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An analytical solution of Euler’s equation is exhibited using the Volterra series theory in the frequency domain.

Basedon theVolterra series, the nonlinear output frequency response functions of Euler’s equation are formulatedby

a numerical algorithm to reveal an energy-transfer phenomenon.The output responses of Euler’s equation have some

higher frequency parts than those of the inputs. It provides motivation to design a finite-frequency controller for

Euler’s equation to accommodate the high-frequency parts of the outputs. A hybrid passive/finite gain control scheme

fused with the generalized Kalman–Yakubovich–Popov lemma is used to generate a controller that is effective for

stabilizing the angular velocities of Euler’s equation.Additionally, quaternions are considered in the proposedhybrid

finite-frequency controller to stabilize the attitude of spacecraft. Simulation results are demonstrated to validate the

effectiveness of the proposed control schemes.

I. Introduction

T HE attitude motion of a rigid-body spacecraft has been

described using Euler’s equation for a long time. It is a principal

dynamic model in spacecraft attitude control problems. Because of

mutual-coupled angular velocities, Euler’s equation should be cat-

egorized as a nonlinear system’s differential equation. In approaching

this nonlinear system, seeking the solution of Euler’s equation would

be helpful for analyzing it. One of the analytical solutions of Euler’s

equation for angular velocities is given in the formof Jacobian elliptic

functions in [1]. Another solution for it can be developed using the

well-knownRunge–Kuttamethod,which is an iterativemethod to get

approximate solutions of ordinary differential equations. These two

solutions, however, are all implemented in the time domain. There is

little available literature to discuss the solutions of Euler’s equation in

the frequency domain. Hence, the frequency domain characteristics

of Euler’s equation still pose a challenge. In this case, the Volterra

series theory is an alternative method to obtain the frequency domain

representation of Euler’s equation. Primitively, the Volterra series has

been used to approximate nonlinear systems such as communication

systems [2]. It can capture nonlinearities from input–output dynam-

ics with an infinite sum of multidimensional convolution integrals

[3]. Thismethod has been extended to identify the nonlinear dynamic

model of aerodynamic systems [4] and aerodynamic output re-

sponses [5]. The Volterra series kernels were also developed to

predict the frequency behavior of a nonlinear flight system in the

time domain [6] and the frequency domain [7]. The Volterra series

representation for a nonlinear system with quadratic terms was

introduced in [8]. Coincidentally, Euler’s equation has quadratic

terms with respect to the angular velocities and is assumed to be

approximated by the Volterra series in the frequency domain.

For linear systems, the theory of frequency response representa-

tions is well developed. It is noted that the frequencies from inputs to

outputs in linear systems are identical. In nonlinear systems, output

frequency ranges are usually much richer than those of the input.

Hence, qualitative analysis is necessary to predict the frequency

behaviors of nonlinear systems.As the extension of transfer functions

for linear systems, the nonlinear output frequency response functions

(NOFRFs) can predict the frequency behaviors of nonlinear systems

in a similarmanner. To facilitate it, theVolterra series has been used to

generate NOFRFs for several nonlinear systems [9–11]. This concept

was used in [9] to address the energy-transfer phenomenon in a

single-input–single-output (SISO) nonlinear oscillator system in

which the output frequency ranges are different from the frequencies

of the input excitation. In [10], the NOFRFs were extended to in-

vestigate a multi-input–multi-output (MIMO) nonlinear system and

its energy transfer in the frequency domain. Therefore, it is assumed

that the NOFRFs can also be applicable to predict the nonlinear

frequency behavior of Euler’s equation in which the energy transfer

phenomenon might still exist.

Attitude control is crucial in space missions. As this problem has

been discussed in [12], it has become a subject undergoing intense

study by many researchers. A number of related control schemes

have been proposed in the literature, such as optimal control [13],

variable structure control [14], and adaptive control [15]. A strictly

positive real (SPR) controller for angular velocities was employed in

[16,17] to stabilize a passive spacecraft dynamic system using the

passivity theorem as well as the Kalman–Yakubovich–Popov (KYP)

lemma. A benefit of the SPR controller is its robustness to modeling

errors. However, most of available controllers for spacecraft attitude

aremainly built in the time domain rather than the frequency domain.

As the fusion of the hybrid passive/finite gain theorem (“hybrid”

means that the controller based on this theorem is passive in the low-

frequency domain and has finite gain in the high-frequency domain)

and the generalized Kalman–Yakubovich–Popov (GKYP) lemma,

the controller was developed in [18] to stabilize a single-linkmanipu-

lator. The GKYP lemma provided a set of schemes to generate

controllers at distinctive frequency ranges using linear matrix in-

equalities (LMIs) [19,20]. It provides motivation to develop a finite-

frequency controller using the hybrid passive/finite gain theorem
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with the GKYP lemma to accommodate the possible energy transfer

for spacecraft attitude control problems.
This paper first presents the Volterra series frequency representa-

tions of Euler’s equation. Based on that, the NOFRFs for Euler’s

equation are established by a numerical algorithm to demonstrate its

energy-migration phenomenon. To accommodate this phenomenon,

a hybrid finite-frequency strictly passive/finite gain controller for

angular velocities based on the GKYP lemma is implemented on

Euler’s equation. Performance comparison between an SPR control-

ler designed by the KYP lemma and a hybrid frequency controller

designed by theGKYP lemma is given. Additionally, quaternions are

involved in the hybrid frequency controller for solving the spacecraft

attitude control problem. Simulations are shown at the end to dem-

onstrate the effectiveness of the proposed hybrid frequency control

schemes.

