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A control scheme for flexible-link manipulators is advanced which is based on the
notion of nonlinear inner–outer factorization. It is well known that the inverse of the
forward dynamics map from joint torques to manipulator tip motion is noncausal and
cannot be implemented in conjunction with real-time path planning. The methods used
here determine causal approximations for the inverse dynamics using the inverse of
the outer (stable and minimum phase) factor and a static approximation for the inverse
of the inner (lossless but nonminimum phase) factor. The Hamilton–Jacobi equation
that arises is approximated by a state-dependent Riccati equation at each time step.
The factorization procedure yields the corresponding joint trajectories which can serve
as reference trajectories for closing joint-based feedback loops. Experimental results
from a planar three-link manipulator with two flexible links demonstrate the efficacy
of the procedure. © 2001 John Wiley & Sons, Inc.

∗ To whom all correspondence should be addressed.

Journal of Robotic Systems 18(7), 391–399 (2001)
© 2001 by John Wiley & Sons, Inc.



392 � Journal of Robotic Systems—2001

1. INTRODUCTION

Typical tracking controllers for controlling the
motion of mechanical systems exhibit a combined
feedforward–feedback structure. When the plant
input and output are collocated, as in the case of
joint-based control of rigid robots, perfect inversion
can be accomplished with a causal feedforward that
corresponds to the inverse dynamics. Feedback sta-
bilization of the error dynamics can be accomplished
using feedback linearization or passivity-based tech-
niques. For structurally flexible systems exhibiting
collocation, inversion can be accomplished at the
joint level1 but the problem of determining suit-
able joint trajectories for prescribed endpoint motion
remains.

In the noncollocated case, the dynamics are
typically nonminimum phase. Hence, feedforward
design via plant inversion as well as the corre-
sponding feedback design problem are complicated.
In the multi-input/multi-output (MIMO) case, the
problem is also nonlinear. Exact inversion strate-
gies have been presented by a number of authors.
Noncausal inverses for flexible manipulators have
been presented using Fourier techniques.2 Gener-
alizations of the method have been presented by
Devasia et al.3 and implemented on flexible robots.4

A time-domain methodology exploiting the two-
sided Laplace transform was used by Kwon and
Book5 in the single-link case.

In the present work, we are interested in the
case where the feedforward is restricted to be causal
necessitating the use of an approximate inverse
of the input–output dynamics. Paden et al.6 have
shown that good endpoint tracking can be achieved
by delaying the noncausal feedforward of Bayo
et al.2 in conjunction with passive joint-based feed-
back. Other authors have modified the output of the
system so as to achieve minimum phase or passive
behavior.7−9

In the linear SISO case, transform techniques
have been heavily exploited. Gross and Tomizuka10

and Torfs et al.11 have used variations of Tomizuka’s
zero-phase error tracking (ZPET) scheme in discrete
time. This class of methodologies approximate the
unstable zeros of the plant (which become unsta-
ble poles in the inverse) so as to preserve the phase
characteristics of the inverse but magnitude errors
are incurred. Unfortunately the ZPET technique has
not been extended to the MIMO case or to nonlinear
systems.

Another approach to approximating the inverse
of a transfer function relies on the notion of inner–
outer (all-pass/minimum phase) factorizations. The

outer portion of the factorization represents the
invertible portion of the system while the all-pass
inner factor has unity gain and carries the unsta-
ble zeros. Its approximation is the key issue. Writ-
ing a square transfer matrix as G�s�=��s�R�s� with
R�s� outer and ��s� inner, Shaked12 has shown that
a feedforward signal generated by R−1�s��−1�0� gen-
erates optimal step responses in L2 norm. This inver-
sion scheme preserves the magnitude characteristics
(singular values) of the inverse and is readily appli-
cable to the MIMO case.

Recently, inner–outer factorizations for certain
classes of nonlinear systems have been advanced by
Ball and van der Schaft.13 This allows approximate
causal inverses to be constructed along the lines of
the linear case. Furthermore, state trajectories of this
inverse are the same as those of the plant when it is
forced by the feedforward signal from the inverse.
This permits trajectory planning for the collocated
joint variables which can be input into a robust feed-
back scheme such as a PD controller.

