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Abstract: The relative motion of two spacecraft orbiting the Earth in low orbits in nominally
circular orbits is studied in the presence of the J2 perturbation. An iterative scheme is developed
which ultimately leads to closure of the relative motion after one orbit. Although not truly peri-
odic, a numerical example indicates that it is very nearly so. The method makes use of a state
transition matrix for the relative motion that is developed in the presence of feedback control in
order to render the iterative scheme convergent. The example shows that the calculated initial
conditions are relatively insensitive to small errors.

Keywords: spacecraft formation flying, almost periodic orbits, J2 perturbation

1 INTRODUCTION

The problem of spacecraft formation flying is cur-
rently attracting much attention. Part of the moti-
vation stems from the attractiveness of using many
small satellites to accomplish what one large (expen-
sive) satellite can. An effective formation must exhibit
bounded relative motion with periodicity as a spe-
cial case. This can be accomplished through judicious
choice of initial conditions and the use of feedback
control. The current article emphasizes the former, but
a suitably chosen low authority feedback controller
renders the algorithm usable in practice.

The linearized relative motion equations, when one
of the satellites is in a circular orbit and pertur-
bations such as oblateness effects are ignored, are
known as the Hill–Clohessy–Wiltshire (HCW) equa-
tions. Among their useful properties are special classes
of periodic solutions whose initial conditions can be
used for formation design (references [1] and [2]).
In the presence of eccentricity, higher-order differen-
tial gravity terms and oblateness effects, such as the
J2 zonal harmonic of the Earth’s gravitational field,
the periodic motion predicted by the HCW equations
is lost.

Several authors have examined modifications to the
HCW initial conditions so that periodicity or some-
thing close to it is established for the relative motion
in the presence of these effects. Vadali et al. [1] pre-
sented a modification that enforced period matching

in the presence of J2.Vaddi et al. [2] established modifi-
cations to the HCW initial conditions which enforced
bounded relative motion in the presence of second-
order differential gravity terms and small eccentricity.
Inalhan et al. [3] presented the linearized relative
motion equations for elliptic orbits and presented ana-
lytical solutions and the initial conditions required for
periodicity. In reference [4], the extension of the HCW
equations to account for second- and third-order dif-
ferential gravity terms was presented and periodic
solutions were established. Guibout and Scheeres [5]
presented a semianalytical method which could find
initial conditions leading to what they called (M , T )

stable relative motion (i.e. relative motion remained
within distance M for time within [0, T ]) for prob-
lems including J2 and J3. Kasdin and Kolemen [6]
used Hamilton–Jacobi theory and the epicyclic orbital
elements to derive bounded, periodic orbits in the
presence of certain perturbations.

Schaub and Alfriend [7] examined the notion of
J2-invariant orbits and presented modifications of
the initial conditions which established equal secular
growth for some of the orbital elements. This paper,
examines the issue of finding initial conditions that
lead to closure of the (non-linear) relative motion, in
the presence of the J2 perturbation, after one period
of a reference circular orbit, showing that the ensu-
ing motion is close to periodic but not exactly so in
the presence of J2. An iterative scheme for the initial
conditions is presented which yields almost periodic
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768 C J Damaren

motions that are close to the HCW solutions. The pro-
posed scheme is compared with J2-invariant initial
conditions and shown to be less sensitive to errors in
the initial conditions.

Recent work by European researchers in references
[8] to [10] has similarities to the methods presented
here. In reference [8], a Newton iteration similar to that
presented here was used to find periodic initial condi-
tions in the presence of J2. However, the methods used
to enforce invertibility of the key sensitivity matrix are
quite different. In particular, the use of feedback con-
trol in the present paper is key to enforcing invertiblity
of this matrix and ensures that the trajectories remain
close to an HCW solution. In reference [8], feedback
control is developed after the periodic trajectories
have been determined. These trajectories are not nec-
essarily close to the initial guess. In reference [9],
genetic algorithms are used to determine trajectory
closure after one period. Genuine periodic orbits are
obtained for the special inclinations 49◦, 63.4◦, 131◦,
and 116.6◦. Otherwise, closure is not obtained after
one period. Various control schemes are investigated
in reference [10], using the results of reference [9] as
reference trajectories.

2 RELATIVE MOTION EQUATIONS AND ALMOST
PERIODIC ORBITS

Consider the motion of two spacecraft in close prox-
imity that are orbiting the Earth at low altitudes. The
reference spacecraft is designated as the chief and the
other satellite is the deputy (see Fig. 1). It is assumed
that the chief is initially at t = 0 at the ascending node
of an orbit which on average is circular with radius
Ro, inclination i, and initial longitude of the ascend-
ing node �. The mean motion of this average circular
orbit is ω = √

µ/R3
o and T = 2π/ω is the period where

µ is the geocentric gravitational constant.