II. Rotational Dynamics

The attitude motion of a rigid-body spacecraft is governed by

Euler’s equation [1]

I _ω� ω×Iω � u (1)

where I is themoment of inertiamatrix defined in the body frameFb,

ω � �ωx;ωy;ωz�⊤ is the angular velocity of the spacecraft, and u �
�ux; uy; uz�⊤ is the total external torquevector applied about the center
of the spacecraft. The matrix ω× is given by

ω× �
2
4 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

3
5 (2)

It is assumed that the moment of inertia matrix

I �
2
4 Ix 0 0

0 Iy 0

0 0 Iz

3
5

is diagonal. Hence, the scalar equations of Eq. (1) become

Ix _ωx � �Iz − Iy�ωyωz � ux

Iy _ωy � �Ix − Iz�ωxωz � uy

Iz _ωz � �Iy − Ix�ωxωy � uz (3)

It is noted that Eq. (3) can be written as a quadratic-form state-

space equation:

_x � Ax�
2
4 x⊤E1x
x⊤E2x
x⊤E3x

3
5� Bu; y � Cx (4)

where x � �ωx;ωy;ωz�⊤ is the state vector of the system, and

A � 03×3; B � diagfI−1x ; I−1y ; I−1z g (5)

Here, the angular velocities are chosen as the outputs of the system;

henceC � 13×3, where 1 is an identity matrix. The quadratic param-

eters E1;E2, and E3 are given by

E1 �

2
666664

0 0 0

0 0 −
Iz− Iy
2Ix

0 −
Iz− Iy
2Ix

0

3
777775; E2 �

2
666664

0 0 −
Ix− Iz
2Iy

0 0 0

−
Ix− Iz
2Iy

0 0

3
777775;

E3 �

2
666664

0 −
Iy− Ix
2Iz

0

−
Iy− Ix
2Iz

0 0

0 0 0

3
777775 (6)

There are two different types of solutions of Eq. (3). Generally, a
commonly used solution is obtained from the well-known Runge–
Kutta method. This solution is usually available for arbitrary control
inputs. Based on some special inputs like impulse functions, an
analytical solution can be produced for Euler’s equation in the form
of Jacobian elliptic functions [1]. However, these solutions are all
implemented in the time domain instead of the frequency domain.
The frequency domain characteristics of Euler’s equation cannot be
exploited by the above two solutions but might be developed and
predicted with the Volterra series.

III. Nonlinear Approximation Based on Volterra Series

In this section, the Volterra series will be used to approximate
Euler’s equation and yield its analytic solutions in the frequency
domain. The simulations of the approximation are conducted to seek
the minimal truncation order that can capture the nonlinearity of
Euler’s equation by the Volterra series.

A. Preliminary for Volterra Series

Consider a general nonlinear system

_x � f�t; x�t�;u�t��; y�t� � g�t; x�t�; u�t�� (7)

where x ∈ Rn is the state vector, u ∈ Rm denotes the input vector,

and y ∈ Rk is the output vector. The functions f and g contain
nonlinearities. The input–output relation can be approximated by
the theory of Volterra series as

y�t��
X∞
i�1

Z
∞

−∞

Z
∞

−∞
· · ·

Z
∞

−∞
hi�τ1;τ2;: : : ;τi�

Yi
j�1

u�t−τj�dτj (8)

where hi�τ1; τ2; : : : ; τi� is the ith-order Volterra kernel in the
time domain. Taking the multidimensional Fourier transform of
hi�τ1; τ2; : : : ; τi� yields the ith-order Volterra kernel in the frequency
domain:

Hi�jω1; : : : ; jωi� �
Z

∞

−∞

Z
∞

−∞
· · ·

Z
∞

−∞
hi�τ1; τ2; : : : ; τi�

× exp−j�ω1τ1� · · ·�ωiτi� dτ1 : : : dτi (9)

When the complex frequency is denoted by s, Eq. (9) becomes

Hi�s1; : : : ; si� �
Z

∞

−∞

Z
∞

−∞
· · ·

Z
∞

−∞
hi�τ1; τ2; : : : ; τi�

× exp−�s1τ1� · · ·�siτi�dτ1 : : : dτi (10)

There are several methods to determine the Volterra kernels, such
as the canceling-system approach [8] and the growing exponential
approach [21,22]. Comparedwith the growing exponential approach,
the canceling-system approach is more intuitive to understand and
formulate. Given that Euler’s equation is a quadratic MIMO non-
linear state-space equation, the canceling-system approach is easier
for getting its Volterra model [8]. The canceling-system approach is
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implemented by building a null system as illustrated in Fig. 1 to

determine the Volterra kernel of Euler’s equation.

In Fig. 1, the Volterra kernel fĤmg shows the connection between
the input u and the state x. Since the output y � Cx, the Volterra

kernel for u → y becomes fHmg � CfĤmg. In Fig. 1, the right part
(dashed line square) includes three branches, which are added

together to form a “0” output. It means that Volterra series fĤmg in
the left part is canceled by the right part (dashed line square).Hence, it

is named the “canceling-system approach.” Based on the method

introduced in [8], a brief algorithm is given to facilitate the formu-

lation of Volterra kernels in Algorithm 1.

Hm � CĤm;

Ĥm�s1; : : : ; sm� � ��s1� · · · �sm�1 −A�−1Jm�s1; : : : ; sm� (11)

J1�s1� � B �m � 1� (12)

Jm�s1;:::;sm��
Xm−1

k�1

2
664
Ĥk�s1;:::;sk�⊤E1Ĥm−k�sk�1;:::;sm�
Ĥk�s1;:::;sk�⊤E2Ĥm−k�sk�1;:::;sm�
Ĥk�s1;:::;sk�⊤E3Ĥm−k�sk�1;:::;sm�

3
775 �m≥2�

(13)

B. Simulation of Euler’s Equation Using Volterra Series

The Volterra series for Euler’s equation in Eqs. (3–6) is now studied

using the canceling-system approach. The realization of the Volterra

model of Euler’s equation is implemented using the MATLAB/Simu-

linkwith the instruction provided in [8]. The simulation parameters are

set as follows: themoment of inertiaI � diagf15; 50; 35g kg ⋅m2 and

the initial angular velocity ω0 � �0.15; 0.15; 0.15�⊤ rad∕s. Before
demonstrating the simulation results, the convergence condition

of the Volterra series for a MIMO quadratic nonlinear system is

worth discussing. The convergence condition stated in [8] is

maxfRe�λfAg�g < 0, where λfAg denotes the eigenvalues of the

matrix A. To satisfy this condition, an equivalent form is used by

adding a term Iω to the right-hand sideofEq. (1) and then subtracting it

at the end as

I _ω � −Iω − ω×Iω� u� Iω (14)

Taking the special derivations, the matrix A in Eq. (4)

becomesA � −13×3.
Figure 2 exhibits the time response of angular velocities using the

Runge–Kutta method, linear-based model, the second-order Volterra

models, and the third-order ones, respectively,when the input is of the

form u � Au sin�ωut� ⋅ �1; 1; 1�⊤ with Au � 1, ωu � 1 rad∕s. From
the simulation results, it is explicit that the third-order Volterra series

can capture the nonlinearity of Euler’s equation accurately. The

truncation order of the Volterra series at N � 3 will be used in the

next section.

