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I. Introduction

S PACE rendezvous occurs when two or more objects in space are

brought together for station-keeping or docking. This is charac-
terized by a small relative displacement and, to avoid a collision, a

small relative velocity. For conventional engines, simple impulsive
maneuvers exist that can be used in the preliminary design stage

to model the various orbital element changes required to achieve
rendezvous [1]. Preliminary design for low-thrust rendezvous trajec-

tories using ion thrusters is less straightforward. In spite of the

challenges, low-thrust rendezvous can enable significant fuel savings
due to the use of engines with high specific impulses. Some prom-

ising geocentric applications of low-thrust rendezvous include orbital
debris removal [2] and spacecraft servicing [3].
Several approaches to low-thrust rendezvous trajectory design

exist. Linearized assumptions leading to equation sets such as the
famous Hill–Clohessy–Wiltshire (HCW) equations can be used for

short-range low-thrust rendezvous [4–7]. Another approach, based
on the calculus of variations, is known as the indirect method [8,9].

Because this approach is quite sensitive to the initial guess, the

homotopy method is sometimes used as a way of generating a series
of progressively better initial guesses [10]. One popular and straight-

forward method for interplanetary rendezvous optimization is the
Sims–Flanagan method [11,12]. It approximates a low-thrust trajec-

tory as a series of small impulsive thrusts, which are then optimized.

Shape-based methods provide a good initial guess for direct methods
because they involve sets of parameters that analytically describe

families of trajectories that satisfy the equations of motion [13–16].
Adrawbackof this approach is that the trajectories are often limited to

a small number of revolutions.
Low-thrust rendezvous design for geocentric orbits has a different

set of difficulties when compared to interplanetary rendezvous

design. The main difficulty is due to the larger number of revolutions
required and the fact that the target and chaser spacecraft are no

longer in the vicinity of a single plane—the ecliptic. The Sims–
Flanagan method becomes computationally intractable for a general

three-dimensional rendezvous in a geocentric orbit due to the

fine mesh needed to accurately represent the faster dynamics about
the primary gravitational body. Other direct methods, such as

pseudospectral methods [17], that rely on more computationally

efficient methods of discretization, can be used as long as a suitable
initial guess is chosen [18].
TheuseofLyapunov feedback control laws for low-thrust spaceorbit

transfers is an interesting area of research that can be adapted for
rendezvous. These laws are similar to the thrust-blending laws, such
as those by Kluever [19] and Ruggiero et al. [20], which seek to
instantaneously blend the thrust profiles that maximize the rate of
change of the orbital elements through tunable weights, rather than
byusing aLyapunov function. First introducedby Ilgen [21] in 1993 for
orbital transfers, Lyapunov control laws instead rely on steering a
spacecraft such that the error between the current orbit and the desired
orbit is driven to zero by making the rate of change of an appropriately
chosen scalar Lyapunov function as negative as possible [22].Although
suboptimal, Lyapunov feedback control laws can produce trajectories
that are close to optimal, depending on the chosen parameters [23,24].
Alternatively, they can be used to provide a good initial guess for direct
methods [25]. Naasz [26] developed three Lyapunov control laws using
constant gains for Cartesian coordinates, classical elements, and equi-
noctial elements. In his control law based on classical orbital elements,
Naasz also provided a mechanism for targeting the fast variable so that
static six-state targeting is achieved. For the planar low-thrust rendez-
vous problem, Hernandez and Akella [27] have applied a Lyapunov
control law using Levi–Cevita coordinates. The work by Leomanni
et al. [28] presented amodified equinoctial element Lyapunov feedback
control law for tracking true longitude in addition to the other orbital
elements in order to attain dynamic rendezvous targeting.
Over a series of papers starting in 2003, and refined in 2005,

Petropoulos developed a sophisticated Lyapunov-based control law
named the Q-Law [23,29,30] for low-thrust orbital transfers. It uses a
candidate Lyapunov function, Q, that is related to the square of the
minimum time required to reach the target orbit. An important aspect
of this control law is the way the function Q encapsulates the con-
nections between the rates of change of the various orbital elements
while also including built-inmechanisms for coasting to save fuel and
for remaining above a minimum periapsis radius. The Q-Law in its
original form was stated using classical elements, but versions using
the modified equinoctial elements have been developed in order to
avoid the associated singularities. Notable examples include thework
by Joseph [31], who applied equinoctial elements to a simplified
version of the Q-Law and used proportional-integral control in order
to control the ground track angle for stationkeeping. An interesting
application of the Q-Law for solar sail trajectories is the work by
Niccolai et al. [32], where various heliocentric mission scenarios
were investigated. Varga and Pérez [24] were the first to approach the
refined formulation of the Q-Law from an equinoctial framework.
Lantukh et al. [33] then augmented Petropoulos’ classical element
version of the Q-Law with an improved version of Naasz’s fast
variable targeting mechanism to produce the Enhanced Q-Law
(EQ-Law) with six-state targeting capability. However, this only
transfers the spacecraft to a certain stationary point in space. In that
study, it was stated that it would be interesting to investigate the use of
a Q-Law for achieving rendezvous with a moving target [33].
In the present work, the best aspects of the existing Lyapunov

control laws discussed in the previous paragraphs have been combined
andmodified to create a Rendezvous Q-Law (RQ-Law) that is capable
of targeting a time-varying point in space. We started with the Q-Law
formed by Varga and Pérez [24] as it uses modified equinoctial
elements with Petropoulos’s refined form of the Lyapunov function
[23]. We then modified this control law to provide a more accurate
calculation of the thruster firing angles. Then to enable dynamic
rendezvous targeting, we developed a novel target semimajor axis
augmentation scheme. A comparison of the RQ-Law with other
Lyapunov control laws for low-thrust trajectories is given in Table 1.
It is seen that the properties of the RQ-Law address the existing
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research gap for a Q-Law variant that is capable of dynamic ren-
dezvous.
The structure of the remainder of this work will be as follows. The

RQ-Lawand the necessary backgroundwill be described in Sec. II. In
Sec. III this law will be demonstrated with numerical examples,
including several cases where comparisons are given with existing
control laws. Finally, in Sec. IV, the RQ-Law and the presented
analysis will be summarized.

