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Transient Free-Surface Hydrodynamics Using Rational
Approximation of the Green's Function

Christopher J. Damarenl

Rational approximations in the frequency domain are developed for the source function of lin-
ear free-surface hydrodynamics using the recently uncovered fourth-order ordinary differential
equation (ODE) satisfied by the time-domain source function. The radiation problem for a float-
ing body in deep water is formulated using a source plus wave-free potential expansion for the
fluid. The inherent rational dependence on frequency of the wave-free potentials as well as the
source approximation are used to develop a system of constant-coefficient ODE's for the radia-
tion impedance which can be used to develop the motion of the body in a simple manner. The
technique is applied to the heaving motion of a floating sphere with good results. The application
to more general body geometries is explored by formulating the frequency-domain problem using
the variational principle of Chen and Mei and exploiting its polynomial dependence on frequency.

Introduction
Tnrs p¡,poR considers the small motions of a body that floats

on the surface of an infinitely deep ocean of infinite extent in the
presence of small-amplitude surface waves. The fluid medium is
incompressible, of constant density, inviscid, and irrotational.
The ultimate goal is the determination of a finite-dimensional,
linear time-invariant (LTI) representation for the mapping from
(transient) wave motion to body motion. This can form a basis
for simulation and is a necessary prelude to control system
design. This work considers only the radiation problem, and the
body and fluid motion are assumed to be driven by appropriate
initial conditions.

John (1950) studied the problem in the frequency domain
in terms of steady-state time-harmonic solutions and Cum-
mins (1962) and Wehausen (1967,1971) noted the connection
to time.domain transient solutions. The latter author noted
that inverse Fourier transformation of time-harmonic solutions
was but one possibility and showed that the problem could be
formulated directly in the time domain using a time-varying
transient Greents function. These functions are known from
the work of Finkelstein (1957) and have been used by Yeung
(1982), Newman (1985), Beck & Liapis (1987), and Pot & Jami
(1991) who studied the radiation problem for various cylinders
and spheres. Beck & Magee (1990) presented transient calcula-
tions for a realistic ship section and discussed the computation
of the Green's function.

Ursell (1964) and Maskell & Ursell (1970) studied the tran-
sient motion of a two-dimensional cylinder and the properties
of the added mass and damping coefficients were used to in-
fer asymptotic properties of the temporal solution. The full
solution was obtained numerically using inverse Fourier trans-
formation.
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The key ideas used here are the relationship between the
transient and time-harmonic problems furnished by the Fourier
transformation and the recognition that linear, constant-coeffi-
cient ordinary difierential equations (ODE's) in the time do-
main correspond to rational dependence on the frequency vari-
able in the frequency domain. This motivates the use of a far-
field expansion using wave-free potentials and source terms lo-
cated at the origin of the coordinate system. Such expansions
were pioneered by Ursell (19a9) in two dimensions. The wave-
free potentials exhibit polynomial dependence on wave number
I{, hence frequency in the deep water case.

The recent work of Clément (1998) uncovered a linear fourth-
order time-va¡ying ODE whose solution yields the time.domain
source function. The simple form of this ODE is used here to
generate sufficiently accurate rational approximations to the
source function in the frequency domain. \Mith this in hand,
multiplication by a source function (or its spatial derivatives)
in the frequency domain yields convolution operators in the
time domain whose action can be obtained as the t'output" of
a system of linear constant-coeffi.cient ODE's corresponding to
the rational approximation.

The effectiveness of the expansion is gaged by applying it to
the entire radiation field exterior to a heaving hemisphere. This
follows directly from the work of Barakat (1962) and Hulme
(1982) who used such an expansion to solve the problem on a
frequency-by-frequency basis. \Me use it to obtain a set offirst-
order ODE's that are forced by the heave velocity and an ap-
propriate output yields the hydrodynamic pressure force. These
must be coupled to the body motion equation to develop the
complete statement of the transient hydrodynamics of a float-
ing body. With this single set of equations, it is demonstrated
that the added mass and damping coefficients can be reliably
derived over a large range of frequencies as well as yielding the
transient motion of the body.

The extension of the approach to more general body geome-
tries is handled by formulating the frequency domain prob-
lem using the variational principle of Chen & Mei (i974) (Mei
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1989). This is a flexible approach wherein an inner solution-
inside a hemisphere enclosing the wetted portion of the body

-can be expanded using finite elements to handle complex ge-

ometries. F\rrthermore, contributions to the motion equations
from this region exhibit polynomial dependence on K given
the form of the variational principle. For the outer region, we
propose the use of the wave-free potentials plus source terms
approximated according to the scheme of the paper. This outer
solution satisfies all of the requirements of the field problem
and is neatly matched along with its normal derivative to the
inner solution along the hemispherical boundary. The resulting
equations in the time domain for the expansion coefficients will
be of the required form. Nestegard & Sclavounos (1984) used
such an expansion in two dimensions in the frequency domain
to model the far field.

Yu & Falnes (1995) were motivated by the same goal of a
state-space representation for the radiation map from body ve-
locity to hydrodynamic force. Their technique required the so-
lution of the boundary value problem at several frequencies
to obtain the added mass and damping coefficients. The corre-
sponding impulse response was obtained by (numerical) inverse
Fourier transformation and "fitted" with an LTI system. In pre-
vious work (Damaren 1997,1999), we used a similar approach
but the radiation impedance was fitted in the frequency domain
with specially chosen rational analytic functions.

The advantages of the approach used here are myriad. The
transformation from frequency to time domain is performed an-
alytically. The computational effort is roughly that of the fre-
quency domain problem for a single frequency. The convolution
operators characteristic of approaches using the time-domain
Green's function are avoided as are the accompanying com-
puter memory requirements, Green's function evaluations, and
the time-stepping nature of the solution. Given the standard
first-order form of the combined body and "radiation" equa-
tions, the solution of the initial value problem is obtainable
in terms of a matrix exponential. Since the radiation poten-
tials and their spatial derivatives a.re readily available on the
body, it is anticipated that the diffraction forces due to an inci-
dent wave field can be obtained using the transient form ofthe
Haskind relations (Wehausen 1967, Mei 1989). Most important
of all, is the embedding of the problem within the framework of
linear system theory. This opens the door to exploiting many
standard tools for model order reduction and the formulation of
control problems for dealing with stationkeeping and vibration
suppression.