The bottleneck in generating such approxima-
tions is the solution of a Hamilton–Jacobi equation
which is the nonlinear analog of the Riccati equation
encountered in the linear case. An approximate solu-
tion is obtained here using a state-dependent Riccati
equation which results from writing the dynamics in
an apparent linear form with state-dependent coef-
ficient matrices. Experimental results are presented
for a three-link flexible manipulator operating in
the plane. Good trajectory tracking is demonstrated
using a feedforward based on the inverse of the
outer factor and a static (DC) approximation to the
inverse of the inner factor coupled with a joint-based
feedback.

2. NONLINEAR INNER–OUTER FACTORIZATION

Consider a square nonlinear state–space model of
the following form

� �

{
ẋ = a�x�+b�x�u
y = c�x�+d�x�u

(1)

It is assumed that the model is controllable, observ-
able, and asymptotically stable with d�x� invertible.
The inverse system is given by

�−1 �


ẋ = a�x�−b�x�d−1�x�c�x�

+b�x�d−1�x�y
u=−d−1�x�c�x�+d−1�x�y

(2)
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To fix ideas, begin with the linear time-invariant case
where a�x� = Ax, b�x� = B, c�x� = Cx, and d�x� =D
with corresponding transfer matrix

G�s�=
[
A B
C D

]
�= C�s1−A�−1B+D

Recall that if G−1�s� is stable, then G�s� is minimum
phase. If G�s� is stable and minimum phase, then it
is outer. A stable transfer matrix ��s� that is all-pass
(inner) satisfies �H�j����j��= 1 ∀� ∈R. It is a well-
known fact14 that a stable G�s� with GH�j��G�j�� >
O, � ∈ �0�	�, admits an inner–outer factorization
G�s�=��s�R�s�. In fact,

[
R−1�s�
��s�

]
=

A+BF BD−1

F D−1

C+DF 1

 (3)

where F = −�DTD�−1�BTX+DTC� and X ≥ O is the
stabilizing solution of the algebraic Riccati equation

X�A−BD−1C�+ �A−BD−1C�TX

−XB�DTD�−1BTX =O (4)

Now, let yd�t� be the desired output of G.
In the minimum phase case, the corresponding
input is ud�s� = G−1�s�yd�s�. If one admits the pos-
sibility of a noncausal feedforward compensation
scheme, then the indicated inverse can be imple-
mented using the two-sided inverse Laplace trans-
form where poles of G−1�s� in Re�s� > 0 give rise to
ud�t�, t < 0. If a causal feedforward is desired then,
G−1�s� must be approximated. Let u�s� = H�s�yd�s�
denote the feedforward compensation. Then, y −
yd = �1−G�s�H�s��yd. If yd�t� = rH�t�, a step input,
then Shaked12 has noted that ��y−yd��2 is minimized
by using H�s� = R−1�s��−1�0�, which gives in gen-
eral, y�s�=��s��T�0�yd�s�. Therefore, ��y��2 = ��yd��2.

Since this approximation preserves the DC gain
of the inverse, the steady-state properties are sim-
ilar. Let �d�t� be such that dn�d/dt

n = yd�t� with
�d�0� = · · · = �

�n−1�
d �0� = 0 and assume that

limt→	 �d�t� = �̄d exists. Define � similarly using
y�t�. Using a simple Laplace transform argu-
ment, �̄ = �̄d given the preservation of the DC gain.
This is particularly important in motion control
applications where y will typically be acceleration
and we desire steady-state position regulation.

In the nonlinear case, a system � is outer if �
and �−1 are stable. We say that � is lossless if there

exists a storage function V �x�≥ 0 with V �0�= 0 such
that

V �x�t1��−V �x�t0��=
1
2

∫ t1

t0

(
uTu−yTy

)
dt (5)

Taking x�t0�= 0 and letting t1 →	 shows that these
systems have unity L2-gain.

Now consider the nonlinear system in (1). An
inner–outer factorization will be of the form � =� �
� where � is outer and � is lossless. According to
Ball and van der Schaft,13 one possible factorization
is given by

�−1 �


˙̃x = a�x̃�−b�x̃�d−1�x̃�c̄�x̃�

+b�x̃�d−1�x̃�ȳd
ūd =−d−1�x̃�c̄�x̃�+d−1�x̃�ȳd

(6)

The inner factor is � = � ��−1 and satisfies

� �


ẋ = a�x�−b�x�d−1�x�c̄�x�

+b�x�d−1�x�ȳd
y = c�x�− c̄�x�+ ȳd

(7)

where

c̄�x�= c�x�+d−1�x�bT�x�PT
x �x� (8)