II. Space Rendezvous Using a Lyapunov Control Law
Based on Modified Equinoctial Elements

A. Modified Equinoctial Elements

The conversion from the set of classical elements (a�m� semimajor
axis, e eccentricity, i�rad� inclination, ω�rad� argument of periapsis,
Ω�rad� right ascension of the ascending node (RAAN), θ�rad� true
anomaly) to the set of modified equinoctial elements (p�m� semilatus
rectum, f, g, h, k, L�rad� true longitude), as defined by Walker et al.
[35], is given by

p � a�1 − e2� (1)

f � e cos�ω� Ω� (2)

g � e sin�ω� Ω� (3)

h � tan�i∕2� cos�Ω� (4)

k � tan�i∕2� sin�Ω� (5)

L � θ� ω� Ω (6)

B. RQ-Law Description

The Lyapunov function that we will use takes the form

Q � �1�WpP�
X
œ
SœWœ

�
œC − œT;aug

_œC;max;αβL

�
2

; œ ∈ fa; f; g; h; kg

(7)

where we note that the semimajor axis a is used instead of the

semilatus rectum, p, in the set of modified equinoctial elements,œ,
because this was the approach taken by both Naasz [26] and Varga

and Pérez [24]. It was found by Varga and Pérez that this substi-

tution results in a better controller performance than if the original

set of modified equinoctial elements is used [24]. It is also noted

that Q has units of time squared. As will be discussed later in this

paper, the quantity P is the penalty function, Wp is the associated

weight, and Sœ is the scaling function. The set œC corresponds to

the orbital elements of the chaser, Wœ are the associated scalar

weights, and the augmented set of target orbital elements,œT;aug, is

defined as

œT;aug �

8>><
>>:
2WL

π

�
aT −

rp;min

1 −
������������������
f2C � g2C

p �
tan−1�WsclΔL�−π;π�� � aT; œ � a

œT; œ ∈ ff; g; h; kg
(8)

where the set œT represents the unaugmented target orbital ele-
ments. The quantity ΔL�−π;π� � LC − LT, is the difference in radi-

ans between the true longitudes of the chaser and target wrapped to

the range �−π; π�, rp;min is the minimum periapsis radius constraint,

andWL andWscl are phasing parameters. Canonical units are used

with a suitable distance scaling unit, DU, and a time scaling unit,

TU, in the description and implementation of the RQ-Law, such
that the scaled standard gravitational parameter is unity.
To perform phasing, the augmented form of aT;aug in Eq. (8) has

been designed to induce an error in the semimajor axis that is related

Table 1 Comparison of the RQ-Law with other selected low-thrust Lyapunov feedback control laws

Lyapunov control law

Based on
Petropoulos
Q-Law Orbital element set

Orbit
targeting

Static
six-element
targeting

Dynamic
rendezvous
targeting Other notes

Ilgen (1993) [21] — — Classical and modified
equinoctial

✓ —— —— Introduced the use of a Lyapunov function for low-
thrust orbit transfers

Chang et al. (2002)
[34]

— — —— ✓ —— —— Introduced the use of a Lyapunov function based on
the eccentricity and angular momentum vectors

Naasz (2002) [26] — — Classical ✓ ✓ —— Introduced the concept of mean motion control for
targeting a particular phase angle through a classical
Lyapunov control law—while two other Lyapunov
control laws based on Cartesian and equinoctial
frameworks were given in this work, those laws did
not use mean motion control

Petropoulos Q-Law
(2005) [23]

✓ Classical ✓ —— —— Reference formulation of the refined Q-Law

Varga and Pérez
Q-Law (2016) [24]

✓ Modified equinoctial ✓ —— —— Introduced the use of modified equinoctial elements
for the refined version of the Q-Law

Leomanni et al.
(2016) [28]

— — Modified equinoctial ✓ ✓ ✓ Introduced dynamic rendezvous targeting for a
Lyapunov control law

Lantukh et al.
EQ-Law (2017) [33]

✓ Classical ✓ ✓ —— Introduced static six-element targeting for the refined
Q-Law

RQ-Law ✓ Modified equinoctial ✓ ✓ ✓ Introduces dynamic rendezvous targeting for the
refined Q-Law with a more accurate method of thrust
angle determination and a novel target semimajor axis
augmentation scheme that accounts for a minimum
periapsis constraint
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to the amount of error in the true longitude. The semimajor axis

augmentation scheme is constructed around the arctangent function,

because it offers known upper and lower bounds that are controllable

through the parameterWL and a simple derivative that is controllable

through theWscl parameter. If ΔL�−π;π� > 0, then aT;aug > aT , and if
ΔL�−π;π� < 0, then aT;aug < aT . This enables the final convergence of
the phase angle through the shorter way around the orbit. A plot of

this target semimajor axis augmentation scheme is shown in Fig. 1, as

a function of ΔL. We note that the upper and lower bounds of aT;aug
are asymptotic and deviate from aT by

�WL

�
aT −

rp;min

1 −
������������������
f2C � g2C

p �

In addition, the relation between the radius of periapsis, rp,
and the semimajor axis is known [1] to be a � rp∕�1 − e� �
rp∕�1 −

�����������������
f2 � g2

p
�. Therefore with this scheme, as long as

0 ≤ WL ≤ 1, this will prevent the rp corresponding to the lower

bound of aT;aug,

aT −WL

�
aT −

rp;min

1 −
������������������
f2C � g2C

p �

from being below the minimum periapsis radius constraint, rp;min.

We also note that in Fig. 1, a semimajor axis value of 1∕�1−������������������
f2C � g2C

p
� corresponds to an rp of one distance scaling unit

(1DU). IfDU is chosen to be the radius of the primary gravitational

body, such as the radius of the Earth, and if rp;min > 1 and

0 ≤ WL ≤ 1, this scheme can ensure that a collision of the chaser

with the surface of the primary does not occur during target acquis-

ition. By varying the phasing parametersWL andWscl, the maximum

deviation and rate of change of the augmented target semimajor axis,

aT;aug, with respect to the true longitude error, ΔL�−π;π�, can be

controlled. When compared to Lantukh’s [33] semimajor axis aug-

mentation scheme, it is apparent that the approach taken by the

RQ-Law does not require the Ntt, time-to-go concept, which is an

estimate of the remaining number of revolutions to reach the target.

As will be explained in more detail in Sec. III, this is because the

RQ-Lawsplits a trajectory into two stages, and phasing is started only

after the errors in the slow elements have been driven close to zero.
The quantity _œC;max;αβL represents themaximum rate of change for

each chaser orbital element,œC, with respect to both thrust direction

and true longitude. The following expressions, _œmax;αβL, expressed in

modified equinoctial elements for any maneuvering spacecraft, can

be obtained from Varga and Pérez [24]:

_amax;αβL � 2Fa

���
a

μ

r ������������������������������
1�

�����������������
f2 � g2

p
1 −

�����������������
f2 � g2

p
vuut (9)

_fmax;αβL ≈ 2F

�������������������������������
a�1 − f2 − g2�

μ

s
(10)

_gmax;αβL ≈ 2F

�������������������������������
a�1 − f2 − g2�

μ

s
(11)

_hmax;αβL � 1

2
F

�������������������������������
a�1 − f2 − g2�

μ

s
s2��������������

1 − g2
p

� f
(12)

