity ~v .
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2.4.4 Number Density Function (NDF)

Accordingly, for a given volume in physical space, V, the total
number of gaseous particles within the volume, N, can be
evaluated as∫ ∫ ∫

V

∫ ∫ ∫
∞

F(~x , ~v , t) d3vdV =

∫ ∫ ∫
V

〈 F(~x , ~v , t) 〉 dV

=

∫ ∫ ∫
V

n dV

= N .

Having, defined the PDF and NDF for the gas, we are now in a
position to define various macroscopic properties of the gas which
may be of interest.
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2.5 Macroscopic Averages and Moments
Knowledge of the PDF (or NDF) provides a full and complete
descripition of the gas, including the full prescription of all
macroscopic quantities. In general, the conventional macroscopic
quantities that are of practical and/or engineering interest can be
evaluated as either appropriately selected expected values (or
averages), E , in terms of the PDF or so-called “moments”, M, of
the NDF.

2.5.1 Expected Values of PDF

An expected value, EQ(~x , t), of any quantity, Q, associated with
the gas particles can be evaluated as

EQ(~x , t) =

∫ ∫ ∫
∞

Q(~v)f (~x , ~v , t) d3v = 〈 Qf 〉 ,

where Q = Q(~v) is a velocity-dependent quantity which in general
is a polynomial (usually just a monomial) in ~v .
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2.5 Macroscopic Averages and Moments

2.5.2 Moments of NDF

In a similar fashion, the macroscopic quantities or moments,
M(~x , t), for weights, V , can be found using

M(~x , t) =

∫ ∫ ∫
∞

V (~v)F(~x , ~v , t) d3v = 〈 V (~v)F 〉 ,

where, in this case, V (~v) is a velocity-dependent weight which in
general is a polynomial (usually just a monomial) in ~v .
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2.5 Macroscopic Averages and Moments

Some examples of expected values include Q = 1:

E1 = 〈 f 〉 = 1 ,

which is the total probability; Q = ~v :

E~v = 〈 ~vf 〉 = ~u ,

where here, by definition, ~u is the mean or expected velocity of the
gaseous molecules; and, finally, Q = mv2/2:

Emv2/2 =
〈 m

2
v2f

〉
= Ep = ep +

m

2
u2 ,

where Ep is the total kinetic energy of the gaseous particles and ep
is the kinetic energy associated with the random motion of the
gaseous particles.
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2.5 Macroscopic Averages and Moments

2.5.3 Total Velocity Moments

The so-called total velocity moments of increasing order are as follows:

Zeroth-Order Velocity Moments (mass):

V = 1 : 〈 F 〉 = n ,

V = m : 〈mF 〉 = m 〈 F 〉 = mn = ρ ,

where ρ = mn is again the gas density.

First-Order Velocity Moments (momentum or mass flux):

~V = ~v : 〈 ~vF 〉 = n~u ,

Vi = vi : 〈 viF 〉 = nui ,

~V = m~v : 〈m~vF 〉 = m 〈 ~vF 〉 = ρ~u ,

Vi = mvi : 〈mviF 〉 = m 〈 viF 〉 = ρui .
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2.5.3 Total Velocity Moments

Second-Order Velocity Moments (energy or momentum flux):

~~V = ~v~v : 〈 ~v~vF 〉 = n~u~u +
1

m
~~P ,

Vij = vivj : 〈 vivjF 〉 = nuiuj +
Pij

m
,

~~V = m~v~v : 〈m~v~vF 〉 = m 〈 ~v~vF 〉 = ρ~u~u +
~~P ,

Vij = mvivj : 〈mvivjF 〉 = m 〈 vivjF 〉 = ρuiuj + Pij ,

where the pressure dyad,
~~P, or pressure tensor, Pij , is defined as

~~P = p
~~I − ~~τ , Pij = pδij − τij ,

and related to the the momentum flux of the particles produced by their
random translation energy and is defined in terms of the usual hydrodynamic
pressure, p, and fluid stresses, ~~τ or τij , such that

