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Hybrid Nonlinear Passivity-based Control Approach to 

Magnetic-Impulsive Spacecraft Attitude Regulation 

Esmaeil Sharifi* and Christopher J. Damaren† 

University of Toronto, Toronto, Ontario M3H 5T6, Canada 

This paper proposes two novel passivity-based control design frameworks for hybrid 

nonlinear time-varying dynamical systems involving an interacting amalgam of continuous-

time and discrete-time dynamics whose dynamical properties evolve periodically over time. 

In this regard, the hybrid Kalman-Yakubovich-Popov (KYP) conditions are employed in 

tandem with the passivity theorem to construct a three-step control design algorithm to 

render closed-loop dynamics stable. The proposed control architectures are subsequently 

exploited to regulate the attitude motion of spacecraft with magnetic and impulsive modes of 

operation. Practical considerations involved in implementing the proposed hybrid 

algorithms are then discussed in detail. Simulation results show significant improvement in 

the performance of the attitude control system in terms of system response, robustness, and 

the required magnetic and impulsive control usage as compared to a hybrid linear approach. 

Nomenclature 

 = nonlinear passivity-based gain vector        = vector part of quaternions 

P  = linear passivity-based gain matrix         = scalar part of quaternions 

 = linear strict passivity-based gain matrix       = basis functions 

  = Riccati gain matrix             = angular velocity vector, rad/s 

I. Introduction 

YBRID dynamical systems, as an emerging discipline within dynamical systems theory and control, comprise 

an interacting collection of dynamical systems involving a mixture of continuous-time and discrete-time dynamics. 

Possessing heterogeneous dynamics, the evolutions of which occur both continuously (flow) and discontinuously 
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(jump) on appropriate manifolds over time, hybrid dynamical systems consist of three main elements: a continuous-

time set of differential equations, which characterizes the motion of the dynamical system between impulsive 

events; a set of difference equations, which governs instantaneous changes in the states of the system when an 

impulse occurs; and a criterion to determine when impulses are to be applied (i.e. when the states of the system are 

to be reset) [1]. 

Motivated by applications of systems whose dynamical properties evolve over time, while simultaneously 

interacting with their surrounding environments, this paper proposes novel passivity-based control design 

architectures for hybrid nonlinear time-varying dynamical systems. The proposed hybrid control schemes are 

subsequently utilized to regulate the attitude motion of spacecraft under a hybrid source of actuation. The notion of 

passivity provides a fundamental framework for the analysis and control design of dynamical systems via exerting a 

constraint on the amount of energy they exchange through their input-output ports. The origin of this concept can be 

traced back to development in the linear passive network theory in the 1950s [2] and, specifically, the stability 

analysis of feedback systems through positive real matrices in the 1960s [3-5]. Nevertheless, the first general input-

output energy-based system description was proposed by J. Willems in 1972 via introducing the dissipativity theory 

for linear dynamical systems [6, 7]. This pioneering work was then followed by characterizing dissipativeness in an 

input-output sense for a large class of nonlinear systems [8-10]. Providing a generalized interpretation of energy 

balance in terms of the stored energy and the dissipated energy over heterogeneous dynamics, the dissipativity 

theory was then generalized to hybrid nonlinear time-invariant dynamical systems with an interacting mixture of 

continuous-time and discrete-time dynamics in Ref. [11].  

Although the control theory for hybrid nonlinear dissipative dynamical systems is well-developed (See Ref. [1] 

and references therein), there have been no applications due primary to a lack of efficient numerical schemes for 

dealing effectively with such systems. This paper aims to bridge the gap between theory and practice by developing 

two novel passivity-based control design frameworks for hybrid nonlinear time-varying dynamical systems 

involving an interacting amalgam of continuous-time and discrete-time dynamics whose dynamical properties 

evolve periodically over time. In this regard, the Kalman-Yakubovich-Popov (KYP) conditions characterizing 

dissipativity properties for hybrid nonlinear time-varying dynamical systems and the passivity theorem (Refer to 

Ref. [2] for the original form and to Ref. [12] for the extended hybrid version) are collaboratively utilized to develop 

a three-step control design algorithm. To accord with the passivity theorem, which necessitates interconnecting a 

passive plant with an input strictly passive controller through negative feedback to yield a stable closed-loop system, 
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the hybrid output of the plant is first determined judiciously to satisfy the passivity specifications via the 

corresponding KYP conditions. A hybrid nonlinear controller, which separately adopts compensators of static and 

dynamic structures, is then designed to meet the strict passivity requirements. The stability of the closed-loop system 

is consequently established by a negative feedback interconnection of the (passive) plant and the (input strictly 

passive) controller. The proposed hybrid control algorithms are ultimately exploited to regulate the attitude motion 

of spacecraft, the rotational kinematics and dynamics of which form a dynamical system of a highly nonlinear 

nature, with two modes of operation, namely magnetic actuation and impulsive thrusts. 

Magnetic actuation originating from the interaction between the onboard electromagnetic dipole moments and 

the Earth’s magnetic field is essentially based upon simple principles of physics: a planar loop of area with

turns of wire carrying a current of produces a magnetic dipole moment of magnitude in the direction normal 

to the plane of the loop satisfying a right-hand rule; when the magnetic dipole moment generated onboard via 

current-carrying coils of wire is immersed in the geomagnetic field, a magnetic torque is consequently produced in 

the direction (plane) orthogonal to the Earth’s magnetic field [13-15]. The resultant magnetic torque can therefore be 

used as an actuation mechanism for detumbling of spacecraft [16] and momentum dumping of reaction wheels [17]. 

A survey of control design techniques developed for magnetic spacecraft attitude control can be found in Ref. [18]. 

Magnetic attitude control systems benefit from several advantages for near-Earth missions; including an 

essentially unlimited mission life due to use of a renewable source of actuation, the absence of catastrophic failure 

modes, the smoothness of application, and significant savings in the overall weight and complexity of the system 

owing to the absence of moving parts [14-16]. On the other hand, magnetically actuated control systems suffer 

inherently from instantaneous underactuation stemming from orthogonality of the magnetic control torque to the 

instantaneous direction of the Earth’s magnetic field (due to the cross product between the magnetic dipole moment 

vector and the magnetic field vector from which magnetic actuation originates). Controllability in such systems, 

therefore, depends on orbit characteristics and the location of spacecraft in the orbit [14, 15]. Furthermore, the time-

varying nature of the magnetic actuation mechanism, which arises from the variations of the Earth’s magnetic field 

along the spacecraft orbit, effectively gives rise to time-varying control gains. Stability considerations impose 

limitations on the size of these gains which ultimately limits the performance of the closed-loop system [19]. As 

another disadvantage, magnetic actuators only offer slow attitude maneuvers and stabilization which, in turn, 

restricts their range of application [14]. 
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To resolve these drawbacks, which pertain inherently to magnetic actuation, magnetic attitude controllers have 

been employed in conjunction with additional attitude stabilization mechanisms, from passive to active. Spin 

stabilization [20], dual-spin stabilization [21], and gravity-gradient stabilization [22] describe techniques of a 

passive nature used collaboratively to support magnetic actuation; whereas reaction wheels [23, 24] and thrusters 

[12, 25, 26] present common mechanisms to actively complement magnetic control. Collaborative application of 

magnetic and mechanical actuation has also been used in practice to rescue spacecraft in orbit after hardware failures 

in their attitude control systems. For instance, after an unforeseen occurrence of uncontrollability in the pitch axis of 

RADARSAT-1 due to failure in its primary and secondary pitch axis wheels, three-axis control was restored through 

utilizing magnetic actuation in tandem with reaction wheels [27]. 

In this paper, impulsive thrusting is employed as an auxiliary actuation mechanism to collaboratively augment 

magnetic actuation in order to, amongst other objectives, improve the performance of the attitude control system. 

Aiming to design an attitude controller with enhanced capabilities in terms of operating range, gain margin, and 

robustness for the resultant hybrid time-varying dynamical system, a nonlinear passivity-based control approach is 

then adopted to attain the main objective, that is, to regulate the attitude motion of spacecraft subject to gravity-

gradient disturbances and residual magnetic dipole moments resulting from onboard electronics. By making use of 

the control scheme proposed in this research work, not only are the aforementioned inherent drawbacks involved in 

magnetically actuated dynamical systems effectively resolved, but the feedback attitude controller required to 

stabilize the spacecraft attitude control system is also synthesized by considering the full nonlinear kinematics and 

dynamics of the system. No linearization is involved, neither dynamic feedback linearization nor a priori 

linearization of the rotational equations of motion. Therefore, the attitude control system equipped with a nonlinear 

controller is no longer restricted to operate in the vicinity of the equilibrium and can be exploited over the entire 

operating range of the system. This, in consequence, reduces the complexity and cost of the system, while 

simultaneously increasing the functional performance. Moreover, due to utilizing a passivity-based control 

approach, the resultant attitude control system is expected to exhibit enhanced robustness properties. 

This paper is organized as follows. The preliminary definitions and main theorems associated with hybrid 

nonlinear dissipative dynamical systems are presented in Sec. II. Two novel passivity-based control design 

frameworks are then developed for hybrid nonlinear time-varying dynamical systems in Sec. III. The kinematic and 

dynamic equations of motion characterizing the cascade nature of the spacecraft attitude motion are then reviewed in 

Sec. IV. Section V describes practical considerations involved in implementing the proposed hybrid control 
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algorithms. The control algorithms developed in Sec. III are ultimately utilized to regulate the attitude motion of 

spacecraft with magnetic and impulsive modes of operations in Sec. VI. 

II. Hybrid Nonlinear Dissipative Dynamical Systems 

This section aims to provide a sound base from which the desired passivity-based control design frameworks are 

developed for hybrid nonlinear dynamical systems whose dynamical properties evolve over time. Consider a hybrid 

dynamical system modeled by nonlinear equations of the form: 

 
0( ) ( , ) ( , ) ( ) , ( )ct ct ct kt t t t t t= + = 0x f x g x u x x  (1) 

 ( ) ( , ) ( , ) ( )ct ct ct ct kt t t t t t= + y h x j x u  (2) 

 ( , ) ( , ) ( )k ds k ds k ds kt t t t t+ − −= + =x f x g x u  (3) 

 ( ) ( , ) ( , ) ( )ds ds k ds k ds kt t t t t t− −= + =y h x j x u  (4) 

where 0t  , n x is the state vector, specifies an open set with 0 defined as the state space of interest,

: n

ct  →f is Lipschitz continuous on , : ctn m

ct


 →g , ctm

ct ct u U denotes the continuous-time 

control input, ctq

ct ct y Y is the continuous-time output, : ctq

ct  →h , : ct ctq m

ct


 →j ,

kt indicates the 

time instants at which impulses are applied with  
0 f( , ) 0 f:t t kk k t t t   , ( )k kt

− −
x x and ( )k kt

+ +
x x denote the 

state vector immediately before and after discrete-time dynamics are excited at
kt t= respectively, : n

ds  →f

is continuous on , : dsn m

ds


 →g , dsm

ds ds u U specifies the discrete-time control input, dsq

ds ds y Y

is the discrete-time output, : dsq

ds  →h , and : ds dsq m

ds


 →j . Note that the subscripts “ct” and “ds” 

refer to the quantities in the continuous-time and discrete-time subsystems, respectively. 