_kmax;αβL � 1

2
F

�������������������������������
a�1 − f2 − g2�

μ

s
s2��������������

1 − f2
p

� g
(13)

where the given expressions for _fmax;αβL and _gmax;αβL are approx-

imations, s2 � 1� h2 � k2, andF is themagnitude of the propulsive

acceleration F � T∕m. The thrust magnitude, T, can be related [36]
to the engine efficiency (ηeng), engine power (Peng), specific impulse

(Isp), standard gravity (g0), and mass flow rate ( _m), using T �
�2ηengPeng�∕�g0Isp� � Isp _mg0. However, as will be explained in

Sec. II.B.1, the approximations for _fmax;αβL and _gmax;αβL given in

Eqs. (10) and (11) are inaccurate for certain orbits. Therefore, an

alternate method of characterizing _fmax;αβL and _gmax;αβL is devel-

oped, which is used in the RQ-Law.
The penalty function, P, is given by

P � exp

�
kpen

�
1 −

rp;C
rp;min

��
(14)

and this helps to make the minimum radius of the chaser spacecraft,

rp;C � aC�1 − eC�, stay above a specified rp;min. The scalar kpen and,
as mentioned earlier, Wp are weights associated with this penalty

function. Here we note that the lower bound of the semimajor axis

augmentation scheme in Eq. (8) has been designed to avoid interfer-

ing with the functionality of the penalty function. The scaling func-

tion Sœ can be written as

Sœ �

8>><
>>:
�
1�

�jaC − aT;augj
msclaT;aug

�
nscl

�
1∕rscl

; œ � a

1; œ ∈ ff; g; h; kg
(15)

where the quantitiesmscl, nscl, and rscl are associated scalar weights.
Since _œmax;αβL, in Eqs. (9–13), become infinite as a → ∞, the value

ofQ can be reduced to zero when aC → ∞ in addition to the desired

behavior ofaC → aT;aug [24]. The expression forSa preventsaC from
approaching infinity [23].
For a spacecraft equipped with a constant-thrust engine, the in-

plane and out-of-plane Lyapunov-optimal thrust angles, α	 and β	,
need to be found such that whenever the thrusters are on, _Q is

minimized. The thrust angles are defined in the local-vertical–

local-horizontal (LVLH) frame

FLVLH �
�
r

jrj
h × r

jh × rj
h

jhj
�
T

attached to the chaser spacecraft. The propulsive acceleration F is

related to the thrust angles α and β via

Fig. 1 A plot showing the behavior of the augmented target semimajor
axis aT;aug, in nondimensionalized units DU, with respect to the differ-
ence in true longitude, ΔL�−π;π�, in radians.
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F �
2
4 Fr

Fθ

Fh

3
5 �

2
4 F cos β sin α
F cos β cos α

F sin β

3
5 (16)

Diagrams of the LVLH frame and the geometry of the thrust angles

are shown in Fig. 2. The expressions for the Lyapunov-optimal thrust
angles, α	 and β	, are derived in Sec. II.B.1.
Numerical propagation of the nonlinear dynamics of a spacecraft

using modified equinoctial elements can be done using Gauss’

variational equations [24]:2
6666666664

_a

_f

_g

_h

_k

_L

3
7777777775

� A

2
664
Fr

Fθ

Fh

3
775� b (17)

where the matrix A and column vector b are expressed as

A � 1

q

�������������������������������
a�1 − f2 − g2�

μ

s
2
6666666666664

2aq�f sin�L�−g cos�L��
1−f2−g2

2aq2

1−f2−g2 0

q sin�L� �q� 1� cos�L� � f −g�h sin�L� − k cos�L��
−q cos�L� �q� 1� sin�L� � g f�h sin�L� − k cos�L��

0 0 cos�L�
2

�1� h2 � k2�
0 0 sin�L�

2
�1� h2 � k2�

0 0 h sin�L� − k cos�L�

3
7777777777775

(18)

b �
�
0 0 0 0 0

q2
��������������������
aμ�1−f2−g2�

p
a2�1−f2−g2�2

�
T

(19)

with

q � 1� f cos�L� � g sin�L� (20)

For the RQ-Law, we note that the target is propagated from its initial

conditions without control and that the mass history of the chaser is

calculated using the rocket equation. This means that the acceleration

due to thrust increases as the spacecraft mass decreases. The algo-

rithm is terminated when the desired rendezvous tolerances are met.
Wealso adopt the notion of relative effectivity, ηr, to create a coasting

mechanism [23]. This is defined as ηr � � _Qn − _Qnx∕ _Qnn − _Qnx�,

where _Qn is the Lyapunov-optimal value of _Q at the current time

t and

_Qnn � min
�t;t�T�

_Qn (21)

_Qnx � max
�t;t�T�

_Qn (22)

The quantities _Qnn and _Qnx represent the minimum and maximum

values of _Qn that could occur in the current osculating orbit of the

chaser. Becausewe simultaneouslypropagate the target for rendezvous,

we have chosen to evaluate ηr at each time step by using a temporal

mesh defined as �t; t� T�, where t is the current time step and T is the

periodof the current osculatingorbit of the chaser. This is in contrast to a

previous study that used a phase angle mesh to evaluate the relative

effectivity at each time step for an orbital transfer problem [25]. If

ηr ≥ ηr;tol, where ηr;tol is some set tolerance value, then the propulsion

system for the chaser is turned on. Otherwise, the spacecraft is allowed

to coast, trading a higher time of flight for lower fuel consumption.

1. Lyapunov-Optimal Thrust Angles from Combined Analytical and

Numerical Partial Derivatives

We decided to find more accurate approximations for the maximal

rates of change for themodified equinoctial elements f � e cos�ω�
Ω� and g � e sin�ω�Ω� given by Varga and Pérez [24]:

_fmax;αβL ≈ 2F

����
p

μ

r
(23)

_gmax;αβL ≈ 2F

����
p

μ

r
(24)

The starting point for our analysis was the equations given by Yuan

et al. [37]:

_fmax;αβ �
F

q

����
p

μ

r �������������������������������������������������������������������������������������������������������������������������������
�f� sin�L��q� 1��2 � q2sin2�L� � g2�k cos�L� − h sin�L��2

q
(25)

