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Abstract: Micrometre level ranging accuracy between satellites on-orbit relies on the high-precision
calibration of the antenna phase center (APC), which is accomplished through properly designed
calibration maneuvers batch estimation algorithms currently. However, the unmodeled perturbations
of the space dynamic and sensor-induced uncertainty complicated the situation in reality; ranging ac-
curacy especially deteriorated outside the antenna main-lobe when maneuvers performed. This paper
proposes an on-orbit APC calibration method that uses a reinforcement learning (RL) process, aiming
to provide the high accuracy ranging datum for onboard instruments with micrometre level. The RL
process used here is an improved Temporal Difference advantage actor critic algorithm (TDAAC),
which mainly focuses on two neural networks (NN) for critic and actor function. The output of
the TDAAC algorithm will autonomously balance the APC calibration maneuvers amplitude and
APC-observed sensitivity with an object of maximal APC estimation accuracy. The RL-based APC
calibration method proposed here is fully tested in software and on-ground experiments, with an
APC calibration accuracy of less than 2 mrad, and the on-orbit maneuver data from 11–12 April 2022,
which achieved 1–1.5 mrad calibration accuracy after RL training. The proposed RL-based APC algo-
rithm may extend to prove mass calibration scenes with actions feedback to attitude determination
and control system (ADCS), showing flexibility of spacecraft payload applications in the future.

Keywords: reinforcement learning; antenna phase center calibration; K band ranging (KBR);
micrometre level microwave ranging

MSC: 49M37; 65K05; 90C30; 90C40

1. Introduction

Micrometre level, or even nanometre, picometre level high-precision on-orbit inter-
satellite ranging (ISR) technology constituted the foundation stone for modern space science
exploration missions. Application of precise ISR technology, including gravitational wave
detection that extended Einstein’s theory of relativity in a more general form [1–3], and the
Earth gravity field measurement that learned the spatial and temporal distribution of
Earth’s internal mass [4,5].

Realization of high accuracy ISR can be achieved through an optical phase measurement-
based laser interferometric technique, as in LISA Pathfinder and GRACE follow-on mis-
sions [6–9]. At the same time, the dual one-way ranging (DOWR)-based K/Ka band dual
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frequency microwave phase differential measurement technique is also used, and even
functioned as the primary ISR payload in current on-orbit missions [10,11].

The high-accuracy ISR measurement from laser, or microwave payload suffered from
noises and perturbations, which should be precisely modeled and calibrated, both before
and after launch. The calibrating process, referred to as line-of-sight (LOS) calibration for
laser ranging interferometer (LRI) [12], or APC calibration for microwave ranging pay-
loads [13], is one crucial initial ranging acquisition procedure that includes well-designed
spacecraft maneuvers and algorithms. The purpose of APC calibration is for the optimal
estimation of the microwave antenna phase center on board the formation spacecrafts.
The whole calibration procedure entails the intended attitude orientation through ADCS
functioning, optimal design of maneuver parameters, proper choice of APC estimation
algorithms, and finally, obtaining the alignment corrections of precise ranging information
between the inertial proof mass of formation spacecrafts.

The traditional way of conducting APC calibration is by the command sending and
receiving through ground telemetry, the track and command (TT&C) system, with prede-
termined maneuver parameters. However, one problem arises during real APC calibration
on-orbit. The K/Ka band dual frequency antennae on board are sophisticatedly designed
horns with a sharp pattern in the main lobe, aiming to obtain high gain values in the LOS
direction. However, the APC is only sensitive to the sweep plan of the maneuver spacecraft
with large rotating angles; on the one hand, too-large maneuver angles cause microwave
ranging performance to deteriorate. However, angles that are too small would fail to obtain
precise APC information. A similar situation also exists in the center of mass (CoM) calibra-
tion process on-orbit, which causes a dilemma. With the rapid development of artificial
intelligence (AI), machine learning (ML) and reinforcement learning (RL) technology in
recent years, it is interesting to explore the possible applications of those methods to the
APC calibration on-orbit.

Reinforcement learning, a major branch of machine learning, has attracted scholars’
attention over the last decade. RL functioned adaptively to formulate a ’policy update’
through interactions with an environment [14]. Of the copious literature related to RL
studies, policy gradient methods are a group of practical algorithms that are commonly
used and well established [15,16]. The core idea of the RL process is to seek to maximize
the performance index with respect to the parameters from the policy function by using
gradient descent. Readers can refer to the aforementioned policy gradient method [16],
off-policy actor-critic method and trust region optimization [17,18]. Application of RL to an
aerospace system is rarely found in recent years, and some newly relevant literature may
be found in [19–21].

Despite the rare application of reinforcement learning in the Microwave ranging
(MWR) systems, this paper provides an early attempt to conduct RL-based APC calibration
for micrometre level precision MWR ranging on-orbit. The main contributions of this study
are summarized as follows: Detailed analysis of the APC calibration model with noises and
uncertainties that are experienced in real on-orbit flights; Formulating the APC calibration
as an on-orbit RL problem with related algorithm derivation; Verification of proposed RL
APC algorithms with software simulation and the hardware in loop (HIL) test, and finally,
with real on-orbit MWR data. The proposed RL-based APC process method may extend to
a general form that includes proof mass calibration simultaneously.

The remainder of this paper is organized as follows: The mathematical models for APC
calibrations with antenna bias analysis are provided in Section 2. The RL-based algorithm
for APC calibration can be found in Section 3. The RL-based algorithm test using software,
HIL and on-orbit verification are described in Sections 4–6, with discussion in Section 7.
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2. Mathematical Models for Antenna Phase Center Calibration
2.1. APC Calibration Procedure
2.1.1. Sub-Maneuvers Design

Precise measurement of MWR payload depends on the accuracy on-orbit estimation
of APC for both satellites. Due to the reason that the APC component is only sensitive
to the values along the sweep plan of the satellite attitude rotating, maneuvers of several
kinds should be adopted to determine the correct APC positions.

Similar to ref [13], here we provide four separate on-orbit calibration sub-maneuvers.
The periodic oscillation maneuver is used as follows:

θ<a,b>
<y,p> = θ0 + A sin(ωt) (1)

where θ is the angle during each sub-maneuver, the subscript < y, p > denotes the sub-
maneuvers of yaw or pitch angles, and < a, b > denotes the satellite A or B that perform
the sub-maneuver. The four sub-maneuvers are defined as Sub-Maneuver A (MA) θa

yaw, MB
θa

pitch, MC θb
yaw, MD θb

pitch. θ0 is the initial biased attitude angle before each sub-maneuver,
the reason for this is that the MWR ranging measurement is highly correlated to the attitude
rotation with biased angle. The schematic illustration of this sub-maneuver is shown in
Figure 1, taking MA as an example.

Figure 1. Illustration of sub-maneuver A (MA) for APC calibration, a small positive yaw angle
maneuver is performed for satellite A.

