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An adaptive controller is presented for a manipulator with revolute joints and structur- 
ally flexible links which carries a rigid payload with unknown mass properties. Under 
the assumption that the payload mass is much greater than that of the manipulator, 
globally stable tracking of the Cartesian end-effector coordinates is established. Key 
ideas underlying the controller development are the passivity of a mapping involving 
the end-effector rates as part of the output and a fixed parameter feedforward which 
preserves this property. The concept of filtered error is borrowed from previous work 
on rigid arms and suitably modified in developing the adaptive law. Although measure- 
ments of the tip positions and rates are needed, there is no requirement for sensing 
of the elastic coordinates. A numerical example involving a six DOF manipulator with 
flexible links demonstrates excellent tracking with respect to a simulation based on 
the exact motion equations. 0 1996 Juhn Wilty 6 Suns, Znc. 
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INTRODUCTION 

The last decade has seen the development of adap- 
tive controllers for rigid robot arms which provide 
globally stable tracking in the presence of parameter 
ignorance. As pointed out by several  author^,^-^ 
the success of these controllers can be explained us- 
ing a passive systems approach. In particular, the 
model-based feedforward portion of the controller 
preserves the inherent passivity of the torque-to- 
joint rate map in the error dynamics. The other es- 
sential property is the linear dependence of the feed- 
forward on the unknown robot parameters. 

The extension of the above methodologies to the 
case of flexible link manipulators is made difficult 
because the map from torques to end-effector rates 
is not passive. In fact, it exhibits the nonlinear form 
of the nonminimum-phase property, namely insta- 
bility of the zero dynamics.6 The torque-to-joint rate 
map remains passive, but the creation of a feedfor- 
ward which preserves this property is difficult. 
Lanari and Wen7 have had some success in this re- 
gard, although their result is limited to joint space 
tracking and requires sensing of the elastic coordi- 
nates. DeLuca and Siciliano' have also developed a 
joint space feedforward strategy based on inverse 
dynamics, but passivity properties were not 
claimed. 

Researchers have been quite successful in ex- 
tending adaptive controllers for rigid robots to the 
case of rigid robots with flexible joints.'-'' These ap- 
proaches rely on the inherent passivity of the dynam- 
ics relating motor torque to motor rate. Our work is 
philosophically similar to that of Spong' who used 
a perturbation approach in dealing with weak joint 
elasticity. Most of the adaptive controllers to date 
for flexible link arms have dealt with the single-link 
case. Yuan, Book, and Siciliano'* applied model ref- 
erence adaptive control methods to the end-point 
tracking problem. Feliu, Rattan, and Browd3 used 
a combination of feedforward and feedback which 
gave good end-point tracking for a single link. Pham, 
Khalil, & Che~allereaul~ implemented a modification 
of the rigid algorithm of Slotine & Li' on a two-link 
flexible arm in an experimental setting. Good end- 
effector tracking was obtained by virtue of the joint 
angle behavior. 

The motivation for the present work stems from 

assumption that the payload is much more massive 
than the manipulator. 

Two important results previously obtained by 
the a ~ t h o r ' ~ , ' ~  provide the foundation for the ap- 
proach taken here. First, the mapping from end- 
effector forces (inverse transpose of the Jacobian 
times torques) to an output termed the p-tip rate 
was shown to be passive under the large payload 
assumption. The p-tip position is a nonlinear, multi- 
link generalization of the reflected tip position intro- 
duced by Wang & Vidya~agar'~ for a single link. 
Also, a feedforward control torque depending only 
on the mass properties of the payload was shown 
to maintain the passivity property with respect to 
the p-tip rate tracking errors. Hence, asymptotic 
tracking in the known-parameter case could be ob- 
tained using a strictly passive controller (PD law). 

Motivated by the corresponding work in the 
rigid case, an adaptive extension of our previous 
results will be presented. In the rigid case, a key 
modification is the introduction of the filtered error 
which ensures that the position errors tend toward 
zero.' The corresponding filtered error is introduced 
here, and passivity is demonstrated when it is used 
in the feedforward part of the controller. The passiv- 
ity theorem is then used to suggest the correct forms 
of the parameter adaptation law and the feedback 
portion of the controller. Globally stable tracking of 
the true tip positions and rates is established using 
a Lyapunov stability analysis. A numerical example 
employing a six degree of freedom (DOF) robot with 
flexible links will be used to demonstrate the tracking 
performance using a simulation based on the exact 
motion equations. 