_gmax;αβ �
F

q

����
p

μ

r ���������������������������������������������������������������������������������������������������������������������������������
�g� sin�L��q� 1��2 � q2 cos2�L� � f2�k cos�L� − h sin�L��2

q
(26)

a) Local-vertical-local-horizontal frame b) Thrust angle orientation

Fig. 2 Description of the LVLH frame and the thrust angle orientation.
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where q � 1� f cos�L� � g sin�L�, as defined before, and p �
a�1 − f2 − g2�. It should be noted that Eqs. (23) and (24) give the
approximate maximal rates of change over the thrust angles and the
true longitude L for a particular osculating orbit, while Eqs. (25) and
(26) only give the maximal rates of change over the thrust angles.
Here we compare the values of _fmax;αβL and _gmax;αβL found from

the maxima of the expressions for _fmax;αβ and _gmax;αβ given by Yuan

et al. [37], with their approximation, 2F
��������������p∕μ�p

, proposed by Varga

and Pérez [24]. The behavior of Eqs. (23–26) can be visualized in

Fig. 3 where various plots of _fmax;αβ − 2F
��������������p∕μ�p

and _gmax;αβ −
2F

��������������p∕μ�p
are shown. The parameters used for these plots are

F � 1, μ � 1, a � 7.6, ω � 3.52 rad, andΩ � 1.97 rad with three
different sets of eccentricities and inclinations. We note that for ease
of interpretation, classical elements are used to specify the orbits in
Fig. 3, but these are converted to modified equinoctial elements
internally. It can be seen that, for orbits with a low eccentricity and
inclination, the approximation performs well (markers are close to
zero), but for orbits that are highly eccentric (e ≈ 0.8) or have a high

inclination (i ≈ 3.1 rad), the values of _fmax;αβL and _gmax;αβL found

using Eqs. (25) and (26) can be much different from the approxima-
tions in Eqs. (23) and (24). This indicates that it would be advanta-
geous to base the thrust angle determination on Eqs. (25) and (26) as

they can be used to find the correct orbit-dependent values of _fmax;αβL

and _gmax;αβL. To address this, the approach taken in the RQ-Law is to

numerically evaluate _fmax;αβ and _gmax;αβ at a mesh of various true

longitude values, in order to determine _fmax;αβL and _gmax;αβL.

The Lyapunov function Q is a function of several quantities: the

chaser and target orbital elements, the chaser and target true longi-

tudes, LC and LT , as well as a set of constants ψ � fWp;Wa;
Wf;Wg;Wh;Wk;WL;Wscl; kpen; mscl; μ; nscl; rscl; rp;ming. So the

dependence of Q on these quantities can be expressed as

Q�œC;œT; LC; LT;ψ� (27)

It is important to note that the dependence ofQ onLC andLT is due to

their presence in Eq. (8) for the augmented target semimajor axis,

which is used to achieve rendezvous. By using Eqs. (17–20), _L is

expressed as

_L�Fh

q

����������������������������
a�1−f2−g2�

μ

s
�hsin�L�−kcos�L���q2

�������������������������������
aμ�1−f2−g2�

p
a2�1−f2−g2�2

(28)

� A�6;3�Fh � b6 (29)

where A�6;3� represents the element in theAmatrix at the given (row,

column) index and b6 represents the sixth element of the b column

vector. For the rates of change of the chaser and target true longitudes,

this means

_LC � AC;�6;3�Fh � bC;6 (30)

� bT;6 (32)

where Fh is zero in the expression for _LT because the target is

uncontrolled. Therefore, _Q can be written using the chain rule as

�
X
œ

�
∂Q
∂œC

_œC � ∂Q
∂ _fC;max;αβL

∂ _fC;max;αβL

∂œC

_œC � ∂Q
∂ _gC;max;αβL

∂ _gC;max;αβL

∂œC

_œC

�
� ∂Q

∂LC

_LC � ∂Q
∂LT

_LT (34)

�
X
œ

�
∂Q
∂œC

� ∂Q
∂ _fC;max;αβL

∂ _fC;max;αβL

∂œC

� ∂Q
∂ _gC;max;αβL

∂ _gC;max;αβL

∂œC

�
_œC � ∂Q

∂LC

�AC;�6;3�Fh � bC;6� �
∂Q
∂LT

�bT;6� (35)

where _œT is zero because the target is uncontrolled, and _ψ is zero

because ψ is composed of constants. We note that in Eqs. (33–35),

although the analytical expressions of _fC;max;αβL and _gC;max;αβL are

unknown, they are functions of œC, as can be seen from the expres-

sions for _fmax;αβ and _gmax;αβ, in Eqs. (25) and (26). For this reason,

we use the chain rule to reveal their dependence on œC through

the partial derivatives ∂ _fC;max;αβL∕∂œC and ∂ _gC;max;αβL∕∂œC. After

expanding _œC, in terms of the propulsive acceleration compo-

nents, we can express these components in terms of the thrust

angles:

J. GUIDANCE, VOL. 46, NO. 4: ENGINEERING NOTES 785

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

Ju
ly

 2
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
66

62
 



All partial derivatives in Eq. (36) have closed-form expressions,

except for ∂ _fC;max;αβL∕∂œC and ∂ _gC;max;αβL∕∂œC. These are enclosed

by dashed boxes and must be calculated numerically.
To do this, we evaluate Eqs. (25) and (26), at a mesh of 100 true

longitude values in �0; 2π� to find theLC;max; _f andLC;max; _g values that

maximize _fC;max;αβ and _gC;max;αβ, respectively. It was discovered that

∂ _fC;max;αβ∕∂œC and ∂ _gC;max;αβ∕∂œC also have closed-form expres-

sions, so we use the following approximations:

∂ _fC;max;αβL

∂œC

≈
∂ _fC;max;αβ

∂œC

����
LC;max; _f

(37)

∂ _gC;max;αβL

∂œC

≈
∂ _gC;max;αβ

∂œC

����
LC;max; _g

(38)

Wenote that Eqs. (37) and (38) are only approximations and not exact
relations, sinceLC;max; _f andLC;max; _g can depend onœC. Now that the

partial derivatives ∂ _fC;max;αβL∕∂œC and ∂ _gC;max;αβL∕∂œC, as well as

the quantitiesLC;max; _f,LC;max; _g, _fC;max;αβL, and _gC;max;αβL, have been

found numerically, Eq. (36) can be evaluated. Furthermore, if we
gather terms based on the thrust angles, the following expression for
_Q can be obtained:

_Q�D1 cosβcosα�D2 cosβ sinα�D3 sinβ�
∂Q
∂LC

bC;6�
∂Q
∂LT

bT;6

(39)

where

D1 �
X
œ

�
∂Q
∂œC

� ∂Q
∂ _fC;max;αβL

∂ _fC;max;αβL

∂œC

� ∂Q
∂ _gC;max;αβL

∂ _gC;max;αβL

∂œC

�
∂ _œC

∂Fθ
(40)

D2 �
X
œ

�
∂Q
∂œC

� ∂Q
∂ _fC;max;αβL

∂ _fC;max;αβL

∂œC

� ∂Q
∂ _gC;max;αβL

∂ _gC;max;αβL

∂œC

�
∂ _œC

∂Fr

(41)

D3 �
X
œ

�
∂Q
∂œC

� ∂Q
∂ _fC;max;αβL

∂ _fC;max;αβL

∂œC

� ∂Q
∂ _gC;max;αβL

∂ _gC;max;αβL

∂œC

�
∂ _œC

∂Fh

� ∂Q
∂LC

AC;�6;3� (42)

For the orbital transfer problem, which does not involve rendezvous,

the expressions for Di were derived by differentiating the original

form of _Q � D1 cos β cos α�D2 cos β sin α�D3 sin β with respect
to α and β and setting the resulting equations to zero [24,25,38]. Since
the derivatives d�⋅�∕dα and d�⋅�∕dβ, of the last two terms in Eq. (39),

�∂Q∕∂LC�bC;6 and �∂Q∕∂LT�bT;6, are zero, we can express the

Lyapunov-optimal thrust angles [24], α	 and β	, as

α	 � arctan2�−D2;−D1� (43)

and

β	 � arctan

�
−D3�������������������
D2

1 �D2
2

p �
(44)

where the two-argument arctangent is used for finding α	 and the new
expressions forDi given in Eqs. (40–42) are used. With this alternate

formulation, the Di can be calculated more accurately depending on

the resolution of the mesh used for finding LC;max; _f and LC;max; _g.

