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Abstract In this paper, for Multi-Spacecraft System (MSS) with a directed communication topol-

ogy link and a static virtual leader, a controller is proposed to realize attitude consensus and atti-

tude stabilization with stochastic links failure and actuator saturation. First, an MSS attitude error

model suitable for a directed topology link and with a static virtual leader based on SO 3ð Þ is

derived, which considers that the attitude error on SO 3ð Þ cannot be defined based on algebraic sub-

traction. Then, we design a controller to realize the MSS on SO 3ð Þ with attitude consensus and atti-

tude stabilization under stochastic links failure and actuator saturation. Finally, the simulation

results of a multi-spacecraft system with stochastic links failure and a static virtual leader spacecraft

are demonstrated to illustrate the efficiency of the attitude controller.
� 2023 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, the attitude control of Multi-Spacecraft Sys-

tem (MSS) has aroused widespread concern. By using the
information-based sharing, interaction and cooperation of
the MSS to form a large virtual spacecraft, it can not only

replace the role of large spacecraft in many application fields,
but also obtain many advantages.1 For example, in the processUnc
37
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39

40

41

42

43

44
of carrying out deep space exploration and earth observation
missions, the MSS can significantly improve the information

processing and observation capability. In addition, the failure
of one spacecraft in an MSS will not cause the failure of the
whole mission, which improves the reliability and stability.
Meanwhile, it has the advantages of cheap and easy mainte-

nance.2–5 Therefore, as a necessary extension and supplement
to the technology of large spacecraft, the MSS technology
has a very important research value.

At present, many attitude representation methods have
been developed for rigid body attitude control.6 These include
Euler angles and Modified Rodriguez Parameters (MRPs),

which have the disadvantage of singularities.7 Thus, they are
not suitable for large-angle attitude redirection maneuvers.
The unit-quaternion in non-Euclidean global parameterization
has no singularity. However, there is an unexpected ambiguity
https://
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phenomenon,8 i.e., each rotation can be expressed by two dif-
ferent unit-quaternions. Accordingly, the attitude representa-
tion method of rigid spacecraft based on the Lie group

SO 3ð Þ can avoid the defects of the above three attitude repre-
sentations and has caused in-depth research. Four types of
tracking control systems for a rigid spacecraft directly on the

special orthogonal group SO 3ð Þ were designed by Lee9 to
achieve global exponential stability and to avoid singularities
of local coordinates, or ambiguities associated with quater-

nions. An adaptive controller on SO 3ð Þ for a rigid spacecraft
was derived by Kulumani et al.,10 which can satisfy the attitude
constraint and avoid the attitude-forbidden zone in the course
of redirection.

In addition, for the attitude tracking problem of the MSS,
all spacecraft have to track the desired attitude given by the
virtual leader spacecraft. In order to reduce the communica-

tion burden and improve the robustness of the MSS, a dis-
tributed strategy has been widely used in missions,11–15 i.e.,
each spacecraft can only determine its own control commands

according to its own state and the communication with neigh-
boring spacecraft. For the multi-spacecraft system on MRPs
with both rigid and flexible spacecraft, a controller was

designed by Du et al.16 for each spacecraft to track the attitude
of the virtual leader spacecraft. Cui et al.17 proposed a dis-
tributed finite time attitude tracking controller with unavail-
able angular velocity on MRPs for uncertain MSS under

directed topology conditions. An adaptive nonsingular fast ter-
minal sliding mode controller was developed by Zhang et al.18

for MSS using the unit-quaternion under directed and undi-

rected graph to achieve attitude synchronization and tracking.
For the multi-spacecraft system on unit-quaternion, in which
only some spacecraft can obtain virtual leader commands, an

adaptive attitude controller was designed by Yue et al.19 to
achieve attitude coordination and tracking under uncertain
inertia parameters. An adaptive fault-tolerant controller on

unit-quaternion was designed by Hu et al.20 to realize the atti-
tude coordination and tracking of multi-spacecraft system with
the uncertain inertia parameters, the actuators failure, and the
time-varying center of mass. Under a directed graph, a dis-

tributed adaptive controller was employed by Chen and Shan21

for MSS on SO 3ð Þ to achieve attitude tracking and synchro-
nization. Considering mixed attitude constraints, an saturated

adaptive controller on SO 3ð Þ was designed by Kang et al.22 to
achieve attitude coordination and tracking of multiple space-
craft systems with arbitrary initial attitude. The above litera-

ture assumes that the communication links between
spacecraft are determined, i.e., the links between spacecraft
are 100% communicable, and stochastic links failure is not
taken into account.

In practice, communication links between spacecraft are
susceptible to multiple uncertainties, such as environmental
disturbances, stochastic characteristics of equipment, and ran-

domly lost package of data. Therefore, it is uncertain whether
the communication link between spacecraft is connected, i.e.,
the link is possible to fail and be randomly reconstructed. A

discrete-time protocol for discrete-time linear multi-agent sys-
tems was addressed by Rezaee et al.,23 which achieved almost
sure consensus under stochastic links failure. The attitude con-

sensus problem in MSS using the unit-quaternion under
stochastic link failures was studied by Rezaee and Abdollahi.24

However, the model of the spacecraft is represented by the
unit-quaternion, and it can not track the expected attitude

Unc
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ec
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due to only considering the attitude consensus, which limits
the application in the mission. To the best of our knowledge,
designing an attitude controller for MSS on SO 3ð Þ with a vir-

tual leader spacecraft under stochastic links failure is still an
open problem.

In this work, we consider that the MSS are connected in a

directed topology, and a virtual leader spacecraft provides a
static desired attitude for the MSS. It is assumed that each
communication link between two spacecraft including the lea-

der is not deterministic and may experience connection failure
and be reconstructed randomly over time. To solve this chal-
lenging problem, a MSS attitude error model based on
SO 3ð Þ suitable for a directed topology link is derived. Then,

a controller is designed to realize the MSS on SO 3ð Þ with atti-
tude consensus and attitude stabilization under stochastic links
failure and actuator saturation.

The main contribution of this work is stated as follows:
Compared with the existing attitude control

approaches16,18,21,24 of MSS, we design an attitude controller

for the MSS on SO 3ð Þ with a static virtual leader to realize atti-
tude consensus and attitude stabilization under stochastic links
failure and actuator saturation.

The remainder of this paper is organized as follows. The
attitude kinematics and dynamics of MSS on SO 3ð Þ are mod-
eled in Section 2. One problem to be solved in this paper is sta-
ted in Section 3. In Section 4, an MSS attitude stabilization

error model on SO 3ð Þ suitable for a directed topology link
and with a static virtual leader is proposed. The controller
under the stochastic links failure is designed to realize the

MSS attitude consensus and attitude stabilization on SO 3ð Þ
in Section 5. Simulation results are demonstrated in Section 6.
Conclusions are drawn in Section 7.