Tbansient hydrodynamics for a floating body

The small displacements of a floating body 6 will be de.
scribed by w(r,ú) - l-t -z tr.,3]T where r : [o y z]r. The
z-axis is vertically upwards and the origin of the coordinate
system lies in the undisturbed free surface. The external forces
acting on B are given by f(r, ú). A spatial discretization of the
form 

,u

w(r,ú): )ìr.(r)u.(t) (1)

a:l

is employed and included in the la are the six rigid-body mo-
tions. The corresponding (generalized) forces are given by

/,(¿) â frþ¿v e)
Jn

Let n(r) denote the components of the outward normal to the

wetted portion of B, S, and define to(") A n?Io.

The motion of the fluid in V : {z I 0\6} is governed by the
velocity potential Õ(r,t) which satisfies

v2@:0, r€l/;
a2o arÞ

aF:-9a"' re¡;
âC, ôIim +-" (3)

where .F : ,r":-;;í 0"""*, the free surface and s is the
acceleration due to gravity. On the surface of the body,

* :v*(r,ú) ê r,t* : Ë,r*(")r', r € ^9 (4)on a:r
In addition, Õ is bounded everywhere in the fluid as are its first

.A/õ
derivatives as r 3 t/r'+U2 - æ. As we are only concerned
with the free radiation problem here, the problem statement is
completed by specifying appropriate initial conditions. We take
@(r,0) - 0 in V, 0ø(r,0)/õt:0 on .F', and assume that us(0)
and úo(0) are given.

Using Bernoulli's equation, the (linearized) component of

"f.(¿) in (2) stemming from fluid forces is

Î.ft¡ : t^(r# + ps") nad's : Ín.þ) -f x",.puB1t¡
/s \ ø¿ p_-t

(5)
Here, p is the fluid density and K 

",oB 
are the hydrostatic restor-

ing coefficients; see Newman (1977) for the rigid-body case. The
radiation forces satisfy

rn (t):, lrlff""l as (6)

The problem is to now obtain the subsequent motion of the
body for ú ) 0 given equations (3)-(6) augmented by the body
motion equations and the initial conditions.

It is helpful to consider the frequency domain formulation of
the transienü problem and the relationship between them. The
Laplace transform of iÞ is defined by

fæ
l{o(r,t)} : õ(",") : / e-"tÞ(r,t)dt, iRe{s} > 0

Jo

a notation used throughout. The corresponding Fourier trans-
form will also be used and is designated .F{A(r, ¿)} : iÞ(r,i,.,).
In the absence of a.rguments, say Õ, the Fourier transform is
intended. Tlansformation of the bounda.ry value problem in (5)
leads to

v2õ r €V;

r€f';

N
aõ
0" - Ín - ln.G)l'' (8)

a:1

This statement of the problem is formally equivalent to assum-

ing time-harmonic dependence of the form iÞ(r, ¿) : õ(", jr) x

"jtt.In this light, õ must also satisfy an outgoing radiation
conditionarir+oo.

0,

*: xõ,
oz

lim *:o (7)
z--æ Oz

where -I( : 12 /g and the boundary condition on the body can
be written as
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The potential can be obtained as a solution to a Fledholm and taking the Fourier transform gives
integral equation of the form N

(€)¿sc

: I ne,e,iù99#iÐ¿s, (e)
Js dne

where f(r, ( ; j.,,) is the Green's function which satisfies
Laplace's equation and the free surface, bottom, and radiation
conditions (Thorne 1953). Leitine €: [€ q e]7,

- 2r6G, j,,ù + f s on€

* [- Íl !.oQ+Ç) Js(rcrç) dn
Jo K- t\

: { - # *' l"* ,:u'oQ+Ò ¡o1o"¡ ¿o

(10)

where rt : (r - €)2 + (a - rù', R? : r? + (z - O2, and.

R? : ,? * Q * ç)2. rfre integration in (10) passes above the
pole at rc: K in order to satis$r the radiation condition.

Taking the inverse Fourier transform of (9) yields the tran-
sient form of the boundary value problem:

- 2tril(r,t) * 
lr" l rwþPrÞ(€, ") 

d,s ¿ d,r

: 
I,',lree,(;t-¡ul!*") d,sqd,r (11)

l+ - +,1 'n,
,, 

lo* "nQ*e) 
¡o7^rq),/slsin(t\/ll) d.n H(t)

f *.: -\É.uç¡'¡l'u,
a:1

É.pUù + -¡,p Is(tu".) os (15)

*here ÉoB are the matrix elements of what shall be termed
the radiation impedance. Their real and imaginary parts may
be related to the added damping and mass coefficients, respec-
tively.

The goal here is a formulation in the frequency domain which
yields an approximationto HoB exhibiting rational dependence
on frequency. This allows the radiation map to be realized
as a linear system of constant-coefficient difierential equations
forced by the body velocities úp(f) with the radiation forces
la.(t) corresponding to appropriate outputs. In previous pa-
pers (Damaren 1997,1999), this was accomplished by fitting val-
rcs H.B(ju) with rational functions of s exhibiting key prop-
erties, namely anal¡'ticity in the right half-plane coupled with
nonnegativity of the added damping coefficient. The drawback
of that approach is the need to solve the boundary value prob-
lem in (9) at many frequencies for each mode r¿a.

In the present worþ we seek to analyticallg construct a ra-
tional description of H.B(ju) A necessary step en route is the
development of a similar representation for the Green's func-
tion Ç. This will permit temporal convolutions such as those
occurring in (11) to be replaced with the solution of a sys-
tem of nonhomogeneotrc constant-coeffic'i,ent ODE's. A poten-
tial source of confusion arises since the rational approximation
of.Ç$,{;s) is obtained in the next section using a time-uarying
ODE satisfied by (the memory portion of) 9(r, {; ú).

