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Abstract: The development of an LQR-based control algorithm for the Canadian advanced
nanospace eXperiment (CanX)-4&5 formation flying nanosatellite mission is described. To facil-
itate an analytical stability proof of the algorithm, elements of the non-linear and continuous
system are linearized and discretized. A suitable state for the system is selected and the algorithm
is converted into a discrete linear time-varying system that is very nearly periodic. The stability
of the system is then determined by means of discrete Floquet theory. This analysis is applied to
the CanX-4&5 algorithm during its primary mission of testing along track orbit formations and
projected circular orbit formations. The analysis is also applied to the algorithm while execut-
ing a quasi J2-invariant formation. The results in all cases indicate stability. Finally, for the quasi
J2-invariant formation the control authority of the algorithm is reduced until the stability limit is
approached and the minimum�V required to maintain the formation is found.

Keywords: stability analysis, discrete Floquet theory, linear time-varying system, formation
flying satellites, Canadian advanced nanospace eXperiment-4&5

1 INTRODUCTION

The recent paradigm shift towards the use of for-
mation flying in future satellite missions has led to
a profusion of research into the dynamics and con-
trol problems associated with such systems. Despite
rapid progress in the field, however, only a few actual
satellite missions are currently under development
to either test precision formation flying techniques
and solutions or capitalize on the potential benefits
of formation flying in real applications. These include
the Prototype Research Instruments and Space Mis-
sion Technology Advancement mission [1], which
is a joint project developed by the Swedish Space
Corporation and Deutsches Zentrum für Luft- und
Raumfahrt; the European Space Agency’s (ESA) Proba-
3experiment [2]; the JapanCanada JointCollaboration
Satellite–Formation Flying mission from the Japanese
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Aerospace Exploration Agency and the Canadian
Space Agency [3]; and ESA’s Darwin formation, which
will orbit the Earth–Sun L2 point [4].
Given that few fully functional precision formation

flying control algorithms have been developed, very
little research has focused on the issue of controller
stability. Nevertheless, some analytical and numerical
stabilityproofshavebeenperformedonstudycases. In
reference [5] Scheeres andHsiao design stable control
laws to produce bounded relative motion while track-
ing unstable reference trajectories. In reference [6]
the authors mathematically define a formation on the
basis of control interactions, and then examine the
input-to-output stability of the formationwith respect
to a partitioning of the formation dynamics. Hu and
Ng establish a robust formation control method for
spacecraft flying with an uncertain dynamics model
and then conduct a number of numerical simulations
to demonstrate that the relative error is bounded [7].
Finally, the authors in reference [8] develop a con-
trol strategy based on a Lyapunov potential function
and then prove its global stability by showing that it
satisfies Lyapunov’s Theorem.
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An additional formation flying mission is currently
under development in the Space Flight Laboratory
(SFL) at the University of Toronto Institute for
Aerospace Studies. Part of the Canadian Advanced
Nanospace eXperiment (CanX) program, the CanX-
4&5 mission is a dual-nanosatellite formation flying
demonstration mission with the objective of proving
that satellite formation flying can be accomplished
cheaply, accurately, and autonomously [9]. This trans-
lates to low mass, rapid development time, and con-
trol algorithms which maintain sub-metre tracking
accuracy of specific reference trajectories for mini-
mum �V requirements. CanX-4&5 are identical 7 kg
nanosatellites with a 20 cm cubic form factor.
Over the course of the mission, CanX-4&5 will test a

number of familiar formation configurations, includ-
ing two along track orbit (ATO) formations at relative
spacecraft separations of 1000 and 500mand two pro-
jectedcircularorbit (PCO) formationsat separationsof
100 and 50m [9]. Following the primary mission and
contingent on the amount of remaining fuel, CanX-
4&5will test a lowcontrol authority, ‘quasi J2-invariant’
formation for long-duration formation flying, the
dynamics of which were designed in reference [10].
The key challenge of a formation flying satel-

lite mission is to design a control law that will
effectively mitigate orbital perturbations for mini-
mum �V requirements. CanX-4&5 use a linear state-
feedback control law with the gain matrix designed
from a discrete-time, linear quadratic regulator (LQR)
method. The control accelerations are implemented
using pulse widthmodulation (PWM) with a period of
300 s between each successive thrust. The input to the
control law is an error term describing the difference
between the ‘real’ relative state of the satellites and a
suitable reference trajectory. The real relative state is
a combination of noisy relative position data derived
from real-time GPS measurements and noise-free rel-
ative velocity estimates generated by an extended
Kalman filter (EKF). This helps to accommodate the
sensitivity of the LQR controller to noise on veloc-
ity measurements. To generate a noiseless, accurate
state estimate, the EKF combines noisy – but accu-
rate – GPS statemeasurements with noise-free inertial
state data produced by a low-fidelity onboard prop-
agator every 5 s. A more comprehensive description
of the CanX-4&5 control algorithm is presented in
section 2.
The stability of this control algorithm is critical to

the success of the CanX-4&5mission.While numerical
simulations of the algorithm exhibit stable perfor-
mance over 50+orbits [9], given the novel controller
input with relative positions derived from noisy GPS
measurements and relative velocities derived from
EKF estimations, it would be highly desirable to per-
form an independent analytical test to verify stability.
This article presents such a stability proof for the
CanX-4&5 control algorithm.

