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I. Introduction

A SONEof themost important parts of a spacecraft completing its
mission on orbit, attitude control has attracted a great deal of

interest. In practice, considering the safety and reliability of the
spacecraft, attitude control under a certain degree of redundancy
has become a hot topic. Because redundant actuators are used in
modern spacecraft, better control performance and more safety than
that with three control actuators can be achieved [1].
In recent years, control allocation (CA) technology has been

applied to manage the actuator redundancy of overactuated systems
to distribute the desired high-level virtual/total control action to the
available low-level actuators. In addition, the high-level controller
and low-level CA can usually be designed separately [2–4]. The
essence of the CA problem can be solved as an optimization problem.
In [5], the slidingmode controller and static CAwere constructed as a
min-max optimization problem under actuator failure. In traditional
static CA, the optimization is solved within any two consecutive
sampling instances such that the first-order optimality set is always
satisfied. However, this may not be achievable due to the limited
capability of the onboard computer.
To avoid solving the optimization problem in each sampling

period, an adaptive CA (ACA) was proposed in [6], which is a
dynamic CA approach that constructs parameter adaptive laws to
obtain asymptotic convergence to the first-order optimality set. Based
on ACA, a control algorithm was designed in [7] for the motion
tracking of a four-wheel ground vehicle and realizing optimal energy
consumption. In [8], a near-optimal ACA scheme attitude controller
was designed for overactuated spacecraft, where single-gimbal con-
trol moment gyros and reaction wheels are employed as actuators.
However, the output saturation of the actuators was not considered in

the CA problem, which may lead to control failure. Recently, a
finite-time ACA (FT-ACA) was proposed in [9] to guarantee finite-
time CA error convergence with actuator saturation. Compared
with theACA algorithm in [7,8], it improves the convergence speed
of the allocation error. However, the settling time of the CA error
relies explicitly on the initial condition of the system, leading to
the limited application scope of the aforementioned results in FT-
ACA, especially when information of initial states is unknown or
unavailable. In addition, these aforementioned adaptive CA meth-
ods only focus on the steady-state performance of ACA, while the
transient performance is ignored. To the best of our knowledge,
designing an ACA approach with fixed-time allocation error con-
vergence and prescribed transient performance guarantee is still an
open problem.
In this paper, we consider the rest-to-rest attitude control problem

for the overactuated spacecraft subject to actuator saturation limita-
tions. To tackle this challenging problem, a two-level control struc-
ture consisting of a high-level controller and a low-level prescribed
performance-based fixed-timeACA is proposed. First, different from
the static CA problem in [6–8], which takes the CA error as the con-
straint, we configure the CA error in the objective function to avoid
the problem that the CA cannot match when the control torque is
excessive due to considering the actuator saturation constraint.
Second, in contrast to the existing ACA approaches with asymptotic
[6–8] or finite-time [9,10] CA error convergence, we formulate an
appointed-time prescribed performance-based fixed-time adaptive
control allocation (ATPP-FixTACA) that not only achieves fixed-
time convergence of the ACA error but also guarantees appointed-
time predefined ACA transient performance, resulting in improved
convergence rate and better dynamic performance. Finally, we dem-
onstrate the efficiency of the proposed CA approach through numeri-
cal simulation on a rigid spacecraft performing a rest-to-rest attitude
maneuver.
The remainder of this paper is organized as follows. The dynamics

and kinematics of overactuated spacecraft and CA problem are
modeled in Sec. II. The problem to be solved in this paper is stated
in Sec. III. The ATPP-FixTACA method considering actuator satu-
ration constraint is designed to distribute the virtual torque to each
actuator in Sec. IV. Simulation results under the high-level attitude
controller and low-level CA methods are demonstrated in Sec. VI.
Finally, conclusions are provided in Sec. VII.

II. Preliminaries

A. Kinematics and Dynamics Equations

Let Q � �qT; q0�T ∈ R3 × R denote the unit-quaternion with
respect to the inertial frame I expressed in the body frame B. Define
Qd � �qTd ; qd0�T ∈ R3 × R as the desired attitude with inverse or

conjugate denoted as Q�
d. As a result, the unit-quaternion error is

computed asQe � Q�
d ⊗ Q � �qTe ; qe0�T ∈ R3 × R, where⊗ is the

quaternionmultiplication operator. In this paper, becausewe focus on
rest-to-rest attitude maneuvers, the equation governing the attitude
error kinematics is given by [11]

_Qe �
1

2
Qe ⊗ ν�ω� � 1

2

"
S�qe� � qe0I3

−qTe

#
ω (1)

whereω ∈ R3 is the angular velocity vector of the spacecraft, which
is respect to the inertial frame I and expressed in the body frame

B; the function ν: R3 → R4 is defined as ν�ω� � �ωT; 0�T ; and the
operation
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S�x� �

2
64

0 −x3 x2

x3 0 −x1
−x2 x1 0

3
75 ∈ R3×3 (2)

is to generate a skew-symmetric matrix for any vector x ∈ R3.
The attitude dynamics of the nonrigid spacecraft [5,12] is defined

by the following rotational motion equation:

J _ω � −S�ω�Jω�Dτ (3)

where J ∈ R3×3 denotes the inertia matrix of the spacecraft, D ∈
R3×N is the installation matrix, N > 3 represents the number of

actuators configured for the overactuated spacecraft, and τ ∈ RN is
the output torque of the actuators.