Fig. 1 Orbital geometry

Let Rc denote the position of the chief and Rd that
of the deputy where R = [X Y Z ]T is the geocentric
inertial position of a generic satellite. The motion of
the two satellites evolve according to

R̈c = −µRc

R3
c

+ FJ2,i(Rc) (1)

R̈d = −µRd

R3
d

+ FJ2,i(Rd) + ui (2)

where a control force (per unit mass) ui is acting on
the deputy and

FJ2,i(R) = −3µJ2R2
e

2R7

⎡
⎣ X 3 + XY 2 − 4XZ 2

X 2Y + Y 3 − 4YZ 2

3X 2Z + 3Y 2Z − 2Z 3

⎤
⎦ (3)

where FJ2,i is the lowest order term capturing the grav-
itational force of an oblate mass distribution. The sec-
ond zonal harmonic coefficient is J2 = 1.0 826 269 ×
10−3 and Re is the Earth’s equatorial radius. The motion
equations in equations (1) and (2) can be succinctly
written in the form

Ẋ = F(X, t) (4)

where X(t) = col{Rc, Ṙc, Rd, Ṙd} and it has been
assumed that ui ≡ ui(X, t).

The relative position of the deputy with respect to
the chief will be expressed in the local–vertical–local–
horizontal (LVLH) or Hill frame which moves with the
chief and has its x-axis in the radial direction; z-axis
normal to the orbit and y-axis is in the in-track direc-
tion and completes the right-handed xyz-coordinate
system. The relative position expressed in this frame is
given by rd = [x y z]T where

rd = Coi[Rd − Rc], CT
oi(t) =

[
Rc

Rc

H×
c Rc

|H×
c Rc|

Hc

Hc

]
(5)

Here, Coi is the rotation matrix relating the LVLH frame
(subscript o) to the geocentric inertial frame (subscript
i) and Hc = R×

c Ṙc is the chief’s angular momentum
(per unit mass). The relative velocity with respect to
the LVLH frame will be designated vd = ṙd and the cor-
responding state vector is given by x(t) = col{rd, vd}.
Equation (5) and its derivative can be written in the
form

x(t) = H(X, t) (6)

The initial conditions for the relative state vector can
be related to those of X using

X(0) =

⎡
⎢⎢⎣

Rc(0)

Ṙc(0)

Rc(0)

Ṙc(0)

⎤
⎥⎥⎦ + B(0)x(0)
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Almost periodic relative orbits under J 2 perturbations 769

B(t) =

⎡
⎢⎢⎢⎣

O O
O O

CT
oi(t) O

Ċ
T
oi(t) CT

oi(t)

⎤
⎥⎥⎥⎦

(7)

The search is for a set of initial conditions for x
such that x(T ) = x(0). Note that this does not lead
to periodic relative motion since x(2T ) �= x(T ) on
account of J2 effects. However, this will be seen to be
a promising avenue for establishing almost periodic
relative motion. The corresponding initial conditions
are referred to as ‘periodic’.

Anticipating an iterative scheme for determining the
initial conditions, let xk(t), k = 0, 1, 2, . . ., denote the
relative motion solution emanating from the initial
conditions xk(0) and Xk(t) the corresponding solution
for the inertial state, and linearize about these trajec-
tories assuming small perturbations �Xk = Xk+1 − Xk

and �xk = xk+1 − xk . The linearized equations are
given by

�Ẋk = Ak(t)�Xk , Ak(t) = ∂F

∂XT

∣∣∣∣
X=Xk

(8)

�xk(t) = Ck(t)�Xk(t), Ck(t) = ∂H

∂XT

∣∣∣∣
X=Xk

(9)

The solution of equation (8) may be written as

�Xk(t) = �k(t , 0)�Xk(0) (10)

where the state transition matrix satisfies

�̇k(t , t0) = Ak(t)�k(t , t0), �k(t0, t0) = 1 (11)

and �Xk(0) = B(0)�xk(0). Combining this relation
with equations (9) and (10) yields

�xk(T ) = �k(T , 0)�xk(0),

�k(t , t0) = Ck(t)�k(t , t0)B(t0)
(12)

or

xk+1(T ) − xk(T ) = �k[xk+1(0) − xk(0)] (13)

where �k ≡ �k(T , 0). Motivated by the shooting
method presented in references [11] and [12],
set xk+1(T ) = xk+1(0) which ultimately leads to the
Newton iteration

xk+1(0) = xk(0) + (�k − 1)−1[xk(0) − xk(T )],
k = 0, 1, 2, . . . (14)

where x0(0) is determined below.
It is advantageous to develop an approximation for