Clearly, in the case of MA, the phase observation is highly sensitive to the phase
center of spacecraft A’s antenna along roll and pitch axes. Here we did not model the bias
of the satellites’ center of mass (CoM), which is supposed to coincide with the on-board
accelerometer’s proof mass [22].

2.1.2. APC Calibration Algorithm

The required observation set for MWR system APC calibration includes precise mi-
crometre level MWR range data, star camera data for attitude orientations determination
for satellites A and B, and relative position measurements from GPS observations.

Same as chapter 4 of ref. [13], the range fitting model is given as

R =
∣∣∣r∗ab +<(qa)

TΘ
(
dpca

)
−<(qb)

TΘ
(

dpcb

)∣∣∣+ Rbr + Rnr + Poly(n) (2)

where rab is GPS the determined relative position in the inertial frame, <(•) denotes the
operation of attitude quaternion to the rotation matrix, Θ(•) the operation of the vertical
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vector to the horizontal, qa, qb ∈ S3 are the attitude quaternion of satellite A and B from
the inertial frame to body-frame, dpca, dpcb ∈ R3 the APC coordinate (m) of satellite A and
B in each body-frame, Rbr ∈ R1 the MWR system measurement noises (m) that include
oscillator noise and multipath noise [23], Rnr ∈ R1 the random ranging noise (m) with
E(Rnr) = 0 and covariance E

(
RnrRT

nr
)
= Rr, Poly(n) is the n-th order polynomial function

antn + . . . + a1t + a0, which is used to smooth the relative GPS measurement. Detail
definition of coordinate frames may found in Appendix A.

The derivative of Equation (2) include

∂R
∂dpca

=
∂

∂dpca

[
<(qa)

TΘ
(
dpca

)]
= eT<(qa)

∆
= eTMa,

∂R
∂dpcb

=
∂

∂dpcb

[
−<(qb)

TΘ
(

dpcb

)]
= −eT<(qb)

∆
= −eTMb, (3)

∂R
∂Rbr

= 1,
∂R
∂ai

=
∂

∂ai
[antn + . . . + a1t + a0] = ti(i = 0, 1, 2, . . . n)

where e is the unit vector of the satellite AB baseline in inertial frame, M is the transforma-
tion matrix from the inertial frame to the satellite body-frame.

Here we define the high-dimensional states as

x30×1 =

dT
pca, dT

pcb︸ ︷︷ ︸
1×6

, RMA
br , . . . RMD

br︸ ︷︷ ︸
1×4

, aMA
i , . . . aMD

i︸ ︷︷ ︸
1×20


T

.

Supposing we have the initial value x∗ and measurement, then the residual of each
sub-maneuver is the following:

y = R−
∣∣∣r∗ab + MaΘ

(
d∗pca

)
−MbΘ

(
d∗pcb

)∣∣∣− R∗br − Poly(n)∗, (4)

with nominal values of marked *. The derivative matrix of the observed equation, for sub-
maneuver A as an example is given as

HMA =
[

∂RMA
∂dpca

∂RMA
∂dpcb

1 0 0 0 ∂RMA
∂aMA

i
0 0 0

]
. (5)

A similar matrix can be obtained for other sub-maneuvers with the same method,
and a fourth-order polynomial function is used here. By accumulating the measurements
and derivative matrix for all sub-maneuvers, the following nominal matrix can be obtained:

(
HTR−1H

)
= ∑

p=A,B,C,D

m

∑
k=1

(
HMp(t)k

)T

R−1
r HMp(t)k (6)

where k is the time index, and p is the sub-maneuvers notations.
The accumulated observation residual is given by:

(
HTR−1y

)
= ∑

p=A,B,C,D

m

∑
k=1

HMp(t)kR−1
r yMp. (7)

By using batch estimation theory, we have the estimation of full states:

x̂ =
(

HTR−1H
)−1

HTR−1y. (8)

And the APC can be obtained finally, improving with several iterations of estimation
accuracy. Note the algorithm can also be used for situations where MA is alone.
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2.1.3. Evaluation of APC Calibration Accuracy

Basically, the APC calibration accuracy is evaluated by APC estimation error from the
batch algorithm, which is the difference between the estimated value and the real APC
position. However, we have to consider two scenes in reality:

First, for situations of known fixed APC position, as in software simulation, or a
real antenna with phase center data obtained from on-ground testing in a near-field mi-
crowave chamber, we may have a stable laboratory environment during calibration process.
The APC calibration accuracy is evaluated by the two vectors intersection angle between the
known coordinate of APC and the estimated APC position in the body frame, as shown in

eAnga,b(t)
∆
= arccos

 dpca,b(t) · dpca,b/0∥∥∥dpca,b(t)
∥∥∥∥∥∥dpca,b/0

∥∥∥
 (9)

where dpca,b, dpca,b/0 denote the estimated and known APCs of satellite A and B.
Second, for a situation of on-orbit APC calibration, the real APC position is unknown

a priori, possibly diverged from the original designed value during the process of launch,
space perturbation and attitude maneuvers. The evaluation of the APC calibration accuracy
is formed as follows: first step, obtain the two vectors intersection angle between the
estimated APC coordinates in time (t− 1) and (t), followed with batch time period sliding
forward. Next step, calculate the average value of accumulated estimate errors since (t = 1)
to (t = k):

ēAnga,b(t)
∆
=

1
k

k

∑
t=1

arccos

 dpca,b(t) · dpca,b(t− 1)∥∥∥dpca,b(t)
∥∥∥∥∥∥dpca,b(t− 1)

∥∥∥
. (10)

The idea of this evaluation method is: the APC estimation results can gradually
converge to the real value through a batch estimation algorithm.

2.2. Uncertainties during APC Estimation On-Orbit
2.2.1. Overview of Uncertainties

As stated in Section 2.1, the measurement data used for APC calibration include
MWR ranging, star sensors and orbit determinations from a GPS receiver. The APC
algorithm performed stably and provided accuracy output during the early stage of theory
analysis, at least in the software simulation. However, in a real on-orbit environment,
the APC estimation results fluctuated sharply after analysis. The uncertain sources for APC
calibration mainly from MWR ranging observation noise, GPS carrier phase differential
positioning error and attitude determination error. Funrun Wang [13] has concluded that
the relative position error from the GPS differential carrier phase measurement can be
removed from polynomial smoothing, and attitude determination results from the star
sensor is accurate enough to be used directly, only considering the misalignment error and
sensor noise.

At the same time, the MWR ranging noises include oscillator noise, system noise and
multipath noise, and ref. [13] concluded that the oscillator and system noise have small
drifts in a short time interval, which can be easily removed by an algorithm as range bias.
Moreover, multipath error is modeled as phase changed bias due to the angular motions of
the satellite, which can be approximately cancelled by using mirror maneuvers.