A. Preliminary Definitions 

Presenting the key definitions relevant to dissipativeness, this section paves the way for developing the KYP 

conditions in question for hybrid nonlinear time-varying dynamical systems as follows. 

Definition 1: For the hybrid dynamical system given by Eqs. (1)-(4), a function ( )( , ), ( , )ct ct ct ds ds dsS Su y u y , 

where :ct ct ctS  →U Y and :ds ds dsS  →U Y are such that ( , ) = 0ctS 0 0 and ( , ) = 0dsS 0 0 , is called a hybrid supply 
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rate if, for all input-output pairs ( , ) ( , )ct ct ct ctu y U Y and ( , ) ( , )ds ds ds dsu y U Y satisfying Eqs. (1)-(4) and for

 
1 2( , ) 1 2: kk k t      , ( , )ct ct ctS u y and ( , )ds ds dsS u y benefit from the following properties [1]: 

 ( )
2

1
1 2( ), ( ) , 0ct ct ctS t t dt




     u y  (5) 

 ( )
( , )1 2

( ), ( )ds ds k ds kk
S t t

 
  u y  (6) 

Definition 2: The hybrid dynamical system with
ct ctm q= ,

ds dsm q= , and
0( )t = 0x is passive if for all

0t   

 
( , )00

T T( ) ( ) ( ) ( ) 0
t

ct ct ds k ds kkt
t t dt t t






+  y u y u  (7) 

Definition 3: The hybrid dynamical system with
ct ctm q= ,

ds dsm q= , and
0( )t = 0x is input strictly passive if 

there exist 0ct  and 0ds  such that for all
0t   

 
( , ) ( , )0 00 0

T T T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

ct ct ds k ds k ct ct ct ds ds k ds kk kt t
t t dt t t t t dt t t

 

 

 
 

+  +  y u y u u u u u  (8) 

 Definition 4: Consider the hybrid dynamical system with the hybrid supply rate ( )( , ), ( , )ct ct ct ds ds dsS Su y u y . A 

continuous positive semi-definite function :V  → satisfying ( , ) 0V t =0 for all t and 

 ( ) ( ) ( ) ( )
( , )00

0 0( ), ( ) ( ), ( ) ( ), ( ),
t

ct ct ct ds ds k ds kkt
S t t dt S t t V V t t





 


+  − u y u y x x  (9) 

is called a storage function for , wherein ( )tx for
0t   is a solution to Eqs. (1)-(4) with ( , )ct ds ct ds u u U U  [1]. 

 Definition 5: The 
2L  and 

2l  spaces are, respectively, defined as the space of all square-integrable continuous-

time and square-summable discrete-time vector functions as  T

2
0

( ) ( ) ( )dct ct ct ctt t t t


  u U u uL  and 

 T

2 1
( ) ( ) ( )ds k ds ds k ds kk
t t t



=
  l u U u u , where k +  [1].  

 Definition 6: The continuous-time system ct ct ct=y u , with ctm

ct ct u U as the control input and 

ctq

ct ct y Y  as the output, is Input-Output
2L stable if having 

2ct u L  implies 
2ct y L  as well. Similarly, the 

discrete-time system
ds ds ds=y u with dsm

ds ds u U as the control input and dsq

ds ds y Y as the output is Input-

Output
2l stable if having 

2ds lu  implies 
2ds ly as well [1].  
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The required tools are now in place to derive the KYP conditions for hybrid nonlinear time-varying dynamical 

systems. This objective is attained in the next section. 

B. Hybrid Nonlinear Time-varying KYP Conditions 

This section serves to characterize passivity and input strict passivity, as specific cases of dissipativity, for the 

hybrid dynamical system in terms of system functions and the storage function ( , )V tx via the KYP conditions. 

The results developed in this section will assume considerable significance in Sec. III to design the hybrid nonlinear 

passivity-based control schemes in question. 

Theorem 1: Consider the hybrid dynamical system with
ct ctm q= ,

ds dsm q= , n= , ctm

ct =U , ctq

ct =Y ,

dsm

ds =U , and dsq

ds =Y . Furthermore, assume that the dynamical properties of the system in question evolve 

periodically over time. If there exist functions : nV  → , : ctpn

ct  →l , : dspn

ds  →l ,

: ct ctp mn

ct


 →w , and : ds dsp mn

ds


 →w such that: (I) ( , )V tx is continuously differentiable and positive 

definite, (II) ( , ) 0V t =0 , (III) the storage function in the jump manifold is structurally constrained to conform to 

 
T

2

T T

T

( , ) ( , )

( , ) ( , )1
( , ) ( ) ( ) ( )

2

k k ds ds ds k

ds k ds k

ds k ds ds k ds k ds ds ds k

V t V t

V t V t
V t t t t

+ + +

+ +

+

= +

  
= + + 

   

x f g u

f f
f g u u g g u

x x x

 (10) 

for all
nx and dsm

ds u , and (IV) continuous-time and discrete-time equations of the form 

 

T

T( , ) ( , )
( , ) ( , ) ( , ) 0ct ct ct

V t V t
t t t

t

  
+ + = 

  

x x
f x l x l x

x
 (11) 

 

T

T T1 ( , )
( , ) ( , ) ( , ) ( , )

2
ct ct ct ct

V t
t t t t

 
− + = 

 
0

x
g x h x l x w x

x
 (12) 

 T T2 ( , ) ( , ) ( , ) ( , )
ct ctct m m ct ct ct ctt t t t − + + − =1 0j x j x w x w x  (13) 

 T( , ) ( , ) ( , ) ( , ) 0ds k k k ds k k ds k kV t V t t t+ − −− + =f x l x l x  (14) 

 

T

T T( , )1
( , ) ( , ) ( , )

2

ds k

ds ds k k ds k k ds k k

V t
t t t

+ 
− + = 

 
0

f
g h x l x w x

x
 (15) 

 
2

T T T

T

( , )1
2 ( , ) ( , ) ( , ) ( , )

2ds ds

ds k

ds m m ds k k ds k k ds ds ds k k ds k k

V t
t t t t

+




− + + − − =

 
1 0

f
j x j x g g w x w x

x x
 (16) 
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are fulfilled for 0ct  , 0ds  , and all nx (wherein 1  denotes the identity matrix); the hybrid dynamical system

is then passive if 0ct ds =  , and is input strictly passive if 0ct  and 0ds  . 

Proof: Refer to [28]. 

C. Hybrid Linear Time-varying KYP Conditions 

In this section, the KYP conditions developed in the preceding section are specialized to hybrid linear dynamical 

systems. The resultant linear passivity-related and strict passivity-related KYP conditions can be employed to derive 

the linear equivalences of the hybrid nonlinear passivity-based control architectures being proposed. Defining

eq =x  as desired operating points for the linearization, the hybrid nonlinear dynamical system represented by Eqs. 

(1)-(4) can be linearized as below: 

 
0( ) ( ) ( ) ( ) , ( )ct ct ct kt t t t t t= + = 0x A x B u x x  (17) 

 ( ) ( ) ( ) ( )ct ct ct ct kt t t t t t= + y C x D u  (18) 

 ( ) ( ) ( )k ds k ds ds kt t t t t+ −= + =x A x B u  (19) 

 ( ) ( ) ( ) ( )ds ds k ds ds kt t t t t t−= + =y C x D u  (20) 

where ( )
eq

n n

ct ct



=
= J x x x

A f , ct

eq

n m

ct ct



=
= 

x x
B g , ( ) ct

eq

q n

ct ct



=
= J

x x x
C h , ct ct

eq

q m

ct ct



=
= 

x x
D j ,

( )
eq

n n

ds ds



=
= J x x x

A f , ds

eq

n m

ds ds



=
= 

x x
B g , ( ) ds

eq

q n

ds ds



=
= J

x x x
C h , and ds ds

eq

q m

ds ds



=
= 

x x
D j define the 

system matrices associated with continuous-time and discrete-time subsystems, and J x
denotes the Jacobian matrix 

with respect to x . The KYP conditions characterizing passivity and input strict passivity for hybrid linear dynamical 

systems can now be presented as follows. 

Corollary 1: Consider the linearized hybrid system described by Eqs. (17)-(20) with
ct ctm q= and

ds dsm q= . 

Furthermore, assume the dynamical properties of the system being considered evolve periodically over time. If there 

exist matrices T= n n  0P P (referred to as the linear passivity-based gain matrix), ctp n

ct


L , ct ctp m

ct


W ,

dsp n

ds


L , and ds dsp m

ds


W such that continuous-time and discrete-time equations of the form 

 T T( ) ( ) ( ) ( ) ( ) ( ) ( )ct ct ct ctt t t t t t t+ + + = 0P A P P A L L  (21) 

 T T( ) ( ) ( ) ( ) ( )ct ct ct ctt t t t t− + = 0P B C L W  (22) 
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 T T( ) ( ) ( ) ( )ct ct ct ctt t t t+ − = 0D D W W  (23) 

 T T( ) ( ) ( ) ( ) ( ) ( )ds k k ds k k ds k ds kt t t t t t+ −− + = 0A P A P L L  (24) 

 T T T( ) ( ) ( ) ( ) ( ) ( )ds k k ds k ds k ds k ds kt t t t t t+ − + = 0A P B C L W  (25) 

 T T T( ) ( ) ( ) ( ) ( ) ( ) ( )ds k ds k ds k k ds k ds k ds kt t t t t t t++ − − = 0D D B P B W W  (26) 

are fulfilled for all nx ; the linearized hybrid system is then passive. 

Proof: The result is a direct consequence of theorem 1 by setting 0ct = , 0ds = , T( , ) ( )V t t=x x P x ,
ct ct=f A x ,

ct ct=g B ,
ct ct=h C x ,

ct ct=j D ,
ds ds k

−=f A x ,
ds ds=g B ,

ds ds k

−=h C x ,
ds ds=j D ,

ct ct=l L x ,
ct ct=w W ,

ds ds=l L x , and

ds ds=w W . 