Here Px�x�= �P/�xT and P�x� satisfies the Hamilton–
Jacobi equation

Px�x��a�x�−b�x�d−1�x�c�x��
(9)

− 1
2
Px�x�b�x��d

T�x�d�x��−1bT�x�PT
x �x�=O

subject to the constraint that

ẋ = a�x�−b�x�d−1�x�c�x�
(10)−b�x��dT�x�d�x��−1bT�x�PT

x �x�

is Lyapunov stable. If the state vectors of �=���−1

and �−1 satisfy x�0� = x̃�0�, then x�t� = x̃�t� for all
t > 0. Hence, the state of �−1 evolves in an identical
manner to that of � when � is forced by the out-
put of �−1. This permits the use of the state vector
of �−1 as a reference trajectory for feedback design
involving �. In the sequel, we drop the �·̃� in (6).

The inverse of � can be taken as �−1 =�−1 ��−1

but unless � is minimum phase, �−1 will be unsta-
ble. Analogous to the linear case, we approximate
�−1 by its static counterpart �−1

ss . This is obtained by
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Figure 1. The system � and its causal inverse.

applying the inverse pattern in (2)–(7) followed by
setting ẋ = 0

�−1
ss �


a�x�−b�x�d−1�x�c�x�

=−b�x�d−1�x�yd
ȳd = c̄�x�− c�x�+yd

(11)

The system � and its causal (approximate) inverse
are illustrated in Figure 1.

3. DYNAMIC MODELING

The dynamics of a flexible manipulator are assumed
to be governed by motion equations of the form

M�q�q̈+ �D̂+ Ĉ�q� q̇��q̇+Kq= B̂u (12)

where q= col���qe� with � denoting the joint angles
and qe are the elastic coordinates. The joint torques
are denoted by u and the various matrices can be
partitioned as

M =
[
M�� M�e

MT
�e Mee

]
D̂=

[
D̂�� O

O D̂ee

]
(13)

K =
[
O O

O Kee

]
B̂=

[
1

O

]
(14)

Here, M is the mass matrix, K is the stiffness matrix,
D̂ is the damping matrix which models structural
damping and viscous joint damping, and Ĉq̇ are the
nonlinear rate effects.

The tip motion is described by the forward kine-
matical map �= � �q� and the tip rates can be writ-
ten in terms of the Jacobian matrix as �̇= Jq̇ where
J = �J� Je�. The tip acceleration satisfies

�̈= Jq̈+ J̇q̇ = −JM−1�D̂+ Ĉ�q̇− JM−1Kq
(15)

+ JM−1B̂u+ J̇q̇
The state vector is taken as x= col�q̇�q� and the out-
put is defined to be

y = �̈+��̇ � > 0 (16)

The system defined by Eqs. (12)–(16) can be
identified with � of section 2 and written in the state
form in (1) by defining

a�x�=A�x�x c�x�= C�x�x (17)

where

A =
[−M−1�D̂+ Ĉ� −M−1K

1 O

]
C = [−JM−1�D̂+ Ĉ�+ J̇+�J −JM−1K

]
(18)

d = JM−1B̂ b=
[
M−1B̂
O

]
The underlying theory presented in section 2
requires that the system be controllable, observ-
able, and asymptotically stable. The latter two do
not apply to the joint coordinates �, so they are
removed from the state vector and in the sequel
x= col��̇� q̇e�qe�. However, the configuration depen-
dence on � is maintained in M, J, Ĉ, and J̇ with �̇ =
�1 O O�Tx taken as a side condition. The reduced
system then satisfies the required conditions.

The construction of the inverse of the outer
factor in (6) requires the solution of the Hamilton–
Jacobi equation in (10). An exact solution is not
forthcoming but an approximation is possible using
the so-called state-dependent Riccati equation.15

Here, we approximate the solution of (10) by

P�x�= 1
2
xTP�x�x Px

�= xTP�x� (19)

which when used in conjunction with the linear-
like factorizations in (17) yields the state-dependent
Riccati equation (SDRE)

P�x��A�x�−b�x�d−1�x�C�x��

+ �A�x�−b�x�d−1�x�C�x��TP�x�

−P�x�b�x��dT�x�d�x��−1b�x�TP�x�=O (20)

Given the state vector, the system matrices are eval-
uated and treated as constants so that the SDRE
is treated like an algebraic Riccati equation. The
required solution is that which stabilizes (11) in the
same approximation, i.e., renders the system

ẋ = �A−bd−1c−b�dTd�−1bTP�x

asymptotically stable.