Rational approximation of the Green's function
The Green's function in equation (12) can be decomposed

into memoryless and memory portions by writing

e(r,{;t): [+ - +t] ,n,r G(r,{;ú)

where G(r,{;ú) denotes the integral in (12). Correspondingly,
G(r,f;ja) is the integral in (10). Note that if { - 0, a spe-

cial case to be considered in detail later, Gs(r, ú) ê G(r, O;¿) :
9(r,O;t) since r?6 - Âr. Clément (1998) has shown that
G(",€;ú) and its spatial derivatives satisfy linear time-va.rying
fourth-order equations of the following form:

on# * o"tlrl * ror* urî\# * o,tff +'e,o r: 0 (16)

with

¡,(o) = ffiro, =0, ff{Ð: ",, ffiror: ",(17)

For .F(f) : ê(",€; Ð 2 JWEG(r,{iî1/ffi) (rhe spatial
dependence is momenta¡ily dropped for convenience), the "con-
stants" A¿, B¿ are given by

A4 : Lr- AB : lt, Az : 4Lt, Ã, : !,4'
70

At : í, Ao : i, Bt:2p, Bs :2 - 6t"2

where ¡r : -(z + ÖlP.a and ftr was defined after equation
(10). Note that the nondimensionalized function ô depends
(spatially) only on p. The corresponding expressions for the

aõ9,1;¡,¡

1

R,
A

E;iuG(r

where

Ç(r,{it) =

(t2)

Here, ó(ú) is the Dirac delta function and ff(ú) is the Heaviside
step function. It is readily verified that the Fourier transform of
this expression is given by (10), although 9(r,Q;t - r) is more
commonly introduced as the time-varying potential due to an
impulsive source at t : r and r - {. Given the linea¡ nature
of the problem, the surface S may be taken as that of the fixed
equilibrium position in (9) and (11).

In the absence of incident waves, Õ can be further decom-
posed as

N
o: t óo*iro;

o:1
olo:noõ(t), r€S (13)
0n

where_(*) denotes temporal convolution. It is readily verified
that {o satisfies (9) with ôö./0n : lze oD .9. Correspond-
ingl¡ {a(r,ú) satisfies (11) which has the advantage of being
independent of the body motion. F\¡rther decompositions into
memoryless and memory portions are possible along the lines
of Cummins (1962) and Wehausen (1967) as used by Beck &
Liapis (1987).

The radiation forces in (6) upon substitution of (13) satisfy

N

n -- oþl,l*(op*t'o)n'f as (14)

JUNE 1999 JOURNAL OF SHIP RESEARCH 97



A¿, B¿ when F : RþelAr or F : RþGl0z, can be found in
Clément (1998).

Taking the Laplace transform of (16) while using the initial
conditions in (17) gives

y"2F" þ¡ * (És"3 + B1s).ñ'(s) I (aasa + azrz + o6)ñ(s)

: õzs2 + 6o (18)

where

1z: A2'

þt:4Az - At'
þs: -As'
(xo:Ao-AtÍ2Az'
a2: A2 - 3Az'

a4: A4'

õo: (A2 - Az)Bt I A+Bs,

õz: AqBt

We seek a rational approximation ot.ñ(s) satisfying (18) while

noting that ñ(s) is analytic in -Re{s} > 0. It is tempting to
seek a power series solution in s but this converges in disk-like
regions which is inconsistent with the behavior of F in the half-
plane. This can be remedied by using the bilinear transforma-
tion s : (7-z)/(I+z) and its inverse 7: (l-s)l(1*s) which
isomorphically maps the open right half of the s-plane onto the
open unit disk lzl < 1. (Hopefully no confusion will arise be-
tween the complex variable z and the spatial depth variable
which has been implicitly absorbed into -R1 and ¡.r') Writing
î1r¡: Ft(r - )lQ+z)1, and transforming (18) vields

",t2(z - t)2 (z + ¡6 î" çz¡

-t 2[12(z - t)2 (, + r)5 + 0z(" - r)3(z + r)3

+ þ{z - r)(z + t¡6]jî'12¡

i-  fc"a(z - r)n + o,2(z - t)2(z + r)2 + ao/ + l4lî12¡
: 4(z t t)2[õ2(z - r)' + õo(z + r)21 (19)

where (.)/ now refers to differentiation with respect to z.

Since .F(z) is a bounded analytic function in the unit disk' it
permits a representation in terms of the uniformly convergent
power series 

N

î1r¡: *h1;lho", (20)

i:0
where the {ir.¿} are known as the Hankel coefficients' Substitut-
ing this into (19) and matching powers of z yields an infinite
system of linear equations for the {h¿} which can be truncated

at N : 2r¿. A rational approximation to F(s) is then obtained
by letting z: (t - s)/(t + s) in (20).

Alternatively, state-space manipulations are possible. Letting

2n

îe) : ho + L(z-L), L(") 4Dh"'-' (21)

i.:L

Kailath (1980) shows that

where a? ê lor . . .onl,br 4 [rr . . .b'] are obtained from La :
-h, b: Tã, and

L-

T_

0

1

-a,I
1

0

0

[ör "'
[10 '

ht
hz

h,,hz

hz hn+I

hzn-'t-hn hnll
h1 o

hz ht 0

hn

hr - lhn+t
-Ta :lI al

hn-I

hn+2

0

ht

hznl,

an-Ll

0

10

(23)

A state-space representation of h6 + L(z) can be written in the
companion form

ho -f L(z) : cTQt - A¿)-Ll>¿ + d.a Q4)

where
O,2 -o'n- -An

,A¿

0

0

0

0

0

bnl,

ol,

d¿: ho

The s-domain Green's function ñ1t¡ "r" 
then be obtained as

.ñ1,¡ : F (H) : ho t, (i=) : cr(s1 - A)-1b + d
(26)

where

A: (A¿ - 1)(A¿ + 1)-1,
b: bd,

.' : "T(t+ A¿)-1(r - n¡,
d,: d,¿ - "l(1 * 

A¿)-1b¿

Since, .ñ(s) is strictly proper, i.e., lims-æ F(") 
= 

0, d should
vanish wiich provides a check on the numerical procedure.
At this point the (nondimensionalized) memoryless portion of