1

3
Pii =

1

3
(3p − τii ) =

1

3
3p = p ,

τii = 0 .
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2.5.3 Total Velocity Moments
Second-Order Velocity Moments (energy or momentum flux):

So-called contracted second-order velocity moments are useful as given by

V =
1

2
v 2 :

〈
1

2
v 2F

〉
=

1

2

〈
v 2F

〉
= nE =

1

2
nu2 + ne

=
1

2
nu2 +

3

2

p

m
=

1

2
nu2 +

3

2

nkT

m
,

V =
m

2
v 2 :

〈 m

2
v 2F

〉
=

m

2

〈
v 2F

〉
= ρE =

1

2
ρu2 + ρe

=
1

2
ρu2 +

3

2
p =

1

2
ρu2 +

3

2
nkT ,

where E is the total specific energy of the gas and the specific internal energy,
e, which, for a monatomic gas, only includes the energy associated with
random translation motion of the particles can be written as

e =
3

2

p

ρ
=

3

2
RT =

3

2

k

m
T =

1

γ − 1
RT = cvT ,

where the ideal gas equation of state, p = ρRT = nkT , is again taken to apply,
k is the Boltzmann constant, and γ = 5/3 for a monatomic gas.
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2.5.3 Total Velocity Moments

Third-Order Velocity Moments (energy flux and heat flux):

~~~V = m~v~v~v : m 〈 ~v~v~vF 〉 = ρ~u~u~u + 3~u
~~P +

~~~Q ,

Vijk = mvivjvk : m 〈 vivjvkF 〉 = ρuiujuk + uiPjk + ujPik + ukPij + Qijk ,

~V =
m

2
~vv 2 :

m

2

〈
viv

2F
〉

= ρ~u

(
1

2
u2 +

5

2

p

ρ

)
− ~~τ · ~u + ~q ,

Vi =
m

2
viv

2 :
m

2

〈
viv

2F
〉

= ρui

(
1

2
u2 +

5

2

p

ρ

)
− τijuj + qi ,

where here
~~~Q = Qijk is the so-called third-order heat flux tensor and ~q = qi is

the usual heat flux vector appearing in the equations of fluid dynamics. The
latter are related to the flux of energy by the random motion of the gaseous
particles.
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2.5 Macroscopic Averages and Moments

2.5.4 Random Velocity Moments

So-called random velocity moments can also be defined and are in
fact the central moments of the density functions for the gas.
Letting the random velocity of the gas, ~c or ci , to be defined as

~c = ~v − ~u , or ci = vi − ui ,

the general form of the random velocity moments, M◦(~x , t), for
weights, V , is given by

M◦(~x , t) =

∫ ∫ ∫
∞

V (~c)F(~x , ~c , t) d3c = 〈 V (~c)F(~x , ~c , t) 〉 ,

where, in this case, the velocity-dependent weight, V (~c), is in
general a polynomial (usually just a monomial) in ~c .
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2.5.4 Random Velocity Moments

The random velocity moment of increasing order are then as
follows:

Zeroth-Order Velocity Moments (mass):

V = 1 : 〈 F 〉 = n ,

V = m : 〈mF 〉 = m 〈 F 〉 = mn = ρ .

First-Order Velocity Moments (momentum or mass flux):

~V = m~c : m 〈 ~cF 〉 = 0 ,

Vi = mci : m 〈 ciF 〉 = 0 ,

where the first-order central moments are by definition zero.
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2.5.4 Random Velocity Moments

Second-Order Velocity Moments (energy or momentum flux):

~~V = m~c~c : m 〈 ~c~cF 〉 =
~~P = p

~~I − ~~τ ,
Vij = mcicj : m 〈 cicjF 〉 = Pij = pδij − τij ,

V =
m

2
c2 :

m

2

〈
c2F

〉
= ρe =

3

2
p =

3

2
nkT .

Third-Order Velocity Moments (energy flux and heat flux):

~~~V = m~c~c~c : m 〈 ~c~c~cF 〉 =
~~~Q ,

Vijk = mcicjck : m 〈 cicjckF 〉 = Qijk ,

~V =
m

2
~cc2 :

m

2

〈
~cc2F

〉
= ~q ,

Vi =
m

2
cic

2 :
m

2

〈
cic

2F
〉

= qi .
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2.5.4 Random Velocity Moments

Fourth-Order Velocity Moments:

~~~~V = m~c~c~c~c : m 〈 ~c~c~c~cF 〉 =
~~~~R ,

Vijkl = mcicjckcl : m 〈 cicjckclF 〉 = Rijkl ,

~~V = m~c~cc2 : m
〈
~c~cc2F

〉
= ~~r ,

Vijkk = mcicjc
2 : m

〈
cicjc

2F
〉

= Rijkk = rij ,

Vijkk = mc4 : m
〈
c4F

〉
= Riijj = rii = r ,

and, while possibly not as physically relatable as the other
lower-order moments, can be thought of as being related to the
flux of the heat flux.
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2.6 Maxwell-Boltzmann Distribution

In the important case of a gas in thermal equilibrium, the NDF is
well established and are referred to as the Maxwell-Boltzmann
distribution. James Clerk Maxwell originally derived this form for
the NDF in 1859. In 1877, Ludwig Boltzmann later published a
more rigorous derivation of the same distribution function. Hence,
this equilibrium solution bears both of their names.

The equilibirum solution represented by the Maxwell-Boltzmann
solution corresponds to situations in which there are a sufficiently
high number of inter-particle collisions to ensure that the random
(thermal) energy is equilibrated such that the thermal state of the
gas can be described by a single temperature. While inter-particle
collisions continue to occur, the equilibrium the distribution is
independent of time.
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2.6 Maxwell-Boltzmann Distribution

2.6.1 Maxwell-Boltzmann PDF and NDF
The forms of the Maxwell-Boltzmann PDF and NDF, f and M,
respectively, in terms of the random particle velocity, ~c , are

f (~c) =
1

(2πp/ρ)3/2
exp

(
−1

2

ρc2

p

)
=

1

(2πθ)3/2
exp

(
−1

2

c2

θ

)
,

M(~c) =
ρ

m (2πp/ρ)3/2
exp

(
−1

2

ρc2

p

)
=

ρ

m (2πθ)3/2
exp

(
−1

2

c2

θ

)
,

whereM = nf and where m is again the particle mass, ρ is the gas
density, p is the pressure, and θ = p/ρ has also been introduced.
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2.6.1 Maxwell-Boltzmann PDF and NDF

In terms of the total particle velocity, ~v , the forms of the
Maxwell-Boltzmann PDF and NDF, f and M, respectively, are

f (~v) =
1

(2πθ)3/2
exp

(
−1

2

|~v − ~u|2

θ

)
,

M(~v) =
ρ

m (2πθ)3/2
exp

(
−1

2

|~v − ~u|2

θ

)
,

where again θ = p/ρ.
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2.6.1 Maxwell-Boltzmann PDF and NDF

It is quite evident that the density functions correspond to normal distributions
in each of the coordinate directions of the particle velocity, with a mean in each
coordinate direction of µi = ui , and a standard deviation σ =

√
θ =

√
p/ρ.

Additionally, the Maxwell-Boltzmann density functions are isotropic with
respect to the mean velocity, with no preferred direction, and therefore also
independent of the orientation of the coordinate system for the random
velocities. It also follows that the values of f (~c) are constant on all
c2 = constant surfaces in velocity space.
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2.6 Maxwell-Boltzmann Distribution

2.6.2 Distribution of Molecular Speeds

It can be shown that the well-known distribution of molecular
speeds, f ∗(c = |~c |), corresponding to the equilibrium
Maxwell-Boltzmann PDF is as follows:

f ∗(c = |~c |) = 4πc2
( m

2πkT

)3/2
exp

(
−1

2

m

kT
c2
)
,

where c = |~c| is now the speed of the gaseous particles.
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2.6 Maxwell-Boltzmann Distribution

It can also be shown that the most probable, mean, and root mean square
(RMS) particle speeds, cmax, c̄, and crms, respectively, are as follows:

cmax =

√
2kT

m
,

c̄ =

∫ ∞
0

cf ∗(c)dc =

√
8kT

πm
,

crms =

[∫ ∞
0

c2f ∗(c)dc

]1/2
=

√
3kT

m
.
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2.6 Maxwell-Boltzmann Distribution