2 FIONA: THE CANX-4&5 CONTROL ALGORITHM

Both nanosatellites will be equipped with a dedi-
cated onboard computer to run the formation fly-
ing algorithm, dubbed Formation Flying Integrated
OnboardNanosatelliteAlgorithm(FIONA).Theprinci-
pal task of FIONA is to regularly determine the tracking
error between a deputy’s actual state and its reference
trajectory and to compute the optimal thrusts neces-
sary to correct this error. This section discusses the
details of the algorithm.
The numerical orbital propagation of spacecraft is

most commonly conducted in the geocentric inertial
(GCI) reference frame. For two satellites in close for-
mation, Rc denotes the position of the uncontrolled
chief satellite and Rd the position of the controlled
deputy satellite, where R = [XYZ]T is the GCI position
of a generic satellite and R = |R| is its orbital radius.
The motion of these two satellites will evolve in the
GCI frame according to

R̈c = −µRc

R3
c

+ F(Rc)pert (1)

R̈d = −µRd

R3
d

+ F(Rd)pert + ui (2)

where µ is the Earth’s gravitational constant, ui is
the control force per unit mass in the GCI applied to
the deputy during formation flying manoeuvres, and
F(R)pert is the sum of the orbital perturbation forces
acting upon each satellite. In low Earth orbit (LEO),
the principal perturbing force is the second zonal har-
monic of the Earth’s gravitational field, the J2 effect,
expressed in Cartesian coordinates in the GCI as

F(R)J2 = −3µJ2R2
e

2R7

⎡
⎣ X 3 + XY 2 − 4XZ 2

X 2Y + Y 3 − 4YZ 2

3X 2Z + 3Y 2Z − 2Z 3

⎤
⎦ (3)

where J2 = 1.082 626 9× 10−3 and Re is the equatorial
radius of the Earth. The higher order terms, J3 to J6,
have significantly lower influence, but have also been
included in all orbital simulations for CanX-4&5. Dif-
ferential atmospheric drag is another perturbing force
in LEO. But since CanX-4&5 will maintain approx-
imately the same ballistic coefficient (i.e. identical
attitudes, similar masses), numerical studies have
indicated that drag will play a much smaller role than
gravitational perturbations. As such, dragmodelswere
not included in the FIONA orbital propagator. The
dynamicsof the twosatellites canbewritten succinctly
by representing equations (1) and (2) in state-space
form

Ẋ = F(X, t) (4)

where X = [RT
c Ṙ

T
c RT

d Ṙ
T
d]T. Formation flying con-

trol is typically concerned with the relative motion
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of the deputy with respect to the chief. This relative
motion is best expressed in the Cartesian Hill frame,
a local-vertical-local-horizontal reference frame with
its origin centred on the chief, its x-axis in the orbit
radial direction, its z-axis in theorbit normal direction,
and the y-axis completing the right-handed coordi-
nate system. The state of the deputy expressed in the
Hill frame is

x(t) = [rT vT]T = [x y z ẋ ẏ ż]T (5)

The relative position, r, can be determined from the
inertial position using the expression

r = [x y z]T = ChiδR (6)

where δR = [Xd Yd Zd]T − [Xc Yc Zc]T and Chi is the
rotation matrix from GCI to the Hill frame, given by

CT
hi(t) =

[
Rc

|Rc|
Hc × Rc

|Hc × Rc|
Hc

|Hc|
]

(7)

andwhereHc = Rc × Ṙc is the chief’s angularmomen-
tum per unit mass. The relative velocity of the deputy
in the rotating Hill frame can be closely approximated
by the expression

v = [ẋ ẏ ż]T = ChiδV − ω×r (8)

where δV = [Ẋ d Ẏ d Ż d]T − [Ẋ c Ẏ c Ż c]T,ω = [0 0√
µ/R3]

is the mean orbital motion of the chief in a circular
orbit and where

ω× =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦=

⎡
⎣ 0 −√

µ/R3 0√
µ/R3 0 0
0 0 0

⎤
⎦

Figure 1 illustrates the relationship between the GCI
and Hill reference frames.
On orbit, CanX-4&5 will receive GPS measurement

updates in the GCI reference frame every 5 s. A GPS
signal processing algorithm, provided by the Uni-
versity of Calgary, will provide CanX-4&5 absolute
measurements with a GCI position uncertainty of 2–
5m (root mean squared (RMS)) and a GCI velocity
uncertainty of 5–10 cm/s (RMS). The algorithm will
also produce relative measurements with a Hill posi-
tionuncertaintyof 5–10 cm(RMS) andaHill velocity of
1–3 cm/s (RMS). Simultaneously, the satellites will be
predicting their orbits with an onboard orbital prop-
agator. In simulations of CanX-4&5, however, both
the GPS and onboard propagator signals are gener-
ated by numerically integrating equations (1) and (2)
using a fourth-order Runge–Kuttamethodwith a fixed
step of 0.1 s. To approximate the accurate (but noisy)
absolute and relative GPS signals from the Calgary
algorithm in the CanX-4&5 simulation, the GPS simu-
lated measurements use J2 through J6 perturbations

