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Abstract
Flight collision between unmanned aerial vehicles (UAVs) in mid-air poses a potential risk to flight safety in low
altitude airspace. This paper transforms the problem of collision avoidance between quadrotor UAVs into a trajectory-
planning problem using optimal control algorithms, therefore achieving both robustness and efficiency. Specifically, the
pseudospectral method is introduced to solve the raised optimal control problem, while the generated optimal trajectory
is precisely followed by a feedback controller. It is worth noting that, the contributions of this paper also include the
introduction of the normalized relative coordinate, so that UAVs can obtain collision-free trajectories more conveniently
in real time. The collision-free trajectories for a classical scenario of collision avoidance between two UAVs are given
in the simulation part by both solving the optimal control problem and querying the prior results. The scalability of the
proposed method is also verified in the simulation part by solving a collision avoidance problem among multiple UAVs.
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Introduction

With the rapid development of technologies, unmanned
aerial vehicles (UAVs) have been recently applied in both
military and civilian areas1. As a result, the flight amount of
UAVs is increasing significantly, which brings many risks to
flight safety in low-altitude airspace. Mid-air flight collision
is one of the main flight accidents that occur frequently.
Therefore, it is urgent to have a suitable UAV collision
avoidance system, and the collision avoidance algorithm is
the core of it.

The research focus of this paper is the collision avoidance
problem between mid-air UAVs. Although cooperative
collision avoidance method for more realistic situations has
achieved many research in recent years2–4, it is assumed
that all information (such as its position and velocity) of the
controlled UAV (the UAV we concerned) can be obtained
through the sensing component for simplicity in this paper.
The information of the target drone (other UAVs in the scene)
can be achieved through air traffic control components (such
as automatic dependent surveillance (ADS-B)).

Although the actual collision avoidance scene may usually
contain more than two UAVs, solving collision avoidance
problems between two UAVs is the basis for solving
the collision avoidance problems among multiple UAVs.
Therefore, the research of this paper will first focus on the
collision avoidance problems among two UAVs. After that,
the achieved conclusion will be used to solve the collision
avoidance problems among multiple UAVs.

From the perspective of trajectory planning, the collision-
free trajectory of a UAV is a flight path connecting
the initial point and the finish point, which ensures the
minimum distance between the UAV and other objects5.
Many different philosophies have been studied to find such
trajectories6–8.

The sense-and-avoid algorithm, also called conflict
detection and resolution, is one of the traditional methods
to deal with the collision avoidance problem. It is
mainly derived from the Traffic Collision Avoidance
System (TCAS) used by the air traffic management for
commercial airplanes9,10. In addition to the perception
of the environment, the core idea of this method is
the analysis of the relative motion relationship of two
UAVs in geometric space11, followed by certain decision
processes such as Markov decision12,13 and trajectory
tracking algorithms14,15. This kind of method is simple,
intuitive, and low cost. However, the resulting trajectories
are not optimal. Furthermore, the method does not tell the
UAV how to return to its original planned route which is quite
important for UAV tasks.

The potential field algorithm has also been widely studied.
In this algorithm, UAVs are set to move under the influence
of an artificial potential field determined by the goal position
and the obstacles. The research of this method usually
focuses on how to set the parameters correctly, so as to
ensure that the method can converge to the global optimal
solution16,17.

The optimal control method is also adopted by many
researchers because of its ease of application and high
scalability. It uses the idea of optimal control to transfer the
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collision avoidance problem into a collision-free trajectory
planning problem18–21. This kind of methods can yield an
optimal result but require a large amount of calculation.
Many different optimization algorithms, such as mixed
integer linear programming (MILP)22–24, sequential convex
programming (SCP)25,26, rolling optimization algorithm and
model predictive control (MPC)27–29, have been applied
to effectively reduce the computational complexity of the
method.

Therefore, each method has its most suitable application
scenarios. Taking the advantages of different algorithms to
find an algorithm suitable for UAV collision avoidance in
low-altitude airspace is the goal of this research.

Motivated by the above analysis, an innovative method is
proposed in this paper to give the collision-free trajectories
for quadrotor UAVs. The optimal control is chosen as
the core of the collision-avoidance algorithm because it
can make an excellent trade-off between maintaining safe
distances from other UAVs and decreasing the deviation
from the original trajectory30. Pseudospectral discretization
method has received more research interest in recent
years. It leads to a significant improvement over the
traditional Euler or Runge-Kutta methods because its high-
accuracy quadrature can provide exponential (compared
to polynomial) convergence rate31–33. Therefore, the
pseudospectral method is applied in this paper to solve
the optimal control problem to improve the computational
efficiency of the algorithm. However, the cumulative error
generated by the pseudospectral methods may lead to
the divergence of trajectories under open loop control.
Therefore, a feedback controller (e.g. an LQR controller
which has been widely used in UAV systems34–36) is applied
in this paper to ensure the optimal trajectories being precisely
tracked.