Corollary 2: Consider the linearized hybrid system given by Eqs. (17)-(20) with
ct ctm q= and

ds dsm q= . If there 

exist matrices
T= n n  0 (referred to as the linear strict passivity-based gain matrix), ctp n

ct


 ,

ct ctp m

ct


 , dsp n

ds


 , and ds dsp m

ds


  such that continuous-time and discrete-time equations of the form 

 
T T( ) ( ) ( ) ( ) ( ) ( ) ( )ct ct ct ctt t t t t t t+ + + = 0A A  (27) 

 T T( ) ( ) ( ) ( ) ( )ct ct ct ctt t t t t− + = 0B C  (28) 

 T T2 ( ) ( ) ( ) ( )
ct ctct m m ct ct ct ctt t t t − + + − =1 0D D  (29) 

 T T( ) ( ) ( ) ( ) ( ) ( )ds k k ds k k ds k ds kt t t t t t+ −− + = 0A A  (30) 

 T T T( ) ( ) ( ) ( ) ( ) ( )ds k k ds k ds k ds k ds kt t t t t t+ − + = 0A B C  (31) 

 T T T2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
ds dsds m m ds k ds k ds k k ds k ds k ds kt t t t t t t +

− + + − − =1 0D D B B  (32) 

are met for 0ct  , 0ds  , and all nx ; the linearized hybrid system is then input strictly passive. 

Proof: The result is a direct consequence of theorem 1 by setting 0ct  , 0ds  , T( , ) ( )V t t=x x x ,
ct ct=f A x ,

ct ct=g B ,
ct ct=h C x ,

ct ct=j D ,
ds ds k

−=f A x ,
ds ds=g B ,

ds ds k

−=h C x ,
ds ds=j D ,

ct ct=l x ,
ct ct=w ,

ds ds=l x , and

ds ds=w .  

D. Feedback Interconnection of Hybrid Dissipative Systems 

Placing the passivity theorem as a solid foundation, this section aims to discuss the feedback interconnection of 

hybrid dissipative dynamical systems so as to construct stable closed-loop dynamics. In accordance with the 
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passivity theorem, the negative feedback interconnection of a passive system and an input strictly passive system is 

input-output stable. Figure 1 shows a schematic representation of a closed-loop system established by the negative 

feedback interconnection of a hybrid plant and a hybrid controller wherein ( , )ct dsd d denotes hybrid external 

disturbances;
,( , )ct ds ku u is the hybrid input of the plant to be controlled wherein ( ), ( ),ds k ds k kt tu u x ;

,( , )ct ds ku u

represents the hybrid input of the controller with ( ), ( ),ds k ds k kt tu u x , which is equal to the hybrid output of the 

plant
,( , )ct ds ky y where ( ), ( ),ds k ds k kt ty y x ; and

,( , )ct ds ky y specifies the hybrid output of the controller with

( ), ( ),ds k ds k kt ty y x . In view of the passivity theorem, three essential ingredients can therefore be combined to 

accomplish the main objective of constructing stable closed-loop dynamics: a passive plant, an input strictly passive 

controller, and a negative feedback interconnection between the resultant plant and controller. 

 

Fig. 1. Schematic representation of closed-loop system composed of hybrid plant and hybrid controller  

 

III. Passivity-based Control Approach 

The results presented in Secs. II.B (theorem 1) and II.C (corollary 2) are employed in this section to develop two 

passivity-based control design frameworks for nonlinear systems with heterogeneous dynamics whose dynamical 

properties evolve over time. In both architectures, a three-step control design procedure based upon the passivity 

theorem is followed to attain the main objective, that is, to render the closed-loop system stable. In this regard, the 

hybrid output dynamics of the plant are first determined in a judicious manner to fulfill the passivity specifications 

through the passivity-related KYP conditions given by Eqs. (11)-(16) with 0ct ds =  . By utilizing compensators 

of static and dynamic structures, a hybrid controller, the input of which is directly fed by the plant’s output, is then 

designed to meet the input strict passivity requirements via the KYP conditions associated with strict passivity. The 

input-output stability of the closed-loop system is finally established by a negative feedback interconnection 

between the (passive) plant and the (input strictly passive) controller (See Fig. 1). 
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To pursue the main objective, Eqs. (11) and (14) must first be solved simultaneously for ( , )V tx in an interacting 

manner. The hybrid output of the plant can then be determined in terms of ( , )V tx through the remaining conditions. 

These equations are, however, difficult to solve in general, thereby necessitating approximation techniques. Two 

numerical methods are therefore employed in the following sections to approximate Eqs. (11) and (14). The 

Galerkin spectral method [29] is utilized in Sec. III.A to approximate the storage function involved in the differential 

passivity-related KYP equation [Eq. (11)], thereby computing the passivity-based control gains between impulsive 

events. By making use of the spectral collocation method [30], the difference passivity-related KYP equation [Eq. 

(14)] is then approximated in Sec. III.B to find the passivity-based control gain vector at impulsive instants. 

A. Numerical Solution to Passivity-related KYPct Conditions 

Applying the Galerkin spectral method to the differential passivity-related KYP condition, a set of differential 

equations is derived in this section to compute the passivity-based control gains between impulsive instants. These 

time-varying coefficients are subsequently used to construct the continuous-time output of interest for the plant. The 

basic idea underlying Galerkin’s spectral approach is to assume that the solution to Eq. (11) can be expressed as an 

infinite sum of known basis functions. In addition, in order for the Galerkin method to be applicable, the problem 

must be placed in a suitable inner product space such that the projection is well-defined in terms of n-dimensional 

integrations [29]. The approximation is thus restricted to a closed and bounded set in , namely a compact set , 

which defines the bounded domain of the state space of interest. Therefore, it is first assumed that the storage 

function involved in Eq. (11) can be discretized by an infinite series of prescribed state-dependent basis functions, 

which are continuous and defined everywhere on , and unknown coefficients with time-dependency as below: 

 
1

( , ) : ( ) ( )j j

j

V t c t 


=

=x x  (33) 

Nevertheless, from a practical perspective, using an infinite number of terms in the discretization is impossible; 

the approximation process for ( , )V tx is therefore carried one step further by considering a truncated version of the 

infinite series (i.e. the first N terms): 

 T

1

( , ) : ( ) ( ) ( ) ( )
N

N j j N N

j

V t c t t
=

= =x x x  (34) 
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wherein  
T

1( ) ,...,N N =x represents a prescribed state-dependent set of basis functions,  
T

1( ) ,...,N Nt c c=

specifies the corresponding collection of unknown time-dependent coefficients, and N denotes the number of basis 

elements, i.e. the order of approximation. The approximation sequence then proceeds with substituting (34) into Eq. 

(11) which, in turn, leads to an error function due primarily to approximating the storage function with ( , )NV tx . 

Following the Galerkin spectral method, the unknown coefficients, ( )N t , are therefore determined such that the 

resulting error is minimized. To this end, the error function is projected onto the same basis functions retained in the 

truncated series (i.e. the linear finite basis spanned by 
1

N

j ) and the outcome is set equal to zero in order to obtain 

N simultaneous equations in N unknowns: 

 
1

KYP ( ) ( ) , ( )
N

ct j j N
Passivity j

c t 
=

 
= 

 
 0x x



  (35) 

 wherein the projection operator is the inner product ( ), ( ) ( ) ( )i i d  x x x
 

computed over a closed and 

bounded set  . Equation (35) represents the Galerkin-based projection of the differential passivity-related KYP 

equation [Eq. (11)] in a compact form, which can be expanded as follows: 

 
T, ( ) ) , ( ) ,N N N N ct N N ct ct Nt t+ ( + =J 0

x
f l l

  
      (36) 

Considering ( , )ct tl x as a design parameter to be appropriately selected by the user, the following set of ordinary 

differential equations, known as the continuous-time passivity-based control gain equations, needs therefore to be 

integrated backward in time in order to compute ( )N t between impulsive instants: 

 f f( ) ( ) ( ) ( ) , ( )N N Nt t t t t+ + = =0    (37) 

where f denote the boundary conditions at the terminal time defined by the user as a design parameter, and 

 

1

1 T

( ) , ) ,

( ) , ,

N N N ct N

N N ct ct N

t

t

−

−

= (

=

J
x

f

l l

 

 

   

  
 (38) 

Once the passivity-based control gains, ( )N t , are computed via backward integration of Eq. (37), the 

continuous-time output of interest, cty , can be determined through Eqs. (12) and (13) with 0ct = . To this end, the 
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simplifying assumptions of ( , )ct t  0w x and T( , ) ( , )ct ctt t=j x j x are made to limit the design space. As a consequence, 

Eq. (13) leads to ( , )ct t = 0j x , and the continuous-time output of the plant, which satisfies the passivity specifications 

in the continuous-time subsystem, is ultimately obtained by: 

 
( )T T

( , ) ( , ) ( , ) ( )

1
( , ) ( , ) ( ) ( )

2

ct ct ct ct

ct ct N N

t t t t

t t t

= +

= = J
x

y x h x j x u

h x g x x
 (39) 

Refer to Section V for a detailed discussion on how to select basis functions. 

B. Numerical Solution to Passivity-related KYPds Conditions 

With the continuous-time passivity-based control gain equations [Eq. (37)] thus derived, a set of algebraic 

equations is developed in this section to be solved for the unknown time-dependent coefficients vector when an 

impulse occurs. In this regard, the spectral collocation method is utilized to approximate the difference passivity-

related KYP equation [Eq. (14)], thereby computing the passivity-based control gain vector at impulsive instants. 

The main idea behind the collocation strategy is to project Eq. (14) onto a discrete basis to produce as many 

equations as required for the unknowns. This is analogous to the Galerkin spectral method where the error function 

resulting from approximating the storage function is projected onto a set of basis elements to obtain N simultaneous 

equations in N unknowns. 

Preparatory to deriving the discrete-time counterpart of passivity-based control gain equations, the truncated 

version of the discretized storage function [Eq. (34)] is substituted into Eq. (14) to formulate the following set of 

algebraic equations at each jump instant, 
kt t= : 

 
T T T

=
( ) ( ) ( ) ( ) ( , ) ( , ) 0

ds
N N k N k N k ds k k ds k kt t t t+ − − − − − −− + =

x f
x x l x l x   (40) 

Having ( )N kt
+ available from the backward integration of Eq. (37), ( )N kt

− can thus be computed through the 

preceding set of equations. However, the state knowledge at
kt t−= ,

k

−
x , is required to reach this objective, which, in 

consequence, provides a new challenge. Aiming to rise to this challenge, 
k

−
x is collocated with a suitable set of 

points,  row m
m

=x x wherein n

m x and 1,...,m N= , at each jump instant to obtain N equations in N unknowns. 