2. Preliminaries

2.1. Attitude kinematics and dynamics with actuator saturation

In this paper, the attitude dynamics of a rigid body is consid-

ered. Let I denote an inertial reference frame and B denote
the body-fixed frame with origin being located at the center
of mass. A special group of 3� 3 orthogonal matrices used
to parameterize attitude is defined as

SO 3ð Þ ¼ R 2 R3�3jRTR ¼ I3; detR ¼ 1
� � ð1Þ

The hat map ^ : R3 ! so 3ð Þ is used to convert a vector in R3

to a 3� 3 skew-symmetric matrix, where so 3ð Þ is also the Lie
algebra corresponding to the vector. More explicitly, for a vec-

tor x ¼ x1; x2; x3½ �T 2 R3, we have

x̂ ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
64

3
75 ð2Þ

The inverse of the hat map is denoted by the vee map

_ : so 3ð Þ ! R3. Several properties of the hat map and the

vee map of x; y 2 R3 are summarized as follows:25,10

x̂y ¼ x� y ¼ �y� x ¼ �ŷx ð3Þ

tr Ax̂½ � ¼ 0:5tr x̂ A� AT
� �� � ¼ �xT A� AT

� �_ ð4Þ

ted
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x̂Aþ ATx̂ ¼ tr A½ �I3 � Af gxð Þ^ ð5Þ

Rx̂RT ¼ Rxð Þ^ ð6Þ
for any x; y 2 R3;A 2 R3�3 and R 2 SO 3ð Þ.

Then, consider an MSS consisting of N spacecraft. Let
Ri 2 SO 3ð Þ represent the rotation matrix of the i-th spacecraft

from the body frame B to the inertial reference frame I. The
attitude kinematics of the i-th spacecraft can be expressed
as26,21

_Ri ¼ RiX̂i ð7Þ
where Xi 2 R3 is the inertial angular velocity vector of the i-th
spacecraft with respect to an inertial frame I and expressed in
the body-fixed frame B. The attitude dynamics of the i-th

spacecraft is given by25,10

Ji _Xi ¼ �Xi � JiXi þ ui þ di ð8Þ
where Ji 2 R3�3; ui 2 R3 and di 2 R3 denote the symmetric pos-
itive definite inertia matrix in the body-fixed frame and the

control torque, and the external disturbance of the i-th space-
craft, respectively.

Assumption 1. The external disturbance di of each spacecraft is
bounded by an unknown positive constant di;max, i.e.,

dik k 6 di;max. In addition, di;max is bounded by a known

empirical value Di;max, i.e., dik k 6 di;max < Di;max, where �k k
denotes the Euclidean norm.

In addition, the actuators saturation is also considered in
this work. The saturated control input

ui ¼ ui;1; ui;2; ui;3½ �T 2 R3 in Eq. (8) is defined as

ui;p ¼ sign ui;p
� �

min ui;sat;p; jui;pj
� �

,27 where ui;p and ui;p;sat are

the nominal input and saturation limit of the p-th actuator

of the spacecraft with p ¼ 1; 2; 3. The nonlinear saturation ui
in this work is approximately modeled as

�ui ¼ �ui;1; �ui;2; �ui;3½ �T 2 R3 by using a dead-zone based model28,29

with the relation

�ui;p ¼ qi;p;0ui;p �
Z Ki;p

0

qi;p kð ÞZ k; ui;p
� �

dk ð9Þ

where qi;p kð Þ is a known density function and is given as

qi;p kð Þ ¼
2

Ki;p
k 6 Ki;p

0 k > Ki;p

(
ð10Þ

The dead-zone operator

Z k; ui;p
� � ¼ max ui;p � k;min 0; ui;p þ k

� �� � ð11Þ

Meanwhile, qi;p;0 ¼
R Ki;p

0
qi;p kð Þdk is a positive known constant

parameter. We further have ui;p;sat ¼ Ki;p from qi;p kð Þ.22
Then, the attitude dynamics of the i-th spacecraft Eq. (8)

can be rewritten as

Ji _Xi ¼ �Xi � JiXi þ �ui þ di ð12Þ
with

�ui ¼ qi;p;0 � ui � li ð13Þ

where qi;p;0 ¼ qi;1;0; qi;2;0; qi;3;0

� �T 2 R3; li ¼ li;1; li;1; li;1½ �T 2 R3

with li;p ¼
R Ki;p

0
qi;p kð ÞZ k; ui;p

� �
dk; p ¼ 1; 2; 3.

Unc
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ui ¼ ui;1; ui;2; ui;3½ �T 2 R3 represents the controller output to be

designed and the symbol � denotes Hadamard product.

2.2. Stochastic process

The change of a stochastic variable in time can be expressed by
a stochastic process X ¼ X tð Þ; t Pf 0g. Let P �f g and E �f g
denote the probability and the expected value of a stochastic

variable. The conditional expected value of X given an event
H is expressed by E XjHf g. The stochastic process can be
described by the probability triple x;F;Pð Þ,30 where x;F
and P are the space of events, a r-algebra onto a subspace

of x, and the probability measure on x;Fð Þ with
0 6 P �f g 6 1 and P xf g ¼ 1, respectively. In addition, a filtra-
tion Ft; t P 0f g on x;F;Pð Þ is defined as a set of sub r-
algebras of F and satisfies Fs � Ft s < tð Þ.

In this condition, if X tð Þ is Ft-measurable for all t P 0,
then the stochastic process X ¼ X tð Þ; t Pf 0g is adapted to

the filtration Ftf g. Moreover, a stochastic process X is a
super-martingale relative to Ftf g and P if the following con-
ditions are satisfied:31

(1) X is adapted to the filtration Ftf g
(2) E jX tð Þjf g < 1 8t
(3) E X tð ÞjFsf g 6 X sð Þ t > s

The stochastic variable X tð Þ almost surely (a.s.) converges
to a finite Xf if P limt!1X tð Þ ¼ Xff g ¼ 1, which is further

equivalently written as limt!1X tð Þ!a:s:Xf.
Now, we can summarize the following super-martingale

convergence lemma for deriving the main result of this
paper:32,24

Lemma 1. If the stochastic process X ¼ X tð Þ; t P 0f g is a
nonnegative super-martingale, then there exists a finite Xf such

that limt!1X tð Þ!a:s:Xf.

ted
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f

2.3. Graph theory

The information topology between the leader spacecraft and

the follower N spacecraft can be described by a directed graph
G ¼ V;Eð Þ,33 where V ¼ 1; 2; � � � ;Nf g denotes the node set
and E � V�V is the edge set. The associated adjacency

matrix is defined as A ¼ aij
� � 2 RN�N, where aij ¼ 1 if i; jð Þ is

one element of E, i.e., the mode i sends information to the
node j, and aij ¼ 0 otherwise. Since there is no self-loop for

each node in this work, aii ¼ 0 holds. The set of in-neighbors
of the node i is denoted by Ni ¼ jj j; ið Þ 2 Ef g. The in-degree
matrix of the graph G is denoted by

D ¼ diag D1;D2; . . . ;DNð Þ, where Di ¼
P

j2Ni
aij. The out-

neighbors set of the node i is denoted by Oi ¼ jj i; jð Þ 2 Ef g.
The out-degree matrix of the graph G is denoted by
Q ¼ diag Q1;Q2; . . . ;QNð Þ, where Qi ¼

P
j2Oi

aji. Note that Di

indicates the number of nodes (except the leader) sending

information to the node i and Qi indicates the number of nodes
(except the leader) receiving information from the node i. To
describe the information flow from the virtual leader (i.e., node

0) to the followers, the leader adjacency matrix is defined as a
diagonal matrix B ¼ diag b1; b2; . . . ; bNð Þ, where bi ¼ 1 if the
t systems on SO(3) with stochastic links failure, Chin J Aeronaut (2023), https://
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virtual leader sends information to node i, and bi ¼ 0
otherwise.