õ(", €; ") 
in (10) could be incorporated by setting d = Rt (Rit -

R,r)i FUu) can then be identified with Riõ(r,€;jø) in (10).
Túe mä¡or advantage of (25) lies in its time'domain tealiza.

tion. Consider /(s) : ,ñ1"¡71"¡, which mimics the form of the
spatial integrand on the right-hand side of (9). Then'

r.î
a(ù: I F(î-r)q(r)d.r

Jo

: ."*(Ð + d4(Ð, x : Ax + uq(Ð (26)

Hence the convolution, which mirrors that in the spatial inte-
grand of the right-hand side of (11), can be evaluated for frxed

(",€) by solving (26). Note that tr.(f is the impulse response,

i."., u(Ð when q(f : ô(Ð which can olving

x : Ax with x(0) : b leading to g d'õ(ù.
It is worthy of note that Clément ( repre-
senting the mapping from q to gr in (26) using nonhomogeneous
ODE's with time-varying coefficients. Such an approach must
necessarily yield a time-varying convolution operator which is

T
c¿

bT

Dbo"^-n

n

i:7

øàznt
i:L

zn+
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at odds with the known time-invariant nature of the convolu-
tion as required by its origins as multiplication in the frequency
domain. This latter fact must remain in spite of f(f being the
exact solution of a time-varying ODE.

Source plus wave-free potential expansion for Q

The above shows how temporal convolutions involving the
Green's function can be approximated by a system of first-order
constant-coefficient ODE's. In principle, this can be applied to
the solution of (11) but this requires many such systems cor-
responding to several points on the body. As an alternative,
we suggest the use of an expansion for Q consisting of a dis-
crete source(s) at the origin and a series ofwave-free potentials
(Barakat 1962). A spherical coordinate system will be used from
here on with

,:RJl-tr.o"ó
a:RJt-tt'"inÓ

rhis denn*io" .,, :. ;:l",', -å;:î:,"¿ p.",,io,,, rv *L?
€:0.

In the reduced case of a heaving body exhibiting vertical
axisymmetry, Hulme (1982) notes that iÞ can be expanded as

õ1r, ¡r¡ : o2 õo(r, ir)lo(ir) + il.{r, ia)l.Ua) (28)
N:L

where

r" : l##Pz^-{t") + fiqer^fu)f o"*+" (2e)

are axisymmetric wave-free potentials, Pn(¡") are Legendre

polynomials, ãs1r,¡r¡ ê õ(",O;jo;) is the Green's function
for asource at the origin,ln(ju),n:O,1,2,..., a.re unknown
"source strengths,tt and ¿ is a reference dimension. The time'
domain equivalent of (28) is

iÞ(r,t) : ¿2 G s (r, t - r) qs (r) d,r I w ave-free potential terms

(30)
which has the advantage of a single convolution for given r and
the wave-free terms involve linear combinations of qr(t) and
q'(ú) given the affi.ne dependence of the /' on K : -(jr)2 /s.

The source strengths in (28) [or (30)] must be selected to
yield the boundary condition in (8) [or (a)] and (30) must be
substituted into (6) to yield the hydrodynamic forces. In the
next section, these operations are shown to give rise to more
general expressions of the form

t-' { [ tr(r)õ6(r, s)õo(s) ds]L/s "'' """ )

= f I ur(r)G¡(r, ú - r) d,S qs(r) d.r (31)
J, J'

for given spatial weightings u(r). What is needed is an LTI sys-
tem whose impulse response is /, to(r)Gs(r, t) dS. Its Laplace

transform is J, u(r)õ6(r, s) dS. In terms of. z, (20) may be used
to write

N

îft, z) : aõolr,(r - z)l( t z)l :,ulL t h¿e)z¿ (32)
0

Given the uniformly convergent nature of the series, this gives

[^N

/ -1"¡,Ê1", z)d,S:,l15f r,ro, to: l, u(r)h¿(r) d,S

(33)

It is proposed to evaluate the spatial integration by Gauss-
Legendre quadrature. Therefore, the Hankel parameters {ñ,¿}
are evaluated for a discrete set ofpoints on ,S, r: rj, and the
integration performed as a weighted sum of the ft,¿ evaluated at
these points thus yielding the effective parameters {fI¿}. These
can then be subjected to the operations in equations (21)-(25),
resulting in effective (4, b, c) matrices; the convolution in (31)
can then be obtained (in nondimensionalized form) as the so-
lution of (26).

The ability to do spatially weighted convolutions in this man-
ner is another reason for working in the a-plane. The linear
nature of the dependence on the ä¿ in (32) is heavily exploited
when spatially superimposing them in (33). This would not be
possible if one worked directly with a rational expression in the
s-plane. We shall also require F(") 

"o.tesponding 
to f'(f :

"aàs¡an where õGs/ôR: Jr - t"2aào¡y - pt\Go/02. The

{å,¿} can be obtained for a)Gsf 0r and aðGsf õz and the lin-
ear combination constructed. Spatial integrations can be dealt
with in the manner given above.

Nurnerical examples

Here, we take { : O and r is selected according to (27)
with -R : Rr : a for various values of þ : cos9. The be-

havior of F1¡r¡ : "71¡rt - A)-1u generated by (25) was
computed and the real and imaginary parts compared with
those of aGs(r, ju). The latter were determined using the al-
gorithms presented by Newman (1984) for evaluating (10). The
impulse response corresponding to (26) was also calculated and

compa.red with ôs(r, f , which was obtained by integrating (16)
using the initial conditions in (17). In both cases, a fourth-order
Runge-Kutta technique was used with a step-size of Af : 0.05.
The óonvolution in (ã6) was tested for q(f : sin f. This was ob-
tained using the same Runge-Kutta integration and compared

Ge(r,jô)) vs. K¿

6z.o

€r.o
o

'90.00)

E-r.o
(J

-'exact'rational approx.