However, with the effort of the authors’ research group, we found that the real APC
process results are not accurate enough from on-orbit data, by using the modelling method
of [13]. The APC calibration accuracy may be partly influenced by the MWR measurement
during maneuvers. The reasons for this include antenna design and MWR signal process-
induced noises, under the condition of calibration attitude rotation on-orbit. The following
section will give an introduction of MWR antenna design with induced ranging noise
analysis in detail.
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2.2.2. Antenna Design and Induced Uncertainty

The MWR antenna system is carefully designed, which consists of a share used K
/Ka dual-frequency corrugated horn (DCH), and a dual-frequency dual-line-polarized
orthogonal coupler (DDOC). Furthermore, the DDOC includes a K/Ka-band four-arm
coupling bilinear polarization orthogonal coupler (FCBPOC), K-band low pass filter and
K-band microwave switch network. The designed antenna and prototype are shown in
Figure 2.

(a) (b)

Figure 2. MWR antenna design with prototype. (a) MWR antenna design. (b) Prototype of MWR
antennas for satellites A and B.

The electronic emission performance of the antenna system is rigorously tested in near-
and far-field environments. Figure 3 provides the main polarization and cross polarization
pattern for both K and Ka band.
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Figure 3. K/Ka antenna main polarization and cross polarization pattern. (a) K antenna. (b) Ka
antenna.

As shown in Figure 3, for the purpose of high-accuracy ranging performance in space,
the maximum antenna gain focuses on a narrow beam width, with 3 dB attenuate in ±3 deg
for K-band, and ±2.5 deg for Ka-band. This caused a dilemma where, on the one hand, we
are willing to enlarge on-orbit maneuver amplitude to produce more sensitive phase change
results from the calibration algorithm, and on the other hand, the large maneuver amplitude
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will surely influence MWR ranging accuracy since antenna gain decreases dramatically
when ranging LOS deviates, and finally, influences the microwave signal tracking loop
accuracy, as Equation (8) in Ref. [24].

Another problem is the APC change during an on-orbit calibration maneuver. The an-
tenna is specially manufactured using thermal-stable materials of invar, and the precise
APC position in the antenna frame is calculated using Equations (11) and (12) below,
in theory:

CE =
λ

2π
·

N
N
∑

i=1
φE(θi) cos θi −

[
N
∑

i=1
φE(θi)

]
N
∑

i=1
cos θi(

N
∑

i=1
cos θi

)2

− N
N
∑

i=1
cos2θi

(11)

CH =
λ

2π
·

N
N
∑

i=1
φH(θi) cos θi −

[
N
∑

i=1
φH(θi)

]
N
∑

i=1
cos θi(

N
∑

i=1
cos θi

)2

− N
N
∑

i=1
cos2θi

(12)

where CE, CH are the theoretical elevation and horizontal position of APC in the antenna
coordinate frame, θi(i = 1, 2, . . . , N) is the i-th polar angle of the antenna, φE(θi) is the i-th
azimuth angle corresponding to θi, N is the number of divided full polar angle, λ is the
wave length of K/Ka band microwave signals.

The analysis of the APC position above is in an ideal situation, considering only the
influence of the horn structure, without considering the influence of the antenna feed source,
alignment and installation, and the actual on-orbit environment will deteriorate accordingly.

2.2.3. Other Uncertainties in APC Calibration

As stated in Section 2.2.1, misalignment error would exist apart from sensor noises.
The first one we have to consider is antenna boresight bias, which is induced by the bias of
the estimated APC value from the real position, in the LOS frame. Wang [13] has advised
that the APC calibration accuracy can be weighted by the antenna boresight determination
error in axis rotation.

The second is KBR misalignment correction is due to the geometric misalignment
of CoMs and APC. This is compensated by using the attitude quaternion approximate.
Finally, star camera misalignment, which may be processed by using the proper attitude
error angle rotation formula derivations, and the instantaneous boundary for the difference
of two body-fixed star camera out quaternions can be used [13].

3. Application of Reinforcement Learning to APC Calibration
3.1. Typical RL and TD Advantage Actor Critic Algorithm

In simple words, RL works by the agent at state st, while taking action to the envi-
ronment, stepping to the next state st+1 with an instant reward rt; this surely reflects the
quality of action taken. The RL aims to find policy πθ that maximizes the accumulated
reward hereafter. It is clear that the agent interacts with and learns from experience during
the RL process, and finally, improves itself.

For situations of an agent interacting with a Markov decision process (MDP), as
in APC calibration, finding an optimal policy π with parameter θ is difficult in practice.
However, it can be easily handled by using neural network (NN) to approximate the
functions, which lead to the Temporal Difference (TD) advantage actor critic algorithm (or,
TDAAC algorithm). Here we first give the basic definition of state space S , action space A,
transition probability density of the environment Pa

ss′ = Pr(st+1 = s′|st, at), reward function
r : S ×A → R, discount factor γ ∈ (0, 1), and ρ : S → R+ denotes the distribution of the
state s [16,18].
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The whole process of the TD advantage actor critic algorithm focues on two neural
networks: the actor network πθ(s) and the critic network Vu

π (s), with actor network
parameters θ and critic network parameters u of NN weights and biases. First, the current
state st entered actor NN and output an action at sampled based on the current policy
πθ , and the agent executes at to the environment, generating a reward rt and steps to
the next state st+1. Second, the critic NN produces a value Vu

π (st) from the current state,
and Vu

π (st+1) from next state, before the parameters are updated. Note the output of the
actor is actually the mean µ̄ and standard deviation σ that action at sampled.

The whole process is shown in Algorithm 1.

Algorithm 1 TD Advantage Actor Critic

Critic NN Vu
π (s) and Actor NN πθ(s) initialize

for time = 1:N
Initial state s0
for i = 1:M

Sampling at ∼ πθ(st|µ̄, σ), execute to environment, obtain r and step to st+1
Calculate TD error δt = r + γVu

π (st+1)−Vu
π (st)

Update critic u←− min δ2
t

Update actor θ ←− min − log
(
πθ
)
· δt

Update state st+1
end

end

3.2. TDAAC Algorithm with Batch Process

The TDAAC algorithm performed well in APC estimation, in theory, but randomness
complicated the situation in real on-orbit calibration missions. The agent’s actions are
sampled from ‘policy’ π, meaning at ∼ π(•|st), which is a state-dependent conditional
probability density on A. It is acceptable for the fixed policy π, but one has to be aware
that we may find a better result from arbitrary stochastic policy µ at an instant episode.
The adopted judging method A(π − µ), called an ‘advantage’ in [25], has been successfully
used to train a quadrotor controller in a laboratory environment.

Similar to [25], here we give an introduction of the TDAAC process that was used for
APC calibration in real space missions.

3.2.1. Value Function and Advantage

Suppose we have the Markov process with the time sequence of state s ∈ S and action
a ∈ A as h = [s0, a0, s1, a1, ...], and we establish a probability of the state occurrence ρπθ (s)
defined as

ρπθ (s) =
∞

∑
t=1

γt−1 Pr(•|st, at). (13)

Define the state-dependent value function Vπθ and the state–action dependent value
function Qπθ as

Vπθ (s) = E

[
∞

∑
t=1

γt−1rt|st, πθ

]
(14)

Qπθ (s, a) = Eh∼ρπθ (•)

[
∞

∑
t=1

γt−1rt|st, at, πθ

]
, (15)

which can be considered the expected value of all actions, or, sampling one action at at
state st.