Fig. 1 GCI and Hill reference frames

and normally distributed random Gaussian signals
generate the appropriate noise. To represent the lower
fidelity but noiseless onboard propagator data, the
second propagator uses J2 perturbations only and has
no added noise.
Toachievea single, accurate, andnoiseless stateesti-

mate, the GPS signal is combined with the onboard
propagator signal at each time step using a closed-
loop EKF. During the time update phase of the filter at
step k, the covariance matrix P−

k is generated from the
state transitionmatrix�k (which, in turn, is developed
from theorbital dynamics of equations (1) and (2)) and
from the process noise covariance matrix Qk [11]

P−
k = �kP+

k−1�
T
k + Qk (9)

During the measurement update phase of the EKF,
the GCI state estimate X̂

+
k is obtained and the error

covariance matrix is updated

Kk = P−
k HT

k(HkP−
k HT

k + Rk)
−1

X̂
+
k = X̂

−
k + Kk(zk − hk)

P+
k = (1− KkHk)P−

k (1− KkHk)
T + KkRkK T

k

(10)

where Kk is the Kalman gain matrix, Rk is the mea-
surement noise covariance,Hk is the local observation
matrix, zk is the GPS position measurement, and hk

is the estimated position. The resulting state esti-
mate, X̂

+
k , combines the noiseless characteristics of the

onboard propagator with the accuracy of the GPS sig-
nal. During GPS lock, the EKF estimated state serves
as the input to the onboard propagator for the next

JAERO470 © IMechE 2009 Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering
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time step, thusmaintaining the accuracy of the propa-
gated state.WhenCanX-4&5 lose contact with the GPS
satellites, they enter blackout mode and continue for-
mation flying by simply propagating the last known
EKF state until contact with the GPS satellites can be
re-established.
During all formation maintenance manoeuvres,

FIONA’s control law will track a set of pre-established
reference trajectories designed to yield periodic rel-
ative motion while closely approximating the nat-
ural perturbed dynamics of the satellites. Although
the actual relative dynamics are non-linear, the Hill–
Clohessy–Wiltshire (HCW) equations are linearized
approximations of the full dynamics with periodic
solutions. They are given in reference [12] as

ẍ − 2ωẏ − 3ω2x = 0 (11)

ÿ − 2ωẋ = 0 (12)

z̈ + ω2z = 0 (13)

whereω = √
µ/R3 is the circular orbital rate. By appro-

priately choosing theconstantsof integration, thegen-
eral solutions to theHCWequations can be reduced to
the following expressions

xref (t) = c1
2
sin(ωt + α) (14)

yref (t) = c1 cos(ωt + α) + c3 (15)

zref (t) = c2 sin(ωt + α) (16)

where α is the initial formationphase angle and the ci’s
are theconstantsof integration. Selecting c1 = c2 = drel

and c3 = 0, where drel is the relative spacecraft sepa-
ration distance, results in a reference trajectory for a
PCO of radius drel. Since the HCW equations assume
the chief is in a circular orbit about the Earth, their
solutions provide circular reference trajectories for the
controller to track in the Hill frame. FIONA employs a
linear state-feedback control law to track the reference
trajectory

uh = −Kx̃, x̃ = x̄ − xref (17)

Here, uh is the control acceleration in the Hill frame
required to correct for the tracking error x̃. K is the
optimal control gainmatrixdeveloped fromadiscrete-
time, LQRmethod [9] and based on a discretization of
the linearized HCW dynamics given of equations (11)
to (13). In addition, xref is the reference trajectory,
represented by equations (14) to (16) for reference
positions and their respective derivatives for reference
velocities. Under ideal, noiseless conditions x̄ would
be the real relative state of the deputy at the cur-
rent time step, as given by the Calgary GPS processing
algorithm. However, as mentioned previously there is

an uncertainty associated with the relative GPS mea-
surements: 2–5 cm (RMS) for position and 1–3 cm/s
(RMS) for velocity. While the LQR state-feedback
controller is robust to noise on the relative position
measurements, it is extremely sensitive to noise on
the relative velocity data, which leads to unacceptably
high �V and tracking error penalties. To circumvent
thisproblem, it isnecessary to replace theGPS-derived
relative velocity measurements with relative velocity
data developed from the noiseless inertial state esti-
mate producedby the EKF.The relative position values
are still obtained from the processed GPS signals pro-
vided by the University of Calgary’s algorithm. Conse-
quently, the ‘real’ relative state input to the controller is
defined as

x̄ = [xGPS yGPS zGPS ẋEKF ẏEKF żEKF]T (18)

To implement the control accelerations found by
equation (18), the deputy will utilize the Canadian
NanosatellitePropulsionSystem(CNAPS) [9]. Employ-
ing liquefied sulphur-hexafluoride as a propellant
(with an Isp of ∼35 s), CNAPS produces a constant
low thrust of 5mN. Corrective thrusts are therefore
implementeddiscretely via PWMwith aperiodof 300 s
(TPWM) between each consecutive thrust. The duration
of each thrust can be computed using

ton = |ui|
Umax

TPWM (19)

where |ui| is thenormof the thrust vector in the inertial
frame and Umax is the constant thrust per unit mass of
CanX-4&5 (Umax = 5mN/7 kg = 0.0007 143N/kg). In
addition, the direction of each thrust can be obtained
with the expression

athrust = ui

|ui| (20)

During each PWM period, FIONA sends the thruster
on time, ton, to CNAPS and the attitude target, athrust,
to the attitude control system (ACS) computer. In the
simulation of CanX-4&5, the non-impulsive thrusts
are fed back into both the GPS and onboard orbital
propagators. Figure 2 illustrates the FIONA control
algorithm for CanX-4&5. On orbit, the high-fidelity
orbital propagator will be replaced by the Calgary GPS
algorithm.