�k . It will in fact be constant (independent of k). To

this end, the reduced situation is considered, where
J2 is neglected and the chief’s motion is circular. The
linearized relative motion equations are the nonho-
mogeneous form (owing to the control influences on
the deputy) of the HCW equations

ẋ = Ahx + Bhuo (15)

where

Ah =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Bh =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , uo = Coiui

For no control, uo = 0, and the transition matrix based
on equation (15) is given by �k = exp(AhT ). The ana-
lytical form of this matrix is given in reference [1] and
it is not hard to see that all six of the eigenvalues of �k

are unity. Hence the inverse required in the iteration
of equation (14) does not exist.

In an effort to render the matrix �k − 1 invertible, a
linear feedback controller shall be introduced, which
essentially moves the eigenvalues of Ah off of the imag-
inary axis and those of �k off of the unit circle. This
controller will also have the effect of encouraging the
converged (almost) periodic trajectories to be close
to the initial guess x0. The controller design will be
discussed after examining the choice of x0. It is also
anticipated that the feedback controller will mitigate
against the neglect of other perturbations such as
higher order harmonics in the gravity model in the
calculation of �k .

In an effort to identify candidate initial conditions
for the iterative scheme and reference trajectories for
control action, the homogeneous HCW equations are
considered

ẋh = Ahxh (16)

It is well known that these equations possess peri-
odic solutions, one of which will concern us here. To
fix ideas, the projected circular orbit in reference [1]
is considered

xh(t) =
(a

2

)
sin(ωt), yh(t) = a cos(ωt),

zh(t) = a sin(ωt)
(17)

where a is the radius of the circular projection in the yz-
plane. Note that it has period T and it is largely for this

JAERO200 © IMechE 2007 Proc. IMechE Vol. 221 Part G: J. Aerospace Engineering
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reason that this has been chosen as the target ‘period’
for the iteration. An almost periodic solution that
approximates the projected circular orbit is desired.
To this end, the following control law is adopted

uo(t) = −Kx̃(t), x̃(t) = x(t) − xh(t) (18)

where xh corresponds to the solution in equation (17)
and K is a stabilizing state feedback gain to be deter-
mined. Subtracting equation (16) from equation (15)
yields

˙̃x = Ahx̃ + Bhuo (19)

for the error dynamics. Using linear quadratic reg-
ulator (LQR) design, K is selected to minimize J =∫∞

0 (x̃TQx̃ + uT
oRuo) dt . In an effort to minimize fuel, R

should be made fairly large since we desire the small-
est possible feedback gain which renders the iteration
in equation (14) convergent. Combining equations
(18) and (19) yields ˙̃x = (Ah − BhK)x̃ which has the
solution x̃(T ) = exp[(Ah − BhK)T ]x̃(0). Adopting the
iterative notation established previously, one obtains
�x̃k(t) = �xk(t) since xh,k+1 = xh,k . Hence

�xk(T ) = �k(T , 0)�xk(0),

�k(T , 0) = exp[(Ah − BhK)T ]
(20)

This is the approximation to equation (12) and it can be
noted that if K is stabilizing, then the inverse required
in equations (14) exists. It is emphasized that xk(T )

in equation (14) contains non-linearities and J2 effects
since it is determined by integrating equations (1) and
(2) and using equation (5) and its derivative. The con-
trol in equation (2) is determined from ui = CT

oiuo with
the understanding that x in equation (18) is deter-
mined from equations (1), (2), and (5). Given the
numerical nature of the algorithm, considerably more
general perturbations than J2 may be accounted for
by including them in the determination of xk(T ). Peri-
odic solutions of the HCW equations other than the
projected circular orbit can also be considered.

It should be noted that the shooting method used in
equation (14) has also been employed in reference [8]
but in lieu of the Cartesian state, a Hamiltonian formu-
lation was used. In that case the required inverse did
not exist as well. This was remedied by replacing one of
the equations by a statement of conservation of energy
and employing a pseudoinverse. Clearly, the develop-
ment in equations (8) to (14) can be applied to more
general formulations than the Cartesian description
used in equations (1) to (7).