Then we have the advantage as Aπθ (s, a) ∆
= Qπθ (s, a)−Vπθ (s), meaning the difference

in value of choosing some specific action a, or simply following the policy.
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Clearly, with the theory of policy gradient [26], the expected reward Vπ(s) can be
maximized, based on parameterized policy π(a|s; θ), by adjusting parameters θ according to

θ ← θ + α ∑
s∈S ,a∈A

ρπ(s)Qπ(s, a)
∂π(a|s)

∂θ
(16)

where α > 0 is the learning step size. It is interesting to find that the expected cumulative
reward can be optimized from state distribution and state-action value function, with no
need of environment information. The problem arises that the policy π will change, leading
to the state distribution ρπ(s) needing to be rebuilt.

Degris et al. [17] has introduced a policy gradient method where the second term of
Equation (16) may be derived as

∑
s∈S ,a∈A

ρµ(s)Qπ(s, a)
∂π(a|s)

∂θ
(17)

where µ is another policy, different from π.
Readers may find that the value function Vπ can also be maximized by using policy µ

of Equation (17). Pi [25] has introduced an effective criterion over the parameter space of
(s, a) ∈ S ×A, so that we may find better policy π through Vπ(s)−Vµ(s) ≥ 0, by using
two conditions of

[π(a|s)− µ(a|s)]Aµ(s, a) ≥ 0, or, [π(a|s)− µ(a|s)]Aπ(s, a) ≥ 0 (18)

3.2.2. Optimal Objective and Loss Function

By proper deriving gradient formulas of (16) and (17) under different policies π and µ,
the following can be obtained:

∑
s∈S ,a∈A

ρπ/µ(s)Aπ(s, a)
∂π(a|s)

∂θ
, (19)

meaning the policy probability as any state-action pairs can be directed according to the
advantage A. Next, taking the Taylor expansion of π as:

π(a|s, θ + ∆θ) = π(a|s; θ) + ∆θ
∂π(a|s; θ)

∂θ
+ O

(
∆θ2

)
. (20)

We may find for a small update of ∆θ, the magnitude of π(a|s, θ + ∆θ)− π(a|s; θ) is
composed of the inner product of ∆θ and its gradient, with the sign from the advantage.
That is where Equation (18) came from.

For situations that ignore the state occurrence probability ρπ(s), we may rewrite Q
with V as

Qπθ (st, at) = r + γVπθ (st+1) (21)

Then we define the optimal objective as follows:

max
θ

Lpolicy = ∑
s∈S ,a∈A

Aπθ (s, a)π(a|s; θ) (22)

and the loss of value function

min Lvalue = r + γVπθ (st+1)−Vπθ (st). (23)
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For situations that update state distribution ρπθ (s) with policy πθ at each step, we may
use NN for searching for optimal parameter θ ∈ RNθ in |S ×A| inequalities, and the hinge
loss below is adopted for realization of Equation (22) [27].

max
θ

Lpolicy
∆
= max

θ

{
min

[(
π(a|s)
µ(a|s) − 1

)
Aµ(s, a), ζ

]}
(24)

where ζ > 0 is a user-defined margin, and the object of the value function should conse-
quently be carefully designed.

Figure 4. Illustration of training process during sub-maneuvers. (MA means sub-maneuver A).

3.3. Training Algorithm

First, we are dealing with the training of the fitting value function (critic NN) in
recursive form below with sampled action

Vπ(st) = E[rt + γVπ(st+1)|at]. (25)

As the process of APC calibration slides forward with time on-orbit, here we formulate
the value function by minimizing the following least squares, known as temporal difference
(TD) learning [28].

min Lvalue
∆
= min

θν
∑

(st ,st+1)∈B

1
|B| |rt + γV(st+1; θν)−V(st; θν)|2 (26)

where B is a memory buffer that moves forward with time, and the time sequence of the
training process is illustrated in Figure 4. By approximate state transition probability ρπ(s),
the policy function (actor NN) can be rewritten from Equation (16) as

θπ ← θπ + α
1
|B| ∑

(st ,at ,rt ,st+1)∈B

1
π(at|st; θπ)

Qπ(st, at)
∂π(a|s; θπ)

∂θπ
. (27)

Here we use a return-based correction, known as retrace [29], while randomly sam-
pling data from the memory buffer with efficiency. The advantage and value are obtained as

Aretrace
t = At + γ min

(
1,

πt+1

µt+1

)
Aretrace

t+1 (28)
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and

Vretrace
t = Vt + min

(
1,

πt

µt

)
Aretrace

t+1 . (29)

Finally, we get the objective functions as

max Lpolicy = ∑
(s,a)∈T

min
[(

π(a|s)
µ(a|s) − 1

)
Aretrace, ε

∣∣Aretrace∣∣] (30)

min Lvalue =
1
|T| ∑

(s,a)∈T

(
V(s)−Vretrace)2, (31)

using stochastic gradient descent to optimize the objectives.
The whole process is shown in Algorithm 2.

Algorithm 2 TD advantage actor critic algorithm for APC calibration.
Input: max iterations L, actors N, epochs K, time steps T, batch length
Initialize:
Initialize states of satellite AB position, range, attitude from GPS and star cameras
Load the APC estimation batch algorithm
Initialize weights of policy networks (i = 1, 2, 3, 4) and critic network
Initialize memory buffer
for trajectories = 1 to L do

random reload states of satellite AB position, range, attitude
run time with Ts = 5 s, until time length = batch length

for actor = 1 to N do
for time step = 1 to T do

run policy πθ to select action at
run the APC estimation algorithm with target amplitude at
Generate reward rt and new state st+1
Store st, at, rt, st+1 into fixed-sized buffer B
if buffer > fixed-size, entering training

sampling T(st, at, rt, st+1) ∼ π
tmp=0
for i = T to 1

Qi = ri + γVi+1, Ai = Qi −Vi
Aretrace

i = Ai + γtmp

tmp = min
(

πθ,i
µθ,i

, 1
)

Aretrace
i

Vretrace
i = Vi + γtmp

end for
Calculate Lpolicy, Lvalue

θπ ← θπ + α
∂Lpolicy

∂θ

θv ← θv + α ∂Lvalue
∂θ

end if, exit training
end for

end for
end run, trajectory + 1

end for

4. Software Simulation
4.1. Scene and Software Environment

The first step to assess APC calibration performance is using software. Here we use
a simple low-Earth-orbit follow-on formation scene in circular orbit with the following
parameters: Satellite A orbit altitude: 470 km; inclination: 89 deg; argument of perigee:



Mathematics 2023, 11, 942 12 of 25

0 deg; right ascension of ascending node (RAAN): 0 deg; true anomaly: 0 deg, and satellite
B performs a follow-on flight relative to satellite A, with a distance of about 170 km in-track.