3 LINEARIZATION AND DISCRETIZATION
OF FIONA

FIONA, as depicted in Fig. 2, is a combination of linear,
non-linear, discrete, and continuous elements. Ana-
lytically proving the stability of the algorithm in this

Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering JAERO470 © IMechE 2009
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Fig. 2 CanX-4&5 control algorithm, FIONA

form would be very difficult, so to ease the process
an approximate model of FIONA must be developed
with all elements linearized and discretized. This new
model will depend on the state of the chief satellite at
each time step, and hencewill be a linear time-varying
(LTV) system. A discrete LTV system takes the form

xk+1 = �kxk , �k ∈ Rn×n (21)

where�k is the state transitionmatrix between the kth
and (k + 1)th states. The state at an arbitrary time step
j is given in reference [10] as

x j =
[

j∏
k=1

�k−1

]
x0 (22)

where x0 is the initial state. For linear time-invariant
systems,where�k = � is a constant, themost straight-
forwardmethod of proving global asymptotic stability
is to demonstrate that the eigenvalues of � are less
than unity. A similar approach can be taken for LTV
systems. To develop an appropriate LTV �k matrix
for the CanX-4&5 algorithm, the continuous and non-
linear dynamics of the algorithm’s orbital propagators
need to be linearized and discretized, and the rel-
ative dynamics of the HCW equations need to be
discretized. Although the discrete LTV systemwill only
be an approximation of the actual algorithm, the short
discretization time step of 5 s (corresponding to the

GPS data refresh rate) and a linearization about each
step will give an accurate representation of the real
system.

3.1 Linearization and discretization of the orbital
dynamics

The system ẋ = f (x) with f (x0) = 0 can be linearized
by considering a small step δx(t) such that x(t) = x0 +
δx(t). Then taking a Taylor expansion and retaining
only the first-order terms, one obtains

ẋ = f (x0 + δx)

= f (x0) + ∂f
∂xT

∣∣∣∣
x=xk

δx + O[‖δx‖2]

Therefore

δẋ = ∂f
∂xT

∣∣∣∣
x=xk

δx (23)

Assuming Keplerian motion (i.e. ignoring non-linear
gravitational perturbations which only weakly influ-
ence the motion of the deputy), the CanX-4&5 orbital
dynamics can be represented for a single satellite as

f (x) = [ṘT
V̇
T]T (24)

Therefore, for one satellite, the matrix of linearized
orbital dynamics, A, is the Jacobian of f (x) evaluated

JAERO470 © IMechE 2009 Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering
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at each time step k

A = ∂f
∂x

∣∣∣∣
x=xk

=

⎡
⎢⎢⎣

∂

∂R
(V)

∂

∂V
(V)

∂

∂R

(−µR
R3

)
∂

∂V

(−µR
R3

)
⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
R=Rk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

µ

R3

(
3X 2

R2 − 1

)
3µXY

R5

3µXZ
R5 0 0 0

3µXY
R5

µ

R3

(
3Y 2

R2 − 1

)
3µYZ

R5 0 0 0

3µXZ
R5

3µYZ
R5

µ

R3

(
3Z2

R2 − 1

)
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
R=Rk

(25)

For both satellites, the linearized dynamics are Acd =
diag{Ac,Ad}. As will be demonstrated in section 6,
the gravity terms (i.e. the lower left 3× 3 block in
equation (25)) can be considered a weak perturbative
force and can be ignored without strongly affecting
the solution [13]. Moreover, for the continuous gain
EKF discussed in section 3.3, the gravity terms are also
neglected since they are state dependent. The contin-
uous, linear plant to be controlled can be described by
a state space model of the form

Ẋ = AcdX + Bui (26)

where ui is the control thrust in the GCI frame and
where

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Applying a zero-order hold (ZOH) discretization to the
continuous orbital dynamics in theGCI frame,Acd and
B become

�i = eAcd�t and Bi =
∫�t

0
eAcd�τ dτB (27)

where �t is the discretization time step (5 s) and the
subscript i indicates the inertial reference frame. The
linearized and discretized state-spacemodel becomes

Xk+1 = �iXk + Biui,k (28)

3.2 Discretization of the relative dynamics

The linear HCW dynamics are utilized in the CanX-
4&5 algorithm to develop the LQR controller gain,

and the solutions of the HCW equations are used as
reference trajectories for PCO formation. As will be
apparent in section 4, however, the choice of the state
for the discrete LTV model requires the relative orbit
to be propagated, and it must therefore be discretized.
The continuous state-space form of the linear relative
model is

ẋ = Ahx + Buh (29)

where

Ah =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and where the subscript h indicates the Hill reference
frame. These continuous dynamics are discretized via
a ZOHmethod, yielding