3 NUMERICAL EXAMPLE

It is assumed that the initial chief orbit has Ro =
7078 km and i = � = 60◦ which yields an orbital

Iteration, k

|r
 (

0)
- 

r 
(T

)|
, m

k 
   

   
k

r  = xk     k
r  = yk     k
r  = zk     k

10-10

10-8

10-6

10-4

10-2

100

102

0 1 2 3 4 5 6 7

Fig. 2 Relative position error versus iteration number

period of T = 1.65 h. The initial conditions for the iter-
ation, x0(0) are selected according to equation (17)
with a = 400 m. The differential equations in equation
(4) are propagated using a fixed-stepsize (0.1 s) fourth-
order Runge–Kutta scheme. The LQR feedback con-
troller is designed using Q = diag{ω2, ω2, ω2, 1, 1, 1}
and R = diag{r/ω2, r/ω2, r/ω2} with r = 104. To under-
stand the significance of this choice, note that r = 10−2

results in a feedback law that renders the tracking
errors in {|x̃0(t)|, |ỹ0(t)|, |z̃0(t)|} (i.e. the response to the
HCW initial conditions) to be just less than one meter.
The choice r = 104 corresponds to very low authority
control.

The evolution of the iterative scheme is illustrated
in Fig. 2 where {|xk(T ) − xk(0)|, |yk(T ) − yk(0)|, |zk(T ) −
zk(0)|} are shown as a function of iteration number k.
The behaviour of the corresponding rates is shown in
Fig. 3. Convergence is very rapid and after seven iter-
ations, the relative position closes to within 10−7 m
and the relative velocity to within 10−9 m s−1. Sub-
metre errors are obtained after one iteration and sub-
centimetre errors are obtained after three iterations.

Iteration, k

|v (0)- v (T)|
k        k

(m/s)

v  = xk     k
v  = yk     k
v  = zk     k

.

.

.

10-10

10-8

10-6

10-4

10-2

0 1 2 3 4 5 6 7

Fig. 3 Relative velocity error versus iteration number
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Almost periodic relative orbits under J 2 perturbations 771

The converged initial conditions are given by

rd(0) = [5.4459 375.22 27.712]T m

vd(0) = [0.206 37 − 0.011 943 0.417 89]T m s−1

The converged relative trajectory x̃7(t) is shown in
Fig. 4 which illustrates the discrepancy from the pro-
jected circular orbit. The shape of the converged
relative orbit is shown in Fig. 5 in the yz-plane and
compared with the projected circular orbit.

As noted in the previous section, the solution is
not periodic. The converged solution has been prop-
agated for ten orbits in Fig. 6 and 50 orbits in Fig. 7.
The former illustrates the nearly periodic nature of

time (t/T)

time (t/T)

time (t/T)

x
~

(m)

y
~

(m)

z
~

(m)

-10
-5

0
5

10

0.0 0.2 0.4 0.6 0.8 1.0

-40
-30
-20
-10

0
10

0.0 0.2 0.4 0.6 0.8 1.0

-30
-20
-10

0
10
20
30

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4 Converged ‘periodic’ solution relative to HCW
solution

"periodic" IC’s

Hill solution

y (m)

z

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 5 Converged ‘periodic’ solution in yz-plane

the solution in the short run but the latter begins to
show the breakdown of the periodicity. It is tempting
to view the feedback controller as an artifice which
renders the iterative scheme functional and a means
to obtain appropriate initial conditions. If the feedback
controller is dropped from the final simulation using
the converged initial conditions, the result is Fig. 8
(20 orbits). Clearly, the periodicity is not as good as the
case with feedback control but is a large improvement
on the use of the HCW initial conditions x0(0).

One may wonder if anything may be gained upon
using a better approximation to the state transition
matrix. The linearized dynamics (in the presence of J2

with a reference circular orbit) presented by Ross [13]
are a system of linear time-varying ODE’s. They can be
integrated over one period with different initial condi-
tions to produce the state transition matrix analog of
the matrix exponential used here. Its use presented no
advantages over the simple case presented here. It is

y (m)

z

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 6 ‘Periodic’ ICs with control (10 orbits)

y (m)

z

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 7 ‘Periodic’ ICs with control (50 orbits)
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"periodic" IC’s (no control)

Hill IC’s (no control)

y (m)

z

(m)

-500

-250

0

250

500

-750 -500 -250 0 250 500

Fig. 8 ‘Periodic’ ICs without control (20 orbits)

expected that the linear time-varying equations pre-
sented by Melton [14] along with the corresponding
state transition matrix will be useful in treating almost
periodic motion between elliptic orbits.