The two satellites are propagated separately in the inertial frame, using high-accuracy
numerical integration, and the relative orbit information is calculated from the differences.
The satellite construction model from GRACE is used for the attitude perturbations analysis
in space condition [30].

The gravitational and non-gravitational accelerations used here are summarized as in
Table 1.

Table 1. Accelerations of gravitational and non-gravitational models.

Items * Model

GA—the geopotential effect of the Earth 20th order and degree
GA—Sun, and Moon gravities DE405/LE405 planetary ephemerides model
GA—solid Earth tides IERS Conventions 1996
GA—ocean tides Center for Space Research 3.0 model
NGA—the atmospheric drag NRLMSISE-00 empirical model
NGA—the solar radiation pressure IERS Standards 1992

* note: GA (gravitational accelerations), NGA (non-gravitational accelerations).

To fully test and verify the APC calibration accuracy in space missions, the authors
have conducted APC calibration simulation (ACS) software development based on a
MATLAB/Simulink environment. The core of ACS is maneuver control and RL scene,
as shown in Figure 5. During ACS simulation, both GA and NGA dynamics are propagated,
with periodic oscillation maneuvers of all kinds performed sequentially, as in Section 2.1,
including mirror maneuvers. All the data from ACS are put together into the RL block,
in which the typical RL algorithm and TDAAC algorithm can be performed with on-
line/off-line maneuver parameters regulating. The final evaluation of APC calibration
accuracy can be provided using synchronized script files. Note ACS can also function
as a standard high-accuracy modelling software that provides preliminary Level-1B data
in a 5 s sampling rate, from initial 1 January 2000, 12:00:00 GPS time [22], including
onboard instrument output of GPS navigation data, MWR ranging, star camera quaternions,
accelerations and Laser ranging interferometer (LRI) data [11].

4.2. ASC Simulation Using Traditional Method

Here we first provide the APC calibration results without the RL process. Suppose we
known the fixed real position of APC

dpca =
[

1.4 0.02 0.02
]Tm, dpcb =

[
1.4 0.02 0.02

]Tm

in the spacecraft frame, for both satellite A and B. The real models of K/Ka dual frequency
antenna gain pattern and induced signal process noise are used. The moment of inertia for
the two satellites are

Ia = Ib =

 80 −3 −3
−3 420 −0.3
−3 −0.3 470

T

kg·m2

and the attitude maneuver control is simply conducted through a PID algorithm. APC with
period maneuver is used here with maximin amplitude of 1 deg in yaw direction, 3 deg
in pitch direction, and the period of the oscillation is set to about 250 s. Note the period
maneuver parameters are constrained by the ADCS system of the satellite platform and
attitude actuators on-board.
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Figure 5. SIMULINK block diagram for APC calibration simulation.

The APC calibration simulation lasted for 4000 s with 4 full sub-maneuvers, 1000 s
each, and sampling time is 5 s. Figure 6 provided the simulated attitude results of satellite
A, through sub-maneuver A and B in yaw and pitch directions. The data include target
attitude, real attitude from measurement, attitude control error and the attitude control
torque. By using the traditional APC batch algorithm, we have the final APC estimation
value of

d̂pca =

 1.39978115
0.00999946
0.00965884

m, d̂pcb =

 1.39645232
0.01006331
0.00963114

m

With Equation (8) in Section 2.1, the APC calibration error is 0.243 mrad for sat A,
0.254 mrad for sat B.

4.3. RL Simulation Using ACS Software

To test the APC calibration algorithm with the RL process in a software environment,
here we use two neural networks that approximate the value prediction and action taken.
The NN consist of input, hidden layer and output layer, while the input of both networks
including measurement from carrier phase differential GPS r∗ab, attitude from star sensor
qa, qb, and MWR ranging, and states vector, as in Section 2.1. The hidden and output layer
composed of neural nodes with affine transformation and nonlinear mapping functions, as

a[i]j = σ
(

W[i]a[i−1] + b[i]
)

(32)

where a[i]j is the output of the j-th node in i-th layer, a[i−1] is the stacked output of the

previous layer, W[i], b[i] are the weights and biases of the i-th layer, and σ(·) is the activation
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function. Here we use the critic network of 2 hidden layers of 64 nodes, with the Rectified
Linear Unit (ReLU) activation function.

(a) (b)

Figure 6. Software simulation of APC calibration maneuver (MA & MB). (a) Satellite A yaw maneuver
information. (b) Satellite A pitch maneuver information

For the purpose of the policy function approximate, the actor NN is used with ReLU
nodes in hidden layers, and a sinusoidal function for limited output layer. The final output
provides the mean and standard deviation of two normal distributions for the yaw and
pitch maneuvers amplitude angle in the form of a probability distribution function, and the
results feedback to the ACS target quaternion block as marked ¬ in Figure 5. The NN
diagram for the proposed RL-based APC calibration is depicted in Figures 7 and 8 as

Figure 7. Schematic diagram of critic network.

The training target is to minimize the APC estimation error from the batch algorithm,
with the optimal periodic oscillation amplitude, rather than the nominal designed 1 deg
around 3 deg initial bias angle in yaw maneuver. Note the K band antenna gain would
decrease dramatically out of 6 deg in the main lobe, so we just need to sample actions
within 3 deg from the policy, avoiding the whole action space exploration. The similar
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settings also apply to the pitch maneuver with 3 deg amplitude around −1 deg initial bias
angle. The instant reward function is given as

r(t) = −
[

w1 w2
][ eAnga(t)

eAngb(t)

]
(33)

where the definition of eAnga,b(t) can be found in Equation (9), and w1, w2 denote reward
function weights.

Figure 8. Schematic diagram of actor network.

The final target APC estimation accuracy interval is a trade-off situation that have
to be considered for RL implementation. Here we use the idea of shrinking goal inter-
val, with 0.003 mrad decreasing for each training episode [25]. The purpose of doing
this is to avoid lack of training with a quick APC calibration process finished, under a
large goal interval; and also avoid low chances of reaching the goal interval through the
exploration step.

The RL training episode consists of 100 steps each, with each step of 0.05 s in the ACS
software. This timing sequence can be easily interpolated into an attitude control system
for on-line APC maneuver execution. Table 2 below provided the parameters used during
simulation:

Table 2. Hyperparameters used in simulation.

Hyperparameter Value

critic network 2 hidden/64 nodes/ReLU
actor network 1 hidden/32 nodes/ReLU, 1 output/sinusoidal

discount factor 0.99
learning rate 0.001

critic weights w[i] and biases b[i] 1/64, 0
actor weights w[i] and biases b[i] 1/64, 0

memory buffer, B storage space for 10 sampling time
max iterations, L 5
actors number, N 50

Epochs, K 200
Time steps, T 100

1 episode 100 steps
learning step size 0.05 s

The data collected from the RL training process during APC calibration are shown in
Figure 9 as a solid red line for reward and dotted green lines for deviation. Only the results
of satellite A from sub-maneuvers A and B are provided here for the purpose of simplicity.
We may find that the training results converged gradually to the real APC position. Accord-
ing to the definition of reward in Equation (9), the policy NN can be trained to steady within
about 40 thousand steps, and the final APC calibration error may be below 2 mrad, as
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in zoom in subfigure in Figure 9, which is more accurate than the traditional batch algorithm.
After the post-data statistics, we found the accumulated reward is improved from MA to
MB, after the training NN converges. The reason may be explained as this: the APC position
is composed of elevation and horizontal values in the antenna coordinate frame, which
can be estimated through on-orbit maneuvers in yaw and pitch directions for one satellite.
Surely more accuracy results may be obtained after two maneuvers. Similar results can be
found for satellite B through sub-maneuvers C and D, which are not shown here.
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Figure 9. Learning data for software APC calibration simulation.