�h = eAh�t and Bh =
∫�t

0
eAh�τ dτB (30)

Therefore, the discrete LTV relative model can be
written as

xk+1 = �hxk + Bhuh,k (31)

3.3 Constant gain extended Kalman filter

To facilitate the reduction of the CanX-4&5 system
in Fig. 2 to a discrete, linearized model, the time-
varying EKF was converted to a constant gain EKF
(CGEKF). If (�, H) is observable and (�, B) control-
lable, the error covariance matrix P−

k will converge to
a positive definite steady-state (subscript ss) value,
Pss > 0 [14], which satisfies the discrete steady-state
Riccati equation, given by

�Pss�
T − Pss − �PssH

T(HPssH
T + R)−1HPss�

T

+ Q = 0 (32)

As a result, the filter gainwill also converge to a steady-
state value

Kss = PssH
T(HPssH

T + R)−1 (33)

Here � is the discrete GCI orbital dynamics from
equation (27), but with the gravity terms neglected.
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The metrics used to assess the performance of the
CanX-4&5 control algorithm are �V (representing
fuel expenditure) and tracking error, x̃. Simulations
of CanX-4&5 confirm that the CGEKF can replace the
time-varying EKFwithout a loss of accuracy: one orbit
in a 1000m ATO formation yields �V = 0.059 18m/s
and |x̃| = 0.2291m for both the CGEKF and the EKF.

4 DEVELOPMENT OF THE STATE TRANSITION
MATRIX

Choosing an appropriate state vector is a key step
to developing a LTV system in the form of equation
(21). Since two spacecraft are under consideration,
relative states were selected to concisely represent all
relevant state information and to reduce the size of the
overall state vector. The selected state is

[
x̃
Ẑ

]
k

, where x̃k = xk − xref ,k and Ẑk = X̂d,k − X̂c,k

(34)

Here, x̃k is a 6× 1 tracking error term between the real
relative state of the deputy and the reference trajectory
in the Hill reference frame. Ẑk is a 6× 1 vector differ-
ence between the EKF estimates of the deputy’s state
and the chief’s state in the GCI frame.The discrete LTV
system can now be reformulated as

[
x̃
Ẑ

]
k+1

=
[
�11 �12

�21 �22

]
k

[
x̃
Ẑ

]
k

+
[

B1

B2

]
k

xref ,k (35)

The remainder of this section is devoted to the deter-
mination of the constituent values of �k and Bk in
equation (35).

4.1 Development of the error state, x̃k+1

Since the CanX-4&5 algorithm uses relative velocity
terms derived from the noiseless EKF estimation for
the feedback control law, we can begin by defining
this relative state and expressing it in terms of the two
states x̃k and Ẑk

x̄k =
[

r
v̂

]
k

=
[

rd − rc
v̂d − v̂c

]
k

= MC̄hi,k(Xd,k − Xc,k) + NC̄hi,k(X̂d,k − X̂c,k)

= MC̄hi,kZk + NC̄hi,kẐk (36)

Here M and N are 6× 6 selection matrices designed
to isolate position and velocity, respectively. They are

defined as

M =
[

I 0
0 0

]
and N =

[
0 0
0 I

]

Also

C̄hi,k =
[

Chi 0
−ω×Chi Chi

]
k

which depends on the instantaneous state of the chief
satellite. As a result, the discrete, linearized systemwill
be timevarying. In equation (36), we must still define
Zk in termsof x̃k and Ẑk . IfweassumeZk = (Xd,k − Xc,k),
then

x̃k = (xk − xref ,k) = (C̄hi,kZk − xref ,k)

Therefore

Zk = C̄ih,k x̃k + C̄ih,kxref ,k (37)

where

C̄ih,k =
[

Cih 0
Cihω

× Cih

]
k

The relative state used in the control lawnowbecomes

x̄k = MC̄hi,k(C̄ih,k x̃k + C̄ih,kxref ,k) + NC̄hi,kẐk

= Mx̃k + Mxref ,k + NC̄hi,kẐk (38)

Equation (38) can now be applied to the feedback
control law in the Hill frame

uh,k = −K(x̄k − xref ,k)

= (−KM)x̃k − (KNC̄hi,k)Ẑk + K(1− M)xref ,k

(39)

The overall objective is to define the updated error
term, x̃k+1, in terms of the states x̃k and Ẑk . From
equation (34), we have

x̃k+1 = xk+1 − xref ,k+1 (40)

Beginning with the reference trajectory term, we have

xref ,k+1 = �hxref ,k (41)

Next, starting from the definition of the discrete LTV
relative model in equation (31), the real relative state
update can be solved using the control term from
equation (39)

xk+1 = �hxk + Bhuh,k

= �h(xk + xref ,k) + Bh[(KM)x̃k + (−KNC̄hi,k)Ẑk

+ K(1− M)xref ,k]
= (�h − BhKM)x̃k + (−BhKNC̄hi,k)Ẑk

+ (�h + BhK − BhKM)xref ,k (42)

Substitutingequations (41)and (42) intoequation (40),
the state update for the tracking error term in the Hill
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frame becomes

x̃k+1 = (�h − BhKM)x̃k + (−BhKNC̄hi,k)Ẑk

+ BhK(1− M)xref ,k (43)

where the bracketed expressions represent�11,k ,�12,k ,
and B1, respectively, in the discrete LTV system of
equation (35).