Even with the above techniques, it is not an efficient
approach to establish and solve a specific optimal control
problem for each different collision avoidance scenario.
Therefore, in this research, a method for calculating
the collision-free trajectories by only querying the prior
calculation results is proposed. First of all, a relative
coordinate system is introduced in this paper to simplify
the description of collision avoidance scenarios. Besides,
we implemented normalization to eliminate the impact of
UAV velocity on the minimum safety distance. In addition,
considering the symmetry of the collision-free trajectory,
the established optimal control problem is in the finite time
domain rather than in the infinite time domain, which may
bring a lot of convenience to the solution process.

The main contributions of this paper could be concluded
by the following aspects:

1. A feasible optimal control method is proposed to
solve the collision avoidance problem between mid-air
quadrotor UAVs. The existence of the global optimal
solution is also proved after considering an acceptable
restriction.

2. To improve the computational efficiency, the pseu-
dospectral method is applied in this research. A feed-
back controller is designed to deal with the trajectory
deviation caused by the cumulative calculation error.

3. The normalized relative coordinate system is consid-
ered in this research to further improve the computa-
tional efficiency of proposed algorithm.

The rest of this paper is organized as follows. The
upcoming section introduces the formulation of the optimal
control problem. The main procedure of the pseudospectral
methods, proof of the existence of the overall optimal
solution, and the introduction of the LQR controller will also
be included. The simplification of the collision avoidance
scenario is introduced in detail in the subsequent section.
Specifically, the symmetry of the collision-free trajectories
will be proven. Finally, the proposed method is simulated
with MATLAB programs to verify its effectiveness, and the
conclusion of this paper is provided.

Establishing and Solving of the Optimal
Control Problem

The collision-free trajectory is the basis to avoid the mid-
air collision in the air. In this paper, these trajectories are
obtained by transforming the collision avoidance problem
into an optimal control problem under the constraint of
the minimum safety interval. This section will introduce
the process of establishing and solving the optimal control
problem.

The Optimal Control Problem

The optimal control problem is to find the optimal control
input u∗, which makes the UAV follow an optimal trajectory
x∗ that minimizes an objective function J .

The Trajectory Dynamics of the Quadrotor UAV. In this
research, a quadrotor UAV, which can be commonly seen in
low-altitude airspace, is selected as the research object.

Figure 1. The structure model of the quadrotor. Two basic
coordinate systems are established: the inertial coordinate
system E(OXYZ) and aircraft coordinate system B(oxyz). The
heading angle ψ denotes the angle between the projection of ox
on the OXY plane and the X-axis. The pitch angle θ denotes the
angle between the projection of oz on the OXZ plane and the
Z-axis. The roll angle φ denotes the angle between the
projection of oy on the OYZ plane and the Y-axis.

In the case of no wind and slow flight with zero drag
coefficient and no additional disturbances, the simplified
linear trajectory dynamics ẋ = f(x,u, t) of the UAV is as
following:30
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ẍ = θg

ÿ = −φg
z̈ = U1/m− g
φ̈ = lU2/Ix

θ̈ = lU3/Iy

ψ̈ = U4/Iz

(1)

in which θ, φ and ψ are Euler angles (defined in Figure
1), and the moment of inertia of the quadrotor is I =
diag{Ix, Iy, Iz}. Ui (i = 1, 2, 3, 4) are the control inputs of
the UAV37,38. In detail,

u =


U1

U2

U3

U4

 =


F1 + F2 + F3 + F4

F4 − F2

F3 − F1

F2 + F4 − F3 − F1

 (2)

in which U1 is vertical control input, U2 is the rolling control
input, U3 is the pitch control input and U4 is the heading
control input. Fi (i = 1, 2, 3, 4) are the thrusts generated by
the four motors as shown in Figure 1.

In this model, the complex nonlinear model of the
quadrotor can be decomposed into four independent control
channels. The whole model can be regarded as two
subsystems: translation motion and angular motion. The two
subsystems will not influence each other.

Objective Function. A typical objective function (also
called cost function) for an optimal control problem is in the
form of

J = Φ (x(tf ), tf ) +

∫ tf

t0

g (x(t),u(t), t) dt (3)

in which g is related to the trajectory and control input, and
Φ is related to the UAV states at the terminal time tf .

For the problem of collision avoidance, there are many
different objective functions that can be used. Using different
objective functions often means getting a different optimal
trajectory. In this paper, the objective function is chosen as
following:

J =

∫ tf

t0

g(x(t),u(t), t)dt

=
1

2

∫ tf

t0

[
(x− xp)

T
Q (x− xp) +

(
uTRu

)]
dt

(4)

in which the first integral term penalizes the trajectory
deviations from the planned route xp(t) (Q is a positive-
definite weighting matrix), and the second integral term is
used to minimize the control input (also the energy cost of
the system, R is another positive-definite weighting matrix).