2. DYNAMICS OF FLEXIBLE MANIPULATORS 
WITH LARGE PAYLOADS 

We consider a chain of rigid or flexible bodies de- 
noted by {B,,, . . . , BNtl}. PA,, is taken to be rigid 
and fixed; its body-fixed frame go represents an iner- 
tial reference frame. The last link, BN, is assumed 
to carry a large rigid payload, 9i3N+1, which is canti- 
levered to the end-effector. Its body-fixed frame gNtl 
locates the end-effector. Using clamped-free basis 
functions to discretize the elastic deflections of the 
links, the motion equations for the system can be 
written as1'J9 

M ( q ) q  + oq + Kq = B T ( t )  the use of robot arms to manipulate large, potentially 
poorly defined payloads in the space environment. 

to the carried payloads and must be treated as flexi- 
ble. We seek an adaptive controller which provides 
tracking of the end-effector trajectories under the 

Such systems are characterized by low mass relative + fnon(q, q), ' CO~{@, 43 (1) 

Assuming single DOF revolute joints, the joint 
angles are 8 = col{O,(t)}, n = 1 N, and qe(t)  is the A 
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totality of elastic coordinates describing the flexible 
deformations. The mass matrix is M = MT > 0, 7(t)  
is a column of applied joint torques, and fnon are 
nonlinear inertial forces which are quadratic in q. 
The damping, stiffness, and input matrices can be 
further partitioned as D = diag(0, D,}, and K = 
diag(0, Kee}, and BT = [lo]. The matrices Dee and K,, 
are positive-definite; for simplicity it will be assumed 
that they are constant. 

The forward kinematics are summarized by de- 
fining p(f) = p(8, qe) whose upper half consists of 
the position of %N+l with respect to ?F0 (expressed 
in and the bottom contains three integrable atti- 
tude coordinates which paramaterize the rotation 
matrix CN+1,0(8, qe). The p-tip is defined by 

Pp A J O B )  + P J A ~  = - (1 - p)Je(er qe)qe (2) 
A where p is a real parameter. The matrix Jo = dpl 

MT will be called the rigid Jacobian and Je A dpl 
dq: is the elastic Jacobian. Hence, for p = 1, p p  = 
h. In general, rb, = p p  + (1 - p)JoB) and hence 
pp pp + (1 - p)F(B) where F is the rigid forward 
kinematics map. This follows from the approxima- 
tion Jo (8, qe) A Jo(8, 0) which is the Jacobian of the 
corresponding rigid manipulator. 

We shall also require the body-frame velocities 
of the payload. Let ut = col{v,, m,} where vt and mt 
denote the absolute velocity and angular velocity of 

A 

but expressed in ?FNtl. Hence, 

where SN+l,o is the configuration-dependent matrix 
mapping Euler rates into angular velocity (expressed 
in the body frame), fo  PJ,, and 1, PJe. We 
also define 

which will be used extensively in the next section. 
The notation ( a ) "  denotes the 3 X 3 skew-symmetric 
matrix used to implement the vector cross product. 

Approximate Motion Equations 

Define the payload mass matrix relative to %N+l by 

(5) 

where m,, cf, and Jt are the mass, first, and second 
moments of inertia respectively. Under the assump- 
tions of invertibility of the rigid Jacobian (N = 6) and 
of the payload being much more massive than the 
links, it has been showd6 that the dynamics equation 
(1) can be well-approximated by 

Mfbt + ul"M,u, = f iT7 ( t )  (6) 

where fiee(q) BT(q)M(q)B,(q) and B: [-JTJiT 
11. The matrix Met > 0 is independent of.M, and the 
matrix Ce can be chosen so that 2Ce + &fee is skew- 
symmetric. Assuming that singular configurations 
are avoided, i.e., Jil exists, it seems reasonable to 
postulate a lower bound for &fee(q). Hence, we also 
assume that &fee 2 meel, 0 < mee < m. 