IV. Nonlinear Output Frequency Response Functions
for Euler’s Equation with Volterra Series

A dominant characteristic of a linear system’s frequency response

is that the frequencies of the input and output signals remain identical.

This feature cannot be simply extended to the nonlinear case. For a

nonlinear system, as it was developed in [9], the output frequencies

are different from those for the inputs, which is the so-called energy

transfer. In this section, the energy transfer from inputs to outputs in

Euler’s equation will be studied.

A. Energy Transfer Properties of Euler’s Equation in the Frequency
Domain

Consider the scalar equations of Euler’s equation as shown in

Eq. (3). The moment of inertia I is set as the same value as them

used in the simulation in the last section. The input signals are

changed to

u1 �
sin�t� − sin�0.7t�

t
; u2 �

sin�0.7t� − sin�0.3t�
t

;

u3 �
sin�0.3t� − sin�0.1t�

t
(15)

The numerical simulations for Eq. (3) are performed when the

input signals in Eq. (15) are used. The vector Y � �Y1; Y2; Y3�⊤
denotes the Fourier transform of the output y � �y1; y2; y3�⊤ speci-

fied in Eq. (4). The frequency ranges of the inputs signals u1, u2, and
u3 are set as �0.7; 1�, �0.3; 0.7�, and �0.1; 0.3� rad∕s, respectively.
Figure 3 shows the spectra of the input signals. Figure 4 depicts the

spectra of the output y. It is noted that some energy migrates beyond

the upper bound of the input frequency range (1 rad∕s). A further

interpretation of this phenomenonwill bemade from the theory of the

NOFRFs in the next subsection.

B. NOFRFs for MIMO Volterra Series Model

For linear systems, the frequency domain analysis plays a domi-

nant role in the design of controllers. The characteristics of linear

systems can be clearly demonstrated using the frequency response

function H�jω�. If U�jω� and Y�jω� are assumed to denote the

spectrum of a linear system’s time responses of inputs u�t� and

outputs y�t� respectively, the relation between input spectrum and

output spectrum can be expressed by

Y�jω� � H�jω�U�jω� (16)

Considering the nonlinear system in Eq. (7), its Volterra series

model in the time domain is given by Eq. (8). The analogous

definition of the output frequency response in Eq. (8) has been

provided in [23] based on the theory of Volterra series in the fre-

quency domain:

Fig. 1 Canceling-system for u → x.

Algorithm 1: Steps to obtainHm�s1;: : : ;sm�
via canceling-system approach [8]

1: Based on Eqs. (A1) and (A3) in the Appendix, the middle branch in the
right part (dashed line square) represents the subsystem Su↦ _x−Ax whose

corresponding kernel is ��s1� · · · �sm�1 −A�Ĥm�s1; : : : ; sm�.
2: Based on Eq. (A2) in Appendix, the top branch of the right part

(dashed line square) stands for the quadratic subsystem
Su↦−x⊤Enx

(n � 1; 2; 3). Its corresponding kernel isP
m−1
k�1 Ĥk�s1; : : : ; sk�⊤EnĤm−k�sk�1; : : : ; sm� (n � 1; 2; 3).

3: The inferior branch indicates the subsystem Su↦Bu. Its corresponding
kernel is B for m � 1 and 0 for m ≥ 2, as Su↦Bu has no explicit
dependence on x.

4: Adding all kernels of the three branches and following Eq. (A1), the
Volterra kernelmatricesHm�s1; : : : ; sm� of Euler’s equation are given as
Eqs. (11–13).
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Y�jω� �
XN
i�1

Y�i��jω�;

Y�i��jω� � 1

�2π�i−1 ��
i

p
Z
ω1� · · ·�ωi�ω

Hi�jω1;: : : ; jωi�
Yi
j�1

U�jωj�dσiω

(17)

where N is the maximum order of the system nonlinearity,
Yi�jω� denotes the ith order of the output frequency response,

∫ ω1� · · ·�ωi�ω��� dσiω is the integration of ��� over the hyperplane
ω1� · · · �ωi � ω, and Hi�jω1; : : : ; jωi� has the same form as
Eq. (9). Based on the above results, the definition of nonlinear output

frequency response function G�i��jω� was introduced in [9] as

G�i��jω��
R
ω1� · · ·�ωi�ωHi�jω1;: : : ; jωi�

Q
i
j�1U�jωj�dσiωR

ω1� · · ·�ωi�ω

Q
i
j�1U�jωj�dσiω

(18)

where

U�i��jω� �
Z
ω1� · · ·�ωi�ω

Yi
j�1

U�jωj� dσiω ≠ 0 (19)

Hence, the output frequency response in Eq. (17) is equivalent to

Y�jω� �
XN
i�1

G�i��jω�U�i��jω� (20)

This input–output relation in the frequency domain for nonlinear

system is illustrated in Fig. 5 to compare with its linear counterpart

[10]. Note that the NOFRFs G�1��jω�; G�2��jω�; : : : represent the

frequency domain gains for the higher moments of the frequency

domain inputs.
Euler’s equations have three inputs and three outputs, which are

u � �u1; u2; u3�⊤ and y � �y1; y2; y3�⊤ in the time domain and U �
�U1; U2; U3�⊤ and Y � �Y1; Y2; Y3�⊤ in the frequency domain. As an

extension of the SISO case shown in Eqs. (16–20), the MIMO

Volterra series approximation applied to the pth output of Euler’s

equation in [10] is given by

Yp�jω��
X3
k1�1

G�1�
p;k1

�jω��Uk1�jω��

�
X3
k1�1

X3
k2�k1

G�2�
p;k1k2

�jω��Uk1�jω�Uk2�jω�� · · ·

�
X3
k1�1

· · ·
X3
k3�k2

G�N�
p;k1 · · ·kN

�jω��Uk1�jω� · · ·UkN �jω�� (21)

Fig. 2 Time response for angular velocities.