Collision Avoidance Constraints. The own UAV must not
collide with the target UAV during the transition from the
initial state to the final state. Therefore, when the own
UAV flies in the airspace, it should keep a minimum safety
interval from other UAVs all the time. This constraint can be
expressed by the following equation:

r2 −
[
(x− x̃)2 + (y − ỹ)2 + (z − z̃)2

]
≤ 0 (5)

in which r is the minimum safety interval. It is obtained
by considering the physical conflicts between UAVs, the
influence of the airflow, and the possible measurement errors
in the actual physical scene. The quantities (x(t), y(t), z(t))
and (x̃(t), ỹ(t), z̃(t)) are the positions of the own UAV and
the object UAV, respectively, and both vary with time.

Other Constraints. The initial and final states of the own
UAV are settled in this research, which introduces equality
constraints to the problem.

Furthermore, to satisfy the physical constraints of the
UAVs, it is necessary to consider the saturation of the control
input. The control input of the UAV should satisfy

Ui,min ≤ Ui ≤ Ui,max (6)

in which Ui (i = 1, 2, 3, 4) are defined by Equation (2), and
Ui,min and Ui,max are the maximum and minimum of the
control input Ui, respectively.

Problem Discretization: Pseudospectral Method
To solve the optimal control problem achieved above, direct
numerical methods are more preferred because they do
not require the derivation of the optimality conditions and
they are more tolerant to initialization with low quality.
The pseudospectral methods are introduced in this research
because it can provide high accurate approximations for
problems whose solutions are smooth. With pseudospectral
methods, the optimal control problem can be transformed
to a nonlinear programming problem by parameterizing
the state and control input using global polynomials and
collocating the differential-algebraic equations using nodes
obtained from a Gaussian quadrature31,39.

As stated above, the initial and final states of the controlled
UAV are determined and do not need to be optimized.
Therefore, it is reasonable in this paper to choose Legendre-
Gauss (LG) points rather than Legendre-Gauss-Lobatto
(LGL) points or Legendre -Gauss-Radau (LGR) points as the
collocation points40.

Legendre-Gauss points τ are the roots of the Legendre
function40 PN (τ):

PN (τ) =
1

2NN !

dN

dτN
(τ2 − 1)N (7)

in which N is the number of the orthogonal collocation
points.

By applying the pseudospectral method, the dynamic
equations (1) can be written in the form of

N∑
i=0

Dkixi =
tf − t0

2
f(xk,uk, τk) (8)

in which

Dki =

{
ak

ai(τk−τi) if k 6= i∑N
j=0,j 6=i

1
τi−τj if k = i

(9)

where

ai =

N∏
j=0
j 6=i

(τi − τj) (10)

Prepared using sagej.cls



4 Journal Title XX(X)

The cost function can also be transformed by the Gauss
methods. Equation 4 can be written in the form of

J =
tf − t0

2

∫ 1

−1
g(x(τ),u(τ), τ)dτ

=
tf − t0

2

N∑
k=1

wkg(xk,uk, τk)

(11)

where wk are the weights for Gauss-Legendre quadrature:

wk =
2

(1− τ2k )[P ′N (τk)]2
(12)

in which PN (x) is defined by Equation (7).
Therefore, the original optimal control problem is

converted into a nonlinear programming problem with the
control and state variables to be optimized at the collocation
points.

Existence of the Global Optimal Solutions
According to the convex optimization theory, for a convex
programming problem, if x* is a local optimal solution of
the problem, then it is the only global optimal solution of the
problem41.

For the collision-avoidance optimal control problem given
by the previous section, it can be noted that the objective
function (Equation (4)) is in a quadratic form. The trajectory
dynamics (Equation (1)), together with the input saturation
and boundary conditions constitute the equality constraints,
and all of them are linear. However, the collision avoidance
constraints of the problem are in the form of Equation (5),
and it is a non-convex form.

Fortunately, if the collision avoidance maneuver is kept
in one side of the half-plane containing the original
trajectory, Equation (5) will be simplified to a convex form.
For example, if the own UAV in level flight avoids the
potential collisions only by reducing the flight height near
the object UAV (i.e. let z < z0, ẋ = const and ẏ=0, the
UAV moves only below the horizontal plane containing the
original trajectory), the safety constraint Equation (5) can be
simplified to z < −

√
r2 − x2 − y2 (r, x and y are priori)

which is a convex form. Such additional restrictions are
acceptable for quadrotor UAVs.

Therefore, by adding such an acceptable restriction,
all the objective function and the constraints are in the
convex form, which makes the collision avoidance problem
a convex programming problem. If we can find a local
optimal solution x∗ for the above-mentioned optimal control
problem through the method such as sequential quadratic
programming (SCP), then it is the only global optimal
solution.

Result Correction
Through numerical calculation, the solution of the optimal
control problem, including the collision-free optimal
trajectory x∗ and its corresponding optimal control input
u∗ can be achieved. However, if the result of the numerical
solution is directly used as the control input of the UAV,
the UAV will deviate from the calculated optimal collision-
free trajectory (An example will be shown in the Simulation

part.) Therefore, a closed-loop feedback controller LQR is
introduced here to modify the UAV’s control input so that the
UAV can fly according to the calculated optimal trajectory.