The following set of algebraic equations, termed as the discrete-time passivity-based control gain equations, must 

therefore be solved for ( )N kt
− every time an impulse is applied: 
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 ( )
1

( ) ( ) ( , ) ( , ) ( )N k k k k k k N kt t t t
−− − − + = + x x x    (41) 

where 

 

 

 

 

T

,

= ( , ),

( , ) column ( , ) ( , )

( ) matrix ( )

( , ) matrix ( )
ds m k

k k ds m k ds m k
m

k j m
m j

k k j tm j

t t t

t




−

− − −

−

=

=

=






x f x

x l x l x

x x

x x

 (42) 

wherein ( , )ds k kt
− −

l x is assumed to act as a design parameter to be appropriately chosen by the user. 

With the control gain vector thus computed at each impulsive instant, the discrete-time output of interest,
,ds ky , at 

each jump can therefore be determined through Eqs. (15) and (16) with 0ds = . In this regard, as to the continuous-

time subsystem, simplifying assumptions in the form of ( , )ds t  0w x and T( , ) ( , )ds dst t=j x j x are made with the 

purpose of limiting the design space, and
dsh and

dsj are accordingly obtained as follows: 

 ( )T T

=

1
( , ) ( , ) ( ) ( )

2 ds
ds k k ds k k N N kt t t− − += J

x x f
h x g x x  (43) 

 ( )T

1

1
( , ) ( , ) ( ) ( ) ( , )

4 ds

N

ds k k ds k k j k j ds k k

j

t t c t t− − + −

=
=

=  H x
x f

j x g x x g x  (44) 

where Hx
is the Hessian matrix with respect to x . The discrete-time output of the plant, the dynamics of which fulfill 

the passivity specifications in the discrete-time subsystem, can therefore be calculated by: 

 
( ) ( )

, ,

T T T

,=
1

( , ) ( , )

1 1
( ) ( ) ( ) ( )

2 4ds ds

ds k ds k k ds k k ds k

N

ds N N k ds j k j ds ds k

j

t t

t c t 

− −

+ +

=
=

= +

= + J H
x xx f x f

y h x j x u

g x g x g u
 (45) 

C. Passivity Specifications for Hybrid Plant 

Armed with the continuous-time and discrete-time passivity-based control gain equations, Eqs. (37) and (41) 

respectively, the desired hybrid nonlinear passivity-based control gain vector can be obtained at each time instant via 

solving the following set of equations for ( )N t : 

 
( )

f f

1

( ) ( ) ( ) ( ) , ( ) [See Eq.(38)]

( ) ( ) ( , ) ( , ) ( ) [See Eq.(42)]

N N N k

N k k k k k k N k k

t t t t t t t

t t t t t t
−− − − +

 + + = = 


 = + =  

0

x x x  


 (46) 
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Beginning with the boundary conditions at the terminal time
f
, the continuous-time set of equations are first 

integrated backward in time to compute ( )N t between impulsive instants. Once a specific criterion is met, an 

impulse is induced in the solution at
kt t= through exciting the discrete-time control gain equations fed by ( )N kt

+  

and, in consequence, the continuous evolution of ( )N t is instantaneously switched to a quantum leap occurring in a 

jump manifold. ( )N kt
− computed at the jump instant is subsequently used as a new set of terminal conditions for the 

continuous-time control gain equations to be integrated backward from
kt
− to

1kt
+

−
. Exhibiting continuous evolutions 

and instantaneous jumps in appropriate manifolds, the solution maintains this sequence until time zero is reached. 

Once the hybrid nonlinear passivity-based control gain vector is computed at each time instant via solving the 

hybrid passivity-based control gain equations [Eq. (46)], the hybrid output of the plant, the heterogeneous dynamics 

of which guarantee a passive hybrid map from input to output, can thus be formulated as an interacting pair of 

continuous-time and discrete-time outputs: 

 

( )

( ) ( )

T T

T T T

, ,=
1

1
( , ) ( ) ( )

2

1 1
( ) ( ) ( ) ( )

2 4ds ds

ct ct N N k

N

ds k ds N N k ds j k j ds ds k k

j

t t t t

t c t t t+ +

=
=


= 



 = + =




J

J H

x

x xx f x f

y x g x

y g x g x g u





 (47) 

With the hybrid output of interest coming directly from the hybrid passivity-related KYP conditions [Eqs. (11)-

(16) with 0ct ds =  ] thus determined, a hybrid controller capable of meeting the input strict passivity 

requirements remains to be designed. With the passivity theorem in mind, two distinct structures are employed in the 

following sections to design the desired hybrid nonlinear controller: a static compensator, which serves to provide 

proportional output feedback with constant positive gains in each continuous-time and discrete-time subsystem; and 

a dynamic compensator, the state of which evolves both continuously and discontinuously on appropriate manifolds 

as time elapses. In both architectures, external disturbances are assumed to be sufficiently small, i.e. 

( , ) ( , )ct ds  0 0d d , and, in consequence, the hybrid output of the controller,
,( , )ct ds ky y , with negative sign is directly 

fed back to the plant as its hybrid input (See Fig. 1). 

D. Feedback Interconnection via Static Compensator 

 In the first approach, a hybrid static controller in the form of a hybrid proportional output feedback compensator 

with constant positive gains, ( , )ct dsK K where T >ct ct= 0K K and T >ds ds= 0K K , is employed to construct the 

Page 15 of 40

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

negative feedback interconnection required for establishing the input-output stability properties of the closed-loop 

dynamics as follows (See Fig. 1):  

 ( , ) ( , )ct ct ct ct ct ct kt t t t= − = − = − u x y K u K y x  (48) 

 
, , , ,ds k ds k ds ds k ds ds k kt t= − = − = − =u y K u K y  (49) 

Since the proposed static compensator benefits inherently from input strict passivity properties, provided that

T >ct ct= 0K K and T >ds ds= 0K K , there is no necessity to use the corresponding strict passivity-related KYP 

conditions. In this regard, the eigendecomposition of the proportional gain matrix can be used to show the strict 

passivity characteristics of the static compensator. The desired hybrid nonlinear passivity-based control law can 

therefore be formulated by substituting
,( , )ct ds ky y  [given by Eq. (47)] into Eqs. (48) and (49) as below: 

 

( )

( ) ( )

T T

1

T T T

, =
1

1
( , ) ( ) ( )

2

1 1
( ) ( ) ( ) ( )

2 4ds ds
dsds

ct ct ct N N k

N

ds k m m ds ds j k j ds ds ds N N k k

j

t t t t

c t t t t

−

+ +


=

=


= − 




  = − + = 
  



J

1 H J

x

x x x fx f

u x K g x

u K g x g K g x





 (50) 

The negative feedback interconnection of the plant, which is guaranteed to be passive with
,( , )ct ds ky y  computed 

by Eq. (47), and the controller in the form of a static compensator, which is inherently strictly passive, is therefore 

input-output stable as per the passivity theorem. 

E. Feedback Interconnection via Dynamic Compensator 

Aiming to enhance the control authority and to filter out sensor noise, which in turn contributes significantly to 

the first objective, a compensator of a dynamic nature is adopted in this section to be interconnected with the passive 

plant through a negative feedback. The idea of employing a dynamic compensator in a feedback loop has origins in 

Ref. [31] where, in accordance with the positive real design procedure, the continuous-time linear time-invariant 

(LTI) KYP conditions were used to develop an embedded control architecture involving a strictly positive 

(continuous-time) LTI dynamic compensator in order to stabilize large-scale space structures. Complementing the 

aforementioned continuous-time dynamics with discrete-time events occurring at an appropriate sequence of instants 

together with endowing the resultant system with a time-dependent character, this paper proposes a time-varying 

control-affine structure involving an interacting pair of continuous-time and discrete-time dynamics as the dynamic 

compensator in question, , as follows: 
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0( ) ( ) ( ) ( ) , ( )ct ct ct kt t t t t t= + = 0x A x B u x x  (51) 

 ( ) ( ) ( ) ( )ct ct ct ct kt t t t t t= + y C x D u  (52) 

 
,( ) ( )k ds k ds ds k kt t t t+ −= + =x A x B u  (53) 

 
, ,( ) ( )ds k ds k ds ds k kt t t t−= + =y C x D u  (54) 

where x denotes the (virtual) state of the controller;
,( , )ct ds ku u is the input of the controller, which equates to the 

output of the plant [i.e.
, ,( , ) ( , )ct ds k ct ds k=u u y y ]; 

,( , )ct ds ky y specifies the hybrid output of the controller, which is 

equal to the plant’s input with negative sign under the assumption of sufficiently small disturbances ( , ) ( , )ct ds  0 0d d

[i.e. 
, ,( , ) ( , )ct ds k ct ds k= −u u y y as shown in Fig. 1]; and ( )k kt

 
x x represent the controller’s state vector immediately 

before and after impulsive actions at
kt t= . Furthermore, ctA , ctB , ctC , ctD , dsA , dsB , dsC , and dsD denote the time-

dependent system matrices, with appropriate dimensions, associated with the continuous-time and discrete-time 

subsystems of the compensator. The continuous evolutions and discontinuous changes occurring in the state of the 

controller due to the initial conditions
0x and the input signals

, ,( , ) ( , )ct ds k ct ds k=u u y y can therefore be captured by:  

 
0

,

( ) ( ) ( ) ( , ) , ( )

( ) ( )

ct ct ct k

k ds k ds ds k k

t t t t t t

t t t t+ −

 = + = 


= + =

0x A x B y x x x

x A x B y
 (55) 

Furthermore, with the continuous-time and discrete-time equations of output for given by Eqs. (52) and (54) 

in mind and due to the fact that
, ,( , ) ( , )ct ds k ct ds k= −y y u u , the hybrid control input to be fed back to the plant can then 

be formulated in the following interacting form: 

 

, ,

( ) ( )

( ) ( )

ct ct ct ct k

ds k ds k ds ds k k

t t t t

t t t t−

 = − − 


= − − =

u C x D y

u C x D y
 (56) 

With the hybrid output of the plant satisfying the passivity specifications thus computed [
,( , )ct ds ky y given by Eq. 