0 1 2 3 4 5
0

0.02

0.04
U1

0 1 2 3 4 5
0

0.02

0.04
U2

0 1 2 3 4 5
0

0.02

0.04
U3

Fig. 3 Spectra of input signals.
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where the term G�i�
p;k1k2 : : : kN

�k1 � k2� · · · �kN � i;

i � 1; 2; : : : ; N� denotes ith-order NOFRFs and N is set as the same

truncated order as the Volterra kernel from Sec. III.B (which was set

as N � 3). The subscript of G�i�
p;k1k2 : : : kN

generally denotes

G�n�
p;1 · · · 1|��{z��}

N1

2 · · · 2|��{z��}
N2

3 · · · 3|��{z��}
N3

�jω� � G�n�
�p;P1�N1;P2�N2 ;P3�N3� (22)

where Nm�m � 1; 2; 3� represents the Nmth input involved into this

system. According to the formula [Eq. (35) in Ref. [10]], in Euler’s

equation’s case, the number of terms contained in Eq. (21) is 19.

Specifically, the 19-term pth-order NOFRFs fGpg include G�1�
�p;100�,

G�1�
�p;010�, G�1�

�p;001�, G�2�
�p;200�, G�2�

�p;020�, G�2�
�p;002�, G�2�

�p;110�, G�2�
�p;011�,

G�2�
�p;101�, G�3�

�p;300�, G�3�
�p;030�, G�3�

�p;003�, G�3�
�p;120�, G�3�

�p;210�, G�3�
�p;012�,

G�3�
�p;021�, G

�3�
�p;102�, G

�3�
�p;201�, and G�3�

�p;111�.
For the input frequency-domain form Ukn �n � 1; 2; : : : ; N�,

�Uk1�jω� · · · UkN �jω��
� �U1�jω� · · · U1�jω�|��������������{z��������������}

N1

× · · · ×U3�jω� · · · U3�jω�|��������������{z��������������}�
N3

(23)

Hence, Eq. (21) is of the form

Yp�jω� � �U1;U2;U3;U
2
1;U

2
2;U

2
3;U1U2;U2U3;U1U3;U

3
1;U

3
2;U

3
3;

U1U
2
2;U

2
1U2;U2U

2
3;U

2
2U3;U1U

2
3;U

2
1U3;U1U2U3��Gp�

(24)

where

�Gp� � �G�1�
�p;100� · · · G�3�

�p;111�|��������������{z��������������}�
19-termNOFRFs

⊤
(25)

Assuming that Euler’s equations are excited by the input signals
~ui�t� � αui�t� �i � 1; 2; 3�, the corresponding frequency-domain

forms are ~Ui�jω� � αUi�jω�, i � 1; 2; 3. Substituting these new

input signals into Eq. (24), we can have

~Yp�jω� � �αU1; αU2; αU3; α
2U2

1; α
2U2

2; α
2U2

3; α
2U1U2; α

2U2U3;

α2U1U3; α
3U3

1; α
3U3

2; α
3U3

3; α
3U1U

2
2; α

3U2
1U2; α

3U2U
2
3;

α3U2
2U3; α

3U1U
2
3; α

3U2
1U3; α

3U1U2U3��Gp� (26)

To formulate the NOFRFs �Gp�, Euler’s equation should be

excited by different sets of ~ui�t� � αqui�t��i � 1; 2; 3 and
q � 1; 2; : : : �. This number of q can also be calculated from [10].

As a result, there are different output frequency responsesYp�jω� �
colfY�q�

p �jω�g�q � 1; 2; : : : � given by
2
66666664

Y�1�
p �jω�

Y�2�
p �jω�
..
.

Y�q�
p �jω�

3
77777775
�

2
6666664

α1U1 · · · α1U3 · · · α31U
3
1 · · · α31U1U2U3

α2U1 · · · α2U3 · · · α32U
3
1 · · · α32U1U2U3

..

. ..
. ..

. ..
. ..

. ..
. ..

.

αqU1 · · · αqU3 · · · α3qU
3
1 · · · α3qU1U2U3

3
7777775
�Gp�

(27)

After defining

A�

2
6666664

α1U1 · · · α1U3 · · · α31U
3
1 · · · α31U1U2U3

α2U1 · · · α2U3 · · · α32U
3
1 · · · α32U1U2U3

..

. ..
. ..

. ..
. ..

. ..
. ..

.

αqU1 · · · αqU3 · · · α3qU
3
1 · · · α3qU1U2U3

3
7777775

(28)

Equation (27) can be written as

Fig. 4 Spectrum of y.

a) Linear b) Nonlinear

Fig. 5 Input–output relation in the frequency domain for a) linear
system b) nonlinear system.
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Yp�jω� � A�Gp� (29)

Finally, the pth-order NOFRFs �Gp� are given by

�Gp� � �A⊤ A�−1A⊤Yp�jω� (30)

C. Simulation for NOFRFs of Euler’s Equation

The point of exploiting the NOFRFs of Euler’s equation is to

explain the energy-transfer phenomenon illustrated in Figs. 3 and

4. All parameters for simulations are the same as the last subsection.

In Eq. (26), the cross-product termsU2
1,U

2
2; U

2
3,U1U2,U2U3,U1U3,

U3
1,U

3
2,U

3
3,U1U

2
2,U

2
1U2,U2U

2
3,U

2
2U3,U1U

2
3,U

2
1U3, andU1U2U3

are likely to be the source of high-frequency components while the

frequency ranges ofU1; U2; U3 are all less than 1 rad∕s. Some of the

cross-product terms are shown in Fig. 6. Following the numerical

algorithm, some of the amplitudes of NOFRFs fGpg are illustrated
in Fig. 7.
From these simulation results, the energy-transfer phenomenon

exists in all three orders of NOFRFs. In the low-frequency domain,

some responses still remain because all the frequency ranges of input

signals are less than 1 rad∕s. However, there are still some responses

beyond 1 rad∕s. Accommodation of the response existing at the

higher frequency range is the motivation for the next section.