2.4. Communication links failure

In practical situations, the connectivity of communication
links among spacecraft is vulnerable to indeterministic failures

due to malicious attacks, environmental disturbances and ran-
domly lost package of data, causing that the communication
links may break off and reconstruct stochastically.

To model the random connectivity of the communication
links for each node, two time-varying connection probabilities
pi;j tð Þ 2 0; 1ð � and pi;0 tð Þ 2 0; 1ð � are used, which describe the

connectivity of the links from spacecraft j 2 1; 2; . . . ;Nf g satis-

fying j; ið Þ 2 E and the virtual leader 0 to spacecraft
i 2 1; 2; . . . ;Nf g, respectively. It is noted that the communica-
tion link from the j-th spacecraft (or the virtual leader) to the i-

th spacecraft cannot be disconnected all the time, i.e.,
8t; pi;j tð Þ– 0 (pi;0 tð Þ – 0). Otherwise, 8t; pi;j tð Þ ¼ 0

(pi;0 tð Þ ¼ 0), the communication between the two spacecraft

is always disconnected. In this case, the continuous links fail-
ure becomes deterministic, which is not within our considera-

tion. Moreover, two stochastic switching parameters ai;j pi;j
� �

and ai;0 pi;0
� �

associated with pi;j tð Þ and pi;0 tð Þ for the i-th space-

craft are defined as

ai;j pi;j
� � ¼ 1 with probabilitypi;j tð Þ

0 with probability1� pi;j tð Þ

(
ð14Þ

ai;0 pi;0
� � ¼ 1 with probabilitypi;0 tð Þ

0 with probability1� pi;0 tð Þ

(
ð15Þ

which indicate that the connection status of the communica-
tion link from the j-th spacecraft (or the virtual leader) to
spacecraft i is nondeterministic and is with probability pi;j tð Þ
(or pi;0 tð Þ) over time. Specifically, in Eq. (14), ai;j pi;j

� � ¼ 1

means that with probability pi;j tð Þ spacecraft j transmits infor-

mation to spacecraft i at time t, while ai;j pi;j
� � ¼ 0 implies that

with probability 1� pi;j tð Þ the communication link from space-

craft j to spacecraft i is disconnected at time t. Then, we can get

the expectations of ai;j pi;j
� �

and ai;0 pi;0
� �

for each link related to

spacecraft i at time t, which are E ai;j pi;j
� �� � ¼ pi;j tð Þ and

E ai;0 pi;0
� �� � ¼ pi;0 tð Þ.

Next, define the following probability vector:

Pi tð Þ , pi;j1 tð Þ; . . . ; pi;jk tð Þ; . . . ; pi;jDi
tð Þ; pi;0 tð Þ

h iT
ð16Þco

rre
c

355355

356

357

Fig. 1 Schematic diagram of control objective: Formation

reaches an attitude consensus and attitude stabilization.
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Un
with Li ¼ Di þ bi 8i 2 1; 2; . . . ;Nf g and jk; ið Þ 2 E

8k 2 1; 2; . . . ;Dif g. Then, the following assumptions are made
about the connectivity probabilities.

Assumption 2. As t ! 1, there exist ti;1; ti;2; � � � ; ti;Li
time

instances for all i 2 1; 2; . . . ;Nf g such that the time-

concatenated vectors of each element in Pi tð Þ are linearly
independent. That is, the vectors

pi;j1 ti;1ð Þ
pi;j1 ti;2ð Þ

..

.

pi;j1 ti;Li
ð Þ

2
666664

3
777775;

pi;j2 ti;1ð Þ
pi;j2 ti;2ð Þ

..

.

pi;j2 ti;Li
ð Þ

2
666664

3
777775; . . . ;

pi;jDi
ti;1ð Þ

pi;jDi
ti;2ð Þ
..
.

pi;jDi
ti;Li
ð Þ

2
6666664

3
7777775;

pi;0 ti;1ð Þ
pi;0 ti;2ð Þ

..

.

pi;0 ti;Li
ð Þ

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LivectorsandeachoneisaLi�1vector

ð17Þ
are linearly independent.

According to Assumption 2, the condition

bi;1

pi;j1 ti;1ð Þ
pi;j1 ti;1ð Þ

..

.

pi;j1 ti;Li
ð Þ

2
666664

3
777775þ bi;2

pi;j2 ti;1ð Þ
pi;j2 ti;2ð Þ

..

.

pi;j2 ti;Li
ð Þ

2
666664

3
777775þ � � �

þbi;Li�1

pi;jDi
ti;1ð Þ

pi;jDi
ti;2ð Þ
..
.

pi;jDi
ti;Li
ð Þ

2
6666664

3
7777775þ bi;Li

pi;0 ti;1ð Þ
pi;0 ti;2ð Þ

..

.

pi;0 ti;Li
ð Þ

2
666664

3
777775 ¼ 0

ð18Þ

holds as t ! 1for each spacecraft i only when
bi;1 ¼ bi;2 ¼ � � � ¼ bi;Li

¼ 0.

Example 1. To illustrate the rationality of Assumption 2, the

following example is given. Considering the communication
topology shown in Fig. 1, for the spacecraft 1, there are two
other spacecraft sending information to it, i.e., D1 ¼ 2, and it

also has communication with the virtual leader spacecraft, i.e.,
L1 ¼ D1 þ b1 ¼ 3. Assuming that the connectivity of commu-
nication links for spacecraft 1 is with probabilities

p1;5 tð Þ ¼ 0:8þ 0:1 cos t=8ð Þ; p1;6 tð Þ ¼ 0:7þ 0:2 cos t=5ð Þ and

p1;0 tð Þ ¼ 0:9� 0:1 sin t=20ð Þ. Taking any L1 ¼ 3 time instances,

such as t1;1 ¼ 20 s, t1;2 ¼ 50 s, t1;3 ¼ 120 s, we have vectors,

v1 ¼
p1;5 20ð Þ
p1;5 50ð Þ
p1;5 120ð Þ

2
64

3
75 ¼

0:7199

0:8999

0:7240

2
64

3
75

v2 ¼
p1;6 20ð Þ
p1;6 50ð Þ
p1;6 120ð Þ

2
64

3
75 ¼

0:5693

0:5322

0:7848

2
64

3
75

v3 ¼
p1;0 20ð Þ
p1;0 50ð Þ
p1;0 120ð Þ

2
64

3
75 ¼

0:8460

0:9801

0:8040

2
64

3
75

ð19Þ

Obviously, v1; v2 and v3 are linearly independent and satisfy
Assumption 2. It can be concluded that any two links can meet
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Assumption 2 as long as the links failure probabilities are not

equal.