B. Control Allocation Problem

Due to the physical limitations of spacecraft actuators, the
output saturation of actuators is considered in the CA problem.
Without losing generality, it is assumed that each actuator has
the different output saturation value, i.e., τi;min ≤ τi ≤ τi;max,
i � 1; 2; : : : ; N, where τi;min and τi;max represent the positive con-

stants of the upper and lower limits of output saturation of each
actuator, respectively. Then, considering that the spacecraft is
equipped withN > 3 actuators, the static CA problem in this work
is expressed as

min
τ

Je � 1
2
�Dτ − u�TH�Dτ − u� � 1

2
τTMτ

s:t: τi;min ≤ τi ≤ τi;max; i � 1; 2; : : : ; N
(4)

where u ∈ R3 is the virtual command torque from the high-level

controller. MatricesH ∈ R3×3 andM ∈ R3×3 are positive-definite
weighting matrices.
The first term of Je is related to the CA error Dτ − u, and the

second term relates to reducing energy consumption. Different from
the static CA problem in [7,8], the CA errorDτ − u is involved in the
objective function, becausewemay not find appropriate values of τ at
any time to ensureDτ − u � 0 if the output saturation of the actuator
is considered. In view of this, the proposed static CA problem in
Eq. (4) minimizes the CA errorDτ − u instead of forcing CA error to
be zero (e.g., Dτ − u � 0).

C. Necessary Lemmas and Definitions

The following lemmas and definitions will be used in deriving the
main conclusions of this work.
Lemma 1 ([13] Lemma 1): Suppose that V�x�∶Rn → R� ∪ f0g is

a continuous positive definite and radially unbounded function such
that

D�V�x�t�� ≤ −�αVp�x�t�� � βVq�x�t���k (5)

whereD�V�x�t�� denotes the upper right-hand derivative ofV�x�t��,
and α, β, p, q, and k are positive constants satisfying pk < 1 and
qk > 1. Then, the origin of the nonlinear autonomous system _x�t� �
f�x�t�� with x�0� � x0 is fixed-time stable and the settling time can
be estimated as

T ≤ Tmax �
1

αk�1 − pk� �
1

βk�qk − 1� (6)

Definition 1 ([14] Definition 1): The appointed-time prescribed
performance function (ATPPF) is any continuous performance func-
tion ρ�t� satisfying the following properties:
1) ρ�t� > 0,
2) _ρ�t� ≤ 0,
3) limt→Tf

ρ�t� � ρTf
> 0 and for any t ≥ Tf, ρ�t� � ρTf

, where
Tf is the prescribed appointed time and ρTf

is the small steady-state

constant error upper bound.

III. Problem Statement

The objective of this paper is to design an attitude control scheme
for overactuated spacecraft to achieve fast and high-precision attitude
tracking despite the actuator output saturation. As shown in Fig. 1,
there are two parts of the proposed attitude control scheme for over-
actuated spacecraft: 1) the high-level controller that accounts for
attitude stabilization; 2) the low-level prescribed performance ACA
for realizing the commanded control torque from high-level control-
ler. In the design process, the high-level and low-level structures can
be designed independently [1].
The high-level controller for the spacecraft attitude redirection can

be designed by various nonlinear control methods, such as sliding
mode control [15], adaptive control [16], backstepping control [17],
fuzzy adaptive control [18], hybrid control [19], inverse optimal
control [20], and nonlinear model predictive control [21]. Because
this paper mainly focuses on low-level CA, a simple saturated PD
controller is used as high-level controller to achieve asymptotic
spacecraft attitude stabilization and provide the virtual command
torque u. In light of the kinematics function (1) and the attitude
dynamics (3) of rigid spacecraft, a high-level attitude controller can
be designed as

u � −kpqe − kdTanh

�
ω

r2

�
(7)

where kp and kd are positive constants, Tanh�ω∕r2� �
�tanh�ω1∕r2�; tanh�ω2∕r2�; tanh�ω3∕r2��T , and r2 is a nonzero scalar
sharpness function satisfying 0 < r2min ≤ r2 ∈ l∞ and _r ∈ l∞. Then,
the zero-disturbance closed-loop system is asymptotically stable,
i.e., limt→∞ ω�t� � 0 and limt→∞ qe�t� � 0. The stability can be
guaranteed by following the same analysis in ([22] Lemma 1) with

a Lyapunov-like function given as VC � kp�qTe qe � �1 − qe0�2��
�1∕2�ωTJω.
Remark 1: Since, kqek ∈ �0; 1� and Tanh�ω∕r2� ∈ �0; 1�,

kuk �
���� − kpqe − kdTanh

�
ω

r2

����� ≤ kpkqek � kd

����Tanh
�
ω

r2

�����
≤ kp � kd (8)

can be obtained. Therefore, the commanded torque range of the high-
level controller can be controlled by adjusting the values of the
proportional coefficient kp and the differential coefficient kd. How-
ever, too large kp and kd values can make the command torque of the

high-level controller too large, which may lead to the failure of the
CA algorithm. Therefore, it is necessary to select the values of kp and
kd reasonably.
Then, based on the high-level controller (7), the following problem

is solved:
Problem 1 (low-level ATPP-FixTACA): Under the output limita-

tion of actuators, design an appointed-time prescribed performance-

Controller
Control allocation:
ATPP-FixTACA

Actuators with 
output saturation

Spacecraft attitude 
kinematics and 

dynamics

Low-LevelHigh-Level

su

Q,v

dQ ,veQ

Fig. 1 Structure diagram of the overall attitude control system.
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based fixed-time adaptive control allocation (ATPP-FixTACA) to
dynamically assign the virtual command torque provided by the
high-level controller to each actuator.