We note that when evaluating the Di in Eqs. (40–42), the normal-

ized propulsive acceleration magnitude (F � 1) is used, because our
goal is to determine expressions for the instantaneous Lyapunov-

optimal thrust direction for any given propulsive acceleration.

Because F appears simply as a scale factor in the denominator of

Q, in Eq. (7), this assumption is also used for the evaluation of Q as

well as _Q, in the calculation of the relative effectivity. However,

propagation of the dynamics is done with the correct nondimension-

alized value of F.

C. Analysis of Singularities

Because the classical orbital elements have singularities at i �
0 rad and e � 0, it is expected that formulations of the Q-Law based

on classical elements [23,33,39] would not be suitable to analyze

orbits close to these singularities. Indeed, Hatten [39], in his imple-

mentation of the Q-Law [23], restricted the eccentricity to be greater

than a threshold of 5 × 10−3 and the inclination to stay above a thresh-

old of 1 × 10−4 rad. To handle equatorial andmore circular orbits, as in

the present work, with smaller eccentricities around e � 0.001, it was
found that modified equinoctial elements need to be used.
The modified equinoctial elements themselves are free of singu-

larities for all orbits other than retrograde equatorial orbits

(i � π rad), and this singularity can be seen from the tan�i∕2� terms

in the definition of the elements h and k in Eqs. (4) and (5), respec-

tively. However, we note that a perfectly circular orbit with e � 0 and
a parabolic orbit with e � 1 cannot be handled by the RQ-Law

described in Sec. II.B. Both of these additional singularities arise

from the first term of Q in Eq. (7), which contains the factor

-3 -2 -1 0 1 2 3
-10

0

10

20

30

40

a) Plots of − 2 vs

-3 -2 -1 0 1 2 3
-10

0

10

20

30

40

b) Plots of − 2 vs

Fig. 3 The correct orbit-dependent values of _fmax ;αβL and _gmax ;αβL are compared with their approximation, 2F
���������
p∕μ

p
. The differences _fmax ;αβL −

2F
���������
p∕μ

p
and _gmax ;αβL − 2F

���������
p∕μ

p
, with nondimensionalized units TU−1, are indicated by markers.
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γ � �1∕ _aC;max;αβL�2. We note that in the following analysis of the

singularities, the subscriptC, used to denote association of the orbital
elements with the chaser spacecraft, has been dropped in many

instances for clarity. The singularity at e � 1 exists, since the denom-

inator of γ will be zero whenever e �
�����������������
f2 � g2

p
� 1. This is seen

from Eq. (9), where we have that

_amax;αβL � 2Fa

���
a

μ

r ������������������������������
1�

�����������������
f2 � g2

p
1 −

�����������������
f2 � g2

p
vuut

For the second singularity, at e � 0, let us first observe that the partial

derivative ∂Q∕∂f needs to be evaluated in order to determine _Q in

Eq. (36) and for the Di in Eqs. (40–42). Because the product rule

requires that ∂γ∕∂f be evaluated in order to find ∂Q∕∂f, we deter-
mine that

∂γ
∂f

� −fμ
2F2a3�

�����������������
f2 � g2

p
� 1�2

�����������������
f2 � g2

p (45)

It is seen that e �
�����������������
f2 � g2

p
� 0 will cause the denominator of

∂γ∕∂f to be zero, which reveals the singularity. In addition, we know
from a proof by Gurfil [40] that a parabolic escape trajectory cannot

be reached through continuous feedback control. Therefore, the

RQ-Law is restricted to orbits with i ≠ π rad and 0 < e < 1.
Next, we investigate if these singularities can be avoided by using

the semilatus rectum, p, instead of the semimajor axis, a, in the

RQ-Law formulation. From Yuan et al. [37], it is stated that

_pmax;αβ �
2Fp

1� f cos�L� � g cos�L�
����
p

μ

r

To determine _pmax;αβL, we find that

∂ _pmax;αβ

∂L
� −2Fp�g cos�L� − f sin�L�� ���������

p∕μ
p

�f cos�L� � g sin�L� � 1�2 (46)

The expression for ∂ _pmax;αβ∕∂L is zero when tan�L� � g∕f and it is

found that Lmax; _p � �arctan2�g; f� � π� maximizes _pmax;αβ. After

making the substitution p � a�1 − f2 − g2�, so that the dependence

on f and g can be revealed for analysis, we can write

_pmax;αβL�
�

2Fa�1−f2−g2�
1�fcos�arctan2�g;f��π��gcos�arctan2�g;f��π�

�

×

����������������������������
a�1−f2−g2�

μ

s
(47)

A reformulation of the RQ-Law using p instead of a would result in

the factor ξ � �1∕ _pC;max;αβL�2 appearing in the first term of Q.

Immediately, it is seen that the singularity at e � 1 remains since

e �
�����������������
f2 � g2

p
� 1would cause Eq. (47) to be zero. While Eq. (47)

is the most general form of _pmax;αβL, let us make the restriction f > 0

so that arctan2�g; f� can be replaced by arctan�g∕f� in Eq. (47) and
analysis of the second singularity can proceed. From the same

reasoning as for γ, since the evaluation of ∂ξ∕∂f would be required

in order to find ∂Q∕∂f, it is found that

∂ξ
∂f

�
3μ

�
f − 2jfj

�����������������
f2 � g2

p
� fg2 � f3

	
2F2a3�f2 � g2 − 1�4

−
μjfj

�
f2jfj − f

�����������������
f2 � g2

p
� g2jfj

	
2F2a3f�f2 � g2��f2 � g2 − 1�3 (48)

The denominator of the second term of Eq. (48) contains the factor

(f2 � g2), which shows that the singularity at e �
�����������������
f2 � g2

p
� 0

still exists.
This analysis shows that the RQ-Law has singularities at i � π,

e � 0, and e � 1. It also suggests that other Q-Law variants that use

the semimajor axis, a, or the semilatus rectum, p, in their formula-

tions may not be able to target a perfectly circular orbit either, if the

�1∕ _œC;max;αβL�2 factor appears in the definition of Q. Using the

modified equinoctial elements with p replaced by a seems to be

the current state-of-the-art for Q-Law formulations as it allows

targeting noncircular prograde equatorial orbits, allows targeting

eccentricities closer to zero than would be possible through the use

of classical elements [39], and offers improved controller perfor-

mance compared to using the original set of modified equinoctial

elements with the semilatus rectum [24].