Remark 1. In this work, the failure probability of any commu-
nication link varies over time t, and the failure probability of
any two communication links is not always equal. Assumption

1 and its detailed illustration Example 1 further show the
application range of stochastic links failure in this work, i.e.,
the failure probability of any two communication links is not

equal at all times, otherwise, Assumption 1 is violated.
417

419419

420

421

422

423

424

425

426

427

428

429

430
431

433433

434

436436

437

439439

440
441

443443

444
ct
3. Problem statement

The objective of this paper is to design an attitude control
scheme for an MSS with N spacecraft on SO 3ð Þ subject to

stochastic communication failure, so that attitude consensus
and the attitude stabilization can be achieved. In this work,
we consider that spacecraft in the MSS are connected in a

directed topology, and a virtual leader spacecraft provides
the static desired attitude R0 for the MSS.

For example, as shown in Fig. 1, the virtual leader is only

connected to the first and the fourth spacecraft in the topology.
It is supposed that there is no isolated node in the communica-
tion graph, i.e., Ni – £8i, and the information of the virtual
leader spacecraft can be transmitted to any spacecraft through

a directed path(s). In addition, we assume that each communi-
cation link between two spacecraft including the leader is not
deterministic and may experience connection failure and

reconstruction randomly over time.
This work mainly solves the following problem:

Problem 1. Under the stochastic links failure and actuator
saturation, design a controller for the MSS on SO 3ð Þ with a

static virtual leader to realize attitude consensus and attitude
stabilization.
446446
447

448

449

450

452452

453

454
455

457457

458

459

460

461

462

463

464

465

466
4. Attitude error function and dynamics

In this section, the attitude error function and the attitude
error dynamic of a MSS based on SO 3ð Þ suitable for a directed
topology link and with a static virtual leader are derived.

4.1. Attitude error function on SO(3)

The attitude error function on SO 3ð Þ of MSS is given in the
following proposition.25,10,34

Proposition 1. For the i-th spacecraft, define an attitude error
functionWi 2 R, an attitude consensus error functionWc;i 2 R,

an attitude stabilization error function Ws;i 2 R, an attitude

consensus error vector ec;i 2 R3, an attitude stabilization error

vector es;i 2 R3, and an angular velocity error vector eX;i 2 R3

as follows:

Wi ¼
X
j2Ni

Wc;i þWs;i ð20Þ

Unc
orr

e

Please cite this article in press as: KANG Z et al. Attitude control of multi-spacecraf
doi.org/10.1016/j.cja.2023.12.019
Wc;i ¼ 1

2
tr I3 � RT

j Ri

h i
8j 2 Ni ð21Þ

Ws;i ¼ bi
1

2
tr I3 � RT

0Ri

� �	 

ð22Þ

ec;i ¼ 1

2
RT

j Ri � RT
i Rj

� �_
8j 2 Ni ð23Þ

es;i ¼ 1

2
bi R

T
0Ri � RT

i R0

� �_ ð24Þ

eX;i ¼ Xi � biR
T
i R0X0 ¼ Xi ð25Þ

where X0 ¼ 0 is used in Eq. (25), because the virtual leader

provides a static desired attitude. Subscripts i and j are the
indexes indicating the i-th and j-th (i; j 2 1; 2 � � �Nf g; i– j)
spacecraft in the MSS, respectively. Subscript 0 represents
the virtual leader spacecraft.

Then, we can get the following properties:

(1) Wc;i;Ws;i and Wi are positive semi-definite and their zeros

are at Ri ¼ Rj;Ri ¼ R0 and Ri ¼ Rj ¼ R0, respectively.

(2) The left-trivialized derivatives of Wc;i;Ws;i and Wi with

respect to the infinitesimal variation

dRi ¼ Riĝ for g 2 R3 are given by

DRi
Wc;i � dRi ¼

X
j2Ni

gTec;i ð26Þ Proo
f

t system
DRi
Ws;i � dRi ¼ gTes;i ð27Þ

DRi
Wi � dRi ¼

X
j2Ni

gTec;i þ gTes;i ð28Þ

(3) The defined errors ec;i and es;i are bounded by

ed

0 6 ec;i



 

 6 1 ð29Þ
0 6 es;i


 

 6 bi ð30Þ
Proof. According to Rodrigues function, for any

Q ¼ RT
j Ri 2 SO 3ð Þ, there exists n 2 R3 with knk 6 p such that

Q ¼ exp n̂ð Þ ¼ I3 þ sin knk
knk n̂þ 1� cos knk

knk2 n̂2 ð31Þ

Substituting the foregoing equation into Eq. (21), we can
obtain

Wc;i Rj exp n̂ð Þ;Rj

� � ¼ 1� cos knkð Þ ð32Þ
Therefore, it is clear that 0 6 Wc;i 6 2 and Wc;i ¼ 0 when

Ri ¼ Rj. Similarly, we can get 0 6 Ws;i 6 2bi and Ws;i ¼ 0 when

Ri ¼ R0 or bi ¼ 0 indicating that the i-th spacecraft is not con-
nected to the virtual leader spacecraft.

Because Wi is the addition of Wc;i and Ws;i;Wi is also

positive definite about Ri ¼ Rj ¼ R0, and Ri ¼ Rj ¼ R0 is the

critical point of Wi. These show the above property (1).

The infinitesimal variation of a rotation matrix can be

written as dR ¼ d
d�

��
�¼0

R exp �ĝð Þ ¼ Rĝ for g 2 R3.25 By lever-
s on SO(3) with stochastic links failure, Chin J Aeronaut (2023), https://
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aging this, the left-trivialized derivative of Wc;i with respect to

Ri is given by

DRi
Wc;i � dRi ¼ d

d�

��
�¼0

W Ri exp �ĝð Þ;Rj

� �
¼ � 1

2
tr RT

j Riĝ
h i ð33Þ

Using Eq. (4), DRi
Wc;i � dRi ¼ gTec;i is further obtained. Simi-

larly, we can also have DRi
Ws;i � dRi ¼ gTes;i and

DRi
Wi � dRi ¼

P
j2Ni

gTec;ið Þ þ gTes;i. These show the above

property (2).
Finally, substituting Eq. (31) into Eq. (23), we can obtain

ec;i ¼ sin knk
knk n ð34Þ

Thus, kec;ik2 ¼ sin2 knk 6 1, which implies that 0 6 kec;ik 6 1.

Similarly, we can also obtain 0 6 kes;ik 6 bi. These show the

above property (3).
This completes the proof.

Remark 2. Proposition 1 defines an attitude consensus error
function Wc;i and an attitude consensus error vector ec;i to deal

with the attitude consensus requirements of the i-th spacecraft
and the j-th spacecraft in the MSS. An attitude stabilization
error function Ws;i and an attitude stabilization error vector

es;i are defined for the attitude stabilization requirements that

each spacecraft stabilized to the desired attitude from the vir-
tual leader spacecraft. The attitude error function Eq. (20)
includes both attitude consensus error and attitude stabiliza-

tion error, corresponding to the control objective of this work.
The critical point ofWi is Ri ¼ Rj ¼ R0, which ensures the real-

ization of control objective. In addition, the parameter bi in Wi

indicates whether the i-th spacecraft is connected to the virtual
leader spacecraft, i.e., it determines whether the attitude stabi-

lization requirements need to be considered for the i-th
spacecraft.