Cree and Damaren: Causal Approximate Inversion � 395

The static approximation to the inverse of the
inner factor is determined by using (11) in conjunc-
tion with the definitions in (17) as well as c̄�x� =
c�x�+d−1�x�bT�x�P�x�x, leading to

ȳd = yd−d−TbTP�A−bd−1C�−1bd−1yd

= �1−d−TbTP�A−bd−1C�−1bd−1�yd
(21)

which behaves like a static (orthogonal)
transformation.

Assuming the desired trajectory for the end-
point, �d�t�, is known, the algorithm for determin-
ing the feedforward torques, reference trajectories
for the joint angles, and feedback torques at time
t = tk proceeds as follows:

Step 1. At time tk we have the state vector xk =
x�tk� of �−1 as well as the joint angles
�k = ��tk�. In particular, using the joint
angles �k and their rates �̇k, form M, J,
Ĉ, and J̇. These are then used to assem-
ble the state-dependent state matrices
�A�b�C�d� in (18).

Step 2. Solve the SDRE in (20).
Step 3. Form c̄�xk� according to

c̄�xk�= �C+d−1bTP�xk

Step 4. Using yd�tk� = �̈d�tk� + ��̇d�tk� as the
input, calculate the output ȳd of �−1

ss

using (21). Determine the feedforward
torque according to the output of �−1

in (6): ūd�tk� = d−1�ȳd�tk�− c̄�xk��. From
xk, extract the desired trajectory for
�̇�tk�.

Step 5. The total applied torque for the manip-
ulator is given by u�tk� = ūd�tk� −
� ��̄�tk�− �d�tk��, where � denotes the
feedback operator that is used, �d�tk� =
��tk�, and �̄ is the actual measured joint
motion.

Step 6. Determine ẋ�tk� = a�xk�+b�xk�ūk which
corresponds to (6) and use this to esti-
mate x�tk+1�. Use �̇�tk� = �1 O O�Tx�tk�
to estimate ��tk+1�.

It is essential in constructing the inner–outer fac-
torization that the matrix d defined in (18) remains
invertible. Numerical experience has indicated that
it may become close to singular. We have circum-
vented this problem by performing a singular value
decomposition at each time step and latching any
singular values satisfying  < 0�05 at a value of  =
0�05 followed by reconstruction of d.

Figure 2. The experimental robot arm.

4. FEEDFORWARD AND FEEDBACK DESIGN

The performance of the above scheme was tested
experimentally using the three-axis planar manipu-
lator shown in Figure 2. The first two links were
structurally flexible while the third was a rigid link
to the payload. The properties are summarized in
Table I. The actual payload that was used is some-
what smaller than that shown in Figure 2. Current
control through DC motors and low backlash gear-
boxes provided the torque for each axis. Sensing
involved quadrature encoders on the joints, three
strain gauges distributed along each flexible link,
and a CCD camera to detect the position and orien-
tation of the payload. For control purposes, only the
joint angles were used as feedback.

The feedback controller was implemented using
a series of decoupled second-order lead compen-
sators wrapped around each joint. Good damping of
the closed-loop poles was achieved, even with the
change in dynamic properties as the configuration
of the arm varied. If the output of the arm is taken
to be joint rate and an integrator is included in the
controller, then the controller is strictly positive real
(SPR) and the plant is PR. Hence, we have exploited
the passive map from joint torques to joint rates and
implemented an SPR feedback controller which pro-
vides robust stability.

Table I. Link properties.

Property Link 1 Link 2 Link 3

EI (Nm2) 39 39 Rigid
Arm Mass (kg) 0�19 0�16 0
Hub Mass (kg) 2�53 2�10 0�97
Tip Mass (kg) 2�23 0�94 2�37
Length (mm) 500 500 170
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Two different methods of generating the feed-
forward were used: (i) use of the “full” nonlinear
dynamics as outlined in section 3; (ii) the use of
modal transformation of Eq. (12) which preserved
the nonlinear rigid dynamics but superimposed a
constant frequency/constant mode shape descrip-
tion for the unconstrained vibration modes. Both of
these schemes involved solving the SDRE at each
time step of the integration. Method (i), which was
expected to give the best results, yielded a set of
equations that were difficult to integrate. Only the
results for method (i) will be presented in the next
section since those obtained using method (ii) were
very similar.