-20
0 4 812

Ka
16 20

& Gs(r,jô)) vs. Ka
1

.3'l 00

3-r.oó
r(5

E-ro\
o-go

0 4 812
Ka

16 20

Ge(",f .'s. f
2.0

61.5

€totu 
o.s

0.0

-0.5
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time

20 25

ôo
.* ,5.0

'ã o.o

å,0
Ji 2.0

(r, i) * sinf vs. f

(u 1.0

0.0

-1.0

05 10 15
time

20 25

Fig. I Rational approximation of G¡ vs. exact solut¡on (p : 0.9)

1",
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aRe{Gs(r, jô)} vs. llo

- 
¡exacf

---- rational approx.

3.0

12.0(al

ìto
ü 0.0

i-t.o
E
c'2.0

-3.0
20f6812

Ka
40

õ01.,1a¡1 vs. Ka

å 1.0
<l.É, 0.0

Ji..o
o

'9r.0
È -3.0

o 
-4.0

0 4 12 16 20
Ka

Fig. 2 Rational approximation of õo vs. exact solution 1, : 0.5)

with the result of convolving the "exact" solution of (16) with
q(f) using the trapezoidal rule with the same step-size.

The results of these calculations are presented in Figs. 1-3
lor p, :0.9, l-r - 0'5, and p :0.t, respectively. It is clear that
excellent agreement is furnished by the rational approximation
(n: 20) and corresponding ODE's lor p, - 0.9 and p : 0.5. As
the free surface is approached (¡, - 0), the accuracy decreases

for a given value of n. However, a good fit to G¡ is obtained in
the range O 1 Ka ( 10 for þ :0.1 and the convolution at unit
frequency is quite accurate. Notice the large error near Ka: L4

which can be attributed to an s-plane pole that is close to the
imagina.ry axis. This pole corresponds to the frequency of the
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steady-state oscillation in the graph of the impulse response'
Removing the pole created noticeable errors at low frequency.
Similar behavior to that above for the Green's function was
observed for approximations of a2ÔõolïR and the results for

þ:0.5 (n: 14) are shown in Fig' 4'

In Fig. 5, the dependence of the errors lpjr) - øGsl and

IFUù - o2 aõs ¡anl on n. are shown as a function of frequency
for the corresponding cases in Figs. 1-4. The error is monoton-
ically decreasing with n' at each frequency until about n:15.
Thereafiber, an improvement in accuracy at high frequencies ap-
pears to occur at the expense of accuracy in the low frequency
region. This can be attributed to the fact that as kr + oo,
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(w : Po)

aõ s e, j u) - -2tr j ka exp(t 
") 1/ z / @ nr) exp [-j (kr -rr/a)] with

z : -alr and r : o1/t - ¡"', which stems from the asymptotic
approximation of the Hankel function. This is evidently difficult
to approximate with rational functions especially a,s p + 0. The
exact form oî. aês(r, jlr) when p:0 is discussed by Clément
(1998) and Beck & Magee (1990). The graph given here for
þ : 0.L and r¿ : 20 represents the case where the offending
pole noted above has been removed.

The graphs analogous to Fig. 1 are shown in Fig. 6 for
the weighted convolution in (31) when u(r) : Po(p) : 1

a

Â*
olu

q
q)q
È

l] GoPrdp.l vs. Kø

-'exact'---- rational approx.
I

-1

-2

0 20l6I 12
Ka

4

.ß ôo(', î)pr1ò dp. vs. î
1

\J

Ài

¡r
a(u

0

-1

0510152025
time

f ôoPl d¡r * sinf vs. f
É
Ø

3

,(
2

"13

3f

io
-1

0 5 1015
lime

20 25

Fig. 7 Spatially weighted rational approximation vs. exact solution
(w: P1)

(dS : d,¡.t). The approximate system was obtained using (33)
with a 48-point Gauss-Legendre rule and truncated so that
r¿ : 15. The exact solutions were obtained by applying the
same quadratule scheme to the "exact" time-domain solutions
obtained at the required spatial locations. Similar results are
shown in Fig. 7 for u;(r) : h(t") : ¡.r,. As expected, the smaller
weighting near the free surface improves the accuracy.

It should be noted that Gs(r,s) is analytic in Re{s} > 0

given the causal nature of tLe corresponding time function.
Naturally, its approximation F(s) as given by (25) should also
have this property. This is equivalent to the requirement that
the eigenvalues of A have negative real parts. Experience has
shown that the algorithm of the previous section generates
some eigenvalues with positive real parts but they correspond
to modes of (25) that have very poor observability and/or con-
trollability (Kailath 1980). Hence, they do not affect the overall
input-output relationship between q and y in (26) and can be
discarded. This is done through eigendecomposition of A fol-
lowed by removal of the offending eigenvalues and eigenvectors
prior to reconstructing A. The values of the approximation or-
der (n) given above reflect this removal.

Example: The heaving hemisphere

As a direct application ofthese results, consider the free heav-
ing motion, u(t), of a half-submerged sphere of radius o. The
motion equation cònsistent with (5) is

2 sd2
ipra -: - -psno2u(t) + /Ã(4 (34)

Letting V(t) : duf dt, the essential goal is the det-ermination
of a system of equations relating V(ú) to -f n(t) that are anal-
ogous in form to those in (26) relating q to g.

The frequency domain problem in the guise of steady-state
harmonic motions has been formulated by Hulme (1982). The
Fourier transform of the velocity potential satisfies (7) and a
radiation condition as r + oo and can be expressed according
to (28). It is helpful to realize t]nat F-L{aõsG, ju)Çs(ju)} :
êo(", Ð x qs(i) where .F-1 is the (dimensional) inverse Fourier

transform and û : 4 s /a. The following convolution operators
will be required:

", 
! ft pr (p)ôo I dt" * qo(Ð,

Jo tR:a

,o+ Io "*l^-_,au*rctÐ

o^t I, aPzn-t(tò*1":" dt"*so(Ð,

(35)

(36)

n: Lr2r3,

(37)

which are realized using the technique of the previous section

zt: cTxt, xt: Ãtxt * brqo (38)
Tgo : có x0, xO : AOxO f boqo (39)
Tln: cixnt *n: Anxn f bnÇg, n': I,2,3' "' (40)

where (') will refer to the nondimensional time derivative
dO/dî. The last of these is concisely written as

la: Caxat xa : A¿xo lt:.aQl (41)

where yo : col{grr}, x¿ : col{xr¿}, Co : diag{c[], Ao :
diag{A'}, and b¿ : col{b'}.

am{f G¡\ dp,\ vs. K
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On the body, the boundary equation in (8) is

aiÞ : -V(rø)&(cosd)AR R:A

where Î :X/^/ag,î =Vllas

Substitution of (28) into the body condition (42) and integra-
tion with respect to ¡r from 0 to 1 gives

-îtr,,l: l,' **dt"to(i,)- f ,or. ,zn-rtn(iu)

where the series (28) has been truncated at .òy'p terms u.rrd(nt)

In^ P*At)P^(tL,) dp,

Analytical expressions for these integrals are given in (Hulme
1e82).