For the duration of the article, Eqs. (6) and (7) 
will be taken as a valid description of the manipulator 
dynamics, but our simulation results in section 4 
will be based on the exact equations, (l), using a 
recursive implementation. It has been previously es- 
tablished16 that the map from JiT7(f) to p p ,  formed 
by (6), (7), and the kinematical relations (2) and (3), 
is passive for p < 1, i.e., 

where p is constant. (The map is also passive for 
p = 1, but the elastic coordinates are not observ- 
able from b.) The reader is assumed to be familiar 
with the notions of passivity and strict passivity as 
well as the passivity theorem.20,21 Ortega and Spong3 
provide a summary of these concepts in a ro- 
botics context. 

Greater insight into the motion equations (6) and 
(7) and their passivity property can be gleaned by 
reviewing their  origin^.^^,'^ First consider small un- 
damped motions q(f) in the neighborhood of a con- 
stant setpoint ij = col{j, O } .  The undamped linear- 
ized forms of (1) and (2) can be obtained by setting 
D = 0, fno, = 0, and taking M, Joel and Je to be 
constant matrices evaluated at ij. The eigenproblem 
for the unforced case ( 7 = 0) yields six zero-frequency 
rigid modes q(t) = Br),(f) where q ( t )  are the modal 
coordinates. In addition, the unconstrained vibra- 
tion modes have frequencies o, > 0, a = 1,2,3, . . . , 
and let q, = col{8,, qe,} denote the corresponding 
eigencolumns. The modal equations of motion fol- 
low by letting q(f) = Br),(t) + E, q,V,(f): 
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These equations are valid for all payloads in a lin- 
ear setting. 

In the presence of large payloads, it has been 
previously demon~tratedl~ that the flexible motions 
of the robot (joints unlocked) satisfy clamped bound- 
ary conditions at the end-effector: JOOa + Jeqea & 0, 
LY = 1, 2, 3, . . . , a result which is inescapable on 
physical grounds alone. Substituting the modal 
expansion into (2) while noting this property gives 

P p  = J 0 k  + C (1 - ~ ) J 0 0 a + a  
a 

It is clear that for p = 1, the elastic modes are unob- 
servable from p ,  = p ,  and the end-effector motion 
evolves in a purely rigid fashion. For p < 1, the 
elastic coordinates become observable (assuming 
Joea # 0), and the map from JiT7 to p ,  is passive 
because in the frequency domain the corresponding 
transfer matrix is positive real.15 

The nonlinear equation (7) for the elastic coordi- 
nates corresponds to (1) with p = 0, i.e., 8 = 
-Ji'Jeqe, as suggested by the modal properties 
noted above. The end-effector coordinates in (6).are 
governed by the rigid body dynamics of the payload 
and are dynamically decoupled from the elastic coor- 
dinates. Both approximate equations were originally 
derived16 using Lagrangian dynamics in conjunction 
with a perturbation scheme for the kinetic energy. 
It is easy to show that the linearized forms of (6) and 
(7) share the same modal equations as (1) under the 
large payload assumption. It is the combined rigid/ 
passive nature of the map from J;'T to rb,l,=, 
that makes our adaptive control approach feasible. 
Preservation of passivity for ,u < 1 while creating 
observability of the elastic coordinates permits their 
stabilization or, more correctly, prevents their desta- 
bilization by the feedback laws. Also required is a 
feedforward that preserves these properties. 

Let p d ( t )  designate the prescribed end-effector 
trajectory and define the tracking error p = p - pd. 
We assume that bd(t) + 0 and & ( t )  + 0 as t + w so 
that & ( t )  + & (a constant). Also define the body- 
frame quantities ud = p f ( p ) p d  and 

A 

A 

(8) 
A kf = ut - ud = pt(p) b 

Eq. (6) suggests the feedforward torque 

It has been parametrized in terms of a regressor ma- 
trix W and the true payload mass properties a A 
col{m,, ct , j t }  where 3, is a column of the 6 indepen- 
dent entries in the payload inertia matrix J,. The 
motivation for using u, instead of ud in W is the 
passivity result discussed below. 