In an effort to gauge the impact of other parameters
on the periodicity resulting from the calculated initial
conditions, the following periodicity error measure is
defined as

E =
√

[x(0) − x(10T )]2 + [y(0) − y(10T )]2

+[z(0) − z(10T )]2 (21)

which measures the periodicity error over ten orbits.
Keeping all of the parameters the same as above, the
inclination is varied from 0 to 90◦ and the resulting
error measure is shown in Fig. 9. In all cases, the error
is less than 2 m with the best results obtained for polar
orbits (E = 38 cm). Note that we are unable to obtain
the truly periodic (E = 0) results of reference [9] for

inclination (deg.)

E

(m)

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90

Fig. 9 Periodicity error measure (10 orbits) versus
inclination

r

E

(m)

10-2

10-1

100

10-2 10-1 100 101 102 103 104

Fig. 10 Periodicity error measure (10 orbits) versus LQR
control weighting r

inclinations of 49 and 63.4◦ since this technique must
use a feedback controller, which encourages the result-
ing trajectories to remain close to the HCW solution.
There is no such restriction on the genetic algorithm
approach of reference [9] which searches for a peri-
odic solution over a very general range of trajectory
parameters. On the other hand, that technique does
not generate trajectory closure over even one orbit
away from the special inclinations.

In Fig. 10, the periodicity error measure is shown as a
function of control weighting parameter r for an incli-
nation of 60◦. As r is reduced, the periodicity measure
improves and the resulting trajectories approach the
HCW solution. The price paid for this is increased fuel
consumption. On the other hand, as r is increased,
the periodicity error increases but one has the pos-
sibility of approximating the behaviour without any
control effort at all (beyond that required to establish
the initial conditions).

It is instructive to compare the approach here with
the use of initial conditions obtained using the J2-
invariant technique of reference [7]. In order to imple-
ment the latter, it is started by choosing the Cartesian
position and velocity of the chief and deputy in an
identical fashion to above. These are then converted to
osculating orbital elements which are then converted
to mean orbital elements using the procedure outlined
in reference [15]. The J2-invariant modifications are
then applied to the deputy’s mean elements id and ad

id = ic − 4δη

(ηc tan ic)
, ηc =

√
1 − e2

c

ad = ac + 2Da2
cδη

Re
, δη = ηd − ηc

D = J2

4L4
cη

5
c

(4 + 3ηc)(1 + 5 cos2 ic), Lc =
√

ac

Re
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x (m)

y

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 11 J2-invariant ICs (10 orbits)

where the subscripts c and d refer to mean elements of
the chief and deputy, respectively. After these modifi-
cations are made, the mean elements are converted
to osculating elements from which the Cartesian
positions and velocities can be obtained.

The ensuing relative motion for ten orbits is depicted
in Fig. 11. Departures from periodicity are not dis-
cernible. It should also be noted that a depiction of
the motion has been made in the xy-plane since the
J2-invariant conditions effectively suppress the z
motion and the motion is essentially an ellipse in the
xy-plane. In an effort to assess the sensitivity to errors
in the initial conditions, the deputy’s initial conditions
are perturbed as follows: δRd(0) = [0.2 −0.3 0.5]T m.
The ensuing relative motion is depicted in Fig. 12
which clearly shows that periodicity is lost and a sec-
ular motion in the in-track direction appears. When
the same perturbation is made to the deputy’s initial
conditions obtained using the approach of the paper,

x (m)

y

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 12 J2-invariant ICs with errors (10 orbits)

"periodic" IC’s with errors

y (m)

z

(m)

-500

-250

0

250

500

-500 -250 0 250 500

Fig. 13 ‘Periodic’ ICs with errors (10 orbits)

the results analogous to Fig. 6 are shown in Fig. 13.
Clearly, the approach is much less sensitive to errors in
the initial conditions than the J2-invariant approach.
Another advantage is that the orbit obtained from
the converged initial conditions is not radically differ-
ent than that used for initialization, i.e. the projected
circular orbit, whereas this is not the case for the
J2-invariant approach.

4 CONCLUSION

An iterative scheme for generating initial conditions
yielding closed relative orbits has been presented for
spacecraft in nearly circular orbits under the influ-
ence of the J2 gravitational perturbation. The scheme
uses an approximation to the relevant state transition
matrix based on the HCW equations with an additional
small feedback controller. The relative orbits obtained
from the initial conditions were shown to be nearly
periodic and this persisted when the feedback con-
troller was removed. Since the technique is numerical
in character, it is anticipated that more general prob-
lems (i.e. higher order harmonics in the gravitational
field and eccentric orbits) may be dealt with using the
proposed method. It was also demonstrated for the
example used in the paper that the method is less
sensitive to errors in the initial conditions than the
J2-invariant approach.
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