Remark 3. Compared with the previous attitude error func-
tion of MSS16,18,24 that only considers the attitude consensus

error, an attitude error function including both attitude con-
sensus error and attitude stabilization error on SO 3ð Þ is pro-
posed in this work. Therefore, the proposed attitude error

function Wi in Eq. (20) can be applied for a directed topology
link with a static virtual leader. orr

ec

563

564

565

566

567

568

569

570

571

572
573
4.2. Attitude error dynamics on SO(3)

In this section, we derive the attitude error dynamics of the i-th

spacecraft in the following proposition.

Proposition 2. The attitude error dynamics of the i-th space-
craft for the proposed Wi;Wc;i;Ws;i; ec;i; es;i, and eX;i satisfy

_Wi ¼
X
j2Ni

_Wc;i þ _Ws;i ð35Þ

with

_Wc;i ¼ Xi � RT
i RjXj

� �T
ec;i8j 2 Ni ð36Þ

Unc
Please cite this article in press as: KANG Z et al. Attitude control of multi-spacecraf
doi.org/10.1016/j.cja.2023.12.019
_Ws;i ¼ eTX;ies;i ð37Þ

_ec;i ¼ tr RT
i Rj

� �
I3 � RT

i Rj

� �
Xi � RT

i RjXj

� � ð38Þ

_es;i ¼ bi tr RT
i R0

� �
I3 � RT

i R0

� �
eX;i ð39Þ

_eX;i ¼ J�1
i �X̂iJiXi þ �ui þ di

� �
ð40Þ

Proof. For any desired attitude R0 2 SO 3ð Þ;RT
0R0 ¼ I3. Then,

taking the time derivative on both sides results in
_RT
0R0 þ RT

0
_R0 ¼ 0, which further implies

_RT
0 ¼ �RT

0
_R0R

T
0 : ð41Þ

Then, in view of Eq. (41), the derivative of RT
0Ri is obtained as

RT
0
_Ri þ _RT

0Ri ¼ RT
0 RiX̂i � R0X̂0 RT

0Ri

� �h i
¼ RT

0Ri Xi � RT
i R0X0

� �^ ð42Þ

where Eq. (6) is used. In addition, since the static task is con-
sidered, i.e., X0 ¼ 0, it follows that

RT
0
_Ri þ _RT

0Ri ¼ RT
0RiX̂i ð43Þ

Following the above derivation, we can obtain

RT
j
_Ri þ _RT

j Ri ¼ RT
j Ri Xi � RT

i RjXj

� �^ ð44Þ
Then, it is clear from Eq. (21) that

_Wc;i ¼ � 1
2
tr RT

j
_Ri þ _RT

j Ri

h i
¼ � 1

2
tr RT

j Ri Xi � RT
i RjXj

� �^h i
¼ Xi � RT

i RjXj

� �T
RT

j Ri � RT
i Rj

� �_
ð45Þ

where the property given in Eq. (4) is used. Similarly, by lever-
aging Eq. (43) and Eq. (4), we can also show Eq. (37). Then, we
show Eq. (37)

_ec;i ¼ RT
j Ri Xi � RT

i RjXj

� �^ þ Xi � RT
i RjXj

� �^
RT

i Rj

� �_
¼ tr RT

i Rj

� �
I� RT

i Rj

� �
Xi � RT

i RjXj

� �
ð46Þ

where Eq. (44) and Eq. (5) are used. Similarly, by using Eq.
(43) and Eq. (5), we can show Eq. (39).

Moreover, since the inertia matrix of each spacecraft is

positive definite, according to Eq. (12), it is trivial to get Eq.
(40).

This completes the proof.

ted
 Proo

f

5. Controller design

In this section, we solve Problem 1 by proposing an attitude

controller approach for the MSS on SO 3ð Þ to achieve attitude
consensus and attitude stabilization with the stochastic links
failure.

In light of Eq. (36), Eq. (37) and Eq. (40), an attitude con-

troller can be designed as
t systems on SO(3) with stochastic links failure, Chin J Aeronaut (2023), https://
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c

ui ¼ v � �k1

X
j2Ni

ai;j pi;j
� �

ec;i � k2ai;0 pi;0
� �

es;i

 

� k3 þ k4ð Þ kXik2
kXikþj2

i

þ li

� ð47Þ

with

_j ¼ �ci
k3 þ k4ð ÞjikXik
kXik þ j2

i

ð48Þ

where v ¼ 1
qi;1;0

; 1
qi;2;0

; 1
qi;3;0

h iT
2 R3; k1; k2; k3; k4 > Di;max and ci

are positive constants.
Using the proposed attitude controller Eq. (47), the stabil-

ity of the MSS is summarized as the following theorem.

Theorem 1. For the attitude error kinematics and dynamics on
SO 3ð Þ represented by Eq. (35) and Eq. (40), the proposed
attitude controller Eq. (47) and adaptive update law Eq. (48)

with k3 > max k1; k2f gS and k4 > Di;max, where

S¼D 2 Dk k1 þ Qk k1 þ 1 ensures that the attitude of MSS can

almost surely achieve consensus and stabilization despite
stochastic links failure.

Proof. Consider the following Lyapunov candidate function:

V ¼
XN
i¼1

1

2
XT

i JiXi þ k5Wi þ 1

ci
j2
i

	 

ð49Þ

where k5 ¼ max k1; k2f g. Substituting the attitude dynamics
Eq. (40) and the attitude controller Eq. (47) into the time
derivative of V yields

_V 6
XN
i¼1

k5
X
j2Ni

ai;j pi;j
� �kec;ikkXik � k4 �Di;maxð ÞkXik

 

þk5 1� ai;0 pi;0
� �� �kes;ikkXik � k3kXik

þk5

X
j2Ni

kec;ikkXi � RT
i RjXjk

!

ð50Þ
where the fact XT

i X̂i ¼ 0 is used. Then, due to kRT
i Rjk 6 1,

kXi � RT
i RjXjk 6 kXik þ kXjk ð51Þ

Moreover, according to kec;ik 6 1 and kes;ik 6 bi from Propo-

sition 1 along with the fact that

bi 2 0; 1f g; ai;j pi;j
� � 2 0; 1f g; ai;0 pi;0

� � 2 0; 1f g and

Di ¼
P

j2Ni
aij 6 Dk k1 where �k k1 represents the 1-norm of

the matrix, it follows from Eq. (50) and Eq. (51) that

_V 6
XN
i¼1

k5
X
j2Ni

1þ ai;j pi;j
� �� �kec;ikkXik þ k5

X
j2Ni

kec;ikkXjk
 

� k3 � k5 1� ai;0 pi;0
� �� �kes;ik� �kXik

�
ð52Þ

Further, we can obtain

_V6
XN
i¼1

2k5DikXik� k3�k5ð ÞkXikþk5

X
j2Ni

kXik
 !