Remark 1: The order N of NOFRFs in Eq. (17) is a crucial
parameter to predict the frequency behaviors of a nonlinear system.
However, there have been few guidelines available about the selec-
tion of this parameter N. Since the NOFRFs approach is extended
from the Volterra series, we use N � 3, which is the minimal trun-
cated order to capture the nonlinearity of Euler’s equation.

V. Hybrid Frequency Control for Euler’s Equation

From the simulation results of the NOFRFs, some frequency
responses migrate to the high-frequency domain when the input
signals are in the low-frequency range. This motivates that a con-
troller can be designed based on the distinctive frequency domain
properties of Euler’s equation. In this section, Euler’s equation with a
prewrap term will be shown to have finite gain. Then, the hybrid
passive/finite gain theorem is implemented to design a controller that
can maintain passivity (and high gain) in the low-frequency domain
and have finite small gain in the high-frequency ranges, and thus
attenuate the frequency response migration. Note that NOFRFs were
used to illuminate the energy migration to higher frequency but will
not be used as a model for controller design. Our controller design
will use a linear model of the attitude dynamics (and kinematics), but
the energymigration phenomenonmotivates gain reduction at higher
frequency.

A. Preliminary

For the sake of clarity, the notation y�jω� represents the Fourier
transform of a time-domain function y�t�. Recall the concepts of
L2 space and its extension L2e, namely, y�t� ∈ L2 when�������������������������������
∫ ∞
0 y

⊤�t�y�t�dt
q

<∞ and y�t�∈L2e when

���������������������������������
∫ ∞
0 y

⊤
T �t�yT�t�dt

q
<∞,

0 ≤ T < ∞ �yT�t� � y�t�; 0 ≤ t ≤ T and yT � 0; t > T�. According
to Parseval’s theorem [24], one can write ∫ ∞

0 y
⊤�t�y�t� dt �

1∕�2π�Re∫ ∞
−∞y

H�jω�y�jω� dω.
For a general system y � Ge with the operator G:L2e → L2e, the

input e ∈ L2e, and the output y ∈ L2e, a hybrid passive/finite gain
system G is defined in [25] as satisfying

1

2π

Z
∞

−∞
yHT �jω�Q�ω�yT�jω� dω� 1

π
Re

Z
∞

−∞
yHT �jω�S�ω�eT�jω� dω

� 1

2π

Z
∞

−∞
eHT �jω�R�ω�eT�jω� dω ≥ 0 (31)

where

Q�ω� � −�ϵα�ω� � γ−1�1 − α�ω���1; S�ω� � 1

2
α�ω�1;

R�ω� � �γ�1 − α�ω� − δα�ω��1 (32)

The passivity of the system G is revealed by the constant param-
eters δ and ϵ, and the finite-gain property of the system G determines
γ. The frequency variable α is given by

α�ω� �
�
1; −ωc ≤ ω ≤ ωc �passive region�
0; jωj > ωc �finite gain region� (33)

where ωc is the critical frequency. The entire frequency range can be
split into two subranges by ωc. By considering the passive region
(α�ω� � 1) and the finite-gain region (α�ω� � 0), Eq. (31) can be
satisfied if

1

2π
Re

Z
ωc

−ωc

yHT �jω�eT�jω� dω

≥
ϵ

2π

Z
ωc

−ωc

yHT �jω�yT�jω� dω� δ

2π

Z
ωc

−ωc

eHT �jω�eT�jω� dω (34)

and

Fig. 6 Spectra of U2
1, U

2
2, U

2
3, and U1U2.

Fig. 7 jG�1�
1;100�jω�j, jG�2�

2;020�jω�j, jG�3�
3;210�jω�j, and jG�3�

3;111�jω�j.
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1

πγ

Z
∞

ωc

yHT �jω�yT�jω� dω ≤
γ

π

Z
∞

ωc

eHT �jω�eT�jω� dω (35)

We say that the system is a hybrid passive/finite-gain system.
Consider the two hybrid passive/finite-gain systems G1:L2e →

L2e and G2:L2e → L2e interconnected with negative feedback as

illustrated in Fig. 8.
The stability of these two interconnected negative feedback sys-

tems can be guaranteed by the hybrid passivity/finite-gain theorem

[25] as follows.
Theorem 1 (hybrid passivity/finite gain theorem): Assume these

two systems are hybrid passivity/finite gain systemswith correspond-

ing parameters as G1: δ1; ϵ1; γ1 and G2: δ2; ϵ2; γ2 satisfying Eqs. (34)
and (35). The interconnected system with G1 and G2 is L2 stable if

δ1 � ϵ2 > 0, δ2 � ϵ1 > 0, and γ1γ2 < 1.
For a proof, see [25].
Remark 2: Note that, in particular, a linear controller G2 with

δ2 > 0, ϵ2 > 0, and small γ2 designed using a linear model of the

plantG1 can stabilize a nonlinear systemG1 with δ1 > 0, ϵ1 > 0, and
γ2 < 1∕γ1.We are particularlymotivated by the use of a small value of

γ2 to accomplish high-frequency gain reduction.

B. Finite Gain for Euler’s Equation with a Prewrap Term

A crucial prerequisite of the hybrid passivity/finite gain theorem is

that the plant system should have finite gain. Thus, it is impossible to

apply the hybrid passivity/finite gain theorem directly to Euler’s

equation, because it does not have finite gain. However, it becomes

possible when a prewrap term is added into Euler’s equation. Before

demonstrating the finite-gain nature, a lemma is given at first to show

that the mapping GE of Euler’s equation shown in Eq. (1) from the

input u to the angular velocity ω is passive.
Lemma 1: GE: u → ω is passive.
Proof: Consider Euler’s equation shown in Eq. (1). Its kinetic

energy is H�t� � �1∕2�ω⊤Iω ≥ 0. Taking the time derivative, one

arrives at

_H � ω⊤I _ω � ω⊤�−ω×Iω� u� � ω⊤u (36)

Integrating both sides gives

Z
T

0

ω⊤u dt � H�T� −H�0� ≥ −H�0� (37)