Tlansforming (43) into the time domain while noting (36)
and (39) gives

-lvfA: cf,xo + dã'ti(Ð G4)2

where q : col{q'}, dl : ro*{10 ,zn-r}. Now, multiply the
result of substituting (28) into @2) by Pzn-t(t") and integrate
from 0 to 1:

-l lrn-r,r. : [^' o' Prn-tfu)ffi a¡"Vo
Jo

NP

- Ðl*l@a)Izn-t,z*-t-l (2m -l r)I2n-t''*1
m:7

tansforming to the time domain, we have

M<il Kq+ C¿x¿ :bpv(t) (45)

where Mn¡, : I2n-L,2m-L, Knm: -(2m-11)I2n-r,2mt bpn :
-I2n-L,r, and (41) has been used to describe (37) for n. :
1 "'Np.

It is'desirable to write (45) in conjunction with (38)-(a0) in
a,n equivalent first-order form. Defining X : col{q,q,X0,X1r
xoÌ,

X : 
"4oX t ßoqo l BtV (46)

where
Bo : col{0, O, bs, b1, bo}

É|r : col{M-lbp,0,0, o, o}

and the entries in .r4o are readily inferred from the original
ODE's.

The challenge is to now eliminate the unknown source
strength g0 using (44) and (45). Differentiating (45) with re-

spect to time, solving for q(3), while using (41) for x¿, and
substituting into the derivative of (44), while using (39) for xs'
and then solving for gs gives

qo(Ð : Qox(Ð + QLv(Ð (47)
where

Q6 A z¡ lrow1aflu-1x, o, -cflAs, o, df,M-1coAo)

qr! "o'?T- af,vr-ruo1

,oa"fluo-dilM-rcobo
This can be used to eliminate q6 in (46):

Î : ¡Î+Boî +srî, "4! AorBoQo, Bo ! srQ,
(48)

The hydrodynamic pressure acting on the body is p :
-p(AA lAt) so that the total upward radiation force is

rn(t): -zno'e 
fo' 

E*ùruùo,

: -zno2 plglo ft ,rrçr¡ o,
Jo

Substituting the inverse Fourier transform of (28) while using
(35) and (38) gives

- (znpsas /B)-t/"(Ð

: h*rl" t' . Ð(- *"'-,tan *'h'''*(Ð)l

-î' : å l"r *'+ efo(s) +'lo]

where ef : row{-Izn- tl/Qn)), eT : row{Izn,1}. Now sub-

stitute 2i1 from (38) and q(3) f.ottt the derivative of (45), while
using (39) for x¿, to get:

-îo : 
3 tcox -t Doqo + DJIr n _ 

J6AL_:9.Pî*Wì (4e)

cM*
where

co : row{el - "fM-1K,0,0,õTÃ1, -"lvt-lco¡'"}
Do : (õlb1 -.TM-lCobo),Dt : e|M-rbp

The map ftom ? to -& is given bv (a8) and (49).

The occurrence of V in (48) can be eliminated. Taking
Laplace transforms gives

-"Î*(") : c(sL - -4)-'(sr+ sÉo)?(s) + u*î1r¡
(st-,4)-rB+D-lsM* Y(')

A-rì ã(s)v(s) (50)

where B 4 gt +.A&oand 2- : CBo.In the time domain this
is

-"Î"fO : cî(Ð +D*î(ù + M*î(Ð (51)

î: "¡lî.+øî (52)

which is the desired realization of the radiation impedance .ã(s)
orginally defined in (15). It is related to the standard frequency-
domain added damping and mass coefficients by

D(û): ne{Éç¡a¡¡¡a,
M(û): I1'L{ÉU'Ð}/,) (,t: \/Ka) (53)

In this light, D*/ôt and M- are equivalent to the high fre-
quency behavior of these coefficents; for the hemisphere M* :
0.5, 2æ : 0 which provides a check on the entire procedure.

The transient motion of the body can then be obtained by
combining (51) with the motion equation (34), i.e', in nondi
mensional form

î,:î, î:_|a+î^ (54)

where ô : u/a. By augmenting the state vector Î with ?
and û, one arrives at a first-order system of equations whose

(42)

'1,
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Fig. B Added-mass coefficients for a heaving hemisphere

solution can be expressed in terms of a matrix exponential given

the initial conditions A(0), ?(0), ana Î10;:0 for an initially
quiescent sea.

Nurnerical Results

Consider the use of ten wave-free potentials, 48-point Gauss-
Legendre quadrature in forming the coefficient" U/¿Ì required
to generate the convolution operators in equations (38)-(40)'
and a 12th order approximation to these operators. This yields

a state vector I in (52) ofdimension 109 after removing unsta-
ble eigenvalues and eigenvectors in "4. Like those in the previ-
ous section, these correspond to modes with poor controllabil-
ity and/or observability. The resulting values of Mæ and Dæ
were 0.5 (to numerical precision) and 4 x 10-17 respectively.
The resulting added mass and damping coefficients obtained
from (50) and (53) are given in Figs. 8 and 9. They are com-
pared with Hulme's results which were originally obtained by
using (28) on a frequency-by-frequency basis whereas ours are
obtained at all frequencies from the time-domain formulation.
The agreement is quite satisfactory.