Table 2 Physical parameters common to all trade studies

m0, kg Peng, kW ηeng, % Isp, s g0, m∕s2 t0, s μ, m3∕s2 REarth, m DU , m TU, S

450 5 65 3300 9.81 0 3.9860 × 1014 6.3781 × 106 REarth

�����������������
R3
Earth∕μ

q

Table 3 RQ-law parameters common to all trade studies

Stage kpen rp;min Wp Wa Wf Wg Wh Wk mscl nscl rscl Lerr;tol [rad]

1 100 REarth 1 2 50 50 1 1 3 4 2 N/A

2 100 REarth 1 10 1 1 1 1 3 4 2 3 × 10−3

Table 4 Initial classical orbital elements for the chaser and target

Chaser Departure Point Trade Study Stage Switchover Point Trade Study Target Orbit Eccentricity Trade Study

Element Chaser Target Chaser Target Chaser Target

a [m] REarth � 2000 × 103 REarth � 3000 × 103 REarth � 2000 × 103 REarth � 3000 × 103 REarth � 20000 × 103 REarth � 20000 × 103

e 0.2 0.001 0.2 0.001 eT eT
i [rad] 0 π∕2 0 π∕2 π∕2 π∕2
ω [rad] 0 π∕2 0 π∕2 π∕2 π∕2
Ω [rad] — π∕2 — π∕2 π∕2 π∕2
θ [rad] θC0 π∕2 π π∕2 0 π∕2
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III. Numerical Results and Comparison

In this section, we numerically analyze the RQ-Law described in
Sec. II.B through three trade studies and a comparison with existing
control laws. The physical parameters used are detailed in Table 2,

and the initial mass and ion thruster characteristics are referenced

from a case studied by Kluever and Oleson [41]. Parameters for the

RQ-Law were chosen through a combination of problem-specific

tuning and reference to prior work [23,33] and the parameters
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Fig. 4 RQ-Law six-element rendezvous—Chaser Departure Point Trade Study (θC0 � 0).
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common to all the cases in this work are provided in Table 3. The
ode45 numerical integrator in MATLAB [42] is used with relative
and absolute integration tolerances of 1 × 10−9 and 1 × 10−7, respec-
tively. We emphasize that our approach only assumes two-body
Keplerian dynamics with thrusting.
Each analyzed rendezvous trajectory is separated into the orbit

acquisition stage (stage 1) and the target acquisition stage (stage 2), as
recommended by Naasz in his study of mean motion control [26]. In
stage 1,WL � 0 and the chaser’s goal is to transfer to the same orbit
as the target, matching all the target orbital elements except for LT.
Stage 1 termination is determined by a tolerance in Q, denoted by
Qtol. For stage 2, WL > 0 and the chaser will try to match the true
longitude of the moving target in order to achieve rendezvous. If
coasting is enabled through ηr;tol > 0, it is performed only in stage 1,

as it has been found to interfere with the phasing maneuvers in
stage 2, resulting in missed rendezvous opportunities and increased
fuel consumption. The phasing parameters WL and Wscl and the
tolerances ηr;tol andQtol are discussed separately for each trade study.

We note thatQtol is given without units because nondimensionalized
time is used internally for the RQ-Law. The termination condition for

stage 2 is such that the true longitude errors are less than 3 × 10−3 rad
for all of the rendezvous cases studied in this work.

A. Chaser Departure Point Trade Study

The first trade study analyzes the effect of the departure point of the
chaser on the performance of theRQ-Law.The rationale for this study

is to see whether it would make a significant difference in perfor-
mance to wait until a favorable relative geometry between the chaser
and target is reached, before initiating the rendezvous trajectory. The
rendezvous trajectories generated for this study involve significant
changes in all six orbital elements. In Table 4, the initial orbital
elements for the chaser and target are given under the subheading
for the chaser departure point trade study, where it is indicated
that the initial chaser true anomaly, θC0, is varied. The tolerances

Qtol � 1 × 10−7 and ηr;tol � 0were used, which shows that coasting

is not considered in this trade study. The phasing parameters WL �
0.06609 andWscl � 3.3697 are used for all cases in this trade study
and were tuned through the fminsearch Nelder–Mead optimization
routine inMATLAB, byminimizing the stage 2 fuel consumption for
the θC0 � 0 case. Because the target orbital elements are the same for
all cases in this trade study, good performancewas found in using the
phasing parameters optimized specifically for the θC0 � 0 case, for
all cases. Figure 4 shows the trajectory, the time histories of the
critical orbital elements, the thrust angles, as well as the mass and
thrust histories for the rendezvous trajectory corresponding to
θC0 � 0. It is seen that the target elements are reached and it is
interesting to note that in Fig. 4b, theRQ-Law inherits a characteristic
property of the Q-Law where the semimajor axis is temporarily
increased past the desired value in order to more efficiently change
the inclination and the right ascession of the ascending node (RAAN)
by increasing theirmaximal rates of change [39]. In addition, the inset
in Fig. 4b shows the effect of the semimajor axis augmentation
scheme introduced in Eq. (8) and Fig. 1 that allows the rendezvous
to occur. Classical elements are used for clarity in Table 4 and Fig. 4,
even though the numerical integration is done using modified equi-
noctial elements.
The case of θC0 � 0 in this trade study was also taken as an oppor-

tunity to numerically validate the expression for _Q in Eq. (36), as it is

critical to the RQ-Law formulation. In Fig. 5, a plot of _Q computed
analytically through Eq. (36) is compared with a plot of the numeri-
cally differentiated time history of Q, computed through a central
difference scheme. As stated at the end of Sec. II.B.1, since F � 1 is

assumed when calculating Q, it is actually the time history of Q∕F2

thatmust be usedwhen calculating _Q through finite differencing. The
plot insets show that although there is a minor discrepancy, the shape
of the plots shows good agreement. We believe that this difference
can be attributed to our use of grid-searched values in the approx-
imations in Eqs. (37) and (38). In addition, the difference diminishes
over time, and this is especially apparent in the inset comparing the
plots at the end of the trajectory.
To evaluate its performance in this trade study, the RQ-Law is

compared with a hybrid comparison control scheme that uses the
Varga and Pérez Q-Law [24] for the orbital transfer in stage 1 and a
simple tangential thrust spiral phasing law for stage 2 that is
described by King et al. [36]. The tangential phasing law causes
the chaser to initially spiral up or down, depending on whether the

