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2 Lyapunov Stability

Whereas I/O stability is concerned with the effect of inputs on outputs, Lya-
punov stability deals with unforced systems:

ẋ = f(x, t) (1)

where x ∈ Rn, t ∈ R+, and f : Rn × R+ → Rn. The system in (1) is
autonomous (time invariant) if f = f(x). Otherwise, it is nonautonomous
(time varying).

If f(x0, t) = 0, then x0 is an equilibrium. Then, the unique solution of Eq.
(1) with x(0) = x0 is x(t) = x0.

Definition. The equilibrium x0 is stable (or L-stable or stable in the sense
of Lyapunov) if for ε > 0 there exists δ > 0 such that

||x(0)− x0|| < δ ⇒ ||x(t)− x0|| < ε
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The equilibrium x0 is unstable if it is not stable.

The equilibrium x0 is asymptotically stable if it is stable and there exists
δ > 0 such that

||x(0)− x0|| < δ ⇒ x(t) → x0 as t →∞

The equilibrium x0 is globally asymptotically stable if it is stable and

x(t) → x0 as t →∞
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Consider the linear time-invariant system

ẋ = Ax, A ∈ Rn×n (2)

The eigenvalues of A are λi, i = 1, · · · , n. The solution of (2) is

x(t) = exp(At)x(0) (3)

where

exp(At) =
∞∑

k=0

1

k!
(At)k = 1 + At + 1

2A
2t2 + · · ·

which converges for t ∈ [0,∞]. If A has distinct eigenvalues λi, and eigen-
vectors ei, then we have the following eigendecomposition:

A = EΛE−1

E = row{ei}
Λ = diag{λi}

In this case, it is not hard to show that

Ak = EΛkE−1

Λk = diag{λk
i }

exp(At) = E exp(Λt)E−1

exp(Λt) = diag{exp(λit)}

We have the following stability results for the system in Eq. (2) and its
equilibrium x0 = 0.

(a) The system is stable if Re{λi} ≤ 0, i = 1 · · ·n, and there are no repeated
eigenvalues on the imaginary axis.

(b) The system is unstable if there is at least one λi with Re{λi} > 0.

(c) The linear system is (globally) asymptotically stable if Re{λi} < 0, i =
1 · · ·n.

2.1 Lyapunov’s Linearization (or First) Method

Consider the system ẋ = f(x) with f(x0) = 0. Let x(t) = x0 + δx(t). Then,

ẋ = δẋ = f(x0 + δx)

= f(x0) +
∂f

∂xT

∣∣∣∣∣
x=x0

δx +O(||δx||2)
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Neglecting higher order terms, we have the linearization

δẋ = Aδx, A =
∂f

∂xT

∣∣∣∣∣
x=x0

(4)

If the equilibrium δx = 0 of (4) is:

(a) aysmptotically stable then x0 is an asymptotically stable equilibrium of
the nonlinear system;

(b) unstable then x0 is an unstable equilibrium of the nonlinear system;

(c) stable then no conclusion can be drawn about the nonlinear system.

2.2 Lyapunov’s Direct or Second Method

Consider the system in Eq. (1) with x = x0 an equilibrium. We assume that
x0 = 0 which can be accomplished with a change of coordinates.

A function V (x, t) is C1 if it is continuously differentiable. It is a locally
positive-definite function [lpdf] if V (0, t) ≡ 0 and there exists r > 0 such
that V (x, t) > 0, ∀x 6= 0 s.t. ||x|| < r. It is a positive-definite function [pdf]
if V (0, t) ≡ 0 and V (x, t) > 0, ∀x ∈ Rn, x 6= 0.

It is radially unbounded if

V (x, t) →∞ as ||x|| → ∞

It is locally negative definite if −V is a lpdf.

It is negative definite if −V is a pdf.

Let Br = {x ∈ Rn| ||x|| < r}.
Examples

V (x) = 1− cos x is a lpdf but it is not radially unbounded.

V (x) = x2 is a pdf and it is radially unbounded.

V (x) = xTPx is a pdf and radially unbounded if P is a symmetric positive-
definite matrix.