Figure 2. Brief structure of the feedback controller. The LQR
controller is chosen here because it can make the UAV
precisely follow the obtained optimal collision-free trajectories.
Its stability and reliability have been verified in its wide range of
applications. v is the possible measurement error and y is the
output of the system.

According to the LQR theory, the closed-loop control
input should be

ucl = u∗ −R−1BTP(t) [x(t)− x∗(t)] (13)

in which P(t) is the solution of the Riccati equation,

−Ṗ(t) = P(t)A + ATP(t)−P(t)BR−1BTP(t) + Q

P(tf ) = S

(14)

where Q, R, S are positive-definite weighting matrices.
Hence, the regular algorithm of collision avoidance is as

following.

Algorithm I for Collision Avoidance

1. Obtain the structural parameters of the UAV (m, I , l,
etc.), the planned route xp of the own UAV and the route
x̃ of the object UAV.
2. Determine the number of collocation points N , the
minimum safety distance r and the saturation of the input.
3. Establish the Optimal Control Problem (OCP) with the
cost function (4) subject to (1),(5) and (6).
4. Transform the OCP into a nonlinear programming
problem (NLP) using pseudospectral method.
5. Find solution (the collision-free optimal trajectory x∗ and
its corresponding optimal control input u∗) to the NLP by
SCP.
6. Modify the control input ucl by the LQR controller.

Simplified Description of the Collision
Avoidance Scenarios
Solving the optimal control problem using numerical
iteration require a large amount of calculation, so it is often
used in offline calculations. This research attempts to explore
how the results of these offline calculations can be applied to
the UAV real-time online collision avoidance process.

Consider a scenario between two UAVs. The target UAV
maintains its motion state unchanged while the own UAV
needs to change its height (or move sideways) to avoid
potential collisions with the target UAV. According to the
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description in the previous section, once the initial position
and velocity of both the own UAV and the target UAV are
determined, the optimal collision-free trajectory of the own
UAV can be uniquely determined by the optimal control
method. This conclusion can be expressed by the following
mapping:

F :
(
x0, ẋ0, x̃0, ˙̃x0

)
optimal control problem−−−−−−−−−−−−→ x(t) (15)

in which x(t) = (x(t), y(t), z(t)). This relationship is
similar to function mapping. It inspires us to think, if
the optimal collision-free trajectories for scene A and
scene B have been obtained by solving the corresponding
optimal control problem, can we use these trajectories
to directly achieve the collision-free trajectory for scene
C without solving the specific complex optimal control
problem? If so, we can calculate and store the optimal
collision-free trajectories for some scenarios offline, and use
these trajectories to solve the real-time collision avoidance
problems for the own UAV online.

However, as shown in Equation (15), 12 variables (the
position and velocity of both the own UAV and the object
UAV in 3-dimensional directions) are needed to describe a
specific collision avoidance scenario and to affect the final
collision-free trajectory, which complicates the problem.
Referring to the idea in ”sense-and-avoid” algorithms, a
relative coordinate is applied here to simplify the description
of the collision avoidance scenarios.

Relative Coordinate and Normalization
Considering the collision avoidance scenario between the
own UAV and a single object UAV. The relative coordinate
system is introduced as shown in Figure 3. It significantly
reduces the number of variables required to describe the
position and velocity of the two UAVs.

Figure 3. Plan view of the relative coordinate. The target UAV
is set at the origin of the coordinate (the red dot) and is kept still,
while the own UAV is set on the x-axis of the coordinate (the
green dot) and is moving to the target UAV with the velocity of
vr (the blue vector). The angle between the direction of the
relative velocity and the negative x-axis is denoted as α. rn
represents the minimum safety distance interval and Dn

represents the initial distance between the two UAVs.

It is a common sense that the larger the relative velocity vr
is, the larger the minimum safety distance interval between
the two UAVs should be. Therefore, normalization is used
here to deal with this issue. Set the norm of relative velocity
to be 1, and the initial distance between the own UAV and

the object UAV will be Dn and the minimum safety distance
interval between the two UAVs (the radius of the protect
circle) will be rn accordingly.

Hence the 12 variables in Equation (15) will be reduced
to only 2 variables, namely, the initial distance Dn and the
angle α.

F : (Dn, α)
optimal control problem−−−−−−−−−−−−→ x(t) (16)

Therefore, in the collision avoidance scenario of two
UAVs, it is the variable Dn and α that determine the final
collision-free trajectory. Several discussions about the effect
of them will be made based on the simulation results.

Variable Domain
The relative geometric relationship in Figure 3 shows that the
two UAVs will have potential collision risks only when the
relative velocity is in the region enclosed by the two dashed
lines, which means

α ∈ [− arcsin(rn/Dn), arcsin(rn/Dn)] (17)

If α lies in this range, the distance between the two
UAVs will also be less than the minimum safety interval,
which is very dangerous. Specifically, when α = 0◦, the
relative velocity points directly at the object UAV and the
two UAVs will have a direct mid-air collision. In addition,
if the influence of other obstacles in the environment cannot
be considered, only the upper part [0, arcsin(rn/Dn)] needs
to be considered according to the symmetry of the geometric
space.