5. EXPERIMENTAL RESULTS

Results will be presented for two maneuvers. The
first is a movement of 670 mm in the nega-
tive y-direction (Figure 3) and the second is a
940 mm movement involving all three tip coordi-
nates (Figure 4). The start and finish points are given
in Tables II and III. To give a smooth acceleration
profile, the desired path was generated using a fifth-
order polynomial fitted to the start and finish points.
The time for the maneuver in both cases was 1.5 s.

The integration of the state equations in (6)
yielded prescribed tip trajectories which tended
to drift slightly from the desired path as time
progressed. Part of this stems from the causal
approximation while some of it is numerical in ori-
gin. Since � preserves the steady-state properties of
�, the final endpoint should be the same as the pre-
scribed trajectory. This property hinges on the solu-
tion of the Hamilton–Jacobi equation. Since this has

Shoulder

Elbow

Wrist

Payload

θ1

θ2

–θ3

Figure 3. Maneuver 1 arm position.

Shoulder

Elbow

Wrist

Payload

Figure 4. Maneuver 2 arm position.

been approximated by the SDRE, this property does
not hold exactly. This was surmounted by reformu-
lating the prescribed trajectory yd near to the end
of the maneuver using the current state of the arm
and the desired target configuration. The identifica-
tion of the states of �−1 with the desired ones of �
continues to hold given the form of �−1 in Eq. (6)
which continues to mimic Eq. (1) with the appropri-
ate u= ud.

The use of two different feedforward signals
(with identical feedback controller) will be com-
pared: the use of the full equations to obtain the
causal feedforward (method (i) above) and rigid
inverse dynamics using the rigid inverse kinematics
to obtain the reference trajectories. The tip motion of

Table II. Maneuver 1 endpoints and tracking errors.

Path Maximum error

Tip Full Fixed
position Start Stop Rigid eqs. modes

x �m� 0�94 0�94 0�048 0�021 0�022
y �m� 0�67 0 0�162 0�064 0�066
# (rad) 0 0 0�259 0�095 0�100

Table III. Maneuver 2 endpoints and tracking errors.

Path Maximum error

Tip Full Fixed
position Start Stop Rigid eqs. modes

x �m� 0�30 0�94 0�057 0�075 0�067
y �m� 0�67 0 0�127 0�060 0�047
# (rad) 2�36 0 0�227 0�092 0�098
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Figure 5. Maneuver 1 tip position and joint angles.
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Figure 7. Maneuver 2 tip position and joint angles.
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the manipulator in each case is shown in Figures 5
and 7. The maximum error with respect to the
desired path is shown in Tables II and III. A value
of �= 30 s was used in Eq. (16).

As can be seen from the tables, the feedforward
based on the full equations and that based on the
fixed modes gave very similar results, with maxi-
mum errors of about 40% of the error for the rigid
feedforward. Using simulation instead of the real
manipulator produced a very similar tip trajectory.
Because the simulation and the feedforward were
based on the same model, the error is assumed to
come from the approximation that forces the feed-
forward to be causal rather than being produced by
modeling errors. This shows that the causal approxi-
mation to the inverse does not give perfect tip track-
ing, but is a significant improvement over the rigid
inverse dynamics. From Table III and Figure 7, we
see that the static approximation to the inverse of
the inner factor leads to improvements in the y- and
#-tracking at the expense of the x-tracking behavior.

In Figures 6 and 8, the tip deflections of links 1
and 2, ve1 and ve2, respectively, are shown for each
maneuver. Both sets of curves show that the causal
feedforward leads to reduced elastic deflections for
the links relative to the rigid feedforward case.

6. CONCLUSIONS

A control scheme for tip-trajectory tracking by struc-
turally flexible manipulators has been presented
which avoids the noncausal nature of the inverse
dynamics map. Nonlinear inner–outer factorizations
of the forward dynamics map have been used to
generate an approximate causal inverse which pro-
vides a feedforward torque and a means of gener-
ating reference trajectories for the joint angles. This
represents a simpler feedback design problem given
the collocated and passive nature of the torque to
joint rate map.

The experimental results showed that reason-
ably good tracking of the prescribed end-effector tra-
jectories was possible using this approach. The main
contribution of this work is a framework for
approximating the inverse dynamics of flexible arms
under the restriction of causality.
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