6
XN
i¼1

� k3�k5 2 Dk k1þ1ð Þ½ �kXikð Þþk5

XN
i¼1

X
j2Ni

kXjk
ð53Þ

Unc
orr

e
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Recognizing that

XN
i¼1

X
j2Ni

kXjk 6
XN
i¼1

Qk k1kXik ð54Þ

we can substitute it into Eq. (53) and obtain

_V 6 � k3 � k5 2kDk1 þ kQk1 þ 1ð Þ½ �
XN
i¼1

kXik ð55Þ

As a consequence, if the control gains are selected to satisfy

k4 > Di;max; k3 > k5S > max k1; k2f gS ð56Þ
whereS , 2 Dk k1 þ Qk k1 þ 1, we can obtain that _V is negative

semidefinite. Then, by invoking the generalized invariance
principle for nonautonomous systems,35,24 we can conclude

limt!1Xi 	 03�1 ð57Þ
Thus, Xi ¼ 0 and _Xi ¼ 0 as t ! 1

Then, substituting the conclusion into attitude error
dynamics Eq. (40) and controller Eq. (47) yields

X
j2Ni

ai;j pi;j
� �

ec;i þ ai;0 pi;0
� �

es;i ¼ 03�1 t ! 1 ð58Þ

Considering that ai;j pi;j
� �

and ai;0 pi;0
� �

are stochastic variables,

computing expectations on both sides of Eq. (58) leads toX
j2Ni

pi;j tð Þec;i þ pi;0es;i ¼ 03�1 ð59Þ

as t ! 1. In view of Eq. (38), Eq. (39) and Eq. (40,

_ec;i ¼ _es;i ¼ 03�1, i.e., as t ! 1; ec;i 2 R3 and es;i 2 R3 are con-

stant vectors. According to Assumption 2, for the i-th space-
craft 9Li ¼ Di þ bi vectors and

X
j2Ni

ec;i qð Þ

pi;j ti;1ð Þ
pi;j ti;2ð Þ

..

.

pi;j ti;Li
ð Þ

2
666664

3
777775

0
BBBBB@

1
CCCCCAþ es;i qð Þ

pi;0 ti;1ð Þ
pi;0 ti;2ð Þ

..

.

pi;0 ti;Li
ð Þ

2
666664

3
777775 ¼ 0L�1

ð60Þ
where X qð Þ with q ¼ 1; 2; 3 represents the q-th number of X.
Then, by using the vector linear independence theorem, we

can further obtain ec;i ! 03�1; j 2 Ni and es;i ! 03�1 as

t ! 1, which can be further expressed as

P RT
j Ri � RT

i Rj

� �_


 


 > e1

� �
¼ 0 8j 2 Ni; t ! 1

P RT
0Ri � RT

i R0

� �_


 


 > e2
n o

¼ 0 t ! 1
ð61Þ

where e1 and e2 are any positive minimum. Then, by defining

the filtration

Ft ¼ Ri .ð ÞT;Rj .ð ÞT;X .ð ÞTi
� �

; 0 6 . 6 t
� � ð62Þ

the following three conditions can be obtained:

(1) For the MSS, the Lyapunov

V tð Þ ¼
XN
i¼1

1

2
XT

i tð ÞJiXi tð Þ þ k5Wi tð Þ þ 1

ci
j2
i tð Þ

	 

ð63Þ

ted
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t system
can be regarded as a stochastic process, and V tð Þ is Ft-
measurable for any time t. Since V tð Þ is determined by
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Ri .ð Þ;Rj .ð Þ, and X .ð Þi as well as their history, V tð Þ only
depends on Fs; 0 6 s 6 tf g, and thus V tð Þ is deter-
mined for the filtration Ft.
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(2) Given the result of the Lyapunov analysis _V tð Þ 6 0, we

have Ri .ð Þ;Rj .ð Þ, and X .ð Þi are bounded. Therefore,

V tð Þ is bounded. Thus, which E V tð Þf g is also bounded.

(3) Since _V tð Þ 6 0, we know V tð Þ 6 V sð Þif t P s. In view of
the fact that V tð Þ is measurable for any t and according
to the property of conditional expectation,

E V tð ÞjFsf g ¼ V tð Þ 6 V sð Þ t P s ð64Þ
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As a consequence, the above three conditions yield that
V tð Þ is super-martingale. Then, according to Lemma 1, we
know that

limt!1V tð Þ ! Vf ð65Þ
where Vf is a nonnegative finite real number. From the Lya-
punov function

V tð Þ ¼
XN
i¼1

1

2
XT

i tð ÞJiXi tð Þ þ k5Wi tð Þ þ 1

ci
j2
i tð Þ

	 

ð66Þ

and t ! 1; Xi ¼ 0, we have

limt!1Wi!a:s:Vf i ¼ 1; 2; � � � ;N ð67Þ
Due to the fact that Wi is positive definite about Ri ¼ Rj ¼ R0,

and Eq. (61), we can conclude that Vf ¼ 0. Then, the critical

point of Wi is Ri ¼ Rj ¼ R0. Therefore,

limt!1Ri!a:s:Rj!a:s:R0; 8i ¼ 1; 2; � � � ;N ð68Þ
This is equivalent to

P limt!1Ri ¼ Rj ¼ R0

� � ¼ 1 8i ¼ 1; 2; � � � ;N: ð69Þ
This implies that the spacecraft attitude in the MSS tends to be
consistent, and stable at the desired attitude provided by the

virtual leader spacecraft.
This completes the proof.

Remark 4. The gains k1 and k2 in controller Eq. (47) are equiv-
alent to the proportional coefficient in a PD controller, and k3
is equal to the derivative coefficient. The larger k1 and k2 are
chosen, the faster the attitude error converges, but it will cause
system oscillation, and it is necessary to increase k3 at the same

time. k4 is the coefficient used to counteract external distur-
bances. Once the value Di;max is determined based on experi-

ence, an appropriate value of k4 can be selected. Therefore,
we can select the appropriate values of k1; k2; k3 and k4 when
condition Eq. (56) is satisfied.
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cessful connection.
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Un
Remark 5. The Eq. (59) is expressed as
P

j2Ni
pi;j tð Þec;i ¼ 03�1

without item related to the virtual leader in the study of Rezaee
and Abdollahi,24 so the conclusion of ec;i ! 03�1; j 2 Ni as

t ! 1 can be obtained directly. The conclusion that
ec;i ! 03�1; j 2 Ni and es;i ! 03�1 as t ! 1 cannot be directly

obtained by introducing the communication links related to
the virtual leader. However, this work can draw this conclu-

sion (ec;i ! 03�1; j 2 Ni and es;i ! 03�1 as t ! 1) under

Assumption 2, which is the most significant difference from

Rezaee and Abdollahi.24 Therefore, we can not only achieve
the attitude consensus of MSS, but also achieve the attitude
stabilization under stochastic links failure.
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6. Simulation results

In this section, the effectiveness of the proposed attitude con-
troller is demonstrated by numerical simulation for the MSS
with stochastic links failure.

We consider a leader–follower MSS composed of six space-
craft and a virtual leader spacecraft in the numerical simula-
tion. The communication links among spacecraft and the

probability of successful connection of each link are shown
in Fig. 2. Obviously, the connection probabilities
pi;j tð Þ 2 0; 1ð � and pi;0 tð Þ 2 0; 1ð � and the connectivity probabil-

ities of all links satisfy Assumption 2 and kDk1 ¼ 2; kQk1 ¼ 2.