IV. Prescribed Performance Adaptive Control
Allocation

In this section, an ATPP-FixTACA approach is proposed, which
can distribute the desired/virtual control torque to each actuator
dynamically. Firstly, the constrained ACA problem is transformed
into the barrier-function-based unconstrained ACA problem. Then
the appointed-time prescribed performance (ATPP) function is estab-
lished for the ACA problem to predefine the transient and steady-
state ACA performance. Finally, we show that the proposed ACA
approach can guarantee the fixed-time convergence of theACAerror.

A. Transformed CA Problem

To transform the constrained optimization CA (4) into an uncon-
strained one, the barrier function is used in [23 (Chap. 19.1) and [9].
The barrier-function-based unconstrainedACAproblemcorrespond-
ing to Eq. (4) is defined as

L�τ; u� � 1

2
�Dτ − u�TH�Dτ − u� � 1

2
τTMτ

− P
X2
l�1

XN
i�1

log�Cl;i�τi�� (9)

where P is a positive weight constant, and the functions C1;i � τi −
τi;min and C2;i � τi;max − τi with i ∈ f1; : : : ; Ng. The minimization

of the barrier term −P
P

2
l�1

P
N
i�1 log�Cl;i�τi�� in Eq. (9) prevents

the components of C1;i and C2;i from becoming too close to zero

(recall that− log�x� → ∞, as x → 0). This operation ensures that the
CA meets the actuator output saturation constraint. The approxima-
tion accuracy improves as the positive parameter P decreases. In the
extreme casewhenP � 0, the transformed program has no constraint
on the output of the actuators.
Assumption 1: The initial output of the each actuator is assumed to

satisfy inequality constraints C1;i > 0 and C2;i > 0.
Therefore, the barrier-function-based unconstrained CA problem

is formulated as

min
τ

L�τ; u� (10)

The first-order optimal set of Eq. (10) can be defined as

Z �
�
τ

���� ∂L∂τ � 0

�
(11)

where

∂L
∂τ

� DTHT�Dτ − u� �MTτ − P�τr;min − τr;max� (12)

with

τr;min ≜
�

1

τ1 − τ1;min

; : : : ;
1

τN − τN;min

	
T

∈ RN

and

τr;max ≜
�

1

τ1;max − τ1
; : : : ;

1

τN;max − τN

	
T

∈ RN

Lemma 2: The local minimum of the barrier-function-based
unconstrained CA problem (10) is achieved if and only if the optimal
set Z holds.

Proof:Necessity: The first necessary optimal condition is satisfied
if the set Z is reached [7,23]. Then, the CA problem in Eq. (10)
achieves its local minimum.
Sufficiency: According to the second-order sufficient condition,

the local minima is achieved if �∂L∕∂τ� � 0 and �∂2L∕∂τ2� > 0.
From Eq. (12), we have

∂2L
∂τ2

� DTHTD�MT � Pdiagfτr2;min � τr2;maxg (13)

where

τr2;min ≜
�

1

�τ1 − τ1;min�2
; : : : ;

1

�τN − τN;min�2
	
T

∈ RN

and

τr2;max ≜
�

1

�τ1;max − τ1�2
; : : : ;

1

�τN;max − τN�2
	
T

∈ RN

Since the third term in Eq. (13) is a positive definite diagonal matrix,

�∂2L∕∂τ2� > 0 can be obtained. Therefore, the sufficiency is guar-
anteed. □

Remark 2: The CA errorDτ − u is related to ∂L∕∂τ in Eq. (12). In
view of the expression of ∂L∕∂τ, if a weight matrix H ≫ M and a

small weight P are selected, ∂L∕∂τ approximates DTHT�Dτ − u�.
Thus, when ∂L∕∂τ approaches 0, Dτ − u also approaches 0.
Remark 3: It is worth noting that we do not have to choose that the

commanded control torque defined by the bound kp � kd is equal to
the actual control torque maxτi;min≤τi≤τi;max

kDτk determined by the

actuator saturation constraints. In this work, the maximum value of
the commanded control torque is greater than the maximum value of
the actual control torque of the actuators. For example, in the si-
mulation, we select kp � 1, kd � 0.6, and jτij ≤ 0.25 N ⋅m, which

lead to

max
u

kuk � kp � kd � 1.6 N ⋅m;

max
τi;min≤τi≤τi;max

kDτk � 0.5774 N ⋅m

It can be seen that the commanded control torque defined by the high-
level controller exceeds the actual torque of the actuators.