Table 5 Fuel consumptionand transfer timebreakdownby stage for the chaserdeparturepoint trade study for theRQ-law (RQ) andVargaandPérez
Q-law with tangential thrust spiral phasing (VP+T)

θC0 � 0 θC0 � π∕4 θC0 � π∕2 θC0 � 3π∕4
Δm, kg Δt, days Δm , kg Δt, days Δm, kg Δt, days Δm, kg Δt, days

RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T

Stage 1 150.67 151.29 281.17 282.32 150.67 151.28 281.17 282.31 150.67 151.28 281.17 282.31 150.67 151.28 281.16 282.3

Stage 2 1.01 0.59 1.88 1.1 1.15 0.44 2.15 0.82 0.84 0.4 1.57 0.75 0.66 0.41 1.23 0.77

Total 151.68 151.88 283.06 283.42 151.82 151.72 283.32 283.13 151.51 151.68 282.73 283.06 151.33 151.69 282.39 283.07

θC0 � π θC0 � 5π∕4 θC0 � 3π∕2 θC0 � 7π∕4

Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days

RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T

Stage 1 150.67 151.29 281.16 282.32 150.67 151.28 281.17 282.31 150.67 151.29 281.18 282.33 150.68 151.29 281.18 282.32

Stage 2 0.73 0.99 1.36 1.85 1.26 1.46 2.36 2.72 1.63 1.19 3.04 2.23 1.25 0.88 2.33 1.64

Total 151.4 152.28 282.52 284.17 151.93 152.74 283.52 285.03 152.3 152.48 284.22 284.55 151.92 152.17 283.51 283.96
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Fig. 5 Comparison of analytical _Q history computed fromEq. (36) with
numerically differentiated Q history—Chaser Departure Point Trade
Study (θC0 � 0).
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chaser is ahead or behind the target, respectively, until half the phase

angle difference is covered, at which point the spiral maneuver is

reversed until rendezvous is achieved. This simple tangential phas-

ing law, with equal phase difference coverage in the spiral up and

spiral down arcs, is applicable for near-circular orbits. This is valid

for this trade study since eT � 0.001. We note that the parameters in

Tables 2 and 3 are also used for the stated hybrid comparison law.

The results of this chaser departure point trade study are shown in

Table 5 and Fig. 6. From Table 5, it is apparent that for both laws the

chaser departure point affects the stage 2 fuel consumption but has a

negligible impact for stage 1. This is expected because changing the

departure point of the chaser will change the phase difference at the

beginning of stage 2. However in stage 1, only the slow orbital

elements are targeted. In general, the RQ-Law offers better perfor-

mance in stage 1 compared to the Varga and Pérez Q-Law, due to

the alternate method of thrust angle determination presented in
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Fig. 7 Comparison of the RQ-Law with the Varga and Pérez Q-Law [24] with tangential phasing [36]—Stage Switchover Point Trade Study.

Table 6 Fuel consumption and transfer time breakdown by stage for the Stage Switchover Point Trade Study for the RQ-Law (RQ) and Varga and
Pérez Q-Law with tangential thrust spiral phasing (VP� T)

Qtol � 1 × 10−7 Qtol � 1 × 10−6 Qtol � 1 × 10−5 Qtol � 1 × 10−4

Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days

RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T

Stage 1 141.64 141.86 320.26 320.83 141.57 141.79 320.09 320.66 141.34 141.56 319.61 320.15 140.77 140.97 318.44 318.93

Stage 2 1.54 1.19 2.87 2.21 1.55 1.19 2.89 2.22 1.6 —— 2.99 — — 2.27 —— 4.24 — —

Total 143.18 143.05 323.12 323.04 143.12 142.98 322.98 322.88 142.95 —— 322.6 — — 143.04 —— 322.68 — —

Qtol � 1 × 10−3 Qtol � 1 × 10−2 Qtol � 1 × 10−1 Qtol � 1 × 100

Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days Δm, kg Δt, days

RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T RQ VP� T

Stage 1 139.42 139.6 315.93 316.38 134.81 134.99 307.28 307.73 97.3 97.58 231.51 233.34 34.59 34.98 87.85 90.12

Stage 2 3.46 — — 6.46 —— 8.06 — — 15.05 —— —— —— — — — — —— —— —— — —

Total 142.88 — — 322.39 —— 142.88 — — 322.33 —— —— —— — — — — —— —— —— — —
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Fig. 6 Comparison of the RQ-Law with the Varga and Pérez Q-Law [24] with tangential phasing [36]—Chaser Departure Point Trade Study.
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Sec. II.B.1, while the phasing maneuver in stage 2 is more effi-

ciently done by the simple tangential spiral maneuver for the near-

circular case. As seen in Table 5 and Fig. 6, the trends found from

the comparison of the fuel consumption breakdown by stage also

hold for the transfer time. We see that for all but one of the cases

considered, the RQ-Law offers slightly improved performancewith

respect to the comparison law, in terms of both fuel consumption

and transfer time.
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Fig. 8 RQ-Law six-element rendezvous—Stage Switchover Point Trade Study (Qtol � 1 × 10−2).
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B. Stage Switchover Point Trade Study

The second trade study investigates whether the RQ-Law perfor-

mance is affected by the choice ofQtol—that is, whether starting the

target acquisition in stage 2 earlier in the trajectory results in

improved performance. From Table 4, it is seen that the initial

orbital elements for this trade study correspond to the elements

for the chaser departure point trade study with θC0 � π. The same

phasing parameters as in the previous trade study, WL � 0.06609
andWscl � 3.3697, are used. Coasting is enabled through the use of
ηr;tol � 0.1. The results are presented in Table 6 and visualized in

Fig. 7. For the case corresponding toQtol � 1 × 10−7, we are able to
directly see the effect of coasting by comparing with the θC0 � π
case in Table 5. For the RQ-Law, noticeable fuel savings of about

8 kg are observed at the cost of approximately an extra 40 days in

transfer time. To study the effect ofQtol, it has been found that for all

of the cases, stage 1 converges, but asQtol increases, problems with

rendezvous in stage 2 start occurring for both the RQ-Law and the

comparison law. For the purpose of this investigation, when the

total fuel consumption reaches 170 kg, nonconvergence is declared

and the corresponding case in Table 6 is marked with a dash, and

the corresponding data are removed in Fig. 7. It is seen that the

RQ-Law converges up toQtol � 1 × 10−2while the comparison law

is only able to converge up to Qtol � 1 × 10−6. Although the

RQ-Law outperforms the comparison for all cases in stage 1, the

hybrid comparison law outperforms the RQ-Law due to better stage

2 performance, when it is able to converge. We emphasize that,

for the hybrid comparison law, the convergence problems are not

associated with the Varga and Pérez Q-Law associated with stage 1,

but rather with the tangential thrust spiral phasing law in stage 2.