4.2 Development of the estimated relative state,
Ẑk+1

The next objective is to express the updated esti-
mated relative state, Ẑk+1, in terms of x̃k and Ẑk . From
equation (34), the estimate at interval k + 1 can be
written as

Ẑk+1 = X̂d,k+1 − X̂c,k+1 (44)

The state estimate of the deputy (i.e. position and
velocity) at this step can be expanded into the general
form of a linear observer

X̂d,k+1 = �iX̂d,k + Kss(Yd,k − Ŷd,k) + Biui,k (45)

where

Yd,k = HXd,k , Ŷd,k = HX̂d,k , and

H =
⎡
⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦

The matrix ui,k represents the control thrusts (there
is no thrusting term in CanX-4&5’s EKF (see
equation (11)), since it would be difficult to combine
a filter discretized at 5 s intervals with a pulse width
modulated thrust discretized at 300 s. For the discrete
LTV system, however, it is important to consider the
control thrusts. Therefore the thrusts are discretized
via a 5 s ZOH for their application to the discrete LTV
system) fromequation (39) rotated from theHill frame
into the GCI frame

ui,k = Cih,kuh,k

= Cih,k[(−KM)x̃k + (−KNC̄hi,k)Ẑk

+ (K − KM)xref ,k]
= (−Cih,kKM)x̃k + (−Cih,kKNC̄hi)Ẑk

+ Cih,kK(1− M)xref ,k (46)

Now equation (45) can be rewritten as

X̂d,k+1 = �iXd,k + Kss(HXd,k − HX̂d,k)

+ Bi[(−Cih,E KM)x̃k + (−Cih,kKNC̄hi)Ẑk

+ Cih,kK(1− M)xref ,k] (47)

The updated state estimate for the chief can be
expanded from equation (44) as

X̂c,k+1 = �iX̂c,k + Kss(Yc,k − Ŷc,k)

= �iX̂c,k + Kss(HXc,k − HX̂c,k) (48)

Substitutingequations (47)and (48) intoequation (44),
the update for the estimated relative state in the GCI
frame can be reduced to

Ẑk+1 = (KssHC̄ih,k − BiCih,kKM)x̃k

+ (�i − KssH − BiCih,kKNC̄hi,k)Ẑk

+ (KssHC̄ih,k + BiCih,kK(1− M))xref ,k (49)

Here the bracketed expressions represent �21,k , �22,k ,
and B2, respectively, in the discrete LTV system of
equation (35).Nowequations (43) and (49) canbe sub-
stituted into equation (35), and the full discrete LTV
system for CanX-4&5 becomes

[
x̃
Ẑ

]
k+1

=
⎡
⎣�h − BhKM −BhKNC̄hi,k

KssHC̄ih,k �i − KssH
−BiCih,kKM −BiCih,kKNC̄hi,k

⎤
⎦

k

[
x̃
Ẑ

]
k

+
[

BhK(1− M)

KssHC̄ih,k + BiCih,kK(1− M)

]
k

xref ,k

(50)

Since the state of the chief satellite changes at each
time step, the values of C̄ih,k , C̄hi,k , and Cih,k , and thus
the value of�k , will also change throughout the course
of an orbit. Although orbital perturbation forces will
cause a slow regression of the chief’s perigee from one
orbit to the next, the change is small on the scale of
the full orbit. Therefore, we can assume that the sys-
tem is periodic and that �k = �k+N , where T = N�t
is the orbital period. As such, we can employ discrete
Floquet theory to determine the periodic stability of
the system.

5 APPLICATION OF DISCRETE FLOQUET THEORY
FOR STABILITY DETERMINATION

Given the discrete LTV system, Xk+1 = �kXk , with N
time steps in one period, the state transition matrix
�k = �k+N if the system is periodic. For one full orbit,
we have

XN = �∗X0 (51)

where

�∗ =
N∏

k=1
�k
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According to discrete Floquet theory, the stability of
the periodic system can be determined by the eigen-
values of�∗. Forn states, the system is globally asymp-
totically stable if the eigenvalues satisfy |λi{�∗}| < 1 for
i = 1, . . . ,n [15].

6 STABILITY RESULTS

In the case of CanX-4&5, the matrix �∗ is determined
by computing the cumulative product of �k from
equation (50) at each time step k for one full orbital
period. A circular, Sun-synchronous orbit was used to
simulate the mission, with the orbital elements given
in Table 1.
The chief has an orbital period of ∼T = 5740 s,

which yields N = 1148 steps for a discretization time
of 5 s.

6.1 ATO and PCO formations

With the discrete LTV model added to FIONA, a single
orbit in each formationof themissionwas individually
simulated, thematrix�∗ calculated for each orbit, and
the eigenvalues λi{�∗} evaluated. Since the stability
of the system is independent of the reference trajec-
tory, each formation (ATO and PCO) yielded identical
eigenvalues. As Table 2 indicates, the magnitude of
each eigenvalue is less than unity, signifying that the
discrete LTV system of equation (50) is stable.
The eigenvalues, however, depend on whether or

not the gravity terms are included in the orbital

Table 1 Orbital elements for
CanX-4&5 mission

Eccentricity 0
Right ascension 99.56◦
Argument of perigee 0◦
Altitude at perigee 550 km
Time of perigee passage 0 s
Inclination 97.6◦

Table 2 Eigenvalues of the CanX-4&5
discrete LTV system for ATO
and PCO formations

|λi{�∗}| (no gravity |λi{�∗}| (gravity
terms) incl.)