Some comments are in order on the nature of the (neces-

sarily rational) approximation to .ã(s) ohtained in (50). Since

I/(s) is analytic for Re{s} ) 0 and Re{H(ju)} > 0, fl(s) is
a positive real (PR) function (Zemanian 1965) which is known
to be equivalent to the passivity of an LTI system, i.e., in the
present case

t; lR(t)tt(t) dt > 0, VT > 0

which states that radiation is a dissipative process. The radia-
tion impedance can be further written as

.ã1'¡:É,1"¡+'M*

tr Hulme (1982)

rational approx.

1.O 2.O
Ka

3.0 4.O

Fig. 9 Added-damping coefficients for a heaving hemisphere
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Fig. 10 Free decay of a heaving hemisphere (initial displacement)

wtrere ãr (s) continues to enjoy the PR property but it is strictly
proper.

Standard properties of rational PR functions can be found in
(Tao & Ioannou, 1988). It is interesting to note that all strictly
proper rational PR functions have necessarily relative degree
one so that rational approximations to the added damping and
mass coefficients satisfy D x u-3 and lM - M*l o r-2 *
ø + oo. This is at odds with known asymptotics for these
coeffi.cients but the discrepancy can be pushed to arbitrarily
high frequency by increasing the order of the approximation.
Although the added mass behavior is correct, Hulme has shown

that D o ,-8 for the hemisphere.
The low-frequency asymptotics are similarly mismatched.

The approximation satisfies 2 o< ø and

M - M* : rirn rmlÉ,(jùlrl + o(u2)

whereas the exact coefficients satisfy

M: M(o) - lfo"lrnKa t- o(Ka)

P =|rKa* O(Ka)2 (55)
4

Hence, neither the damping nor the added mass is of the correct
form.

The prediction for the free heave motions resulting from
û10¡ : 1, û(0) :0 and a(0) : o, û10; = 1 are shown in Figs.
L0 and 11, respectively. Good agreement with the theoretical
(and experimental) results of Beck & Liapis (1987) is in evi-
dence. As noted by Kotik & Lurye (1968), the asymptotic time
dependence is of the form 6fta. Our results necessarily exhibit
a decaying exponential envelope but the discrepancy can be
pushed to large enough values of time where it is not significant.
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F FF

B

F yield functions iÞ and iú that satisfy the field problem in con-
junction with the required matching. Here, -F is the portion of
,F inside .9. The advantage of this approach for our problem is
the polynomial dependence on K exhibited by the functional
in the interiol region V. It also allows more complicated body
geometries to be handled via finite element discretization of the
interior region while maintaining the simplicity of the exterior
solution.

The next step is substitution of the expansions (56) and (28)
into (57) followed by minimization with respect Lofi;,Çn, arrd

[s which yields the required frequency domain equations. In
particular, the first three terms in (57) become

s

-NrNiNl
r, :;t t l=Í,q, - @ùE?ltnñ¡ -Ðr¡t¡õ..

,¿:r j:t i:rFig. 12 Geometry for variational problem

AIso shown in Figs. L0 and 11 are the solutions of (54) with
(50) obtained by fitting a rational function .ã1"¡ *itit s : ju to
the accurate added mass and damping coeffi.cients provided by
Hulme (Damaren 1997,1999). The agreement between the two
transient solutions is quite good. An accurate fit in the range
O 1 Ka ( 10 was obtained using a lOth-order system. This is
considerably less than that obtained above (namel¡ 109) but
the fit is capable of sr¡pplying only /¿(f) whereas the former
can be used to obtain the entire radiation field on the body,
iÞ(r,f), r e ,S. It is expected that this will be quite useful in
addressing transient diffraction problems using the transient
form of the Haskind relations.

General formulation using a variational principle
Guided by the experience of the last section, it is proposed

that general radiation problems be handled by formulation in
the frequency domain followed by (analytical) inversion to the
time domain while capitalizing on rational frequency depen-
dence. This is the motivation for the use of the source plus
wave-free potential expansion. The latter exhibit polynomial
frequency dependence and the techniques of this paper provide
a method for dealing with the source terms.

For ease of exposition, consider the heaving motion of a gen-
eral axisymmetric floating body (Fig. I2). If the body is en-
closed by a hemisphere of radius a centered on the line of sym-
metry, whose surface is denoted by 5, then the potential func-
tion outside,9 (call this region V) can be described by (28).
Note that it satisfies the free surface, bottom, and radiation
conditions exactly as well as being harmonic in the fluid; fur-
thermore, it is eminently suited to the hemispherical geometry.

In the interior of the hemisphere, V, we propose to represent
iÞ(r' ú)17 - rI¡ by finite elements or more generally by

]V1

l1r,¡r¡:l',lu{,)ñili,) (56)

i:L
which is simply V : Ðn 

,,þ¿(r)rl¿(t) in the time domain. Notice
that the shape functions do not exhibit frequency dependence.
\il'hat is required is a technique for generating the motion equa-

tions for ilr, hence t}re fi¿, which is consistent with the field
problem, (7) and (8), and accomplishes matching of ú and its
normal derivative with that of the source plus wave-free po-
tential expansion on ,9. An elegant solution to this problem
has been furnished by Chen & Mei (1974) who showed that
stationary values of the functional

tftf
r(t,õ) : à Jrvt vú dv - ;K J_12 

as

"-' [ .þ¿rþ¡ dS
JF

f ,,Þnn. 
as

and we have used Í^ : nol.o from (4). Minimization of fi
with respect to fl¿ would give rise in the time domain to an
ODE similar in form to (45) with q replaced with 4 : col{rl¿}
and xo - O.