(47)], the main challenge is now to determine the time-dependent matrices involved in Eqs. (51)-(54) such that the 

input strict passivity requirements are met for . With this aim in view, the strict passivity-related KYP conditions 

represented by Eqs. (27)-(32) [corresponding to the structure of Eqs. (51)-(54) which are linear in x ] are fed with 

-related system matrices and therefore employed. Considering
ct

,
ct

,
ct ,

ds
,

ds
, and

ds as design 
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parameters to be appropriately chosen by the user, the proposed design procedure to rise to this challenge consists of 

three steps: in the first step, ctC , dsC , ctA , and dsA are selected in a judicious manner to render the (underdetermined) 

equations (27)-(32) determined while simultaneously placing the poles of at desired locations; the resulting 

differential and difference KYP equations [Eqs. (27) and (30) respectively] are then solved for ( )t in an interacting 

manner; and ctB , ctD , dsB , and dsD are finally computed through the remaining KYP equations. 

Instead of arbitrarily assigning ctC , dsC , ctA , and dsA , this paper proposes the hybrid linear quadratic regulator 

(LQR) policy [32], amongst all possible approaches, to accomplish the first objective. In this regard, a hybrid LQR 

formulation with finite-time horizon, which simultaneously combines the differential continuous-time Riccati 

equations with discrete-time Riccati events, is first set up as per the linearized equations of the plant to be controlled 

[Eqs. (17)-(20) where both continuous-time and discrete-time subsystems are assumed to be completely controllable 

and completely observable] in an attempt to render asymptotically stable. Once the time-varying Riccati solutions 

are computed, the resultant continuous-time and discrete-time optimal gain matrices are then assigned to ctC and dsC

respectively. Given a hybrid performance index of the form 

 ( )
f

0

T T T

, ,1

T

( ) ( ) ( , ) ( , ) ( )
t

ct ct ct ct k ds k ds k ds ds kkt
t t t t dt − −

=
= + + + x Q x u x R u x x Q x u R u  (57) 

where specifies the number of impulses applied during the operating time, and T

ct ct=  0Q Q , T

ct ct=  0R R ,

T

ds ds=  0Q Q , and T

ds ds=  0R R  denote the continuous-time and discrete-time weighting matrices acting on the 

state and control, it is well-known that the hybrid Riccati-based control law, which minimizes the hybrid 

performance index given by Eq. (57), can be obtained by the following pair of optimal control inputs [32]: 

 

1 T

1 T T

,

( ) ( )ct ct ct k

ds k ds ds ds k ds k k

t t t t

t t

 −

 − − − −

 = − 


 = − − =  

v R B x

v R B A Q x




 (58) 

 wherein T( ) ( )t t=  0  represent the time-varying Riccati solutions. In this regard, ( )t can be computed via 

integrating the following continuous-time set of differential Riccati equations backward in time from
ft t= to 0t =

(given the terminal conditions
f( )t = 0 ) under the influence of jumps inducing in the matrix solution via provoking 

the discrete-time set of Riccati equations at
kt t= :  
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T 1 T

f

1
T T

( ) ( ) ( ) ( ) ( ) , ( )ct ct ct ct ct ct k

k ds k k ds ds ds k ds ds k k

t t t t t t t t

t t

−

−
− + + + +

 + + + − = = 


 = + − + =  

0 0A A Q B R B

Q B R B B B

     

    
 (59) 

With Eqs. (56) and (58) in mind, ctC and dsC are therefore determined as follows: 

 
1 T( ) = ( )ct ct ctt t−

C R B   (60) 

 
1 T T( )ds k ds ds ds k dst − − − = − C R B A Q  (61) 

Following the aforementioned hybrid LQR formulation, ctA and dsA are then selected such that the hybrid 

dynamic compensator represented by Eqs. (51)-(54) is asymptotically stable, that is: 

 
1 T( ) ( )ct ct ct ct ct ct ct ctt t−= − = −A A B C A B R B   (62) 

 
1 T T( )ds k ds ds ds ds ds ds ds ds k dst − − − = − = − − A A B C A B R B A Q  (63) 

With ctA and dsA thus computed, the linear strict passivity-based gain matrix, ( )t , can now be computed at each 

time instant through solving Eqs. (27) and (30) simultaneously as follows: 

 

T T

f f

T T

( ) ( ) ( ) , ( )ct ct ct ct k

k ds k ds ds ds k

t t t t t t

t t− +

 + + + = = 


= + =

0A A

A A
 (64) 

where ( )k kt
  , and

T

f f=  0 specify the boundary conditions at the terminal time defined by the user as a 

design parameter. Analogous to the procedure explained in Sec. III.C, the continuous-time set of equations are first 

integrated backward in time to compute ( )t between impulsive instants, starting from the boundary conditions at 

the terminal time
f
. At each jump instant 

kt t= , an instantaneous change is then induced in the matrix solution by 

arousing the discrete-time set of equations, and
k

− computed at each jump is subsequently used as a new set of 

terminal conditions for the continuous-time set of equations to be integrated backward from
kt
− to

1kt
+

−
. This 

interacting procedure for calculating ( )t is continued until time zero is reached. 

In the final step, simplifying assumptions in the form of
ct  0 , T

ct ct=D D ,
ds  0 , and T

ds ds=D D  associated 

with the continuous-time and discrete-time subsystems are made to limit the design space, and
ctB ,

ctD ,
dsB , and dsD

are ultimately computed through equations (28), (29), (31), and (32) respectively as follows:  
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1 T( ) ( )ct ctt t−=B C  (65) 

 ( )
ct ctct ct ct m mt  = = 1D D  (66) 

 ( )
1

T T( )ds k ds k dst
−

+=B A C  (67) 

 ( ) T( ) 1 2
ds dsds k ds m m ds k dst  +

= +1D B B  (68) 

All the required ingredients are now in place to find the desired hybrid nonlinear passivity-based control law, the 

feedback of which to the plant endowed with passivity properties gives rise to the input-output stability of the 

closed-loop system. To this end, the hybrid output of the plant [
,( , )ct ds ky y given by Eq. (47)] along with ( )ct tC ,

dsC ,

( )ct tD , and dsD [computed by Eqs. (60), (61), (66), and (68) respectively] are substituted into Eq. (56) so as to obtain 

the following interacting pair of passivity-based control inputs: 

 
( )

( ) ( )

1 T T T

1

,

1
( , , ) ( ) ( ) ( ) ( )

2

( , , )
ds ds

ct ct ct ct ct N N k

ds k k k k m m ds ds ds k ds ds k

t t t t t t

t t t

−

−
− − + −




= − − 


 = − + + =


J

1


x

u x x R B x g x

u x x D j C x D h


 (69) 

Therefore, the input-output stability of the closed-loop system is now guaranteed according to the passivity 

theorem via the negative feedback interconnection of the plant, which is passive, and the controller in the form of a 

dynamic compensator, which is input strictly passive. 

IV. Spacecraft Attitude Kinematics and Dynamics 

As a hybrid dynamical system, the attitude control system being proposed in this paper possesses two modes of 

operation: magnetic torquing, as a continuous-time renewable source of actuation, and impulsive thrusting exerted 

by expulsion devices (thrusters). The main motivation behind the collaborative utilization of magnetic and impulsive 

actuation, as stressed earlier, is to resolve instantaneous underactuation and gain limitations as the main drawbacks 

inherently associated with the magnetic attitude controllers, thereby improving system performance in terms of the 

accuracy of pointing and the speed of response. In this regard, the spacecraft operating in a low-Earth orbit is 

externally torqued by three mutually perpendicular magnetic torquers immersed in the Earth’s magnetic field. Once 

a certain criterion is met, magnetic actuation is instantaneously switched to impulsive thrusting and, in turn, a triple 

set of impulsive torques, one about each direction of the body-fixed frame, is applied to the spacecraft. The attitude 

motion of the spacecraft is therefore characterized by a differential set of equations, which characterizes the 
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rotational motion of the dynamical system between impulsive events, and a set of difference equations, which 

governs instantaneous changes in the states of the system once an impulse occurs. Due to the cascade nature of the 

spacecraft attitude motion, the kinematic equations of motion must be coupled with the rotational dynamics. In this 

paper, the singularity-free four-parameter set of quaternions,  
T

1 2 3  = and , subject to the unit magnitude 

constraint, T 2 1+ =  , are elected to parameterize the attitude motion of the spacecraft. The kinematic equations of 

motion are therefore formulated as (Ref. [33] Chap. 2): 

 
3 3

T

( ) (1 2)( )

( ) (1 2)

t

t








 = +


= −

1  

 
 (70) 

where  
T

1 2 3  = denotes the angular velocity vector and
() represents the skew-symmetric matrix used to 

implement the cross product. Armed with the spacecraft attitude kinematics, the rotational dynamics of the system 

are then described by Euler’s rigid-body equations influenced by magnetic torques, mag , impulsive thrusts applied at

kt t= , imp , and external disturbance torques, dis , as follows (Ref. [33] Chap. 4): 

 ( ) mag imp dist + = + +I I       (71) 

where I is the spacecraft moment of inertia matrix. In addition, mag and imp can be obtained by (Ref. [33] Chap. 9): 

 mag bf

= m b  (72) 

 
1

( )imp k kk
t t

=
= −   (73) 

wherein m is the commanded magnetic dipole moments generated by the magnetic torquers [i.e. ct =u m ], bfb

specifies the local geomagnetic field expressed in the body-fixed coordinate system, k denotes impulsive torque 

values produced by thrusters, and ( )t is the Dirac delta function located at each impulsive instant kt , the conjunction 

of which with k represents the discrete-time torque exerted on the spacecraft. Assuming the gravity-gradient 

disturbances and residual magnetic dipole moments resulting from onboard electronics as the most significant 

sources of disturbance for near-Earth small spacecraft, external disturbance torques can be found as ([33] Chap. 9): 
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5

3
dis bf bf dis bf

bf

  = +r Ir m b
r

  (74) 

where 14 3 23.986 10 m sec = is the Earth’s standard gravitational parameter,
bfr specifies the spacecraft position 

vector in the body-fixed frame, and
dism denotes the residual magnetic dipole moments. Furthermore, a tilted dipole 

model of the geomagnetic field (as described in appendix H of Ref. [13]) is used in this paper to estimate the inertial 

magnetic field vector,
inb . The rotation matrix from the Earth-Centered-Inertial (ECI) system to the body-fixed 

frame in terms of quaternions, bf in− , is ultimately employed to obtain
bfr and

bfb used in Eqs. (72) and (74) as below: 

 
T T

3 3(( , ) ) 221 2bf in  

− = − + −1     (75) 

The spacecraft attitude control system, which collaboratively utilizes magnetic torques and impulsive thrusts to 

stabilize the spacecraft orientation, can therefore be formulated as the following hybrid nonlinear time-varying 

dynamical system: 

 

3 3

T

1

1

( ) (1 2)( )

( ) (1 2)

( ) ( )

( )

k

mag dis

k imp k

t

t t t

t

t t t









− 

−

 = +


= − 


= − + +

 = =

1

I I

I

  

 

    

 

 (76) 

V. Practical Considerations 

This section serves to describe key factors in appropriately implementing the passivity-based control design 

frameworks developed in Sec. III. In what is to follow, the structure of the nonlinear time-varying dynamical system 

characterizing the attitude motion of the spacecraft with a hybrid source of actuation is first reviewed. The structural 

parameters, the judicious selection of which is required to accurately approximate the storage function involved in 

the differential and difference passivity-related KYP conditions [Eqs. (11) and (14) respectively] are then discussed 

in detail. The section ultimately proceeds with describing the major design parameters, the appropriate tuning of 

which significantly contribute to the satisfactory performance of the controllers being proposed. 