1.554× 10−1 1.166× 10−2
5.529× 10−3 1.166× 10−2
5.529× 10−3 1.241× 10−2
1.425× 10−3 8.339× 10−4
1.425× 10−3 8.339× 10−4
1.410× 10−4 1.174× 10−5
1.280× 10−6 1.302× 10−6
1.280× 10−6 6.762× 10−7
6.340× 10−7 6.762× 10−7
6.340× 10−7 6.658× 10−7
1.130× 10−7 6.658× 10−7
1.130× 10−7 4.371× 10−7

dynamics of equation (25) (which affects �i in
equation (50)). Table 2 compares the eigenvalues for
the baseline case where the gravity terms are ignored
in the orbital dynamics of equation (25) and the case
where the gravity terms are included. While ignoring
the gravity terms in the dynamics of equation (25)
decreases the representative realism of the system
and increases one eigenvalue predominantly, it ulti-
mately does not jeopardize the stability of this sys-
tem. The stability of the control system also depends
explicitly on the level of control authority used to
design the LQR gain. The gain matrix was designed
with an input cost of R = diag{1.2× 104, 1.2× 104,
1.2× 104} and a state cost of Q = diag{2.8× 10−5,
2.8× 10−5, 2.8× 10−5, 0.78, 0.78, 0.78}.
To verify the stability of the system, the eigenval-

ues of �∗ were also computed for the second orbit
(i.e. for the interval t = T → 2T ). They were found to
exactlymatch theeigenvaluesof�∗ computedover the
interval t = 0 → T , confirming a periodic, stable sys-
tem. The stability of FIONA can be demonstrated via
numerical simulation. In Fig. 3, the Cartesian tracking
error of thedeputy is displayed for 50orbits in a1000m
ATOformationand there isnoevidenceof error growth
or divergence.

6.2 The quasi J2-invariant formation

One of the principal directions of formation flying
satellite research is the development of advantageous
dynamics and control strategies that will minimize
the amount of fuel required to maintain a formation
of satellites with an acceptable accuracy. Following
the primary mission, CanX-4&5 will test a set of
trajectories designed to reduce the control effort nec-
essary to maintain the formation. In reference [10],

Fig. 3 Tracking error for 50 orbits in a 1000m ATO
formation
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Fig. 4 Eigenvalues of the CanX-4&5 discrete LTV system
for quasi J2-invariant formations

the authors developed these ‘quasi J2-invariant’ tra-
jectories using an iterative method to generate closed
relative orbits that closely matched the natural rel-
ative dynamics of the satellites to help minimize
fuel consumption. The technique relied on a shoot-
ing approach to the Newton method to determine a
set of quasi-periodic (i.e. periodic over at least one
orbit) initial conditions for the orbit [16]. To ren-
der the Newton method convergent, a low-authority
linear state-feedback control lawwas introduced. Ref-
erence trajectories were generated by iteratively fitting
a Fourier series to the actual perturbed motion of the
deputy. This technique was successfully applied to the
well-known J2-invariant orbits [17] to produce trajec-
tories that were quasi-periodic and highly robust to
initial condition errors. With the development of the
discrete LTV model, it is possible to apply Floquet
theory to the quasi J2-invariant orbit to determine
the stability of CanX-4&5’s controller while tracking
this formation (although�∗ is independent of the ref-
erence trajectory, the quasi J2-invariant trajectories
require different initial conditions for the chief from
the ATO and PCO trajectories and different R and Q
values for the controller).
In keeping with the formation configuration used

in reference [10], the chief was assigned the orbit
given in Table 1 and the deputy was assigned
the quasi J2-invariant initial conditions from ref-
erence [10] with a relative satellite separation of
400m. The matrix �∗ was computed over the
course of one orbit in this formation, and the cor-
responding eigenvalues were computed. As illus-
trated in Fig. 4, all the eigenvalues are much less
than unity, signifying that the CanX-4&5 control
algorithm is stable while tracking quasi J2-invariant
orbits.
The stability of the system can again be demon-

strated by running the numerical simulation of
the CanX-4&5 mission over 50 orbits in the quasi
J2-invariant formation. Figure 5 shows the Cartesian
tracking error in the Hill frame over that interval, and

Fig. 5 Tracking error for 50 orbits in a quasi J2-invariant
formation

there is no evidence of either secular error growth or
divergence.
As before, the stability of the algorithm depends

on the level of control authority used to design
the LQR gain. For the basic quasi J2-invariant for-
mation presented above, the input cost was R =
diag{8, 8, 8} and the state cost was Q = diag{1.2×
10−6, 1.2× 10−6, 1.2× 10−6, 0.78, 0.78, 0.78}. This weak
control authority is sufficient to maintain accurate
periodicity for low fuel consumption, with �V =
0.007 802m/s/orbit and a periodicity error E10 =
0.008 017m, where