2.6.3 Random Velocity Moments

The random velocity moments of the Maxwell-Boltzmann NDF, M, are as
follows:

Zeroth-order velocity moment:

m 〈M 〉 = ρ ,

First-order velocity moments

m 〈 ciM〉 = 0 ,

Second-order velocity moments:

m 〈 cicjM〉 = δijp ,

m
〈
c2M

〉
= 3p ,
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2.6 Maxwell-Boltzmann Distribution

Third-order velocity moments:

m 〈 cicjckM〉 = 0 ,

Fourth-order velocity moments:

m 〈 cicjckclM〉 =
p2

ρ
[δijδkl + δikδjl + δilδjk ] =

p2

ρ
{δijδkl}(3)[ijkl ] ,

m
〈
cicjc

2M
〉

= 5
p2

ρ
δij ,

m
〈
c4M

〉
= 15

p2

ρ
,

Fifth-order velocity moments:

m 〈 cicjckclcmM〉 = 0 ,
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2.6 Maxwell-Boltzmann Distribution
Sixth-order velocity moments:

m 〈 cicjckclcmcnM〉 =
p3

ρ2
{δijδklδmn}(15)[ijklmn] ,

m
〈
cicjckclc

2M
〉

= 7
p3

ρ2
[δijδkl + δikδjl + δilδjk ] = 7

p3

ρ2
{δijδkl}(3)[ijkl ] ,

m
〈
cicjc

4M
〉

= 35
p3

ρ2
δij ,

m
〈
c6M

〉
= 105

p3

ρ2
.

Seventh-order velocity moments:

m 〈 cicjckclcmcncoM〉 = 0 ,

Eighth-order velocity moments:

m 〈 cicjckclcmcncocpM〉 =
p4

ρ3
{δijδklδmnδop}(105)[ijklmnop] ,
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2.6 Maxwell-Boltzmann Distribution

Ninth-order velocity moments:

m 〈 cicjckclcmcncocpcqM〉 = 0 ,

where the notation {}(N)
[ijk...] represents a symmetric tensor obtained by taking

the sum of all independent permutations of the indices. The superscript N
denotes the total number of terms in the summation.

Note that due to the symmetry of the Maxwell-Boltzmann distribution, all
odd-order random velocity moments vanish and

Pij = pδij , and τij = 0 ,

Qijk = 0 , and qi = 0 ,

i.e., the fluid stress tensor, third-order heat flux tensor, and heat flux vector all

vanish.
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2.6 Maxwell-Boltzmann Distribution

2.6.4 Equipartition of Translational Energy

Note that, due to the symmetry of the equilibrium Maxwell-Boltzmann
distribution, the kinetic energies associated with the translation motion in each
of the coordinate directions are all equal:

m

2

〈
c2xM

〉
=

m

2

〈
c2yM

〉
=

m

2

〈
c2zM

〉
=

1

2
p =

1

2
nkT ,

and
m

2

〈 (
c2x + c2y + c2z

)
M
〉

=
m

2

〈
c2M

〉
=

3

2
p =

3

2
nkT .

This result is in agreement with the equipartition of energy theorem from
classical statistical mechanics which states that for a system in equilibrium,
energy of the system can be defined by a single temperature and there is kT/2
of energy for each possible degree of freedom in the system.
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2.7 Boltzmann Equation

2.7.1 Key Assumptions

The Boltzmann equations provides a description of the time
evolution of the NDF in the case of general non-equilibrium flows.
The following are key assumptions of gaskinetic theory:

I the mean free path is large compared to the effective range of
the intermolecular forces governing collisional processes;

I most of the time the particles move freely through space
acted on only by external forces;

I only binary collisions are considered (probability more than
two particles colliding is considered to be very low) and the
collisional processes are treated as point-like interactions; and

I the principle of molecular chaos is applied implying that the
colliding particles are uncorrelated (i.e., particles which have
already collided with each other will have many encounters
with other molecules before they meet again).
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2.7 Boltzmann Equation

As derived by Boltzmann (1872), the Boltzmann equation is an
integro-differential equation of high-dimensionality that governs