It is interesting to explore what kind of sub-maneuvers trajectory we may obtain from
the NN training process. The target attitude maneuver amplitude finally converged to
about 1.1 deg for both MA and MB, in yaw and pitch direction. Figure 10 provides the
MB pitch angle values with attitude control error and control torque. The trained target
amplitude, not considering the constraints of satellite ADCS, is mainly affected by the
emission gain of the antenna. The optimal attitude amplitude balances the APC observation
sensitivity in yaw and pitch directions and the deteriorated MWR ranging error outside
the antenna main-lobe.

Moreover, Figure 11 provided the trained target amplitude of MB pitch angles under
different initial conditions. We may find that the trained output converge quickly with the
expected values as shown before, which verified the effectiveness of the proposed method.
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Figure 10. Satellite A pitch maneuver attitude information during software APC calibra-
tion simulation.
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Figure 11. Satellite A pitch maneuver angles under different initial conditions.
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Recall that the initial attitude angles for APC calibration are predefined as 3 deg in yaw
maneuver, and −1 deg in pitch. It would be curious to find what results we may obtain if
the initial angles changed. Figure 12 shows the modified policy NN with output, including
both initial angles and amplitudes. The final results after simulation are as follows: initial
angles around 2.8 deg in yaw and−1.5 deg in pitch, and the amplitudes converged to about
1 deg for yaw and pitch. The trained initial pitch angle, around −1.5 deg, is reasonable
since the predefined −1 deg is aiming to get LOS pointing between satellite A and B
on-orbit, in orbit frame, and −1.5 deg can obtain more sensitive MWR observing data for
APC estimation.

Figure 12. Schematic diagram of extended output policy network.

RL-based APC calibration can obtain better results after training, compared with
traditional batch algorithm. More importantly, the RL architecture can be extended to deep
training applications such as the feedback to attitude control system, as number mark  in
Figure 5, or extended to linear calibration maneuvers with proof mass states and attitude
dynamic equations. Those would be provided in the authors’ following publications.

5. Laboratory RL Test

The RL-based APC calibration simulation results in the previous section are on the
basis of the known APC position in the body frame as a priori. We have to be aware that
it is not true in real space flight, and the RL algorithm has to be modified to deal with
this situation.

To fully explore the possible application of the RL algorithm to APC in a space
environment, with real antenna onboard, the authors have conducted a hardware in loop
(HIL) test on-ground, as shown in Figure 13. The experiment is performed in a near-field
microwave un-reflected chamber, with a full-scale satellite structure model fixed on a
high-accuracy rotation platform. Other instruments in the HIL system include microwave
signal source, electronic theodolite, signal sampling and process computer.

The experiment is initially APC aligned, and holds still during the whole test pro-
cess. With platform rotation, we can simulate the on-orbit attitude maneuvers for the
APC algorithm. Measurement data were collected, and used for the RL training process.
The simulation scene is the same as Section 4, while the only difference is the antenna
azimuth angle has to be re-fixed by rotating 90 deg in the rolling axis, to simulate the
different sub-maneuvers. The reason for this azimuth change is due to the constraint of
only a one-dimensional rotation from platform.

Although the pre-calibrated APC information can be obtained before the HIL test,
we still need to consider APC as unknown during test to simulate the situation in space,
and the reward function is defined as

r(t) = −
[

w3 w4
][ ēAnga(t)

ēAngb(t)

]
(34)

where the definition of ēAnga,b(t) can be found in Equation (10), and w3, w4 are weights.
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Figure 13. RL-based APC calibration in laboratory HIL environment.

Prior parameters of NN from a previous RL training process are used for the HIL
APC calibration system, including weight and bias data sets. The trained NN program is
compiled and uploaded to the HIL control system, and Figure 14 provided the results of
reward values during HIL APC simulation. Obviously, we get the sharp vibrated data this
time, compared with ACS simulation. The reason for this phenomenon is mainly due to
the platform rotation control system, which is not smooth enough in angular rate control.
However, the final trained APC calibration error can still be achieved to less than 2 mrad,
as in zoomed in subfigure of Figure 14.

0 0.5 1 1.5 2
training steps 105

-0.01

-0.008

-0.006

-0.004

-0.002

0

a
cc

u
m

u
la

te
 r

e
w

a
rd

reward values
 boundary3σ

1.7 1.75 1.8 1.85 1.9

105

-4

-3

-2

-1

0
10-4

MA MB

Sat A yaw maneuver Sat A pitch maneuver

Figure 14. Learning data for laboratory HIL APC calibration simulation.
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6. On-Orbit RL Verification

The formation satellites have successfully launched in 19:13, 29 December 2021 in
Jiuquan, China, known as TianHui-4, deployed with MWR instrument onboard [31].
The main task of this space mission is fully testing the high-accuracy micrometre level rang-
ing technology for multiple applications. Several attitude maneuvers have been performed
on-orbit during 11–12 April 2022 for APC calibration, as shown in Figure 15, and traditional
algorithms for APC estimation is used instantly with a calibration accuracy of less than
3 mrad for satellite B.
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Figure 15. On-orbit attitude maneuvers for APC calibration during 11–12 April 2022. (a) Satellite B
pitch maneuver. (b) Satellite B yaw maneuver.

The authors have been deeply involved in all the stages of the MWR payload design
and traditional APC calibration process. It is interesting to explore the possible use of
RL to the APC calibration with different results. Several situations should be considered,
compared with APC software simulation: First, the satellite attitude dynamic modeling
and control is conducted by the ADCS department, affiliated with the China academy of
space technology (CAST), and detailed controller parameters cannot be obtained, leading
to the attitude system missing identifications. Moreover, the satellites experienced real
perturbations in space, which cannot be fully duplicated in software simulation.

The structure of deployed formation satellites is a hexahedron shape prismatic, as half
side shown in Figure 16 below. The length of the lower side trapezoidal section is 1900 mm,
upside 700 mm, and height 750 mm. The total length of satellite is 3200 mm, weight of
about 650 kg. The actuators of ADCS of both satellites include cold-gas propulsion and
magnetorquer (MTQ). For most of the time, the satellite works in the three axes steady
state, and the MTQs are used to compensate orbit disturbance torques with high-precision
attitude control performance. The cold-gas propulsion actuator is used only for situations
of large attitude maneuvers such as APC calibration on-orbit. There is a total of 12 thrusters
onboard for attitude control, arranged in pairs in the opposite directions around each
twin satellite platform, as shown in Figure 16, and each cold-gas thruster can provide
10 mN thrust within one continuous minute, providing more attitude control capability
than MTQs.
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Figure 16. Illustration of cold-gas thrusters arrangement in body frame.