EN =
√

[x(0) − x(NT )]2 + [y(0) − y(NT )]2
+[z(0) − z(NT )]2 (52)

and where N is the number of orbits over which
the periodicity of the formation is tested (unlike ATO
and PCO formations, where the emphasis is on pre-
cisely tracking pre-established reference trajectories,
the focus of the quasi J2-invariant orbits is to achieve
maximally periodic motion from one orbit to the next
for minimum �V . For this reason, our performance
metric becomes the periodicity error, EN rather than
the tracking error x̃). By reducing the control authority
furtherwhile ensuring that theeigenvalues remain less
thanunity, it is possible todesignacontroller thatmin-
imizes fuel consumption and still maintains stability.
Figure 6 shows the eigenvalues of�∗ when the control
authority has been reduced to the stability limit, where
R = diag{1× 1010, 1× 1010, 1× 1010}.
Propagated over 75 orbits, this solution has the

performance metrics �V = 0.000 485m/s/orbit and
E75 = 2.78m, an extremely low fuel requirement for
moderate periodicity error. Figure 7 illustrates the
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Fig. 6 Eigenvalues of�∗ near the stability limit for quasi
J2 invariant formations

tracking error – used here tomonitor periodicmotion,
but not to evaluate tracking performance – over the 75
orbits in the Hill frame. Since there is significant tran-
sient motion in the y-direction during the first orbit,
the periodicity error EN was taken from the beginning
of the second orbit. While not exhibiting genuinely
periodic motion between the initial and final orbits,
the deputy nevertheless settles into a limit cycle after
∼50 orbits. This is indicative of a stable controller and
a periodic orbit.

Fig. 7 Tracking error for 75 orbits in the quasi
J2-invariant orbit with r = 1× 1010

7 CONCLUSIONS

The control algorithm for the CanX-4&5 formation
flying nanosatellitemissionwas converted into a peri-
odic LTV system topermit the stability of the algorithm
to be analytically determined. The development of
the discrete LTV system began with the linearization
and discretization of the inertial orbital dynamics, the
discretization of the relative HCW dynamics, and the
conversion of the state-dependent EKF to a CGEKF. A
suitable state for the discrete LTV systemwas selected,
consisting of the relative error term in the Hill frame,
x̃k , and the relative EKF estimate in the GCI reference
frame, Ẑk . A state transition matrix, �k , was devel-
oped such that the discrete LTV model took the form
[x̃T Ẑ

T]Tk+1 = �k[x̃T Ẑ
T]Tk + [B1 B2]Tk xref ,k . Using discrete

Floquet theory, the cumulative product of �k was
found at each time step in one orbit and its eigen-
values were computed to determine the stability of
the system. This analysis was applied to a numerical
simulation of the ATO and PCO orbits of the pri-
marymission of CanX-4&5.The absolute value of each
eigenvaluewas found tobe less thanunity, indicating a
stable system.The stability of FIONAwas also demon-
strated numerically by observing the bounded track-
ing error over 50 orbits. The stability analysis was also
applied to a quasi J2-invariant orbit, a trajectory that
is designed to minimize the amount of fuel required
to maintain the formation of satellites. The control
authority was reduced until it approached the stability
limitof thecontroller andaminimum�V requirement
of 0.000 485m/s/orbit was found to guarantee stable
performance for a quasi J2-invariant orbit.
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APPENDIX

Notation

athrust unit thrust vector
Acd discretized orbital dynamics for the chief

and deputy

Bh, Bi discretized input matrix in the Hill and
GCI reference frames

Chi,Cih rotation matrices from GCI → Hill and
fromHill → GCI

C̄hi, C̄ih rotation matrices for full states from
GCI → Hill and fromHill → GCI

Cj constants of integration for HCW
equations ( j = 1, 2, 3)

EN periodicity error over N orbits
EKF extended Kalman filter
GCI geocentric inertial reference frame
hk estimated position at step k
H c angular momentum of the chief
Hk local observation matrix for the EKF
J2 second zonal gravitational harmonic,

1.082 626 9× 10−3

K LQR controller gain matrix
Kk Kalman gain matrix for the EKF
Kss steady state Kalman gain for the

CGEKF
M,N selection matrices for position and

velocity, respectively
P−

k ,P+
k EKF covariance matrix just before/after

the measurements
Q,R state cost and input cost matrices for the

LQR controller
Qk , Rk process and noise covariance matrices

for the EKF
Rc, Rd GCI states for the chief and deputy
Re equatorial radius of the Earth
ton thruster on time
uh,ui control thrusts in the Hill and GCI

reference frames
Umax constant maximum thrust per

unit mass
x relative state of the deputy in the Hill

frame
xref reference trajectory in the Hill frame
x̃ tracking error in the Hill frame
x̄ the ‘real’ relative state used in the

feedback controller
X inertial state of both chief and deputy in

the GCI reference frame
X̂ estimated state of both satellites in the

GCI frame
Yd, Ŷd position and estimated position for the

EKF
Z, Ẑ relative state and estimated relative state

of the deputy in the GCI

α initial formation phase angle
θ true anomaly
λn eigenvalues of�∗ for n states
µ Earth’s gravitational constant
ω mean orbital motion
�k state transition matrix
�∗ cumulative product of�k over one

complete orbit
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