By defining  
T

1 2 3 1 2 3      =x , the continuous-time and discrete-time system functions 

involved in the attitude control system are therefore obtained by comparing Eqs. (1) and (3) to Eq. (76) as follows: 
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3 3

4 3T

1

1

(1 2)( )

( , ) ( ) (1 2) , ( , ) ( , , )ct ct

b

t ct

f

ct t t











−

− 



 +
  

= = − = =    −  − 

1
0

f x f x g x g
I

I I
b

 

  

 

 (77) 

 
4 3

1
( , ) ( ) , ( , )ds k ds k k ds k dst t

− − − −

−

 
= = = =  

 

0
f x f x x g x g

I
 (78) 

Given the heterogeneous dynamics of the plant along with its interacting pair of outputs in nonlinear forms [Eqs. 

(1)-(4)], three major sets of parameters must appropriately be selected to approximate Eqs. (11) and (14) with 

sufficient accuracy as follows: a compact set that contains the origin as an interior point and is preferably symmetric 

about it, a set of basis functions that can adequately approximate the storage function involved in the passivity-

related KYP conditions, and a set of collocation points that locates inside and on the boundaries of the compact set. 

The compact set (or stability region or a bounded domain of the state space), , is defined as the domain of 

possible values for the states. can be determined according to physical, kinematical, or practical limitations 

(physical capabilities) of the system, together with the likely deviation of the system states from their nominal value 

of zero. Due to the unit magnitude constraint acting on the quaternions, their domain of possible values is thus 

limited to [ 1 1]− . Nevertheless, there are no kinematical limitations for angular velocity components and their 

stability region is accordingly chosen on the basis of practical considerations (as expressed in rad s ). The stability 

region for the problem in hand can therefore be defined as: 

             
1 2 3 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1
      

= −  −  −  −  −  −  −  

Proper selection of basis functions is also critical to design the nonlinear passivity-based controllers in question. 

Two important requirements, namely characteristic and quantity requirements, pertaining to the structure and 

number of basis elements must be satisfied in order to make an appropriate choice of basis functions. The main 

objective being pursued by the characteristic requirement is to synthesize a controller by which the essential 

nonlinear terms involved in the dynamics are effectively captured. Basis elements are therefore configured such that 

the constituent linear and nonlinear terms of the system dynamics are incorporated into the control law. The 

controller is consequently endowed with authority to adequately compensate for the nonlinear dynamics of the 

system. Furthermore, the number of basis elements must be sufficiently large to approximate the storage function 

with sufficient accuracy (quantity requirement). The accuracy of
NV is therefore dependent on both characteristics 

and quantities of the basis elements elected to form the approximation. 
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As demonstrated in the literature, polynomials are proven to work effectively as basis functions in algorithms 

wherein the Galerkin-based projection is used to approximate partial derivative equations such as the Hamilton-

Jacobi-Bellman [34, 35] and Hamilton-Jacobi-Isaac [36] equations. To the knowledge of the current authors, the 

best way to find an appropriate selection of basis functions for time-varying dynamical systems is to commence with 

the quadratic basis elements obtained by the second-order expansion of the states, eliminating those terms whose 

corresponding control gains are either zero or very small as compared to the other terms. The remaining quadratic 

basis elements must then be augmented by further higher-order terms to capture the dominant nonlinear dynamics of 

the system. Due to multiplication of T ( , )ct tg x and T ( , )ds k ktg x with ( )T ( )NJ
x

x in the passivity-based control laws 

given by Eqs. (50) and (69), these additional higher-order basis elements must be selected such that their partial 

derivatives with respect to gain-effective states (those states which correspond to non-zero elements of T ( , )ct tg x and

T ( , )ds k ktg x  in Eqs. (50) and (69), thereby contributing substantially to preserve non-zero control gains) result in 

functions of the states desired to ultimately appear in the passivity-based control laws in order to capture the 

essential nonlinear dynamics of the system. 

By considering the structure of ( , )ct tg x and ( , )ds k ktg x for the hybrid attitude control system in question [as 

shown in (77) and (78) respectively], angular velocity components (
1 ,

2 , and
3 ) act as the gain-effective states 

for this problem. Therefore, any basis element consisting of either
1 ,

2 , or
3 (or their combinations) will 

ultimately show up in the passivity-based control laws as demonstrated below: 

( )T T

1

1 161 71 1

52 72

53 63 1

3 3

1 1

61 71 61 71

2 3 2 3

1

52

1
( , ) ( ) ( )

2

0 0 0 0 0 ( )
1

0 0 0 0 0
2

0 0 0 0 0 ( )

1

2

ct ct ct N N

N

ct

N N

N N

ct

t t

g g c t

g g

g g c t

g g g g

g



 



 

  

   



= −

 
      

    = −
    
       

   

  
+ +

   


= −

J
x

u x K g x

K

K



1

1

72 52 72

1 3 1 3

1 1

53 63 53 63

1 2 1 2

( )

( )

N N

N

N N

c t

g g g

c t

g g g g

 

   

  

   

 
 
   
    

+ +             
 + +

       
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wherein
52g ,

53g ,
61g ,

63g ,
71g , and

72g represent non-zero elements of ( , )ct tg x . Similar derivation can simply be 

obtained for the discrete-time passivity-based control law while the gain-effective states are identical. With an 

attitude controller composing of quaternion-based proportional control and ω-based rate control in mind, an initial 

set of quadratic basis elements, the partial derivatives of which with respect to the gain-effective states produce all 

the required components of  (for proportional control) and (for rate control) in the passivity-based control laws, 

are first chosen to construct the desired proportional-derivative (PD) control scheme, while simultaneously meeting 

the characteristic requirement as follows:  2 2 2

1 1 1 2 2 2 3 3 3, , , , ,         . This choice must, however, be 

complemented by 2 2 2 2

1 2 3, , , ( 1)    − to satisfy the positive-definiteness properties of the storage function. 

Basis functions satisfying the characteristic requirement are then augmented by some additional higher-order 

terms to guarantee the accuracy of the approximation. By gradual increase in the number of basis elements in a 

manner consistent with the characteristic requirement,
NV gradually approaches toV . At a certain number of basis 

elements, the satisfactory performance is ultimately obtained and, in consequence, the quantity requirement is 

fulfilled, i.e.
NV V . Henceforth, any further increase in the number of basis elements yields insignificant 

improvement in the system performance at the expense of computational cost. This process requires a deep 

understanding of the dynamical behavior of the system being considered, as well as trial and error. In addition to 

characteristic and quantity requirements stressed in the preceding, an appropriate choice of basis functions must also 

produce an invertible ,N N 
  matrix to satisfy the rank condition required by Eq. (38). In view of the preceding 

guidelines, the following 28 basis elements are consequently selected as basis functions for this problem to 

discretize the storage function involved in the passivity-related KYP conditions: 





2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 3 3 3 3

4 2 2 4 4 2 2 4 4 2 2 4

1 1 1 1 2 2 2 2 3 3 3 3

4 2 4 2 4 2 7 7 7 5 3 5 3 5 3

1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

, , , , , , , , , ( 1) ,

, , , , , , , , ,

, , , , , , , ,

             

           

                 

= −

 

A suitable set of collocation points  row m
m

=x x , wherein 7

m x and 1,...,28m = , is also necessary to design 

the discrete-time nonlinear passivity-based controller. Collocation points can be selected from the entire compact set 

excluding the origin, provided the rank condition required to produce an invertible ( )k x in Eq. (41) is satisfied. 

With the structural parameters , N , and x thus discussed, the boundary conditions at the terminal time, f , 

impulsive application times, 1 ,...,t t , and weighting functions, ctl and dsl , remain to be appropriately determined as 
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design parameters in order to compute the passivity-based control gains to be fed to the passivity-based control laws 

being proposed. Amongst all design parameters which acquire significance in satisfying the passivity specifications 

of the plant, the boundary conditions at the terminal time,
f
, play a crucial role. Owing to the time-varying nature 

of the passivity-based control gains ( )N t , blind selection of
f
can lead undesirable gains with unbounded growth in

( )N t backward, thereby destroying the control design. Every components of
f
must thus receive careful attention 

in order to produce acceptable results. The boundary conditions at the terminal time for this problem are set to be: 





1 1 1

1 1 1

f , , , , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

c c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

        

        

       

=

 

wherein 0c = and 92 10c =  , respectively, correspond to the basis elements involving even orders of
i and

i

alone with 1,...,3i = ; 0c = is associated with 2( 1) − ; 1

64 10c


=  is related to the basis elements consisting of 

cross-terms of
i and

i where
i is of first order (i.e.

i i  and 7

i i  which lead to sole components of
i in the 

passivity-based control laws); and 68 10c =  matches the remaining basis elements involving cross-terms of
i and

i which create terms of
i i  in the control scheme being proposed. 

Assuming a prescribed sequence of impulsive times, eight equally-spaced impulses are selected for this problem 

as represented in terms of true anomaly in the following:  5 ,50 ,95 ,140 ,185 ,230 ,275 ,320k = . This choice, 

the selection of which is based upon various simulations, suggests the firing times through which satisfactory 

performance is obtained for the attitude control system in question. 