For the variable Dn, it should be at least greater than the
given minimum safe interval rn, i.e.Dn ≥ rn. More detailed
range of Dn will be discussed later in the paper.

Symmetry of the Optimal Trajectory

Figure 4. Illustration of the trajectory symmetry. The upper part
is the top-view of the collision avoidance situation in the relative
coordinate, while the lower part is the side view of it. The red
mass points represent the object UAV and the circles around
them show the minimum interval between the two UAVs. The
dashed lines are the planned straight route of the own UAV.
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In this research, the collision avoidance maneuver is
strictly limited in a two-dimensional plane. For example, if
the potential collision is avoided only by changing height,
the resulting optimal collision-free trajectory is a two-
dimensional curve (shown by the green curve in Figure 4)
and it is symmetric about the vertical plane that contains
the object UAV. Note that the initial and the final points
of the resulting trajectory are on the planned route and in
the equilibrium state of the own UAV, so that the trajectory
can be smoothly connected with the original planned route.
The theorem can be simply proved by the counter-evidence
method.

Theorem 1. Given the above conditions, the resulting
optimal collision-free trajectory is symmetric about a plane
that contains the object UAV and is perpendicular to the
planned route.

Proof. Since the research object of this paper is a
quadrotor, which has strong symmetry, any flyable trajectory
is reversible. In other words, if the UAV can fly from point
A to point B with a certain procedure, then the UAV must
be able to fly back to point A with the reverse procedure
from point B. In the scenario involved in this paper, the
UAV has the same flight state at the initial point and the
ending point of collision avoidance and they are both on
the planned route. Therefore, if the UAV can fly from the
initial point to the ending point with a certain procedure, the
UAV can be able to fly from the initial point to the ending
point with the corresponding mirroring procedure. The two
resulting trajectories have the same distance to the planned
route. Therefore, the trajectory is optimal only when it is
symmetrical about the plane. (Proof end.)

Corollary 1. Since the trajectory of the UAV has to
be continuous, the slope at the intersection point of the
trajectory and the plane (the yellow point in Figure 4 ) has
to be zero.

The symmetry of the trajectory can bring many benefits.
First of all, since the initial distance between the two UAVs

Dn is determined, the trajectory planning problem becomes
much simpler in the finite time domain than in the infinite
time domain by applying the trajectory symmetry.

Besides, when solving the problem numerically, the
symmetry makes it possible to use less discrete points to get
a better result, especially when polynomial discrete points
are applied. For polynomial discrete points, there are more
discrete points at the ends of the time domain than in the
middle. Therefore, more discrete points are located in the
region of interest near the object UAV due to the symmetry.

Hence, the algorithm of collision avoidance can be
improved as Algorithm II.

Simulation and Discussion
In this section, the effectiveness of the proposed algorithms
is simulated and verified by MATLAB programs in several
scenarios. The first simulation illustrates a scenario in which
the own UAV has to avoid a potential mid-air collision with
an object UAV by solving the optimal control problem. The
necessity of using a feedback controller is shown clearly
in this example. In simulation II, the collision avoidance
problem is set in the normalized relative coordinate systems.
The own UAV has to avoid the object UAV by querying the

Algorithm II for Collision Avoidance with Relative
Coordinate and Normalization

1. Obtain the structural parameters of the UAV (m, I , l,
etc.), the planned route xp of the own UAV and the route
x̃ of the object UAV.
2. Calculate the initial distance Dn and the angle α.
3. Determine the number of collocation points N , the
minimum safety distance rn and the saturation of the input.
4. Establish the Optimal Control Problem (OCP) with the
cost function (4) subject to (1),(5) and (6) in the normalized
relative coordinate.
5. Transform the OCP into a nonlinear programming
problem (NLP) using pseudospectral method.
6. Find solution to the NLP by SCP.
7. Modify the control input ucl by the LQR controller.
8. Convert the trajectory of the normalized relative
coordinate to the actual coordinate.

offline calculation results. The effects of the initial distance
Dn and different direction angle α are also discussed in
this part. Finally, in simulation III, the proposed method is
generalized to solve the problem of collision avoidance for
multiple UAVs in a simple scenario.

In all the above simulation scenarios, the proposed
algorithm can successfully give the collision-free trajectories
of the UAVs. These trajectories can be precisely followed
by the UAVs in actual environment since the algorithm
has already taken the UAV dynamics into considerations
and the additional closed-loop feedback controller has been
introduced (as stated in the subsection ”Result Correction”).
Therefore, the simulation results here can basically reflect the
effectiveness of the proposed algorithm. The test under the
real environment will be carried out in our future research.