The last term in (57) yields expressions of the form

- | ,t,ffiot, ', lrn.ffiot, -r lr+nffias

where

where

ç(2) --ii -

T¿:

- )Go
9n aR

dS,

(58)

lnl^

(62)

(5e)

le'ffi*'
la
-a
2Iu,**-a2

2
a,

1

, t,
1 2

(60)

which will be multiplied by pairs selected fromfi¿,f,n, or ls and
summation over the indices n, m, and i has been omitted. Given
the axisymmetry, d,S :2ra2 d,¡-r with /, € [0, 1]. It is helpful to
rewrite the wave-free potentials in a form that makes explicit
the dependence on If:

ln(r,iu): s[o)(") - (xQsf)g) (61)

where the definitions of 9f0) uod gf,Ð ur.clea,r from (29).
The contributions to the functional from the first two terms

in (59) are

Nr Np

rz:Dt ['f:] - 6")rrÍ2)ft¡"
i:L n:l

1
No Nott [nt% - 26 ù 

^L\ 
+ 1x "¡'z 

tff)^)+
2

n:ln:I

rl(o) : -Lttu

n@-ro) 1Ånm -t

lr'ffi*''
l,('r'#.'o'w)dS

l,t*ds+ l_Go-t)#*
104 JUNE 1999
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In order to treat the source terms in (59) and (60), ii is

assumed that õ9 and its normal derivative are described on S
analogous to (32):

aãs¡, j",):l hc,¡G)"i,
J

o' *ú9{r, ir) 
: I h¡:,¡(r)zi, 

" 
: ffi (63)

j
where we have set s : ju in the definition of z to be consistent
with the use of the Fourier transform. In practice, the coeffi-
cients äç,¡ and å,¿,.7 will be calculated at discrete points r € 

^9.
Using u,'(r) : -1þi, the third term in (59) can be treated using
the technique of equations (32) and (33) to give

An obvious notation has been used where

ç(o) : matrix{ejr9)}

ñfi) : 
"ot1-ñ[1]], "t".

The coefficient matrix exhibits rational dependence on frequen-
cy given the polynomial dependence on Ka and the construc-
tion procedure used for each entry in the F(jø) matrices, i.e.,
each entry can be described as in (25) with s: j¿u.

Reusing the notation of the last section, assume that the

time domain realization of ñ$)ão in the first row of (67) follows
the pattern of equations (40) and (41). Then, inverse Fourier
transformation of this row gives

s(z) it(t) 1 a(o)rp¡ *r(z)q(r) +n(0)q(¿) * C"x"(r) : T¿"(¿)
(68)

where xo(f) satisfies (41). Simitar operations can be performed
on the second and third rows to furnish the remaining ODE's.
The resulting differential equations will involve the unknown
source strength So(¿) which must be eliminated. The hydro-
dynamic pressure follows from substituting Q(r,t) : llr from
the inverse Fourier transform of (56) into p : -p?Q/õt. Pro-
jection on the spatial description of the normal component of
each body motion yields the generalized hydrodynamic forces:

Ín(t): prr ftnft) (6e)

The resulting radiation impedance will be described by equa-
tions identical in form to those in (a9) and (50) for appropriate
state vector X.

F\uther challenges are posed by the fact that typically g(2)
above is not invertible (this is evident from its definition after
equation (58) where the integral defining its entries is only over
the free surface .F'). This cân be remedied by eliminating some
of lhe r¡¿ from the equations using the constraint formed by
(63) within the nullspace of E(2). The detailed implementation
of this is left for a future exposition. We note that more general
body geometries and motions can be handled by augmenting
the expansion for iÞ to include additional multipoles at the ori-
gin and a more complete set of wave-free potentials. However,
the basic features outlined here are left unchanged.

Concluding remarks
A systematic method for obtaining rational approximations

to the source function of linear free-surface hydrodynamics has
been presented. The approximations are analytical in cha¡ac-
ter, being obtained from the fourth-order ODE satisfied by the
Green's function, as opposed to interpolation of numerical eval-
uations of the source function. By working in the unit disk
(z-plane), the approximations took the form of a linear com-
bination of readily determined coefficients from which spatial
integrals of the source function could be determined which had
the same form.

It has been demonstrated how the rational approximations

"Is:I \- aS) ,¡Z2 nx'.1

N1

i:t
l¿lo

J

tt}),¡: - l-onno,i 
as (64)

The ensuing series in square brackets, after performing the op-
erations in equations (21)-(25) and setting s : ja, will be

denoted Ay Flo) lir), a notational pattern to be used through-
out.

The first two terms in (60), upon substitution of (61) and
(63), give

Ja D,rf),,"t - (Kù Hg),j,i + uf,),,,i
1Vpt
n:7

uH,¡

SnQo (65)

(66)

where

'u [-n9'n^,0t,2 JS

H9)Un'3 ;" I,W^c'¡d's' a 20

Collecting terms in powers of Ka. leads naturally to the def-
initions n9à^,¡ : H9,¡ + Hg), with corresponding series

,g¿,". The last term in (60) yields

J5 :;o Du",,"t
-J¿
qo

J
|"F.1¡,¡ffi

where the coefficients in the series a¡e obtained by multiplying
the two series in (63) and integrating the effective coefficients
over,9.

Forming J(ñ,ã,lo) : h t Jz ! Js * J+ .r_ Js and setting
aJlaÍf { ff)' : 0 leads to the system of equations

g(o) _ (Ka)eQ)
II(o)" - (Na¡tt(zlr
ñ$)'

¡(o) - (KùII(2)
A(o) - 2(Ka)A(2) ï(Ka)2tØ)
ñfà'- (Kqngy

äfl 6q'sL] lrl : rrr
"¡; 

'"- j Lõ'J

0 ol'l' (67)
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coupled with polynomial frequency dependence of the wave-
free potentials give rise to a system of a constant-coefficient
ODE's which describe the radiation impedance. By applying
this "multipole" expansion to the problem of the heaving hemi-
sphere, good results were obtained for relevant quantities in the
time and frequency domains.

'We have also shown how the approach can be extended to
more general body geometries using the variational principle of
Chen & Mei. This forms the basis for future work along with
the application to two-dimensional problems. The technique is
especially suitable in this case given the reduced spatial dimen-
sionality and the simple nature of the far-fi.eld expansion: one
source, one dipole, plus even and odd wave-free potentials. In
two dimensions, an ODE analogous to the fourth-order one un-
covered by Clément needs to be established. It is expected that
difiraction forces arising in the general problem of a floating
body in an incident wave field can be described using the tran-
sient Haskind relations, given the availability of the transient
radiation field.
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