Furthermore, in harmony with the linear design approach,
ctl and

dsl in this paper are selected to be in the form of

( )ct ct,t =l x L x and ( )ds k k ds k,t− − −=l x L x [See Eqs. (38) and (42)], where
ctL and

dsL are assumed to be constant. As a 

direct consequence, T T

ct ct ct=l l x x and
TT

ds ds k ds k

− −=l l x x wherein T n n

ct ct ct

= L L and T n n

ds ds ds

= L L represent 

symmetric positive semi-definite weighting matrices associated with the continuous-time and discrete-time 

subsystems respectively. The aforementioned matrices can therefore be taken outside the integrals, thereby tuning 

the system computationally fast. In this paper, the following matrices are selected to weight Eq. (46): 

2 2 2 2 2 2(1 1 1 0 10 10 10 ) , (1 1 1 0 10 10 10 )ct dsdiag diag= =   
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Lastly, all computations involved in the proposed hybrid control algorithms are performed off-line (prior to 

implementation); once the passivity-based control gains, ( )N t , are computed through numerically solving Eq. (46), 

the proposed control schemes can be implemented in hardware and run in real time. Moreover, there are some 

possibilities to facilitate the implementation process. For instance, assuming a periodic or quasi-periodic character 

for the passivity-based control gains over the operating time, Fourier series can be employed to approximate the 

steady-state part of ( )N t by discarding the initial transient phase coming backward from
ft . Rather than storing the 

entire time history of ( )N t , the Fourier coefficients resulting from the Fourier-based approximation can be stored 

onboard. As a consequence, not only is the storage memory requirement significantly reduced, but also ( )N t

computed by a backward integration process prior to implementation is no longer restricted to the time interval from 

0 to
ft (defined by the user during control design) and can, in turn, be extended to any desired operating time. 

Analogous comments are also held for ( )t and ( )t  (See Eqs. (59) and (64) respectively). 

VI. Numerical Simulations 

 In this section, the passivity-based control design frameworks developed in Secs. III.D and III.E are exploited to 

synthesize controllers of a nonlinear nature for stabilizing the attitude motion of spacecraft with magnetic and 

impulsive sources of actuation. The control objective here is to regulate the vector part of quaternions and angular 

velocity components to zero, while simultaneously rejecting the external disturbance torques given by Eq. (74). 

Assuming a spacecraft with the moment of inertia matrix ( ) 227 17 25 kg mdiag= I  and the residual magnetic 

dipole moments T 2[0.1 0.1 0.1] A mdist = m  travelling in a circular Keplerian orbit at an altitude of 450km , the 

classical orbital elements used in this paper to describe the orbital motion of the spacecraft in the ECI coordinate 

system are defined as:   0
ˆˆ ˆ, , , , , 6820km,0,87 ,0,0,0a e i t = ; where a , e , î , ̂ , ̂ , and

0t denote the semi-

major axis, eccentricity, inclination, right ascension of the ascending node, argument of perigee, and time of perigee 

passage respectively. 

Aiming to compute the passivity-based control gains, the utilization of which in the hybrid output dynamics of 

the plant [given by Eq. (47)] satisfy the passivity specifications, the hybrid numerical algorithm derived in Sec. III.C 

is first erected via appropriate sets of structural and design parameters, as described in Sec. V. Interconnecting the 

resultant passive plant with input strictly passive compensators of static and dynamic forms through a negative 
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feedback, the hybrid control architectures developed in Secs. III.D and III.E are ultimately used in Secs. VI.A and 

VI.B respectively to regulate the attitude motion of the spacecraft in question. 

In order to evaluate the efficacy of employing a hybrid control architecture (as against a single-mode magnetic 

one) and a nonlinear control design approach (as opposed to a linear one) in synthesizing the passivity-based 

controllers developed in Secs. III.D and III.E, two additional magnetic passivity-based attitude controllers are also 

designed and tested in this section by using the identical sets of design parameters and initial conditions: a single-

mode magnetic (without impulsive thrusts) nonlinear passivity-based controller designed via considering the full 

nonlinear kinematics and dynamics of the system, which utilizes only the continuous-time portion of the proposed 

algorithms in Secs. III.D and III.E; and a hybrid (magnetic and impulsive) linear passivity-based controller founded 

upon the linearized rotational equations of motion with the following system matrices, which in fact employs the 

passivity-related KYP conditions given by Eqs. (21)-(26) to compute the interacting pair of outputs through which 

the passivity specifications for the linearized plant are fulfilled: 

 
3 3 3 3 3 3

1

3 3 3 3

(1 2)
( ) , ( )ct ct ct

in

t t
 

 





−

   
= = =   

−   

0 1 0

0 0
A A B

I b
 (79) 

 
3 3

6 6 1
( ) , ( )ds k ds ds k dst t



 −

 
= = = =  

 

0
1A A B B

I
 (80) 

Furthermore, the following root-mean-square (RMS) norms are also defined and computed over 15 orbits to 

quantitatively assess the performance of the proposed hybrid nonlinear controllers as against the other two ones: 

 

15 15
2 T

0 0

15
T T

, ,0 1

( ) ( ) ( )
(rad) , (rad s)

15 15

( ) ( ) ( )
(N m) , (N m)

15

mag mag ds k ds kk

mag imp

t dt t t dt

t t dt




=

= =

=  = 

 

  u u

 


 
 

 (81) 

where ( )( )1( ) cos trace 1 2bf int −

−  = −  is the rotation angle (as expressed in rad) of the spacecraft from Euler axis-

angle parameters and denotes the orbital period. In this regard, the norms of rotation angle and impulsive torque,

 and imp , can be used as important criteria for accurate pointing and efficient fuel missions respectively. By 

adjusting the size of the diagonal terms in the weighting matrices involved in the proposed control algorithms, a 

trade-off between accuracy and fuel expenditure can be made to achieve a high precision pointing with low fuel 
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requirements. Furthermore, the norm of magnetic torque, mag , can be employed to evaluate the feasibility of the 

attitude controller in terms of the magnetic control usage required by torque rods for stabilization purposes. 

Lastly, the power required by actuation mechanisms during a mission can be used as a key factor to determine 

the feasibility of a control scheme proposed for regulating the attitude motion of a spacecraft. Assuming the 

spacecraft being considered is equipped with three magnetic torquers composed of loops of the cross-sectional area

2 24 md= , where 10 mmd = , with 400= turns of wire and the electrical resistance of 100=  , the 

electrical energy consumed by magnetic torquers during the operating time can be estimated and, therefore, used as 

the means by which the performance of all magnetic attitude controllers is assessed and compared as follows [13]: 

 
0

f T

2 2

3

t

t

dt=  m m  (82) 

All the required ingredients are now in place to utilize the hybrid control architectures proposed in Secs. III.D 

and III.E for regulating the attitude motion of the spacecraft. This is the subject of the following two sections. 

A. Attitude Regulation via Static Compensator 

The passivity-based control design framework developed in Sec. III.D, which uses a constant-gain static 

compensator in its feedback loop to comply with the passivity theorem, is employed in this section to regulate the 

spacecraft attitude motion. To this end, the continuous-time and discrete-time positive proportional control gains 

used in the feedback loop to guarantee input strict passivity are tuned to 1

3 3(9 10 )ct

−

=  1K and 7

3 3(5 10 )ds

−

=  1K

respectively. The numerical results obtained by simulating the behavior of the attitude control system equipped with 

the hybrid passivity-based constant-gain static compensator are depicted in Figs. 2 and 3 along with Table 1 under 

the influence of the initial conditions  
T

0 0.5 0.5 0.5= ,
0 0.5 = , and  

T

0 0.1 0.1 0.1 rad s= .  

Shown in Figs. 2 and 3, the effectiveness of using a nonlinear control approach as compared to a linear one in the 

proposed hybrid passivity-based attitude control architecture is depicted in terms of system response and control 

usage. As is apparent from Fig. 2, the hybrid nonlinear attitude controller outperforms significantly the hybrid linear 

control scheme when transient response is concerned. Specifically, whereas the settling time for  is approximately 

one orbit for the attitude control system equipped with hybrid nonlinear control scheme, these quantities are settled 

after six orbits for the system which uses a hybrid linear controller. Moreover, Fig. 3 demonstrates significant 

reduction in both magnetic and impulsive control torques via employing the hybrid nonlinear control approach in 
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comparison with the hybrid linear one which, in consequence, facilitates the feasibility of the attitude control system 

by eliminating excessive load on each actuator. 

  

  

  

Fig. 2. Time histories of Euler parameters (left column) and angular velocity components (right column) for 

hybrid nonlinear and linear passivity-based attitude control schemes with static compensator 

 
 

Table 1 also summarizes and compares the results obtained by quantitatively assessing the performance of all 

three passivity-based attitude controllers via Eqs. (81) and (82). As is obvious, noticeable improvement in all 

parameters associated with the hybrid nonlinear controller is evident as against the other two ones. For instance, 
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and imp , which represent a trade-off between accuracy and fuel expenditure as stressed earlier, experience 47.42 

and 71.69 percent improvement respectively for the hybrid nonlinear controller beside the hybrid linear one.  

  

  

  

Fig. 3. Time histories of magnetic (left column) and impulsive (right column) control torques for hybrid 

nonlinear and linear passivity-based attitude control schemes with static compensator  

 

Furthermore, whereas the required magnetic torque for stabilizing the spacecraft via the proposed hybrid 

nonlinear control scheme is 42.55 10 N m−  , and consequently lies within the acceptable range of 510−  to 310 N m− 

as demonstrated in Refs. [14, 15], magnetic torque of value 22.01 10 N m−  is necessary for the hybrid linear 
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controller to attain the identical objective. The maximum obtainable magnetic dipole moments of the magnetic 

torqrods associated with the hybrid linear system must accordingly be increased by significantly enlarging the 

torqrods, which is practically impossible. 