However, as Qtol increases, performance improves overall, and at

Qtol � 1 × 10−2, the RQ-Law is able to offer better performance

than the best possible performance by the hybrid comparison law

at Qtol � 1 × 10−6, as seen in Fig. 7. This case can be more closely

observed in Fig. 8. In Figs. 8g and 8h, the effect of coasting is clearly

seen, where one can observe the plateaus in the mass history

and the rapid switching of the thrust magnitude up to the end of

stage 1.

It has been stated by Izzo et al. [43], that the relative inclination,

Δirel � cos−1�cos i1 cos i2 � sin i1 sin i2 cosΩ1 cosΩ2

� sin i1 sin i2 sinΩ1 sinΩ2� (49)

between two orbits is a good measure of the orbital transfer cost
between them. Therefore, we use the relative inclination as ametric to
characterize the distance between the osculating orbit of the chaser
and the target orbit at the start of stage 2. The results are given
in Fig. 9, and it is seen that, approximately, the RQ-Law stage 2
is able to converge for Δirel ≤ 1 deg, while the tangential thrust
spiral phasing law in the comparison is able to converge for
Δirel ≤ 0.07 deg. The results of this trade study show that, in general,
a two-stage approach, with a sufficiently small Qtol, is necessary for
the RQ-Law.

C. Target Orbit Eccentricity Trade Study

The third trade study analyzes the phasing performance of the
RQ-Law for generating rendezvous trajectories to targets in orbits
with various eccentricities. The rationale for this trade study is to
see whether the RQ-Law can perform rendezvous in eccentric
target orbits, which is a more difficult task than rendezvous in
circular orbits. A value of Qtol � 1 × 10−7 is used and because the
chaser starts on the desired orbit but is initially separated from the
target by a phase difference of π∕2 rad, this study happens
entirely in stage 2 as Q�t � 0� ≤ Qtol for all cases. Therefore,
this study highlights the target semimajor axis augmentation
scheme presented in Eq. (8) and Fig. 1. As mentioned earlier,
ηr;tol � 0 since coasting is disabled in stage 2. The initial orbital

elements used for this trade study are given in Table 4, where it is
indicated that the target eccentricity, eT , is varied. For this trade
study, because different eccentricities are targeted, different phas-
ing parameters are used for each case and are found using the
Nelder–Mead implementation in fminsearch. In this optimization,
the phasing parameters that minimized the fuel consumption for
each of the eT cases were found. These parameters are given in
Table 7. The results of this study are given in Figs. 10 and 11. In
Fig. 10b, the effect of the semimajor axis augmentation scheme is
clearly seen, where the value of a is temporarily reduced to aT;aug,
in order to perform phasing. It is seen that, without a significant
variation in fuel consumption and transfer time, the RQ-Law is
able to perform phasing in a range of orbits, from near-circular
(e � 0.001) to moderately high eccentricity (e � 0.7).

D. Note on Parameter Selection

It has been found in our investigations that the parameters in
Table 3 work well for geocentric orbits. The kpen andWp parameters
were adopted from Lantukh et al. [33] and the mscl, nscl, and rscl
parameters were adopted from Petropoulos [23].We note that, for the
penalties, the absolute values are not so important as are their relative
magnitudes. To that effect, in stage 1, Wf and Wg are made larger

than the other penalties to prevent the eccentricity from growing too
large and going near the singularity at e � 1. However, for a rendez-
vous case that only requires orbit raising,Wa can bemade larger than
the other parameters. In stage 2, the emphasis is on reducing the
phasing error and this is done indirectly by choosing a larger value of
Wa, so that the chaser semimajor axis tracks the augmented value
of the target semimajor axis, according to Eq. (8). The value of Qtol

is chosen to be as large as possible in order to allow rendezvous in

stage 2, and it has been found that Qtol � 1 × 10−7 is a good initial
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Fig. 9 Relative inclination at stage 2 start vs stage switchover point—
Stage Switchover Point Trade Study.

Table 7 RQ-law phasing parameters for target eccentricity trade study

Parameter eT � 0.001 eT � 0.1 eT � 0.2 eT � 0.3 eT � 0.4 eT � 0.5 eT � 0.6 eT � 0.7

WL 0.0594 0.0621 0.0661 0.0548 0.0702 0.1123 0.0661 0.0659

Wscl 3.6230 3.6952 3.3714 5.4849 3.6663 1.9891 3.5557 3.2053
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value to try. The phasing parametersWscl andWL are typically tuned

through trial and error to achieve rendezvous. These two parameters

can then be optimized, if needed, by approaches such as the

derivative-free Nelder–Mead optimization method, as shown in this

work. For geocentric orbits, the values Wscl � 0.7 and WL � 0.06
were found to be good starting points for an initial trial and error

search. After these parameters are found, a nonzero value of ηr;tol can
be chosen for stage 1, such that a desired balance between fuel
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Fig. 10 RQ-Law phasing—Target Orbit Eccentricity Trade Study (eT � 0.7).
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consumption and transfer time is achieved. We note that parameter
tuning was not a focus of this work, but many excellent studies exist
in the literature where a parameter optimizer is wrapped around the
Q-Law [24,44]. It is anticipated that such an approach may offer
substantial improvements in performance when applied to the
RQ-Law.

IV. Conclusions

In this work, the well-known Q-Law, which is a Lyapunov feed-
back control law for orbital transfers, is adapted to create the RQ-Law
for generating low-thrust three-dimensional multirevolution long-
range rendezvous trajectorieswith amoving target based onmodified
equinoctial elements. The RQ-Law introduces new features for both
the orbit and target acquisition stages. In addition to a qualitative
comparison of the RQ-Lawwith other low-thrust Lyapunov feedback
control laws from the literature, a numerical comparison of the RQ-
Law is performed with a law that combines the Varga and Pérez Q-
Law for orbital transfer and a simple tangential thrust spiral scheme
for phasing. A detailed singularity analysis for the RQ-Law has been
presented, and a discussion of the singularities for similar Q-Law
formulations has also been included. The analysis shows that the
current state-of-the-art for Q-Law formulations is to use modified
equinoctial elements with the semilatus rectum, p, replaced with the
semimajor axis, a. Due to the alternate approach of thrust angle
determination, it is seen that the RQ-Law offers improved perfor-
mance in terms of both transfer time as well as consumed fuel. The
target semimajor axis augmentation scheme also enables target
acquisition in orbits with a range of eccentricities. The trade studies
performed show that the performance is influenced by the departure
point of the chaser, and the point at which target acquisition is begun,
but that the target orbit eccentricity does not have a significant impact.
Future work can investigate the effect of eclipsing as well as other
perturbative effects, such as nonsphericity of the primary gravita-
tional body. It is seen that the RQ-Law provides a method of quickly
generating low-thrust rendezvous trajectories for preliminary design
without requiring an initial guess. The resulting trajectory can then be
refined with higher-fidelity tools based upon the indirect or direct
methods and augmented with a linearized control law for terminal
rendezvous.
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