Hence, GE is passive. □

The finite-gain characteristic of GE with a prewrap term is guar-

anteed by the following theorem.
Theorem2:The newmap from the inputu to the outputω has finite

gain when adding a prewrap term −ξω into Eq. (1):

I _ω� ω×Iω � −ξω� u (38)

where ξ > 0 is an arbitrary small number.
Proof: Rewrite Eq. (38) like

I _ω� ω×Iω� ξω � u (39)

Multiply both sides of Eq. (39) with ω⊤, and it becomes

ω⊤I _ω� ω⊤ω×Iω� ξω⊤ω � ω⊤u (40)

Since ω⊤ω× � 0,

d

dt

�
1

2
ω⊤Iω

�
� ξω⊤ω � ω⊤u (41)

As depicted in Fig. 9, the error vector is defined as e � −ξω� u.
According to Lemma 1, the passivity of GE leads to

Z
T

0

ω⊤e dt �
Z

T

0

ω⊤�−ξω� u� dt ≥ 0 (42)

Then

Z
T

0

ω⊤u dt ≥ ξ

Z
T

0

ω⊤ω dt (43)

This implies that the system shown in Eq. (38)will maintain passivity

from input u to outputω. Using the Cauchy–Schwarz inequality, we
have

Z
T

0

ω⊤u dt ≤
�Z

T

0

ω⊤ω dt

�
1∕2�Z T

0

u⊤u dt

�
1∕2

(44)

Substituting Eq. (43) into Eq. (44), we can get

ξ

Z
T

0

ω⊤ω dt ≤
�Z

T

0

ω⊤ω dt

�
1∕2�Z T

0

u⊤u dt

�
1∕2

(45)

This implies that

ξ

�Z
T

0

ω⊤ω dt

�
1∕2

≤
�Z

T

0

u⊤u dt

�
1∕2

(46)

Letting T → ∞ and assuming u ∈ L2, one has

kωk2 ≤ ξ−1kuk2 (47)

which means

kGEk2 � sup
0≠u∈L2

kωk2
kuk2

≤
1

ξ
(48)

□

C. Controller Synthesis

Consider a controller

_xc � Acxc �Bcuc; yc � Ccxc (49)

where xc is the controller’s state, and yc is the controller’s output. The
control block is illustrated in Fig. 10. Because of the negative feedback

connection, yc � −u and y � uc. Given that the Euler’s equationwith
the prewrap term is a passive system and has a finite gain, it can be

stabilized by interconnecting a strict passive controller as a negative

feedback, which is stated in the passivity theorem [26]. A strictly

passive controller is provided by the next lemma.

Fig. 8 A negative feedback system. Fig. 9 Euler’s equation with the prewrap term.
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Lemma 2 (KYP lemma): Consider a system given in Eq. (49) as

Gc�s� � Cc�s1 −Ac�−1Bc. The matrices Ac;Bc;Cc form a mini-

mal state-space realization. Assuming thatAc is Hurwitz, this system

is SPR if and only if there are real matrices Pc � P⊤
c > 0 andQc �

Q⊤
c > 0 that satisfy the conditions

PcAc �A⊤
cPc � −Qc

PcBc � C⊤
c (50)

For a proof, see [27]. If Gc�s� � Cc�s1 −Ac�−1Bc � μ1 for an

arbitrarily small μ > 0, the SPR system Gc�s� corresponds to a

strictly passive system with finite gain.
To synthesize the controller, Eq. (38) can be linearized via the

small angle and rate assumption ω ≐ _θ as follows:

�
_θ
�θ

�
�
�
0 1
0 −I−1ξ

�
|������{z������}

Al

�
θ
_θ

�
|{z}

xl

�
�

0
I−1

�
|�{z�}

Bl

u; yl�
�
0 1

�
|�{z�}

Cl

�
θ
_θ

�
(51)

Following the algorithm in [28], thematrixCc can be formulated as

a state-feedback gain from the linear quadratic regulator (LQR)

algorithm with suitable selection of the weight matrices Q̂ � Q̂⊤ >
0 and R � R⊤ > 0 along with the matrices Bl and Cl in Eq. (51).

A Hurwitz matrix Ac � Al −BlCc is obtained. Then, the matrices

Pc andBc can be obtained from Eq. (50) with a suitable selection of

Qc � Q⊤
c > 0. Hence, the standard KYP lemma generates an SPR

controller Gc;KYP�s� � Cc�s1 −Ac�−1Bc.

This synthesis process is conducted in the time domain. Therefore,

it canmaintain passivity over the entire frequency range. Considering

the energy migration from the low- to high-frequency ranges, it is

supposed that a hybrid frequency controller might be more effective

than Gc;KYP�s� designed based on the standard KYP lemma. Moti-

vated by this assumption, first, the generalized KYP lemma is taken

to design a hybrid passive/finite gain controller for Euler’s equation

with the prewrap term. Then, this assumption is extended to the

spacecraft attitude control problem in which quaternions are taken

into account with the prewrap Euler’s equation.

1. Case A: Hybrid Passive/Finite Gain Controller for the Prewrap

Euler’s Equation

In this case, the entire frequency range is split by the critical

frequency ωc into two parts, which are low- and high-frequency

ranges. The approach to formulate thematricesAc andBc is consistent

with those in the synthesis of Gc;KYP�s�. The controller’s output gain
Cc in Eq. (49) is renamed as K. The hybrid frequency controller is

denoted by Gc2�s� � K�s1 −Ac�−1Bc. The formula of the matrixK
involves the hybrid passive/finite gain theorem and the GKYP lemma,

which is given as follows.
Lemma 3 (GKYP lemma [20]): Consider the system G�s� �

C�s1 −A�−1B and a given matrix Π � ΠH. The following two

statements are equivalent:

1) Frequency domain condition:

�
G�jω�
1

�
H

Π
�
G�jω�
1

�
< 0 (52)

2) Linear matrix inequality: There are two matrices, P � P⊤ and

Q � Q⊤ ≥ 0, such that

�
A B
1 0

�
H

L�P;Q�
�
A B
1 0

�
�

�
C 0
0 1

�
H

Π
�
C 0
0 1

�
< 0 (53)

Here, the function L�P;Q� depends on the matrices P and Q.
It has particular forms in different frequency ranges, which is
described below.
Following Theorem 1, the controller Gc2 is SPR over −ωc ≤ ω ≤