B. Appointed-Time Prescribed Performance Function

Before giving the details of the proposed ACA design, we con-
struct an appointed-time prescribed performance (ATPP) function to
predefine the transient and steady-state performance of the ACA.
Inspired by [14] and Lemma 1, we can choose the ATPP function as
follows:

ρ�t� �
(
a3t

3 � a2t
2 � a1t� a0; if 0 ≤ t < Tf

ρTf
; if t ≥ Tf;

(14)

where the prescribed performance requirements on the initial value,
steady-state error, and appointed convergence time are denoted by
ρ�0�, ρTf

, and Tf, respectively. The variables a0, a1, a2, and a3 are

coefficients to be designed such that the following constraints are
satisfied:

ρ�0� � ρ0; _ρ�0� � 0; ρ�tjt ≥ Tf� � ρTf
; _ρ�tjt ≥ Tf�

� 0; ρ0 > ρTf
> 0 (15)

where _ρ�0� � 0 ensures that predefined error at the initial stage does
not change too quickly. The condition _ρ�tjt ≥ Tf� � 0 ensures that

the predefined error ρ�tjt ≥ Tf� � ρTf
does not ultimately change.
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Given the corresponding values of ρ�0�, ρTf
, and Tf, the ATPP

function can be obtained by combining Eqs. (14) and (15).
Remark 4: In [14], an ATPP function is designed as

ρ�t� �

8>>>><
>>>>:
�
ρ0 −

t

Tf

�
e

�
1−

Tf

Tf−t

�
� ρTf

; if 0 ≤ t < Tf

ρTf
; if t ≥ Tf

(16)

where ρ0 is a specified parameter satisfying ρ0 ≥ 1 [14],whichmeans
that the initial value of the ATPP function has to be greater than 1.
Otherwise, as ρ0 − t∕Tf ≤ 0, ρ�t� < 0 is obtained. In contrast, the

proposed ATPP function in Eq. (14) avoids this constraint on ρ0, and
only needs to satisfy ρ0 � a0 > 0. Comparedwith theATPP function
(16) of [14], the proposed one can be applied to systems with a large
allowable initial error.
Then, let the barrier-function-based CA error be e � �∂L∕∂τ� ∈

RN . The prescribed performance requirements on the barrier-
function-based CA error e can be constructed by the following
inequality:

−l⊙ρ�t� < e�t� < h⊙ρ�t�; ∀ t ≥ 0 (17)

where the symbol ⊙ denotes the Hadamard product, ρ�t� �
�ρ1�t�; · · · ; ρN�t��T ∈ RN is the ATPP function of e�t�, and l �
�l1; · · · ; lN �T ∈ RN and h � �hk; · · · ; hN �T ∈ RN are two positive
weighting vectors of ρ�t� satisfying 0N < l ≤ 1N and 0N < h ≤ 1N .
The transient and steady-state performance of e�t� can be set by
selecting different parameters in ρ�t�, l and h. Next, a smooth

invertible function is introduced as S�z� � �S1�z1�; · · · ; SN�zN��T
with

Si�zi� �
hie

zi − lie
−zi

ezi � e−zi
; i � 1; 2; · · · ; N (18)

Utilizing S�z�, we can transform the performance constraints in
Eq. (17) into the following form:

e�t� � ρ�t�⊙S�z� (19)

where z � �z1; · · · zN �T ∈ RN is the conversion error. SinceS�z� is
the strictly monotone increasing function and ρ0 > ρTf

> 0, we

can get the corresponding inverse transformation as

zi � S−1i �βi�t�� �
1

2
ln
�
li � βi�t�
hi − βi�t�

�
; i � 1; 2; · · · N (20)

where βi�t� � ei�t�∕ρi�t�. Then, assume that the barrier-function-
based CA error e�0� satisfies (17), and the constraints (17) from the
prescribed performance can be satisfied by converging the con-
version errors into the following set:

Z� � fzjz � 0g (21)

Remark 5: Since l and h are two weight vectors, the prescribed
performance requirements on the barrier-function-based CA error
e at the initial time are mainly determined by ρ�0�. Therefore, a
larger value of ρ�0� is selected to meet the inequality (17) at t � 0.
However, too large ρ�0� will weaken the effect of the ATPP
function. For example, consider one-dimensional vector; set
l � h � 1, Tf � 5 s, and ρTf

� 0.001; and then take ρ0 � 0.3,

ρ0 � 0.6, ρ0 � 1, and ρ0 � 3, respectively. The results are shown
in Fig. 2. It is obvious that a larger ρ0 has less ability to constrain
the dynamic performance of the CA error e. Therefore, choosing
an appropriate ρ�0� is critical to the transient performance of the
system.

C. Fixed-Time Adaptive Control Allocation

Motivated by [6], to dynamically converge the barrier-function-
basedCA error in fixed timewhile satisfying the transient and steady-
state performance defined by ATPP function, an updating law of τ
that drives to reach the set Z� is proposed as

_τ � −k1GTR−1sig1�z� − k2G
TR−1sig2�z� � R−1ϕ (22)

where G � �∂2L∕∂τ2�,

R � diag

�
∂S−1�βi�t��

∂βi�t�
⋅

1

ρi�t�
�

with i � 1; · · · N, sig1�x� � �jx1jγsign�x1�; · · · ; jxmjγsign�xm��T ,
sig2�x� � �jx1jγ�1sign�x1�; · · · ; jxmjγ�1sign�xm��T with 0 < γ < 1
and m representing the number of elements in the column vector x,
and ϕ ∈ RN can be obtained by solving the least-square problem
with a scalar time-varying algebraic equation given by [9]

zTGTϕ� zTR

�
−β⊙_ρ� ∂2L

∂u∂τ
_u

�
� 0 (23)