Simulation I: A Classical Collision Avoidance
Scenario

A classical scenario of collision avoidance is illustrated in
Figure 5 and some of the parameters of the UAVs used in
the simulation are listed in Table 1. It is easy to find out
in Figure 5 that there will be a potential mid-air collision
(the minimum distance between the two UAVs will be
smaller than r) if no avoiding maneuver is conducted. In our
simulation, the collision avoidance maneuvers are conducted
by only the own UAV, while the object UAV just maintains its
original trajectory. The collision-free trajectory is achieved
by solving the corresponding optimal control problem.

Table 1. The System Parameters in Simulation I

UAV Parameters Value

Mass (m) 1.2 kg
Gravity coefficient (g) 9.8 m/s2

Length (l) 0.2 m
Moment of Inertia (Ix) 2.353× 10−3 kg ·m2

Minimum Safety Distance (r) 25 m
Saturation of Input (U2) −0.1mg ≤ U2 ≤ 0.1mg

No. of the Collocation Points (N ) 41
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Figure 5. The plan view of the initial state in Simulation I. The
object UAV is located at (x̃0, ỹ0, z̃0) = (−120 m, 0, 30 m), and
the velocity of it is ( ˙̃x, ˙̃y, ˙̃z) = (3.536 m/s, 0, 0). The own UAV is
located at (x0, y0, z0) = (0,−90 m, 30 m) with the initial
velocity of (ẋ, ẏ, ż) = (0, 3.536 m/s, 0).

As described in the previous sections, the collision
avoidance problem can be formed into an optimal control
problem as following:

min J =
1

2

∫ 60

0

[
(10)x2(t) + U2

2 (t)
]
dt

s.t. ẍ = −φg
φ̈ = lU2/Ix

x(t)− x̃(t)‖2 ≥ 25 m
x(0) = x(60) = 30 m
− 0.1mg ≤ U2 ≤ 0.1mg

(18)

Note that only part of the equations in Equations (1) are
valid here because the own UAV is set to avoid the potential
collisions by moving sideways and the height and forward
speed of the UAV remain unchanged.

By solving the optimal control problem, the collision
avoidance process in this scenario is shown in Figure 6. The
own UAV avoids the mid-air collision successfully.

To verify if the achieved optimal collision-free trajectory
meets all the requirements, some further result is shown
in Figure 7. In the first graph of Figure 7, the blue curve
shows the movements of the own UAV in x-direction. It is
the spline interpolation of the optimal trajectory positions
at the orthogonal collocation points. The red curve is
obtained by applying the optimal input achieved by solving
the optimal control problem to the system directly in the
open-loop (simulated by applying the fourth-order Runge-
Kutta method). Obviously, it is unstable and deviates from
the optimal trajectory (the blue curve) after avoiding the
object UAV. Therefore, it is necessary to introduce the LQR
controller described in the subsection ”Result Correction”.
The closed-loop result is shown by green curve in Figure 7
and it tracks the blue curve much better than the red one. The
second graph in Figure 7 shows that the distance between the

two UAVs is larger than the minimum safety distance set at
all the collocation points.

In conclusion, this simulation shows that it is feasible to
solve the collision avoidance problem by using the optimal
control method. A nice optimal collision-free trajectory
for the own UAV can be achieved through the proposed
procedure.

It should also be pointed out that the necessity of
introducing the LQR controller has been shown in this
simulation. The control input got from the numerical
calculation should be further revised by a closed-loop control
system rather than applied to the UAV directly. This may due
to the inherent drawbacks (the accumulation of truncation
errors in computer simulation) of the pseudospectral method.

Simulation II: Using the Relative Coordinate and
Normalization
In this part, the relative coordinate and normalization
described in the third section are applied to simplified the
description of the collision avoidance scenarios. The own
UAV is set to avoid the potential collision avoidance by
changing the flight height in this part of the simulation.

Some of the parameters of the UAVs used in the simulation
are listed in Table 2.

Table 2. The System Parameters in Simulation II

UAV Parameters Value

Mass (m) 1.2 kg
Gravity coefficient (g) 9.8 m/s2

Minimum Safety Distance (rn) 5
Saturation of Input (U1) −mg ≤ U2 ≤ 0.5mg

N0. of the Collocation Points (N ) 25

First, the effect of different initial distance Dn and the
direction angle α to the resulting collision-free trajectory is
discussed here.

The Initial Distance Dn. In the normalized relative
coordinate, ten different initial distances Dn =
15, 14, 13, 12, 10, 9, 8, 7, 6, 5.5 are selected with respect
to the fixed minimum safety interval rn = 5, while α is
kept to be zero for simplicity. The resulting collision-free
trajectories are shown in Figure 8.

In Figure 8, all of the trajectories remain coincident with
the planned route near the beginning and end of the collision
avoidance (maintaining horizontal linear motion) and move
downwards to avoid the conflicts as they approach the object
UAV. Besides, the smaller the initial distance is, the larger
the overshoot of the trajectory will be.

Moreover, it is clearly shown in Figure 9 that, from Dn =
15 to Dn = 5.5, the smaller the initial distance DN is, the
larger the change of the control input U1 will be. When the
initial distance is very close to the minimum safety interval
(for example, Dn = 5.5 in Figure 9 ), the maximum of
the corresponding control input is approaching its saturation
value, which does not meet our expectation for optimizing
the control input.