ωc when Eq. (34) is satisfied. The equivalent form of the GKYP
lemma uses

Π �
�

0 −1
−1 0

�
; L�P;Q� �

�
−Q P
P ω2

cQ

�

in Eq. (53). Hence, the controller Gc2 has passivity over −ωc ≤ ω ≤
ωc when the following inequality is satisfied:

�
Ac Bc

1 0

�
H
�
−Ql Pl

Pl ω2
cQl

��
Ac Bc

1 0

�
�
�
K 0

0 1

�
H
�
0 −1
−1 0

��
K 0

0 1

�
<0

(54)

where Pl � P⊤
l and Ql � Q⊤

l > 0. The variables in the LMI are K,

Pl, and Ql.
In the high-frequency range jωj > ωc, the gain γ2 of the controller

Gc2 should be finite, which implies that the controller system is
bounded real. Because the prewrap Euler’s equation has finite gain
γ1 ≤ 1∕ξ, the gain γ2 of the controller Gc2 is determined as γ2 < ξ in
Theorem 1. The equivalent bounded-real form of the GKYP lemma
over jωj > ωc is obtained by substituting

Π �
�
1 0
0 −γ221

�
; L�P;Q� �

�
Q P
P −ω2

cQ

�

into Eq. (53) to yield

�
Ac Bc

1 0

�
H
�
Qh Ph

Ph −ω2
cQh

��
Ac Bc

1 0

�
�
�
K 0
0 1

�
H
�
1 0
0 −γ221

��
K 0
0 1

�
<0

(55)

The Schur complement is used to transform Eq. (55) into

2
6664
A⊤

cQhAc�PhAc�A⊤
cPh−ω2

cQh A⊤
cQhBc�PhBc K⊤

sym B⊤
cQh− γ221 0

sym sym −1

3
7775 < 0

(56)

which does not contain a nonlinear termwith respect toK in Eq. (55).

The matricesK,Ph � P⊤
h , andQh � Q⊤

h > 0 are the variables in the
LMI (56).
The hybrid controller Gc2 is SPR in the low-frequency range and

has finite gain in the high-frequency range if the gain K satisfied
LMIs (54) and (56). However, a feasible solution of LMIs (54) and
(56)might not be unique.We take an optimization approach to find an
exclusive K. An appropriate objective function is set as

J � tr��K − Cc��K − Cc�⊤� (57)

This objective function will produce a controller designed with the
GKYP lemma to mimic the controller from the standard KYP lemma
but also one with small high-frequency gain γ2.

Fig. 10 Control block.
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Using a similar approach as [18] for solving the LMIs, an
additional variable Z � Z⊤ ≥ 0 is introduced, and two additional
constraints are employed as

tr�Z� ≤ J (58a)

�K − Cc��K − Cc�⊤ ≤ Z (58b)

These additional constraints are logical since minimal J implies

minimal tr�Z� as �K − Cc��K − Cc�⊤ is being minimized. Because
the left-hand side of Eq. (58b) is nonlinear in K, the Schur comple-
ment is used to transform it as

−
�

Z �K − Cc�⊤
sym 1

�
≤ 0 (59)

The optimal gain K can be determined from following optimiza-
tion problem:

min J �K;Pl;Ql;Ph;Qh;Z�
subject to LMIs in �54�; �56�; �59� (60)

Up to here, a hybrid SPR/finite gain controller Gc2 �
K�s1 −Ac�−1Bc has been accomplished using the GKYP lemma
and the optimization. The recipe for synthesis of the controllerGc2�s�
is given in Algorithm 2.

Remark 3:Note that Algorithm 2 produces a controller with passive

characteristics at low frequency (i.e.,Gc2�jω��GH
c2�jω�≥0,ω ≤ ωc)

and small gain at high frequency (i.e., GH
c2�jω�Gc2�jω� ≤ γ221,

ω > ωc). These two characteristics are facilitated by theGKYP lemma

with the two LMIs in Eqs. (54) and (56).

Remark 4:For the controllerGc2, we use a linearmodel of the plant

to design a linear controller. However, the hybrid passivity/finite gain

theorem in Theorem 1 guarantees that it will stabilize the original

nonlinear system.

Remark 5:As a competitive controller,Gc;KYP is formulated using
the KYP lemma in the time domain. Its frequency domain properties
cannot be manipulated directly. However, the frequency domain
properties of the controller Gc2 are determined by the GKYP lemma
[i.e., Eq. (54) and Eq. (56)]. The selection of a small value of γ2 in
Eq. (56) enables Gc2 to accommodate the energy transfer phenome-
non in the high-frequency domain.
The moment of inertia I and the initial values of the angular

velocities are set as the same as those in Sec. III. The weights of

the LQR algorithm are set as �Q � 3.3 × diagf1; 1; 1; 10; 10; 10g,
Qc � 20 × diagf1; 1; 1; 10; 10; 10g, and R � 2.3 × 1, where 1 is
an identity matrix with suitable size required by the LQR algorithm.
The prewrap parameter in Eq. (38) is set as ξ � 0.01. The critical
frequency isωc � 6 rad∕s. Figure 11 shows the time response of the
angular velocities under the controllersGc;KYP andGc2, respectively.

The performance under the controllerGc2 is better than that under the
controller Gc;KYP. From Fig. 12, the control inputs from Gc2 are

smaller than those from Gc;KYP. Figure 13 illustrates the frequency

responses of themaximum singular value ofGc;KYP�jω� andGc2�jω�,
where the maximum singular value of G�jω� is defined as

�σ�G�jω�� �
���������������������������������
�λ�GH�jω�G�jω��

q
when λ�⋆� are the eigenvalues of a

matrix �⋆�. At the low-frequency ranges, the gain of the controllerGc2

is larger than that from the controller Gc;KYP and becomes smaller

than that from the controller Gc;KYP in the high-frequency ranges.

This feature can lead the low-frequency components of the state to
decay to equilibrium faster. Moreover, the high-frequency compo-
nents are applied with lower gains, which means that less control
efforts are consumed. The special consideration to accommodate
energy transfer for the high-frequency domain in the control scheme
is effective.