The algorithm for the ADCS during APC calibration maneuvers on-orbit is sophis-
ticatedly designed, by an optimal combination of cold-gas propulsion and MTQs. Since
we cannot obtain the real attitude control strategy on-orbit, it is meaningful to conduct
backward RL training operate, to get the critical weights and bias of NNs from real attitude
maneuver data in space. The purpose of backward training is to verify the effectiveness
of the RL algorithm for autonomous intelligent close-loop attitude control in near future,
and evaluate the APC accuracy with the trained RL parameters on-orbit.

The backward RL training process is scheduled like this: first, the initial attitude angle
and periodic oscillation amplitude in pitch and yaw directions are obtained through the
least square method, from on-orbit data, as in Figure 15. We may notice that the real attitude
maneuver amplitude on-orbit is less than 1 deg, unlike the previously trained 1.1 deg using
ASC simulation. This is more possible to get the preliminary calibration maneuvers test
on-orbit for the first time, or, just balance the APC performance and cold-gas consumption.
Second, reward function of Equation (34) is used here, since no APC position is known as a
priori. Next, the shrinking goal interval is still used here as before, and the episode moves
forward to the next sequence if training failed to reach the goal APC accuracy. Finally,
the policy NN is adjusted to output recommended actions at each step, the algorithm
autonomously records the bias between action output and real amplitude.

The on-board APC maneuver data of 3000 s length is selected with 600 time points
and 5 s intervals from Figure 15, for both 11 and 12 April. Figure 17 provided the collected
data during RL process, with a solid red line for accumulated reward and deviation of
3 σ boundaries. Thanks to the 3000 s long time RL duration, we may finally obtain the
converged APC estimation of about 1.5 to 2 mrad accuracy in the antenna frame, as with
the detailed results in zoomed in subfigure in Figure 17. Clearly, this is more effective than
traditional batch algorithm, and more importantly, the RL method may be extended to a
more general form with proof mass center calibration in the spacecraft body frame.
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Figure 17. Learning data for on-orbit APC calibration during 11/12 Apr.

7. Discussion

According to the analysis from the software/HIL test and on-orbit data, the RL-based
APC calibration method performed stably and provided high-accuracy APC estimation
results, compared with the traditional method. The final APC calibration accuracy is less
than 2 mrad from the on-ground test, and may achieve 1–1.5 mrad from the on-orbit training
process, which fulfilled the engineering requirements. Most importantly, the RL algorithm
may function fully autonomously on-orbit, which may optimally balance the APC process
accuracy (value) and the attitude maneuvers (action) taken. Moreover, the proposed RL-
based APC algorithm may extend to proof mass calibration scenes with actions feedback to
the ADCS system, revealing flexibility of real applications to spacecraft payload system
in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

ACS APC calibration simulation
ADCS attitude determination and control system
AI artificial intelligence
APC antenna phase center
CAST China academy of space technology
CoM center of mass
DCH dual-frequency corrugated horn
DDOC dual-frequency dual-line-polarized orthogonal coupler
DOWR dual one-way ranging
FCBPOC four-arm coupling bilinear polarization orthogonal coupler
GA gravitational accelerations
HIL hardware in loop
ISR inter-satellite ranging
KBR K band ranging
RAAN right ascension of ascending node
ReLU Rectified Linear Unit
RL reinforcement learning
LOS line-of-sight
LRI laser ranging interferometer
MA Sub-Maneuver A
MDP Markov decision process
ML machine learning
MTQ magnetorquer
MWR Microwave ranging
NN neural network
NGA non-gravitational accelerations
TD Temporal Difference
TDAAC Temporal Difference advantage actor critic algorithm
TT&C telemetry, track and command

Symbols
Crucial symbols in APC algorithm include:

θ<a,b>
<y,p> maneuver angles in yaw/pitch, and satellite A/B

R MWR ranging fitting value
<(•) the operation of attitude quaternion to rotation matrix
Rbr the MWR system measurement noises
Rnr the random ranging noise
Rr covariance of Rnr
rab GPS determined relative position
qa, qb attitude quaternion of satellite A and B
dpca, dpcb APC of satellite A and B
Θ(•) the operation of vertical vector to horizontal
a0, a1, . . . , an coefficients of n-th order polynomial function
e the unit vector of satellite AB baseline in inertial frame
M the transformation matrix from inertial frame to satellite body-frame
x the states used in APC batch estimation
y MWR measurement residual
H the derivative matrix of observe equation
CE, CH the theorical APC elevation and horizontal position in antenna frame
θi(i = 1, 2, . . . , N) the i-th polar angle of antenna
φE(θi) the i-th azimuth angle correspond to θi
λ wave length of K/Ka band microwave signals

Crucial symbols in RL algorithm include:
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s, a, r agent states, action and reward
πθ or πθ , Vu

π policy π with parameter θ, value V with parameter u under policy π

S ,A state space, action space
γ, α discount factor, learning step size
ρ the distribution of the state s
µ̄, σ the mean and standard deviation that action at sampled
δt TD error of value function at time t
µ arbitrary stochastic policy differed from π

A advantage
h time sequence of state and action
B memory buffer
L,N,K,T max iterations, actors number, epochs, time steps

Appendix A

Inertial frame: also known as reference frame in this article for the dynamics model,
is the J2000 geocentric inertial coordinate system, which is defined by the mean equator
and vernal equinox at Julian epoch 2000.0.

Body-frame of satellite A/B: the origins at the center of mass of the satellite A/B,
the roll axes xa, xb of these two systems are intended to point at each other in space, za, zb
are radial downward, and ya, yb normal to the z− x plane of A/B.

References
1. Jun, L.U.O.; Linghao, A.I.; Yanli, A.I. A brief introduction to the TianQin project. Acta Sci. Nat. Univ. Sunyatseni 2021, 60, 1.
2. Luo, Z.; Zhang, M.; Jin, G.; Wu, Y.; Hu, W. Introduction of Chinese Space-borne Gravitational Wave Detection Program“Taiji”and

“Taiji-1”Satellite Mission. J. Deep. Space Explor. 2020, 7, 3–10. (In Chinese)
3. Heinzel, G. Advanced Optical Techniques for Laser-Interferometric Gravitational-Wave Detectors; Gottfried Wilhelm Leibniz Universität

Hannover: Hannover, Germany, 1999.
4. Dehne, M.; Cervantes, F.G.; Sheard B.; Heinzel, G.; Danzmann, K. Laser interferometer for spaceborne mapping of the Earth’s

gravity field. J. Phys. 2009, 154, 12023. [CrossRef]
5. Sun H.; Sun W.; Shen W.; Shen, C.; Zhu, Y.; Fu, G.; Wu, S.; Cui, X.; Chen, X. Research progress of Earth’s gravity field and its

application in geosciences—A summary of Annual Meeting of Chinese Geoscience Union in 2020. Adv. Earth Sci. 2021, 36,
445–460. [CrossRef]

6. Wand, V. Interferometry at Low Frequencies: Optical Phase Measurement for LISA and LISA Pathfinder. Ph.D. Thesis, Gottfried
Wilhelm Leibniz Universität Hannover, Hannover, Germany, 2007.