Therefore, in a realistic collision avoidance scenario, it is
reasonable to set the value of the initial distance Dn to about
1.5 to 3 times the minimum safety distance rn. When the
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Figure 6. The collision avoidance process for Simulation I. The location and the trajectories of both the own UAV and the object
UAV are shown in this figure at 8 different time points (t = 5s, 24s, 28s, 30s, 32s, 34s, 45s and 60s). The distance between the two
UAVs is indicated by a dashed line and the value is marked.

Figure 7. Verification of the result in Simulation I. The upper
part shows the movements of the own UAV in x-direction. It is
clear that the closed-loop trajectory follow the optimal
collision-free trajectory much better than the open-loop
trajectory. Therefore, it is necessary to introduce the feedback
controller. The second graph shows that the minimum distance
between the two UAVs is 25 m, which meets the requirement.

distance between the two UAVs is greater than that value,
the own UAV can maintain its original flight state. The own
UAV starts the collision avoidance operation according to the
planned trajectory until Dn reaches the set value.

The Direction Angle α. In the normalized relative
coordinate, ten uniformly distributed angles were selected
within the domain with respect to the fixed minimum safety
interval rn = 5. (Dn is set to three times the rn.) The
resulting collision-free trajectories are shown in Figure 10.

In Figure 10, when the angle α increases from 0 to
arcsin rn/Dn, the deviation of the resulting collision-
free trajectory to the planned route becomes smaller. The
essential reason for this phenomenon is that as the angle
α increases, the distance between the object UAV and the
closest point of approach of the own UAV becomes larger.
When α = arcsin rn/Dn, the planned route is tangent to the
protected area, and the resulting trajectory is a straight line
coinciding with the planned route.

Furthermore, it is worth noting that if more different
values of angle α are selected, more collision-free optimal
trajectories will be achieved. These trajectory curves can
form a surface in a three-dimension area (as shown in Figure
11).

It can be shown that any point on this surface satisfies
the safety distance constraint. Therefore, with the surface
in Figure 11, the collision-free trajectories correspond to
any other different angle α can be directly achieved by
interpolation on the surface. Although the trajectory achieved
by interpolation may not be optimal, it is acceptable. And
the more optimal collision-free trajectories used to obtain
the surface, the smaller the deviation between the collision-
free trajectory obtained by interpolation and the optimal non-
collision trajectory for certain angle α.

The Collision-free Trajectory Generated by Using Offline
Results. Consider the collision avoidance scenario in
”Simulation I” again. This time, we redefine this collision
avoidance scene in the normalized relative coordinate
system, and try to obtain the collision-free trajectory by
querying (interpolating) the offline collision-free trajectory
that has been calculated in the previous two steps.

It can be easily got from Figure 5 that the relative speed
between the two UAVs is ‖vr‖ = 5 m/s. In the normalized
relative coordinate, the angle between the relative velocity
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Figure 8. The collision-free trajectories with different initial distances (Dn = 15, 14, 13, 12, 10, 9, 8, 7, 6, 5.5) in the normalized
relative coordinate.

Figure 9. The corresponding control inputs to the collision-free
trajectories with different initial distances (Dn = 15, 8, 5.5). It is
clear that control input is approaching its saturation when the
initial distance Dn = 5.5.

and the negative x-axis is α = 8.13o. The minimum safety
interval is rn = 5 and the initial distance Dn = 30.

Therefore, we can use the collision-free trajectories of
Dn = 3, α = 6.49o andDn = 3, α = 8.65o shown in Figure
10 to generate the collision-free trajectory of Dn = 3, α =
8.13o, and then extend both ends of this trajectory with a
horizontal straight line until the distance from its initial point
and end point to the object UAV satisfies Dn = 30. The
resulting trajectory is shown in Figure 12 and it is collision-
free with the object UAV.

Simulation III: Collision Avoidance with Multiple
UAVs
In this simulation, a collision avoidance problem among
multiple UAVs is solved by the proposed method. The
scenario is illustrated in Figure 13. Four identical UAVs
are involved in this scenario and their initial and terminal
positions are given in Table 3. All the 4 UAVs have a speed of
5 m/s and point directly to their terminal position. They need
to avoid the potential collisions with each other by changing
the flight height.

To be noticed, we do not want to solve the optimal control
problem directly online to get the collision-free trajectories
in this simulation. Instead, some collision-free trajectories
for certain ”Dn - α” pairs have already calculated offline.
As shown in Figure 14, Dn of the pre-planned trajectories
is chosen to be 10, which is suitable according to the

Table 3. The original and terminal position of the UAVs in
Simulation III

UAV The original position The terminal position

UAV1 (0,150m) (150m,0)
UAV2 (0,100m) (150m,150m)
UAV3 (0,50m) (150m,50m)
UAV4 (0,0) (150m,100m)

∗All the 4 UAVs are in the same height at the initial and terminal time.

conclusion achieved in the former simulation. Three different
angles α = 5o, 100, 15o are uniformly selected, which can
roughly cover the entire feasible domain. The collision-free
trajectories for the UAVs in the scene are then achieved by
interpolating these pre-planned trajectories. This setting is
made to illustrate that the pre-planned trajectory calculated
offline strategy can provide the UAVs with collision-free
trajectories during the real-time flight of the UAVs, thereby
avoiding the case that the corresponding optimal control
problem cannot be solved online.