2. Case B: Hybrid Passive/Finite Gain Controller for the Spacecraft

Attitude Control Problem

From the above simulation results, it is intuitive to suppose that the
controller Gc2 � K�s1 −Ac�−1Bc might be still more efficient on
the spacecraft attitude control problem than the controller based on
the standard KYP lemma when quaternions are also taken into
consideration. As for the spacecraft attitude control, the quaternions
�ϵ; η� are selected as attitude parameters to describe the rotation of
the spacecraft. The kinematic equations of a rigid-body spacecraft are
given by

_ϵ � 1

2
�η1� ϵ×�ω; _η � −

1

2
ϵ⊤ω (61)

For the prewrap Euler’s equation and the quaternions kinematic
equation, consider a new controller

un � up � u (62)

where up � −kϵ�k > 0�. The other part u is formulated as almost

same as the controller design in case A except the linearized form
of Eq. (38) when Eq. (62) is substituted into Eq. (38) and then
linearized as

Algorithm 2: Steps to synthesize controller

Gc2�s� � K�s1 −Ac�−1Bc

1: Form the linear plant model Gc1�s� � Cl�s1 −Al�−1Bl where Al, Bl,
and Cl are given in Eq. (51).

2: Formulate Cc as a state-feedback gain from the LQR algorithm with

suitable selection �Q � �Q⊤ > 0 and R � R⊤ > 0 along with the
matricesAl, Bl, and Cl in Eq. (51).

3: Calculate Bc from Eq. (50) with a suitable selection of Qc � Q⊤
c > 0.

4: CalculateAc fromAc � Al −BlCc, whereAl andBl are formed from
Eq. (51).

5: Determine gain K by solving the optimization problem shown in
Eq. (60). [The problem shown in Eq. (60) must satisfy Eq. (54) and
Eq. (56), which are derived from theGKYP lemma in frequency domain.
The controllerGc2�s�will maintain passivity in the low-frequency range
and has small finite gain in the high-frequency range.]

Fig. 11 Time response of ω.

1440 LANG, DAMAREN, AND CAO

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

D
ec

em
be

r 
5,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
38

56
 



�
_θ
�θ

�
�
2
4 0 1

−I−1
�
k

2

�
−I−1ξ

3
5

|����������������{z����������������}
Al

�
θ
_θ

�
|{z}

xl

�
�

0
I−1

�
|�{z�}

Bl

u; yl � �0 1 �|{z}
Cl

�
θ
_θ

�

(63)

All parameters are the same as those in case A except that the

controller parameters in the LQR algorithm are changed as �Q �
0.8 × diagf1; 1; 1; 10; 10; 10g, Qc � 2 × diagf1; 1; 1; 10; 10; 10g,
and R � 2.3 × 1. The initial values of the quaternions are selected
as ϵ0 � �−0.5; 0.5; 0.5�⊤, η0 � −0.5. The proportional constant in

the controller up is set as k � 0.1 N ⋅m. Figure 14 indicates the time

response of the angular velocities. The time responses of control

efforts are shown in Fig. 15. Figure 16 depicts the time response of the

quaternions. Compared with Fig. 13, in this case, both controllers’

gains are different from case A as displayed in Fig. 17. At the low-

frequency range, the angular velocities will converge to zero quickly.

At the high-frequency range, the gain from the controller Gc2 is still

smaller than that from the controller Gc;KYP. The proposed hybridFig. 13 Maximum singular values of two controllers.

Fig. 12 Time response of u.

Fig. 14 Time response of ω.

Fig. 15 Time response of u.
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frequency controller for the spacecraft attitude control problem is still
effective.
Remark 6: As mentioned in [9], the NOFRFs fGpg yielded by the

numerical algorithm depend on the property of the nonlinear system
as well as the frequency of the input signals. Besides, the energy
transfer property is obtained from the open-loop situation, which
might not be equivalent to the closed-loop case. However, in Euler’s
equation’s case, the output’s frequency has three possibilities: the
energy is transferring to the lower frequencydomain, remaining at the
same frequency as the inputs, or migrating to the higher frequency
domain. The results of the NOFRFs fGpg show that the energy from

the low-frequency inputs would transfer to the higher frequency
ranges in the outputs, which is the worst case. The hybrid frequency
control ismotivated by this worst case to guarantee the stability of the
closed-loop system and the effectiveness of the controller.

VI. Conclusions

The first contribution of this paper is the solution of Euler’s
equation using the Volterra series as presented in the frequency
domain. The nonlinear behavior of Euler’s equation is analyzed by
formulating its NOFRFs to show the difference between the input
frequencies and the output frequencies, which shows the energy
transfer from the low- to high-frequency ranges. A hybrid passive/
finite gain frequency controller based on the GKYP lemma has been
implemented on Euler’s equation to stabilize angular velocities.
Compared with the controller based on the KYP lemma, this hybrid

frequency controller is more efficient because its gain is larger in the
low-frequency ranges, which can drive the angular velocities to
equilibrium points with less time. The gain of hybrid controller
becomes smaller in the high-frequency ranges, which can accommo-
date the energy transferred from the low-frequency ranges and con-
sume less energy to achieve similar performance. This feature still
remains in the hybrid frequency controller for the attitude control of
spacecraft when quaternion feedback is added to the hybrid fre-
quency controller. The effectiveness of the proposed controllers is
validated by numerical simulations.

Appendix : Interconnections of Volterra Kernels [8]

Consider that fFmg and fGmg are the Volterra kernels of two
systems. Combine these two systems to form a new system using
three interconnection manners, which are sum, product, and cascade.
The new system’s Volterra kernel fHmg is determined as follows:
a) Sum (Fig. A1a):

Hm�s1; : : : ; sm� � Fm�s1; : : : ; sm� �Gm�s1; : : : ; sm� (A1)

b) Product (Fig. A1b):

Hm�s1; : : : ; sm� �
Xm−1

k�1

Fk�s1; : : : ; sk�Gm−k�sk�1; : : : ; sm� (A2)

c) Cascade (Fig. A1c):

Hm�s1; : : : ; sm� � G1�s1� · · · �sm�Fm�s1; : : : ; sm� (A3)
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