Now, we are ready to present the ATPP-FixTACA result for the
barrier-function-based unconstrained CA problem (10).
Theorem 1: The updating law in Eq. (22) can result in zT → Z� in

fixed time; thus, the barrier-function-based unconstrained CA prob-
lem (10) is solved.
Proof: Choose a Lyapunov-like function as follows:

VA�u; z� �
1

2
zTz (24)

It is obvious from Eq. (12) that ∂2L2∕∂t∂τ � 0. Thus, time derivative
of VA�u; z� is

_VA � zTR

�
G_τ �

�
−β⊙_ρ� ∂2L

∂u∂τ
_u

��
(25)

Substituting Eqs. (22) and (23) into the foregoing equation yields

_VA � −k1zTRGGTR−1sig1�z� − k2z
TRGGTR−1sig2�z� (26)

According to the definition of G in Eq. (13), it is obvious that G is

nonsingular, andGTG is a positive-definite matrix. Furthermore, we

have the eigenvalues ofGTG are bounded; i.e., 0 < λmin ≤ λ�GTG� ≤
λmax is satisfied, where λmin and λmax represent the minimum eigen-

value and the maximum eigenvalue of matrix GTG, respectively.
Meanwhile, due to the fact −RGGTR−1 ≤ −λminIN , it follows from
Eq. (26) that

0 10 20 30
-3

-2

-1

0

1

2

3

4.5 5 5.5
-0.01

-0.005

0

0.005

0.01

Fig. 2 The ATPP functions ρ with different initial values.
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_VA ≤ λmin�−k1kzk1�γ − k2kzk2�γ�

≤ −2
1�γ
2 λmink1V

1�γ
2

A − 2
2�γ
2 λmink2V

2�γ
2

A

(27)

where 0 < ��1� γ�∕2� < 1 and 1 < ��2� γ�∕2� < 2. Therefore,
according to the fixed-time convergence theory given in Lemma 1,
the optimal set Z� is reached in the fixed time given by

Treach ≤
1

2
1�γ
2 λmink1

�
1 − 1�γ

2

�� 1

2
2�γ
2 λmink2

�
2�γ
2

− 1

� (28)

This completes the proof. □

Moreover, according to Eq. (20), if Z� is achieved in fixed time
Treach, then the following condition

e � ∂L
∂τ

� h − l

2
⊙ρ�t� (29)

is also guaranteed in fixed timeTreach. If we chooseh � l then e � 0,
whichmeans that the first-order optimal setZ of the barrier-function-
based unconstrained CA problem in Eq. (10) can be reached in fixed
time Treach; i.e., the proposed ATPP-FixTACA approach not only
achieves fixed-time convergence of the barrier-function-based un-
constrained CA error, but also guarantees the transient and steady-
state performance requirements defined by the ATPP function.
Remark 6: The fixed time Treach at which the optimal set Z� is

reached is only related to the parameters γ, k1, k2,D,H,M, and P of
the proposed ATPP-FixTACA. Once the parameters are selected, the
fixed time Treach can be calculated by Eq. (28).
Remark 7: According to Eq. (29), the barrier-function-based

unconstrained CA error e is ultimately determined by h, l, and ρ.
The barrier-function-based unconstrained CA error e reaching the
first-order optimality set Z is determined by Tf, and the gains γ, k1,
and k2 determine the convergence speed. Specifically, smaller γ and
larger k1 and k2 can lead to faster e convergence rate, but unnecessary
oscillation may occur.
Remark 8: In this work, the analytical solution of _u in Eq. (23) can

be obtained through the high-level controller (7). For complex con-
trollers, there are also manymethods to obtain _u approximately, such
as the low-pass filter [24] and the first-order Levant differentia-
tor [25,26].
Remark 9: If the prescribed performance is not considered, the

fixed-time adaptive control allocation (FixT-ACA) law can be
derived as follows:

_τ � −k1Gsig1
�
∂L
∂τ

�
− k2Gsig2

�
∂L
∂τ

�
� ϕ� (30)

where ϕ� ∈ RN is obtained by solving the following scalar time-
varying algebraic equation:

�
∂L
∂τ

�
T

Gϕ� �
�
∂L
∂τ

�
T ∂2L
∂u∂τ

_u � 0 (31)

In addition, the fixed-time stability can be guaranteed by following
the same analysis in [9] with a Lyapunov-like function given as

�VA�u; τ� �
1

2

�
∂L
∂τ

�
T ∂L
∂τ

(32)

V. Overall Closed-Loop Stability

The stability of the overall closed-loop system including the high-
level controller in Eq. (7) and low-levelATPP-FixTACA inEq. (22) is
summarized in the following theorem.
Theorem 2: Consider the attitude control systems expressed in

Eqs. (1) and (3) with the high-level controller in Eq. (7) and the low-
level ATPP-FixTACA in Eq. (22). If the condition

kd >
1

2
(33)

is satisfied, then the state variables �ωT; zT�T are uniformly ulti-
mately bounded in the sense of converging to small invariant sets
containing the origin, i.e., limt→∞kωk ∈ Ωω and limt→∞kzk ∈ Ωz,
where

Ωω �
�
ωjωTsign�ω� ≤















η

kd − 1
2

r �

Ωz � fzjkzk ≤ g�η; k1; k2�g with η ≜ �1∕2�kDτ − uk2 � jεj and

g�η; k1; k2� ≜ max

� 













η

k1λmin

r
;