the time evolution of a single dependent variable, the NDF
F = F(~x , ~v , t) in terms of 7 independent variables (~x , ~v , t). The
Boltzmann can be expressed as

∂F
∂t

+ ~v · ~∇xF + ~a · ~∇vF =
δF
δt

where here δF/δt represents the Boltzmann collision integral,
which governs the impact of particle collisions on the NDF.
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2.7 Boltzmann Equation

A change of coordinate frames can be introduced to re-express the
the Boltzmann equation for the NDF in terms of the random
component of the particle velocity, ~c . Letting ~c = ~v − ~u(x , t), the
Boltzmann equation describing the time evolution of
F = F(~x , ~c , t) can be written as

∂F
∂t

+ (ui + ci )
∂F
∂xi
−
[
∂ui
∂t

+ (uj + cj)
∂ui
∂xj
− ai

]
∂F
∂ci

=
δF
δt
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2.8 Boltzmann Collision Integral

The Boltzmann collision operator involves a 5-dimensional integral
and can be written as

δF
δt

=

∫ ∫ ∫
∞

d3v2

∫ 2π

0
dε

∫ π

0
dχ sinχS(g , χ)g

[
F ′F ′2 −FF2

]
,

where g = |~v2 − ~v |, S is the differential collision cross section
(which is dependent on the interparticle potential for the binary
collisions), and ε and χ are the azimuthal and deflection angles for
the particle collision processes.
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2.8 Boltzmann Collision Integral

2.8.1 BGK (Relaxation-Time) Approximation

In general, the emphasis here will not be on the collision operator
and it can be convenient to adopt a so-called relaxation time or
BGK model for the collision operator which can be written as

δF
δt

= −F −M
τ

,

where τ is the characteristic time for the particle collsions and M
is defined to a Maxwell-Boltzmann NDF sharing the collisional
invariant moments with F associated with conservation of mass,
momentum, and energy.

62



Moment Closures & Kinetic Equations 2. Kinetic Theory of Gases C. P. T. Groth c©2020

2.9 Maxwell’s Equation of Change
For a given macroscopic moment of interest, M, given by

M(~x , t) = 〈 V (~v)F 〉 ,

Maxwell’s equation of change (Maxwell, 1867) can be formulated
by taking the appropriate moment of the Boltzmann equation to
arrive at

∂

∂t
(M) + ~∇ · 〈 ~vV (~v)F 〉 =

〈
V (~v)

δF
δt

〉
,

where here it has been assumed that ~a = 0. The preceding is a
transport equation for the given moment of interest. It’s solution
however requires information about the moment flux given by

〈 ~vV (~v)F 〉 .

This gives rise to the closure problem in moment methods.
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2.10 Boltzmann’s H-Theorem

It also follows from the Boltzmann H theorem of Boltzmann
(1872) that

−k
〈

lnF δF
δt

〉
≥ 0 ,

is positive semi-definite (k here is again the Boltzmann constant).
Thus, defining the physical entropy as

s(F) = −k

ρ
〈 F lnF 〉 ,

it is straightforward to show that this quantity satisfies the balance
law

∂

∂t
(ρs)− k

∂

∂xi
〈viF lnF〉 = −k

〈
lnF δF

δt

〉
≥ 0 ,

showing that the physical entropy is a monotonically increasing
function of time.
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2.11 Polyatomic and Multi-Component Gases and Plasmas

I Polyatomic Gases:
Treatments are possible for molecules with internal degrees of
freedom (i.e., kinetic energy of rotation and vibration and
potential energy of vibration).

I Multi-Component Gases:
Separate density functions for each gaseous species s: fs , Fs .

I Plasmas:
Kinetic theory is also applicable to charged ions and electrons;
however, care is required for the treatment of Coulomb
interactions between charged particles.

These are all beyond the scope of this course.
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