To simulate the stochastic links failures, the following ran-
dom numbers associated with each link are introduced:

ci;j ¼ rand 1ð Þ i 2 1; 2; � � � ; 6f g; j 2 Ni

ci;0 ¼ rand 1ð Þ i 2 1; 4f g ð70Þ

where rand 1ð Þ 2 0; 1½ � is a random number. Then, the connec-

tivity of each link can be expressed as

ai;j pi;j
� � ¼ 1 ci;j 6 pi;j

0 ci;j > pi;j

(
;
i 2 1; 2; � � � ; 6f g

andj 2 Ni

ai;0 pi;0
� � ¼ 1 ci;0 6 pi;0

0 ci;0 > pi;0

(
; i 2 1; 4f g

ð71Þ

The inertia matrices of the MSS are given as

Ji ¼
60 0 �5

0 65 0

�5 0 70

2
64

3
75kg �m2 i ¼ 1; 2; � � � ; 6 ð72Þ

The external disturbance of each spacecraft is

di ¼ 10�3 �
�1þ 3 cos 0:1itð Þ þ 4 sin 0:03itð Þ

1:5� 1:5 sin 0:02itð Þ � 3 cos 0:05itð Þ
1þ sin 0:1itð Þ � 1:5 cos 0:04itð Þ

2
64

3
75N �m

ð73Þ
where i ¼ 1; 2; � � � ; 6. The saturation limit of the actuators of
the i-th spacecraft is given as ui;p;sat ¼ 1 N�m, p ¼ 1; 2; 3, result-

ing in k�uik 6
ffiffiffi
3

p
N�m.

The initial states of the MSS are given in Table 1, and the
mapR ¼ exp h; nð Þ ! SO 3ð Þ is defined as

R ¼ exp h; nð Þ ¼ I3 þ sin hð Þn̂þ 1� cos hð Þð Þn̂2 ð74Þ
In addition, the desired attitude R0 ¼ I3, and the correspond-

ing desired unit-quaternion Qd ¼ qTd ; qd
� �T ¼ 0; 0; 0; 1½ �T. In
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Table 1 Initial states of MSS.

No. Ri 0ð Þ ¼ exp hi 0ð Þ; ni 0ð Þð Þ Xi 0ð Þ rad=sð )

1 h1 0ð Þ ¼ �10�; n1 0ð Þ ¼ 0; 0; 1½ �T 0:1; 0:05;�0:2½ �T
2 h2 0ð Þ ¼ 135�; n2 0ð Þ ¼ 0;1;1½ �T

k 0;1;1½ �k 0; 0:06; 0:2½ �T

3 h3 0ð Þ ¼ 175�; n3 0ð Þ ¼ 1;0;1½ �T
k 1;0;1½ �k �0:1; 0:3;�0:05½ �T

4 h4 0ð Þ ¼ 70�; n4 0ð Þ ¼ 0; 1; 0½ �T �0:03; 0:5;�0:2½ �T
5 h5 0ð Þ ¼ 225�; n5 0ð Þ ¼ 1; 0; 0½ �T 0:3; 0;�0:2½ �T
6 h6 0ð Þ ¼ �80�; n6 0ð Þ ¼ 1;1;0½ �T

k 1;1;0½ �k �0:1;�0:1; 0½ �T

A C E G X N

B D F H Y M

Case No. 500 s 750 s 500 s 750 s 500 s 750 s

Case 1 1 2 3 4 5 6

Case 1 7 8 9 10 11 12

Case 1 13 14 15 16 17 18
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addition, the unit-quaternion attitude consensus error is com-

puted as Qc;e;i ¼ qTc;e;i; qc;e;i

h iT
¼Pj2Ni

Q�
j 
Qi, where 
 is the

quaternion multiplication operator,36 Qi is the current attitude

of the i-th spacecraft. The unit-quaternion attitude stabiliza-

tion error is computed as Qs;e;i ¼ qTs;e;i; qs;e;i

h iT
¼ Q�

d 
Qi.

Next, we consider two parts of numerical simulation to illus-

trate the performance of the proposed controller Eq. (47)
under different stochastic links modeling methods.

6.1. Comparison of different control situations

In this subsection, the proposed controller based on SO 3ð Þ for
a leader–follower MSS and the existing controller based on
unit-quaternion for a leaderless MSS in the study of Rezaee

and Abdollahi24 are compared to illustrate that the proposed
one can avoid fuzziness of unit-quaternion and reach the
desired attitude. Three control situations are considered.

Situation 1. The proposed controller Eq. (47) is applied to
the SO 3ð Þ-based leader–follower MSS with stochastic links
failure. In this control situation, we set
k1 ¼ k2 ¼ 10:5; k3 ¼ 150 to meet the condition Eq. (56).

Situation 2. The attitude consensus controller (4) in the
study of Rezaee and Abdollahi24 acts on a leaderless MSS
using the unit-quaternion with stochastic links failure. The

control parameters are set as c ¼ 10:5 and ki ¼ 150.
Situation 3. It is the same with Situation 2, but the initial

unit-quaternions Qi 0ð Þ of the Spacecrafts 1; 3; 4 and 6 are

changed to �Qi 0ð Þ (Qi 0ð Þ and �Qi 0ð Þ are the same attitude).
In this subsection, the stochastic links failure in the three

situations of interest may occur at each sampling instance with

a sampling period Tstep ¼ 0:02 s, i.e., random numbers ci;j or

ci;0 are generated at each sampling instance to determine the

connectivity of the communication links according to Eq. (71).
Figs. 3–5 show the time history of attitude consensus error,

attitude stabilization error, angular velocity and control torque
under different modeling methods of MSS, respectively. For
the leader–follower MSS on SO 3ð Þ, the proposed controller

Eq. (47) can achieve attitude consensus and attitude stabiliza-
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tion, where the attitude consensus is completed in 150 s with

steady-state error Wc;i 6 5� 10�6, as shown in Fig. 3(a). The

attitude stabilization is completed in 300 s with steady-state

error Ws;i 6 3� 10�5, as shown in Fig. 3(b). Moreover, the

angular velocity kXik, as shown in Fig. 3(c), tends to be stable

at 300 s with the steady-state error Xik k 6 5� 10�3 �=s. In
addition, it can be seen from the controller Eq. (47) that con-

sidering the stochastic links failure, ai;j pi;j
� �

and ai;0 pi;0
� �

have a

probability of 1 or 0, which sometimes leads to the absence of
the attitude consistency error ec;i and the attitude stabilization

error es;i, which further leads to the jump fluctuation of the

controller output, as observed in Fig. 3(d).