η

k2λmin

r �

where ε � ωTsign�ω� − ωTTanh�ω∕r2�.
Proof: Selecting a Lyapunov-like function as

V � VC � VA (34)

In view of Eq. (27), the time derivative of V is

_V � �kpqTeω� ωT�u�Dτ − u�� − k1λminkzk1�γ − k2λminkzk2�γ

� −kdωTTanh

�
ω

r2

�
� ωT�Dτ − u� − k1λminkzk1�γ

− k2λminkzk2�γ

≤ −kdωTsign�ω� � jεj � 1

2
kωk2 � 1

2
kDτ − uk2

− k1λminkzk1�γ − k2λminkzk2�γ

≤ −
�
kd −

1

2

�
ωTsign�ω� − k1λminkzk1�γ − k2λminkzk2�γ � η

(35)

where the fact kωk ≤ ωTsign�ω� is used. Since ε, Dτ, and u are
bounded, η is bounded.
Clearly, choosing kd such that the condition in Eq. (33) is satisfied,

and according to Eq. (35), we can obtain that _V < 0 if

ωTsign�ω� >














η

kd − 1
2

r

or kzk > g�η; k1; k2�, where

g�η; k1; k2� ≜ max

� 













η

k1λmin

r
;















η

k2λmin

r �

As a result, the spacecraft state vectorω and conversion error z are
uniformly ultimately bounded, and converge to invariant sets con-
taining the origin as t → ∞. □

VI. Simulation Results

To demonstrate the effectiveness of the proposed attitude control-
ler and the ATPP-FixTACA, numerical simulation for the overactu-
ated spacecraft with actuator output saturation is carried out. For the
spacecraft, the rigid part of the inertia matrix is given as

J �

2
664

20 1.2 0.9

1.2 17 1.4

0.9 1.4 15

3
775 kg ⋅m2

Moreover, four reaction wheels are used as actuators, whose distri-
bution matrix

394 J. GUIDANCE, VOL. 46, NO. 2: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

Ju
ly

 2
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
69

15
 



D � 1



3

p

2
664
−1 −1 1 1

1 −1 −1 1

1 1 1 1

3
775

is the same as [9]. Each reaction wheel has to satisfy the saturation
constraint jτnj ≤ 0.25 N ⋅m for n ∈ f1; : : : 4g.
The numerical simulation results are given based on the following

two scenarios:
Scenario 1: The initial attitude is Q�0� � �0.1092; 0;−0.4624;

0.8799�T and the desired attitude is given as Qd �
�0.5624;−0.5689; 0; 0.6�T . The initial angular velocity is assumed

to be ω�0� � �0; 0; 0�T deg ∕s.
Scenario 2: The initial attitude is Q�0� � �0.5624;

−0.5689; 0; 0.6�T and the desired attitude is given as Qd �
�1; 0; 0; 0�T . The initial angular velocity is assumed to be ω�0� �
�−2; 3;−2�T deg ∕s.

A. Overall Attitude Control Simulation Results

In this subsection, the overall performance of the proposed high-
level controller in Eq. (7), combined with low-level ATPP-FixTACA
in Eq. (22), is simulated. The parameters of the proposed attitude
controller are set to kp � 1 and kd � 0.6. The parameters of the
proposed ATPP-FixTACA scheme are set to H � 0.5I3,
M � 0.05I4, P � 0.002, γ � 0.6, and k1 � k2 � 10. Meanwhile,
the parameters of the ATPP are set to ρ0 � �0.5; 0.5; 0.5�, Tf � 5 s,

ρTf
� �0.001; 0.001; 0.001�, and h � l � �1; 1; 1�, and then, based

on Eq. (14) and constraint (15), we can get a0 � ρ0 � 0.5, a1 � 0,
and the following two equations should also hold:(

a3T
3
f � a2T

2
f � a0 � ρf

3a3T
2
f � 2a2Tf � 0

Solving above equations, we can get a2 � −0.0599 and a3 � 0.008.
Meanwhile, according to Eq. (28), the optimal set Z is reached
in Treach ≤ 32.5138 s, which is greater than the appointed-time
Tf � 5 s.

The numerical simulation results of scenario 1 and scenario 2 are
shown in Figs. 3 and 4, respectively.
In scenario 1, the attitude error and angular velocity error are

shown in Figs. 3a and 3b, from which we can see that the state errors
converge to zero asymptotically with the steady-state errors jqej ≤
2 × 10−4 and jωj ≤ 2 × 10−3 deg ∕s in 100 s. In scenario 2, the
attitude error and angular velocity error are shown in Figs. 4a and
4b, from which we can see that the state errors converge to zero

asymptotically with the steady-state errors jqej ≤ 2 × 10−4 and jωj ≤
2 × 10−3 deg ∕s in 100 s.
The output torques of reaction wheels of the two scenario are

shown in Figs. 3c and 4c, where it is observed that the reaction wheel
saturation constraints are satisfied and the saturation limits of the
actuators are not reached, i.e., τi < 0.25 N ⋅m for all i ∈ f1; : : : ; 4g.
Moreover, as shown in Figs. 3d and 4d, the first-order optimality

set Z of the ACA problem can be reached in fixed time
(Treach ≤ 32.5138 s) by applying the proposed ATPP-FixTACA
method. In addition, the barrier-function-based unconstrained CA
error e also meets the required performance defined by ATPP func-
tion (17) and converges to the setZ with steady-state error of level of