Theorem 1. The equilibrium x0 = 0 of (1) is stable if there exists a C1 lpdf
V (x, t) and r > 0 such that

V̇ (x, t) ≤ 0, ∀t ≥ 0, ∀x ∈ Br
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where V̇ is evaluated along the trajectories of (1), i.e.,

V̇ =
∂V

∂t
+

∂V

∂xT
f(x, t)

V is called a Lyapunov function.

Example. Consider the equation of the simple pendulum

θ̈ + sin θ = 0

Let x1 = θ, x2 = θ̇ so that

ẋ1 = x2

ẋ2 = − sin x1

If we adopt V (x1, x2) = (1− cos x1) + 1
2x

2
2 as a Lyapunov function we have

V̇ = ẋ1 sin x1 + x2ẋ2

= x2 sin x1 − x2 sin x1

= 0

Hence x = 0 is stable.

Example. Consider Euler’s equation Iω̇ + ω×Iω = 0 where I = IT > 0.
Letting V = 1

2ω
T Iω, we have

V̇ = ωT Iω̇

= −ωTω×Iω

= 0

Hence, ω = 0 is a stable equilibrium.

Theorem 2. The equilibrium x0 = 0 of Eq. (1) is asymptotically stable if
there exists a C1 lpdf V such that −V̇ is a lpdf.

Theorem 3. The equilibrium x0 = 0 of Eq. (1) is globally asymptotically
stable if there exists a C1 pdf V such that V is radially unbounded and −V̇

is a pdf.

Note: Theorems 1-3 give sufficient conditions for stability.

Example. Consider the system

ẋ = −ax, a > 0
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Letting V = 1
2x

2 > 0, x 6= 0, we have V̇ = xẋ = −ax2 < 0, x 6= 0. Therefore
x = 0 is a globally asymtotically stable equilibrium.

Example. Consider the system

Mq̈ + Kq = u(t), u = −Dq̇

M = MT > O,K = KT > O,D = DT > O

Letting x1 = q, x2 = q̇, we have

ẋ1 = x2

ẋ2 = −M−1Kx1 −M−1Dx2

Let

V = 1
2q̇

TMq̇ + 1
2q

TKq = 1
2 [x

T
1 xT

2 ]

 K O
O M

  x1

x2

 > 0 (x 6= 0)

which is a radially unbounded pdf. Then,

V̇ = q̇T (Mq̈ + Kq) = −q̇TDq̇ = −[xT
1 xT

2 ]

 O O
O D

  x1

x2

 ≤ 0

Hence, x = 0 is a stable equilibrium. It is in fact globally asymptotically
stable. How do we show this when V̇ does not contain q?

2.3 Krasovskii-LaSalle Theorem

Consider the autonomous system

ẋ = f(x), f(0) = 0 (5)

Suppose there exists a C1 pdf V (x) that is radially unbounded and

V̇ ≤ 0, ∀t ≥ 0,∀x ∈ Rn

Define the invariant set according to

M = {x ∈ Rn| V̇ (x) = 0}

If M contains only x = 0, then x = 0 is globally asymptotically stable.
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In the previous example,

V̇ = −q̇TDq̇ = 0 ⇒ q̇ = 0

If q̇ ≡ 0, then q̈ = 0 and

Mq̈ + Dq̇ + Kq = 0 ⇒ Kq = 0

and hence q = 0. Therefore the invariant set is given by M = {0} and x = 0
is globally asymptotically stable.

Theorem 4. The equilibrium x = 0 is unstable if there exists a C1 lpdf
function V such that V̇ is an lpdf.

Example. Consider the system

ẋ = ax, a > 0

Letting V = 1
2x

2 > 0, x 6= 0, we have V̇ = xẋ = ax2 > 0, x 6= 0. Therefore
x = 0 is an unstable equilibrium.

2.4 Stability of Linear Systems

Consider the linear time-invariant system

ẋ = Ax (6)

Let us select
V = xTPx, P = PT > O (7)

as a Lyapunov function candidate. Hence

V̇ = ẋTPx + xTPẋ

= xT (ATP + PA)x

If,
PA + ATP = −Q, Q = QT > O (8)

then
V̇ = −xTQx < 0 (x 6= 0)

Hence, if given Q = QT > O, the Lyapunov equation (8) has a symmetric
positive-definite solution P, then the eigenvalues of A have negative real
parts, i.e, the system (6) is asymptotically stable.