Define an estimate for the elastic displacements 
produced by the application of r d ( t ) ,  q , d ( t ) ,  according 
to the solution of 

The reference trajectory for p,, P , d ,  is defined by its 
time derivative as suggested by (2), 

p p d  = bd - (1 p)Jc(Or % ) h e n  (11) 
A and the corresponding tracking errors fip = p p  - 

p,d satisfy 

It can also be shown" that the map from J,'(r - 7 d )  
to i,(t) is passive. Therefore, stabilization and track- 
ing can be accomplished by taking the feedback por- 
tion of r, i A r - r d ,  to be the product of J i  and a 
strictly passive function of &,(t). In the next section, 
we modify (9) and develop its adaptive counterpart 
by introducing an appropriate filtered error. 

3. ADAPTIVE CONTROLLER 

Fixed Parameter Control law 

The above results possess the basic features for ex- 
tending rigid adaptive  controller^^-^ to the flexible 
case. These are the passivity property and the linear 
dependence of the feedforward law (9) on the un- 
known parameters. Like the rigid case,' it must be 
modified to ensure stable tracking of the position 
errors. To this end, define the filtered body frame 
rates by 

where A = AT > 0. Furthermore, we define 

and make the standard observation3 that scL E L, 
implies that &(t) E L, n L,, b,(t) E L,, and &(t) -+ 
0 as t 3 w. Furthermore, if s,(t) 3 0 as t m, then 
P,(t)  + 0. 
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Now replace V d ( t )  with u,(t) in the fixed parameter 
feedforward (9) which gives 

Td = fffwcb,, vr, vt)a (15) 

and it is assumed that q e d  remains defined by (10) 
but with Td as given above. Subtracting (15) from (6) 
and (10) from (7) gives the following description of 
the error dynamics: 

A 
MfUr + @&ffV, =]ere, '?= 7- Td (16) 

Mee(q)qe + D e e q e  + K e e q e  = -fTJiT' 
+ CJq, q e ) $ e i  q e  = q e  - qen  (17) 

A where Gr = u, - u, = iJ, + P,A& = P,[b + A&]. 
We now show that the passivity property is main- 
tained by the new feedforward but with respect to 
the filtered output s, . 
Lemma 1. The mapping sF = G(JiT+) ,  where G is 
determined by (11)-(17), is passive for p < 1. 

Proof. Define the nonnegative function 

Differentiating the above with respect to time and 
using (16), (17), and the skew-symmetry of 2Ce + 
kiee gives 

9, = i j p I f U ,  + (1 - p)q: 

In;1,e(q)$ + K e e q e  + +&?&I 
= iJ;"-@Mfuf + J3] - (1 - p)q: 

[jT!iT+ + D ee q e ] 

Then, using the property (4) and the definition in 
(12) yields 

ifll = [G,  - (1 - / . L ) j e q e ] T f ; T +  - (1 - p)qpeeqe 

= s , T ( ~ i ~ + )  - (1 - i u > 4 : D e e 4 e  (19) 

T Integrating the above relationship gives so 
sL(JiTi)  dt 2 Y J T )  - YJO) which establishes the 
passivity property upon noting that Y,(T) 2 0 for p 
< 1. 

Adaptive Version 

It is now reasonably straightforward to apply the 
techniques of the rigid case to the present situation. 

- 
Figure 1. Feedback system. 

With reference' to the feedback system in Figure 1, 
one form of the passivity theorem" (see Theorem 
VI.5.1 in ref. 20) states that if G: L,, +. L,, is passive 
and H L, -+ L,  is strictly passive then the system 
is L,-stable, i.e., if u E L2 (an energy-bounded distur- 
bance torque) then s, E L,. Based on the passivity 
theorem, we should select the feedback portion of 
the controller such that 

for some constant p 2 0 and E > 0, i.e., H is 
strictly passive. 

Since a is unknown, let us take the applied torque 
to be 

where B are the estimated payload parameters and 7 
is the feedback part of the controller to be identified. 
Subtracting (15) from (21) yields 

and hence 

T T I, (J iT i )Ts ,  dt = 1 dTWTP,s, dt 
0 

+ joT ( JiT?)Ts, dt (23) 

If ti is chosen to be a passive function of - W*P,s,(t) 
and the map from -s, to J i T T  is strictly passive, (20) 
will be satisfied. 