1 × 10−10 in t � 110 s due to h � l � �1; 1; 1�T , ρTf
� 10−3, which

is consistent with the performance defined in Eq. (29). Therefore, the
ATPP-FixTACA not only achieves fixed-time convergence of the
barrier-function-based unconstrained CA error e but also guarantees
appointed-time predefined ACA transient performance.
It is worth mentioning that not all initial states can be successfully

simulated under these parameters of this work. When the initial CA
error is large, the simulation may fail. On the one hand, larger ρ�0�
and Tf can be selected in the ATPP function. Then the appropriate

ρ�0� and Tf are determined through multiple numerical simulations

to obtain better performance. On the other hand, larger values of ρ�0�
and Tf can also be directly selected, which can increase the robust-

ness of the system to any initial state, but also increase the conserva-
tism of CA.
In summary, the overall control scheme consisting of the high-

level controller (7) and the low-level ATPP-FixTACA approach (22)
can complete the attitude reorientation task for an overactuated
spacecraft.
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a) Attitude error
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b) Angular velocity
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c) Reaction wheel output under ATPP-FixTACA
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-0.5
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d) Barrier function-based CA error, =

Fig. 3 Time history of the overall attitude control system under scenario 1.
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B. Low-Level ACA Comparison

In this subsection, the efficiency of the proposed ATPP-FixTACA
approach in Eq. (22) is verified. To show the advantages of the
proposed approach, the other two existing CAmethods, i.e., the static
pseudo-inverse-based CA (PICA) in [1], where τ � DT�T�−1u, and
the ACA in [8] are also simulated for comparison. The numerical
simulation results are given based on scenario 1 as in the above
subsection. Because the static PICA and ACA approaches do not
consider the actuator saturation constraint, the saturation function is
used to limit the actual output of the actuators of the two CA
approaches. To have a fair comparison, we utilize the controller in
Eq. (7) as a high-level attitude controller for all three CA approaches.
The parameters of the ACA approaches are given as Γ � W � 10
andMv � 0.05I4.
As shown in Figs. 5a and 5b, compared with the ACA approach,

the attitude error kqek of the proposed ATPP-FixTACA approach
is smaller than those of the ACA approach and does not bring
the problem of excessive angular velocity. This is because the
ATPP function is used to improve the transient performance, and
the fixed time convergence method is used to improve the con-
vergence rate of allocation error in the proposed ATPP-FixTACA
approach.

Moreover, as can be seen from Figs. 6a and 6b, compared with the
other twoCAapproaches, the proposedATPP-FixTACAapproachdoes
notmake the actuators reach the saturationvalue, andhence significantly
reduces the saturation duration of the actuators (refer to Fig. 3c), which
can protect the actuators in the actual space mission. This is because the
proposed ATPP-FixTACA approach directly considers the output satu-
ration of the actuators when designing the adaptive law. In addition,
although the other two CA approaches can use the saturation function
directly to limit the actuator output, this operation cannot explain the
stability, resulting in easily causing CA failure and large CA error.
Finally, it is clear from Fig. 7a that the final convergence accuracy

of the allocation error of the proposed ATPP-FixTACA approach is
worse than that of the other two CA approaches. This is due to the
proposed ATPP-FixTACA approach directly considers the actuator
saturation in the CA problem (4), focusing on the barrier-function-
based ACA error e � �∂L∕∂τ� in Eq. (12), but not on the CA error
ku −Dτk � 0. However, becausewe take a smallerweightmatrixM
and a smaller value of the weight P, the CA error ku −Dτk � 0 of
the ATPP-FixTACA can converge to a small region close to zero.
Because the proposed ATPP-FixTACA approach is based on the
ATPP function, it ensures the transient and steady-state perfor-
mance of the CA error ku −Dτk � 0 and reduces fluctuation of

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

110 115 120

5

10

10-5

a) Attitude error

0 20 40 60 80 100 120
0

2

4

6

110 115 120

5

10
10-4

b) Angular velocity

Fig. 5 Comparison of time history of spacecraft states of three CA approaches.
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c) Reaction wheel output
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Fig. 4 Time history of the overall attitude control system under scenario 2.
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the transient response, so the transient performance and convergence

speed are greatly improved. We also use ∫ t
0kuactk dt to evaluate the

energy consumption of the three CA approaches, where uact � Dτ is
the actual output of the actuators and t is the simulation time. As
observed in Fig. 7b, it is obvious that the proposed ATPP-FixTACA
approach consumes the least energy among all three CA approaches.

C. Different Parameters Comparison

In this subsection, the effects of different parameters in the ATPP-
FixTACA approach are examined by numerical simulation, and the
numerical simulation results are given based on scenario 1 as the
above subsection. Specifically, the high-level controller is the same as
the previous two subsections, and the effects of key parameters k1, k2,
and γ and weight P on ATPP-FixTACA are discussed, respectively.
We consider the same attitude control problem as in Sec. VI.A, but
different key parameters are selected.

1. Effect of Parameters k1 and k2 on ATPP-FixTACA

Three sets of values of k1 and k2 are simulated for comparison,
i.e., k1 � k2 � 1, k1 � k2 � 5, and k1 � k2 � 45, while other

parameters remain the same. The reach times Treach of the three sets
of parameters are 325.1385, 65.0277, and 7.2253 s, which are greater
than the appointed time Tf � 5s.