From Fig. 3(d) and Fig. 5(a), the controller (4) in the study
of Rezaee and Abdollahi24 can achieve attitude consensus
under stochastic links failure. Since the controller (4) in the

study of Rezaee and Abdollahi24 is only applicable to the lead-
erless MSS, the attitude stabilization and convergence to the
desired attitude cannot be guaranteed, as observed in Fig. 5
(a), and Fig. 5(b). In addition, because the initial unit-

quaternions Qi 0ð Þ of the Spacecrafts 1; 3; 4 and 6 are changed
to �Qi 0ð Þ, the actual attitude of the spacecraft is not changed.
However, the attitude stabilization errors of the two

approaches are not equal, indicating that although the final
attitude of the MSS has achieved attitude consensus, the con-
verged attitude is different. This may lead to the failure of the

observation mission. The process of angular velocity (Fig. 5(b)
and Fig. 5)) and control torque (Fig. 5)) and Fig. 5(d)) also
show that the attitude convergence of MSS based on unit-

quaternion is different in Situation 2 and Situation 3. On the
contrary, because the rotation represented by Lie group
SO 3ð Þ is unique, the proposed controller Eq. (47) using
SO 3ð Þ-based modeling method avoids this unwinding issue.

6.2. Comparison of different stochastic links failure modelings

In the previous subsection, the connectivity of the communica-

tion links is considered to be nondeterministic at each sam-
pling instance, i.e., the failure or reconstruction of the link
connection may occur at each sampling instance (cf.

ted
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Fig. 3 Time history of attitude state of each spacecraft in MSS under Situation 1.

Fig. 4 Time history of attitude state of each spacecraft in MSS under Situation 2.

Fig. 5 Time history of attitude state of each spacecraft in MSS under Situation 3.
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Tstep ¼ 0:02 s), which could result in too fast connectivity

change. In practice, the connectivity of the link can be
regarded as unchanged in every finite time interval T, i.e.,
the links failures happen in a periodic manner. We consider

different methods of selecting the instance dk, at which the
stochastic communication failures occur, to model the period-
ically happened stochastic links failures. Specifically, we con-
sider the following three cases that the instance dk is selected.

Case 1. The stochastic failure of each link occurs asyn-
chronously, which is modeled by

dk ¼ mod tþ k� 1ð ÞDt;Tð Þ k ¼ 1; 2; � � � ; 10 ð75Þ
Case 2. The stochastic failure of each link occurs concur-

rently, which is modeled by

dk ¼ mod t;Tð Þ k ¼ 1; 2; � � � ; 10 ð76Þ
Case 3. The stochastic links failure does not occur, i.e., the

communication links are always connected. That is, 8t, con-
troller Eq. (47) with ai;j pi;j

� � ¼ ai;0 pi;0
� � ¼ 1, where

i 2 1; 2; � � � ; 6f g and j 2 Ni. where Dt ¼ 3 s and T ¼ 27 s

denote the time delay and the generation interval in the simu-
lation, respectively. In addition, mod a;mð Þ is the modulo oper-
ation and returns the remainder after division of a by m. Then,

the value of dk can be used to determine whether a new ran-
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dom number is generated for the lk-th link. If dk ¼ 0, a new
random number ci;j or ci;0 is generated, otherwise the previous

random number is maintained. These simulate the periodic
occurrence of stochastic links failure.

In this subsection, the performance of the SO 3ð Þ-based lea-
der–follower MSS using the proposed controller Eq. (47)
under the foregoing three stochastic links failure modeling
methods is compared. The controller parameters of Eq. (47)

k1 ¼ k2 ¼ 0:6; k3 ¼ 10 are selected to satisfy condition Eq.
(56).

Figs. 6–8 show the time history of attitude consensus error,

attitude stabilization error, angular velocity and control torque
of each spacecraft on SO 3ð Þ under the proposed controller Eq.
(47) with three modeling methods of the stochastic links fail-

ure, respectively. It is observed that the proposed controller
Eq. (47) can realize attitude consensus and attitude stabiliza-
tion control of the MSS under different modeling methods

of the stochastic links failure. When the stochastic links failure
does not change at the same time (Case 1), the complexity of
the control problem increases. On one hand, both the attitude
consensus convergence speed and attitude stabilization conver-

gence speed are slower than those when the stochastic links
failure changes at the same time (Case 2), or those without
stochastic links failure (Case 3). On the other hand, the conver-
t systems on SO(3) with stochastic links failure, Chin J Aeronaut (2023), https://
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Fig. 6 Time history of attitude state of each spacecraft on SO 3ð Þ proposed controller Eq. (47), in which the stochastic links failure model

is constructed as Case 1.

Fig. 7 Time history of attitude state of each spacecraft on SO 3ð Þ under proposed controller Eq. (47) in Case 2.

Fig. 8 Time history of attitude state of each spacecraft on SO 3ð Þ under proposed controller Eq. (47) in Case 3.

Table 2 Comparison of three stochastic links failure modeling methods.

Consensus Steady-state Wc;i Stabilization Steady-state Ws;i Angular velocity Steady-state kXik (�/s)

Case No. 500 s 750 s 500 s 750 s 500 s 750 s

Case1 2:8� 10�5 8� 10�7 1:8� 10�4 3� 10�6 0:025 5� 10�3

Case2 1:2� 10�5 1:5� 10�7 8:5� 10�4 4� 10�7 0:02 2� 10�3

Case3 1:6� 10�6 2:3� 10�9 1� 10�5 2� 10�8 3:5� 10�3 1:5� 10�4
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gence accuracy is lower than that of the other two stochastic
links failure modeling methods, and more detailed comparison

is shown in Table 2. It is considered that the stochastic links
failure will delay the time of attitude convergence and cause
the jump fluctuation of controller output.

In addition, it is noted that the stochastic links failure
model of Situation 1 of the previous subsection is constructed
to occur at each sampling time (Tstep ¼ 0:02 s), resulting in

high-frequency oscillation of control torque (cf. Fig. 3(d))
due to the frequent link failures. This is an extreme situation

in actual space missions, and may occur rarely. In real MSS,

Un
Please cite this article in press as: KANG Z et al. Attitude control of multi-spacecraf
doi.org/10.1016/j.cja.2023.12.019
the stochastic links failure modes in Case 1 and Case 2 of this
subsection may be more practical, and the high-frequency

oscillation of the control torque in Fig. 3(d) can be avoided,
as shown in Fig. 3(d) and Fig. 7(d).

7. Conclusions

In this paper, an attitude controller of the leader–follower
multi-spacecraft system on SO 3ð Þ is proposed to realize atti-

tude consensus and attitude stabilization under the stochastic
links failure and actuator saturation. It is suitable for the
t systems on SO(3) with stochastic links failure, Chin J Aeronaut (2023), https://
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multi-spacecraft system in a directed topology link and with a
static virtual leader.

The main conclusions are drawn as follows:

(1) The proposed multi-spacecraft system attitude error
model is based on SO 3ð Þ and considers that the attitude

error on SO 3ð Þ cannot be defined based on algebraic
subtraction.

(2) Despite the stochastic connectivity of the communica-

tion links, the proposed controller can achieve attitude
consensus and attitude stabilization at the same time
by leveraging the super-martingale convergence theory.

(3) Simulation results demonstrate the efficiency of the pro-

posed attitude controller. The results show that the pro-
posed controller for the multi-spacecraft system on
SO 3ð Þ can avoid the fuzziness of the unit-quaternion,

and can realize attitude consensus and attitude stabiliza-
tion control of the multi-spacecraft system under differ-
ent modeling methods of stochastic links failure.

In future works, the attitude control of multi-spacecraft
system under the stochastic failure of communication link

and the change of communication topology will be explored.
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