Based on these observations, we take 

T ( t )  = f fW(Ur,  V r r  Vf )d ( f )  - J f f K d S , ,  

Kd = K i  > 0 (24) 



224 Journal of Robotic Systems-1996 

u = o  

Figure 2. Adaptive controller. 

i.e., = -Kdsr.  We have used the simplest pas- 
sive adaptation law which avoids the explicit appear- 
ance of the true parameters (an integrator), and the 
simplest strictly passive feedback, namely a constant 
positive-definite gain matrix. Clearly, more general 
choices are possible on the basis of the above argu- 
ments. The overall system is shown in Figure 2 and 
can be interpreted as the feedback interconnection 
of a passive system ( G )  and a strictly passive system. 
Hence, s, E L, and, therefore, so are p, pr  E L,. To 
establish asymptotic tracking of the true tip rate and 
position errors, we present a Lyapunov argument. 

Theorem 1. The adaptive system described by (16), (17), 
(24) and (25) yields global asymptotic stability for the 
tracking errors p and p .  

Proof. We adopt as a Lyapunov function 

where 9, is defined by (18). Using (19), (22), (24), 
and (25), we have 

Hence, we conclude that s, E L, n L,, qe E L, n 
L,, and therefore p, E L,, p,  E L, n L,, and p, 
( t )  -+ 0 as f -+ m. Since V ( t )  is bounded, 8, q,, q,, 
and ur are also bounded and so is p (hence p and 
b,). This makes u,, Zi,, u,, W, and hence ibounded. 
From the error dynamics (16) and (17), br = b,(p + 

A&) + P,(b + ApJ and q, are bounded. This makes 
i, = p, + Ap, bounded and, hence, s, and q, are 
uniformly continuous. Thus, as t + a, qe ( t )  + 0, 
q, becomes constant, s,(t) + 0, and therefore 
b,(t) + 0. Because p,(t) + 0 and q,(t) + 0, the 
true tip rate tracking errors p(t) + 0 as t -+ w. 

It remains to show that the tip position errors 
are asymptotically zero. Since p d ,  p d ,  p,, and p, all 
vanish as t + w, then from (13), vr(t) -+ 0, G,(t)  + 
0, and hence W ( ~ r ,  ur, ut) in (22) must vanish 
as t + m. Therefore, using (22) and (24) et seq., 
i ( t )  + 0 as t -+ w, and we conclude from (17) that 
q, + 0. Since p,(t) + 0 and q,(t) -+ 0, the tracking 
errors p(t)  + 0 as t + w. A simpler alternative proof 
uses the fact that ‘V is positive-definite in the state 
col{p, q,, p,  q,, b} and makes use of LaSalle’s exten- 
sion for nonautonomous systems which are asymp- 
totically autonomous.22 Note that the invariant set 
consistent with q = 0 is given by s,+ = q, = 0. This 
coupled with (16), (17), (22), (24), and (25) implies 
that p = p = 0. 

Based on the above, Wii + 0 but, as usual, b -+ 0 
cannot be concluded unless W satisfies a persistency 
of excitation condition. 

In general, construction of rb, and p, requires 
direct measurement of the elastic coordinates qe 
which are required in the evaluation of the Jacobian 
matrix lo(@ 4,) and the formation of the p-tip posi- 
tions and rates. If the rigid Jacobian is approximated 
by JO(& 0) ( jO(O,  0) in the feedforward part of the 
controller) and p,d p d  then 

By setting p,d A p d  (hence P,d A Pd), we are rid of 
the need to construct q e d  and q e d  using (10). This is 
justified on the grounds that our numerical results 
indicate that an appropriate value for p is nearly 1. 
The p-tip position error can be determined from the 
integral of (28): 

where, recall, F( 6) represents the rigid forward kine- 
matics map. 

Hence p, and its time derivative can be con- 
structed from the joint measurements {e(t), k(t)}, tip 
measurements {p(t), b( t)}, and the prescribed Carte- 
sian trajectory. This is significant because the elastic 
coordinates are numerous and can be difficult to 
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sense. Furthermore, their interpretation depends on 
the specifics of the spatial discretization that is 
adopted. A further simplification is possible if we 
replace P,(p) with P&) in calculating u, and 5, using 
(13) and d in (25). These changes will be incorporated 
into the following summary of the adaptive control- 
ler implementation. 