As shown inFigs.8a and8b, the convergence rate of the attitude error
kqek and the angular velocity kωk of spacecraft increases as k1 and k2
become bigger. Meanwhile, it can be seen from Fig. 8c that the larger
the k1 and k2, the faster the convergence of the CA error ku −Dτk.
In addition, as can be seen from Fig. 9, although the three sets of

values of parameters k1 and k2 meet the output limit of the actuators
and do not reach the saturationvalue, the excessive k1 and k2 cause an
oscillation when the actuator output is close to its saturation value. At
the same time, it is noted that with the increase of k1 and k2, the
maximal value of the output of actuator is closer to the saturation
value. Moreover, from Eq. (28), when larger k1 and k2 are selected,
the fixed convergence time Treach will be reduced; i.e., the CA error
has a faster convergence rate to the first-order optimal set Z. There-
fore, the parameters k1 and k2 can adjust the convergence rate of the
CA error and the proximity of the output of the actuator to the
saturation value. However, selecting an excessive k1 and k2 may
cause oscillation of the actuators.
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a) CA error
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b) Energy consumption

Fig. 7 Comparison of time history of control allocation error and energy consumption of three ACA approaches.
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Fig. 8 Comparison of time history of spacecraft states and control allocation error of different k1 and k2 in ATPP-FixTACA.
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Fig. 6 Comparison of time history of reaction wheel output τ under ACA and static PICA approaches.
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2. Effect of Parameter γ on ATPP-FixTACA

On the basis of Sec. VI.A, γ � 0.4, γ � 0.6, and γ � 0.8 are
simulated for comparison. The reach times Treach of the three sets
of parameters are 31.2420, 32.5138, and 48.5241 s, which are greater
than the appointed time Tf � 5 s.

As shown in Figs. 10a and 10b, the convergence rate of the attitude
error kqek and the angular velocity kωk of spacecraft is accelerated
with the decrease of γ. Meanwhile, it can be seen from Fig. 10c
that the smaller the γ, the faster the convergence of the CA error
ku −Dτk.
In addition, as can be seen from Fig. 11, although the three sets of

parameters γ meet the output limit of the actuators and do not reach
the saturation value, a too small γ causes an oscillation when the
actuator approaches the saturation value. According to Eq. (28),
when a smaller γ is selected, the fixed convergence time Treach will
be reduced, and the CA error converges faster to the CA first-order
optimal setZ. Therefore, the parameter γ can control the convergence
rate of the CA error. However, selecting a too small γ may cause
oscillation of the actuators.

3. Effect of Parameter P on ATPP-FixTACA

On the basis of Sec. VI.A, P � 0.0006, P � 0.002, and
P � 0.006 are simulated for comparison. The reach times Treach of
the three sets of parameters are 88.2401, 32.5138, and 7.2152 s,
which are greater than the appointed-time Tf � 5 s.

As shown in Figs. 12a and 12b, the convergence rate of the attitude
error kqek and the angular velocity kωk of spacecraft slows down
with the increase of P. A smaller P can be selected to decrease the
state convergence error of the spacecraft. Meanwhile, it can be seen
fromFig. 12c that the smaller theP, the faster the convergence and the
better the convergence accuracy of the CA error ku −Dτk.
In addition, as can be seen from Fig. 13, the actuator outputs under

three sets of parameterPmeet the limit and do not reach the saturation
value. However, choosing a small P may cause oscillation when the
actuator output is approaching its saturation value. At the same time,
as P decreases, the maximal output of the actuator is closer to its
saturation value. In view of Eqs. (9) and (12), under the same con-
ditions, a smaller P leads to a smaller proportion of barrier terms in
Eqs. (9) and (12), resulting in an improvement of the convergence
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Fig. 10 Comparison of time history of spacecraft states and control allocation error of different γ in ATPP-FixTACA.
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Fig. 11 Comparison of time history of reaction wheel output τ of different γ in ATPP-FixTACA.
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Fig. 9 Comparison of time history of reaction wheel output τ of different k1 and k2 in ATPP-FixTACA.
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speed and convergence accuracy of the CA error. Therefore, the
parameter P can control the convergence rate, the convergence
accuracy of the CA error, and the proximity of the output of the
actuator to the saturationvalue. However, choosing a too smallPmay
cause oscillation of the actuators, as observed in Fig. 13a.

VII. Conclusions

In this paper, an adaptive CA approach taking into account the
fixed-time convergence and prescribed performance of CA error is
proposed for rest-to-rest attitude maneuver of overactuated space-
craft subject to actuators output constraint. First, the constrained
CA problem is transformed to a barrier-function-based uncon-
strained CA problem. Then, an appointed-time prescribed perfor-
mance-based fixed-time adaptive CA approach is developed to
distribute the desired virtual control torque from the high-level
controller to each actuator dynamically under conditions of satisfy-
ing the saturation limitation and the transient and steady-state
constraint predefined by appointed-time prescribed performance
functions. Finally, simulation results demonstrate the efficiency
of the proposed appointed-time prescribed performance-based
fixed-time adaptive CA approach. In future works, we will take
the situation that the initial CA error does not meet the appointed-
time prescribed performance function into account in the adaptive
CA design.
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