7. Bender, P.L.; Hall, J.L; Ye, J.; Klipstein, W.M. Satellite-satellite laser links for future gravity missions. Space Sci. Rev. 2003, 108,
377–384. [CrossRef]

8. Müller, V.; The GRACE Follow-On LRI Team. Laser Ranging Interferometer on GRACE Follow-On: Current Status//EGU
General Assembly Conference Abstracts. In Proceedings of the EGU General Assembly 2020, EGU2020-10566, Online, 4–8 May
2020. [CrossRef]

9. Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J.;
et al. In-orbit performance of the GRACE follow-on laser ranging interferometer. Phys. Rev. Lett. 2019, 123, 31101. [CrossRef]
[PubMed]

10. Goswami, S.; Devaraju, B.; Weigelt, M.; Mayer-Gurr, T.; et al. Analysis of GRACE range-rate residuals with focus on KBR
instrument system noise. Adv. Space Res. 2018, 62, 304–316. [CrossRef]

11. Darbeheshti, N.; Wegener, H.; Müller, V.; Naeimi, M.; Heinzel, G.; Hewitson, M. Instrument data simulations for GRACE
Follow-on: Observation and noise models. Earth Syst. Sci. Data 2017, 9, 833–848. [CrossRef]

12. Koch, A.; Sanjuan, J.; Gohlke, M.; Mahrdt, C.; Brause, N.; Braxmaier, C.; Heinzel, G. Line of sight calibration for the laser ranging
interferometer on-board the GRACE Follow-On mission: On-ground experimental validation. Opt. Express 2018, 26, 25892–25908.
[CrossRef] [PubMed]

13. Wang F. Study on Center of Mass Calibration and K-Band Ranging System Calibration of the GRACE Mission; The University of Texas at
Austin: Austin, TX, USA, 2003.

14. Sutton, R.S.; Barto, A.G. Adaptive Computation and Machine Learning Series, Reinforcement Learning: An Introduction, 2nd ed.; The
MIT Press: Cambridge, MA, USA, 2018.

15. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

16. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-
tion. Adv. Neural Inf. Process. Syst. 1999, 12, 1057–1063.

http://doi.org/10.1088/1742-6596/154/1/012023
http://dx.doi.org/DOI: 10.11867/j.issn.1001-8166.2021.032
http://dx.doi.org/10.1023/A:1026195913558
http://dx.doi.org/10.5194/egusphere-egu2020-10566
http://dx.doi.org/10.1103/PhysRevLett.123.031101
http://www.ncbi.nlm.nih.gov/pubmed/31386438
http://dx.doi.org/10.1016/j.asr.2018.04.036
http://dx.doi.org/10.5194/essd-9-833-2017
http://dx.doi.org/10.1364/OE.26.025892
http://www.ncbi.nlm.nih.gov/pubmed/30469684


Mathematics 2023, 11, 942 25 of 25

17. Degris, T.; White, M.; Sutton, R.S. Off-policy actor-critic. arXiv 2012, arXiv:1205.4839.
18. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.I.; Abbeel, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1889–1897.
19. Khoroshylov, S.V.; Redka, M.O. Deep learning for space guidance, navigation, and control. Space Sci. Technol. 2021, 27, 38–52.
20. Izzo, D.; Märtens, M.; Pan, B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics

2019, 3, 287–299. [CrossRef]
21. Ravaioli, U.J.; Cunningham, J.; McCarroll, J.; Gangal, V.; Dunlap, K.; Hobbs, K.L. Safe Reinforcement Learning Benchmark

Environments for Aerospace Control Systems. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA,
5–12 March 2022; pp. 1–20. [CrossRef]

22. Case, K.; Kruizinga, G.; Wu, S. GRACE Level 1B Data Product User Handbook; JPL Publication D-22027; JPL: Pasadena, CA,
USA, 2002.

23. Kim J. Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Master’s Thesis, The University of Texas, Austin,
TX, USA, 2000.

24. Wang, X.; Gong, D.; Jiang, Y.; Mo, Q.; Kang, Z.; Shen, Q.; Wu, S.; Wang, D. A Submillimeter-Level Relative Navigation Technology
for Spacecraft Formation Flying in Highly Elliptical Orbit. Sensors 2020, 20, 6524. [CrossRef] [PubMed]

25. Pi, C.H.; Hu, K.C.; Cheng, S.; Wu, I.-C. Low-level autonomous control and tracking of quadrotor using reinforcement learning.
Control. Eng. Pract. 2020, 95, 104222. [CrossRef]

26. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998; p. 22447.
27. Schulman, J.; Wolski, F.; Dhariwal P.; Radford, A.; Kilmov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
28. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
29. Munos, R.; Stepleton, T.; Harutyunyan, A.; Bellemare, M. Safe and efficient off-policy reinforcement learning. In Proceedings of

the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.
30. Bettadpur, S. Gravity Recovery and Climate Experiment: Product Specification Document; GRACE 327-720; CSR-GR-03-02; Center for

Space Research, The University of Texas at Austin: Austin, TX, USA, 2012.
31. Available online: http://finance.people.com.cn/n1/2021/1229/c1004-32320072.html (accessed on 29 December 2021 ).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42064-018-0053-6
http://dx.doi.org/10.1109/AERO53065.2022.9843750
http://dx.doi.org/10.3390/s20226524
http://www.ncbi.nlm.nih.gov/pubmed/33203079
http://dx.doi.org/10.1016/j.conengprac.2019.104222
http://dx.doi.org/10.1007/BF00115009
http://finance.people.com.cn/n1/2021/1229/c1004-32320072.html

	Introduction
	Mathematical Models for Antenna Phase Center Calibration
	APC Calibration Procedure
	Sub-Maneuvers Design
	APC Calibration Algorithm
	Evaluation of APC Calibration Accuracy

	Uncertainties during APC Estimation On-Orbit
	Overview of Uncertainties
	Antenna Design and Induced Uncertainty
	Other Uncertainties in APC Calibration


	Application of Reinforcement Learning to APC Calibration
	Typical RL and TD Advantage Actor Critic Algorithm
	TDAAC Algorithm with Batch Process
	Value Function and Advantage
	Optimal Objective and Loss Function

	Training Algorithm

	Software Simulation
	Scene and Software Environment
	ASC Simulation Using Traditional Method
	RL Simulation Using ACS Software

	Laboratory RL Test
	On-Orbit RL Verification
	Discussion
	Appendix A
	References