Table 1. Functional performance of hybrid nonlinear attitude control scheme equipped with 

static compensator in comparison to hybrid linear and magnetic-only nonlinear control laws 

Parameter      mag  
imp  

C
o
n

tr
o
l 

P
o
li

cy
 Hybrid Nonlinear Passive 

(HNP) 

122.57 10  14.04 10−  35.26 10−  42.55 10−  12.88 10−  

Hybrid Linear Passive 

(HLP) 

161.42 10  17.68 10−  22.13 10−  22.01 10−  01.02 10  

Magnetic Nonlinear Passive 

(MNP) 

128.40 10  17.59 10−  21.07 10−  45.36 10−  - 

Im
p
ro

ve
m

en
t HNP as compared to HLP 

99.98 %  47.42 %  75.31 %  98.73 %  71.69 %  

HNP as compared to MNP 
69.39 %  46.85 %  50.77 %  52.39 %  - 

MNP as compared to HLP 
99.94 %  1.10 %  49.85 %  97.34 %  - 

B. Attitude Regulation via Dynamic Compensator 

In the next attempt, the passivity-based control algorithm proposed in Sec. III.E, which employs a dynamic 

compensator in its feedback loop, is used to regulate the spacecraft attitude motion. To this end, the following 

weighting matrices are first elected for the proposed hybrid LQR architecture formulated by Eq. (59), the objective 

of which is to compute the time-varying Riccati gain matrix ( )t to be used in Eqs. (60) and (61), in preparation for 

placing the poles of the dynamic compensator in question at desired locations: 

5 7

6 6 3 3(8 10 ) , (10 )ct ct =  =1 1Q R  

10 13

6 6 3 3(10 ) , (3 10 )ds ds = = 1 1Q R  

Next, the following parameters are chosen to simultaneously erect the interacting sets of equations given by (64) 

to be integrated backward in time from
ft t= to 0t = , while instantaneously switching to the discrete-time events at

kt t= where f0 kt t  , in order to compute ( )t at each time instant to be used in Eqs. (65), (67), and (68): 

T 3 T 2

6 6 6 6(5 10 ) , (5 10 )ct ct ct ds ds ds = =  = = 1 1   

f,1 f, 2

f

f, 2 f,3

 
=  
 
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where T

ct ct=  0  and T

ds ds=  0  serve to weight Eq. (64),
f,1 3 3= 1 , 1

f,2 3 3(10 ) = 1 , and 2

f,3 3 3(10 ) = 1 . 

Lastly, the continuous-time and discrete-time positive control gains used in Eqs. (66) and (68), the utilization of 

which ensure input strict passivity via Eqs. (29) and (32), are tuned to 18 10ct −=  and 75 10ds −=  respectively. 

  

  

  

Fig. 4. Time histories of Euler parameters (left column) and angular velocity components (right column) for 

hybrid nonlinear and linear passivity-based attitude control schemes with dynamic compensator  
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Fig. 5. Time histories of magnetic (left column) and impulsive (right column) control torques for hybrid 

nonlinear and linear passivity-based attitude control schemes with dynamic compensator 

  

The simulation results, which present how the closed-loop attitude control system endowed with the hybrid 

nonlinear passivity-based dynamic compensator in its feedback loop responds to the initial conditions

 
T

0 0.5 0.5 0.5= ,
0 0.5 = , and  

T

0 0.1 0.1 0.1 rad s= , are shown in Figs. 4 and 5 along with Table 2. As 

is expected, by increasing
ct ,

ds ,
ctQ , and

dsQ (while
ctR and

dsR are decreased or remain constant), the resultant 

controller drives  and to zero faster in the presence of external disturbance torques. This improved performance 
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occurs, however, at the expense of larger magnetic dipole moments and impulsive thrusts, which are practically 

undesirable. 

Figures 4 and 5 depict the performance of the hybrid nonlinear attitude control system with a dynamic 

compensator in terms of system response and control action as against the hybrid linear control, highlighting the 

superiority of the proposed nonlinear control design approach in the transient behavior, the settling time of which for

 is less than one orbit as opposed to five orbits for the linear scheme, and the control effort collaboratively made by 

magnetic torquers and thrusters to stabilize the system in the presence of external disturbance torques. Specifically, 

Fig. 5 shows considerable reduction in both magnetic and impulsive control torques applied by the magnetic 

torquers and thrusters respectively when the attitude control system is equipped with a nonlinear controller. 

 

Table 2. Functional performance of hybrid nonlinear attitude control scheme equipped with 

dynamic compensator in comparison to hybrid linear and magnetic-only nonlinear control laws 

Parameter      mag  
imp  

C
o
n

tr
o
l 

P
o
li

cy
 Hybrid Nonlinear Passive 

(HNP) 

122.08 10  13.07 10−  35.35 10−  42.30 10−  12.94 10−  

Hybrid Linear Passive 

(HLP) 

161.22 10  13.84 10−  22.11 10−  21.87 10−  19.88 10−  

Magnetic Nonlinear Passive 

(MNP) 

127.45 10  15.89 10−  21.12 10−  45.14 10−  - 

Im
p
ro

ve
m

en
t HNP as compared to HLP 

99.98 %  20.09 %  74.62 %  98.77 %  70.30 %  

HNP as compared to MNP 
72.06 %  47.98 %  52.12 %  55.21 %  - 

MNP as compared to HLP 
99.94 %  53.63 %  46.99 %  97.25 %  - 

 

Table 2 also summarizes and compares the quantities resulted from quantitatively evaluating the performance of 

all three passivity-based attitude controllers via the RMS norms given by Eqs. (81) and (82). As is apparent, the 

numerical results demonstrate the superiority of the proposed hybrid nonlinear controller as against the other two 

control architectures. For instance, and
mag , the contributions of which are significant in the feasibility of a control 

framework proposed for attitude regulation purposes, are enhanced by at least 97 percent. Whereas the magnetic 

dipole moments required by the proposed hybrid nonlinear controller for regulating the spacecraft attitude motion is 

only 42.30 10 N m−  , which corresponds to 29.03A m= m over 15 orbits and therefore offers reasonable values for 

near-Earth missions as mentioned in Refs. [14, 15], the hybrid linear control architecture needs torque rods capable 

of 2691.06A m at the expense of an inevitable increase in the dimensions and weight of the attitude control system 
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(via increasing and ), which is obviously impossible in practice. Moreover, impulsive control torques produced 

by thrusters are noticeably reduced from 19.88 10− to 12.94 10 N m−  , a dramatic enhancement of 70.30 percent, 

when the linear control policy is replaced by the proposed nonlinear approach. As a consequence, the required 

onboard expendable fuels are significantly decreased, thereby extending mission life. 

C. Measurement Noise Effects 

This section aims to evaluate the immunity of the resultant closed-loop attitude dynamics, which separately 

utilize the hybrid nonlinear passivity-based controllers developed in Secs. III.D and III.E, to erroneous state 

knowledge originating from the attitude and rate measurements contaminated by noise effects. With this objective in 

view, this paper employs the approach proposed in Ref. [37] Sec. 25.1.5 to simulate noise effects through perturbing 

the actual state vector ( )tx by a randomly generated zero-mean Gaussian white noise vector in the form of E  as 

follows: ( ) ( )t t= +x x E  ; where ( )tx is the perturbed state vector and 7 1( , ) 0 1 denotes a vector of 

random numbers (i.e. a standard normal distribution) regenerated at each time step. By constructing the covariance 

matrix of the noise distribution in the form of T= E E  and then setting it equal to the variance parameters 

associated with the attitude and rate measurements as  2 2 2

3 3 3 3diag    = 1 1   , and E are accordingly 

obtained by performing an eigenvalue decomposition on  (which is assumed to be constant). As a consequence,

 idiag = and  = irowE e wherein
i and

ie with 1,...,7i = represent the eigenvalues and corresponding 

eigenvectors of respectively. Continuous-time and discrete-time output dynamics of the following forms are 

therefore formulated to be directly fed to the controllers (See Fig. 1) in order to incorporate the attitude and rate 

measurements contaminated by noise effects into the closed-loop attitude dynamics: 

 
, ,

( ) ( , )

( , ) ( , )

ct ct k

ds k ds k ds k ds k k

t t t t

t t t t− −

= 


= + =

y h x

y h x j x u
 (83) 

Assuming an attitude determination algorithm founded upon a combination of sensor inputs including a fluxgate 

magnetometer and the Global Positioning System (GPS), the variance parameters associated with the attitude and 

rate measurements are, respectively, set to 1010− and 810− in this paper. This set of quantities, the selection of which is 

based upon the characteristics of the indicated attitude sensors, suggests mean values of approximate order 53 10−
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and 43 10 rad s− for the quaternions and angular velocity components respectively through which measurements are 

contaminated by noise of largely exaggerated values for most spacecraft. 

  

  

  

Fig. 6. Time histories of Euler parameters with and without measurement noise for hybrid nonlinear 

passivity-based attitude control scheme with static (left column) and dynamic (right column) compensators  

 

Figure 6 demonstrates how the proposed hybrid nonlinear passivity-based static and dynamic compensators 

respond to measurement noise effects in the closed-loop attitude dynamics under the influence of the initial 

conditions  
T

0 0.5 0.5 0.5= ,
0 0.5 = , and  

T

0 0.1 0.1 0.1 rad s= . As is evident, both control architectures 
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exhibit reasonable immunity to sensor noise in view of the unrealistic values of perturbation selected to simulate a 

worst-case scenario. However, the attitude control system which employs the dynamic compensator developed in 

Sec. III.E demonstrates superior performance in comparison to the static compensator due to its dynamic time-

varying nature when the state measurements are perturbed by sensor noise. The dynamic compensator is therefore 

recommended to use in the closed-loop dynamics when a significant source of measurement noise is expected. 

VII. Conclusion 

Two novel passivity-based control design frameworks for hybrid nonlinear time-varying dynamical systems 

involving an interacting mixture of continuous-time and discrete-time dynamics have been developed in this paper. 

By characterizing dissipativeness in terms of system dynamics and a generalized energy function via the hybrid 

Kalman-Yakubovich-Popov (KYP) conditions, a three-step control design procedure was proposed in compliance 

with the passivity theorem to render closed-loop dynamics stable. The proposed hybrid control architectures were 

subsequently exploited to regulate the attitude motion of spacecraft influenced by magnetic and impulsive sources of 

actuation. Simulation results demonstrated significant improvement in the performance of the proposed attitude 

control system in terms of transient response, steady-state behavior, and the required magnetic and impulsive control 

usage as compared to a hybrid linear approach in addition to the robust immunity of the resultant closed-loop 

dynamics to erroneous state knowledge originating from the measurements contaminated by noise effects. The 

proposed hybrid nonlinear passivity-based attitude control schemes possess several advantages: 1) the approximate 

control laws are in an explicit form of output feedback; 2) the control laws remain stable when the approximation is 

truncated at a finite degree of complexity; 3) the resultant control laws, the synthesis of which are based upon the 

full nonlinear kinematics and dynamics of the system, can be exploited over the entire operating range of the system; 

4) instantaneous underactuation and gain limitations, as the main drawbacks inherently associated with the 

magnetically actuated attitude controllers, were resolved; and 5) the magnetic attitude control system collaboratively 

augmented by impulsive actuation is no longer restricted to high-inclined orbits and can therefore be applied to any 

orbit of arbitrary inclination, while simultaneously improving the speed of response and the accuracy of pointing. 
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