Summary of the Adaptive Controller 

At time t, the following calculations are made: 

1. Given the measurements {$(t), &t), p(t), p(t)} 
and the prescribed values bd(t), pd(t), form 
the tracking errors b,(t) using (28) and &(t) 
using (29). 

2. Form 

3. Given the parameter update d(t), calculate 
(the estimated payload mass matrix). Using 
(24) and (9), the applied torque becomes 

4 0  = I;(& O)[&t%(f) + @(~)Z$Uf(t)J 

- fi(@! o)Kdsp(f) (30) 

4. Calculate i ( t )  = - W ( C r ,  u,, vf)Pt(pd)sp and 
estimate li(t + At) using some quadrature 
scheme. 

These calculations are no more onerous than those 
corresponding to the task space adaptive controllers 
that have been suggested for rigid The re- 
gressor matrix is particularly simple because it de- 
pends only on the body-frame dynamics of the pay- 
load, not those governing the entire manipulator. 
The only Jacobian matrix required is the usual rigid 
one, and its inverse need not be calculated. For 
p = 1, the feedforward is formally the same as that 
advocated by FossenZ4 in the context of spacecraft 
attitude control. He pointed out the advantages of 
using the body frame over the inertial frame for the 
regressor parametrization. It is also worth pointing 
out the similarity of the feedback portion to the task 
space feedback strategy of Miyazaki and ArimotoZ5 
for rigid arms. For p = 1, the feedback part of (30) 
is identicaI to their "sensory I'D feedback" which 

I &-el 

Figure 3. Flexible manipulator model. 

they showed has certain advantages over inverse 
Jacobian methods. We have used the inertial frame 
for the feedback part of the controller since p is inte- 
grable whereas v, is not. The primary reason for 
taking p < 1 is the introduction of the elastic modes 
(which are unobservable when p = l ) I 5  into the con- 
troller input. 

4. NUMERICAL EXAMPLE 

We now implement the proposed controller in a sim- 
ulation based on the full motion equations. The sys- 
tem model is based on the Space Shuttle Remote 
Manipulator (SRMS) Arm and possesses six joints. 
The system is depicted in Figure 3 and has been 
previously studied in other contexts'6,26 (see these 
references for the mass and geometric properties). 
All links have uniform tubular cross-sections and are 
taken as rigid with the exception of links 2 and 3. 
These long booms are modeled as flexible, and the 
exact cantilevered eigenfunctions are used for dis- 
cretization. We use six modes per boom: two bend- 
ing modes in each transverse plane, one stretch 
mode, and one torsional mode. A complete descrip- 
tion of their elastic properties as well as the dynamics 
equations underlying the simulation appears else- 
wherez6 (we use the LEE model of this reference). The 
cantilevered natural frequencies are given in Table 1. 
All inertial nonlinearities are included, including the 
elastic configuration dependence in the global 
mass matrix. 

Table 1. Cantilevered natural frequencies (radls). 
~ 

First Second First First 
bending bending stretch torsional 

mode mode mode mode 

Link 2 37.18 233.0 2791. 1401. 
Link 3 34.53 216.4 2224. 1116. 
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Figure 4. Tip position tracking errors (PD Law). 

Structural damping is neglected in the simula- 
tion (D, = 0). The total mass of the links is 411 kg, 
and their fully extended length is 16.2 m. A payload 
is cantilevered at the end-effector with the following 
mass properties: rn, = 15,000 kg, ct = [75,000 0 0IT 
kg m, and J, = diag(30, 515, 515) X lo3 kg . m2 (the 
x-axis is aligned with the axial direction of link 6). 
The initial configuration corresponds to O(0) = 0 (the 
datum shown in Figure 3), and the desired terminal 
configuration is 8,(T) = 0.4 rad, n = 1 . . . 6, where 
T = 20 sec. The prescribed trajectory {Pd(t), i ) d ( f ) }  

is fashioned from the rigid forward kinematic 
solution corresponding to the joint trajectories 
O,( t )  = On( T)[ tlT - (27r - I  s i n ( 2 ~  t lT)] .  A 3-2-1 Euler 
sequence {GI, $2, $3) is used to characterize the end- 
effector orientation. 