Besides, priorities are usually set in the multi-UAVs
collision avoidance scenarios. In this simulation, UAV1 has
the highest priority, followed by UAV2 and UAV3, and UAV4
has the lowest priority. Set the minimum safety interval to be
rn = 5.

In Figure 13, it seems that there will be 4 potential mid-air
collisions to be avoided (namely, the collision between UAV1
and UAV2, UAV1 and UAV3, UAV1 and UAV4 and UAV3
and UAV4). There are no collision risks between UAV2 and
UAV3 and between UAV2 and UAV4. However, by applying
the proposed algorithm, the relative velocity vr together
with the initial distance Dn and direction angle α can be
quickly calculated. They are listed in Table 4. According
to the variable domain stated in the second section, only
the UAV pairs ”UAV1 & UAV2” and ”UAV1 & UAV4”
are going to have potential collisions. Since UAV 1 has the
highest priority, only the collision-free trajectories of UAV2
and UAV4 need to be re-planned. UAV1 and UAV3 can just
fly as planned.

Therefore, the collision-free trajectory of UAV2 can be
achieved by interpolating the trajectories of ”Dn = 10 -
α = 10◦” and ”Dn = 10 - α = 15◦”, while the collision-
free trajectory of UAV4 can be achieved by interpolating
the trajectories of ”Dn = 10 - α = 5◦” and ”Dn = 10 -
α = 10◦”. The corresponding collision-free trajectories for
the four UAVs are shown in Figure 15.

Figure 16 is used to check if the distances between each
two UAVs really satisfy the minimum safety interval. It
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Figure 10. The collision-free trajectories of different angle α. The initial position of the own UAV is located at (15, 0, 0), and 10
different α are chosen (as shown in the lower left part of the figure.). The upper-left part of the figure shows the collision-free
trajectories in 3D space. The change of the vertical height of the own UAV over time is shown in the upper right part of the figure.

Table 4. Analysis of the scenario in Simulation III

UAV pairs vr (m/s) Dn α arcsin(rn/Dn) Notes

UAV1 & UAV2 4.21 11.89 13.28◦ 24.87◦ potential collision
UAV1 & UAV3 3.06 32.66 22.50◦ 8.81◦ no collision
UAV1 & UAV4 5.07 9.86 5.65◦ 9.73◦ potential collision
UAV2 & UAV3 > 90◦ no collision
UAV2 & UAV4 1.06 94.17 −26.06◦ 3.04◦ no collision
UAV3 & UAV4 2.32 21.57 −16.85◦ 13.40◦ no collision

∗α should satisfy |α| < arcsin(rn/Dn) to have a potential collision.

Figure 11. The surface formed by the collision-free trajectories
of different angle α. It is clear that all the points on this surface
satisfy the minimum distance interval with the object UAV.

shows that the planned trajectories for each UAV satisfy the
requirements.

Although the scenario of this problem is relatively simple,
this simulation gives an example of applying the proposed
method to solve a collision avoidance problem among
multiple UAVs. It shows that for multiple UAV collision
avoidance problem which can be decomposed into several
2 UAV collision avoidance problem, the proposed method
can give a lot of convenience in both judging whether there
will be potential collisions and giving the corresponding
collision-free trajectory quickly online. For real application

Figure 12. The collision-free trajectory for the own UAV in the
scenario in Simulation I. The own UAV avoids the potential
collision by changing its flight height. The trajectory is achieved
by querying the offline result in Figure 10 rather than solving the
optimal control problem again.

with more complex scenario, the proposed method needs
some further improvements.

Conclusion
In this paper, optimal control method is applied to solve
the problem of trajectory planning with mid-air collision
avoidance for quadrotor UAVs. A feedback controller is
applied to eliminate the accumulate error generated by the
use of pseudospectral method. Furthermore, the introduction
of the normalized relative coordinate system enables the
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Figure 13. This is the plan view of the collision avoidance
scenario in Simulation III. 4 identical UAVs are lined up on the
y-axis and plan to fly straight to the target position on the line
x = 200.

Figure 14. These are 3 offline pre-planned trajectories for
Simulation III. Dn is set to be 10 and three different angles
α = 5o, 100, 15o are chosen.

Figure 15. The collision-free trajectories of Simulation III. UAV2
and UAV4 changes their altitude to avoid the potential collisions
with UAV1.

UAV to obtain collision-free trajectories more efficiently.
The future work of this research includes the application of
the proposed method to more complex collision avoidance
scenario between multiple UAVs.

Figure 16. The distance between any two UAVs meets the
minimum safety distance constraint.
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