The feedback matrices are selected as follows: 
Kd = fipr(is,)kf$&) and A = fi,l where fiC = 1 
rad/s. The matrix r is taken to be diagonal with en- 
tries 

-3.0 
5 10 15 20 25 

time (sec) time (sec) 

0.51 

0.2 
f > .  0.1 

0.0 
-0.1 -"-'Aw 

10 15 20 25 
time (sec) time (sec) 

0.3, 

time (sec) time (secl 

Figure 5. Tip rate tracking errors (PD Law). 

where K d  is the diagonal part of K,. The value of p 
is taken to be 0.99. 

The tip position tracking errors p,  p( t )  =, [ x y z 
are plotted 

in Figures 4-7. Three cases are illustrated: the PD 
feedback alone ( d  = 0), the fixed parameter form of 
(24) ( d  = a) ,  and the adaptive case with a(0) = 0. 
As an aid in interpreting the errors, the maximum 
absolute value of each prescribed Cartesian variable 
is given in Table 2. Although the PD law alone per- 
forms reasonably well, the two cases with feedfor- 
ward perform much better. The fixed parameter form 
yields RMS position errors that are at least ten times 
smaller. Interestingly, the adaptive law outperforms 

$2 $JT, and tip rate tracking errors 

Table 2. Maximum absolute values of prescribed 
trajectory. 

rn = 1 . .  .10 I 

lxdlmax 16.2 m 0.637 m/s 
0.959 m/s I Ydlmax 9.18 m 

5.30 m 0.600 m/s 

lIjf3dlmax 0.14 radis 
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Figure 6. Tip position tracking errors. 

the fixed parameter form on which it is based (the 
RMS position errors are about four times smaller). 
This is attributed to the approximate nature of the 
underlying motion equations, (6)  and (7), which are 
used for its design. The adaptation appears to sur- 
mount the errors induced by inaccuracies in the 
feedforward model and yields excellent tracking. 

The time evolution of some of the parameter 
estimates is given in Figure 8. As might be expected, 
they do not converge to the true values given the 
simple nature of the prescribed trajectory. Each of 
the simulations was carried out for various values 
of the true payload properties. Stable behavior with 
good tracking was observed for payloads as small 
as rn, = 1500 kg (linear scaling of C, and Jt) which is 
only four times larger than the manipulator. The 
tracking errors in this case are very similar to those 
in Figures 6 and 7 for the larger payload. When the 
payload mass was reduced to 375 kg (less than the 
total manipulator mass), the adaptive controller 
went unstable owing to divergence of the parameter 
estimates. This is easily explained by the "unmod- 
eled rigid dynamics" (everything but the payload) 
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Figure 7. Tip rate tracking errors 
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which is quite significant when the payload mass is 
comparable to that of the robot. 

5. CONCLUSIONS 

Based o n  an approximate set of dynamics equations, 
an  adaptive controller has been developed for a flex- 
ible manipulator carrying a large uncertain payload. 
Given these motion equations, globally stable track- 
ing of the end-effector was established. By exploiting 
the passive nature of the p-tip rates, many of the 
techniques introduced in  the rigid setting were ex- 
ploited for flexible arms. The ensuing controllers 
have a simple structure and  d o  not require sensing 
of the elastic coordinates or their rates. 

Our simulation results illustrated the stability 
properties with respect to the full nonlinear equa- 
tions of motion. Excellent tracking of all six Cartesian 
variables was observed. This lends further credence 
to the approximate motion equations underlying the 
controller development. Although the large payload 
assumption may seem restrictive, there are many 
applications in the space environment where it is 
satisfied, The numerical results show that it can be 
significantly relaxed and still produce good control- 
ler performance. Although structural damping was 
required for the stability proof, its absence in the 
simulation did not seem particularly troublesome. 

Because the controller design is based on  the 
passivity theorem, there exist many alternatives to 
the feedback laws used here. In particular, the inte- 
gral adaptation law can be replaced with an integra- 
tor plus a n  arbitrary positive real transfer matrix. 
Additionally, the positive-definite feedback gain K, 
can be replaced with a dynamic controller which is 
strictly positive real. These options open the door to 
further potential performance enhancements. 
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