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ABSTRACT: The problem of vibration control in box-type structures is examined by inclusion
of piezo-electric smart structural elements. The box is modeled as a system of joined plates in
which both extensional and bending deflections are incorporated. By collocating the sensor and
actuator elements, the input–output property of passivity is achieved independent of the
number of modeled modes and details such as frequencies and mode shapes. Robust vibration
control is achieved by designing a strictly positive real dynamic compensator for the system.
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INTRODUCTION

T
HE applications of layers of piezo-electric materials

to thin-walled elastic structures offers the ability to

introduce active damping in a distributed fashion

(Crawley and de Luis, 1987). By physically collocating

such ‘‘smart’’ materials configured as dual sensors and

actuators, the important input–output property of

passivity is achieved. This property is independent of

the details of the mass and stiffness distributions and

provides a mechanism for robust stabilization via the

passivity theorem. This important result in input–output

theory (Desoer and Vidyasagar, 1975) states that any

strict passivity operator connected in negative feedback

with a passive system yields input–output stability.
Linear time-invariant (LTI) passive systems are

characterized by positive real transfer functions. In the

context of flexible structures, the positive real property

is independent of the number of vibration modes in the

model as well as the details of the mode shapes and

natural frequencies. Hence, any strictly passive feedback

yields robust stability since spillover instabilities, which

can result from controller designs based on a reduced

subset of modes, are avoided. LTI controllers which

are strictly passive are closely related to the strictly

positive real (SPR) property (Wen, 1988). In particular,

any SPR feedback always stabilizes a passive system.
The use of dynamic SPR compensation for stabiliza-

tion of large space structures was suggested by Benhabib

et al. (1981). Since then, several authors have presented

systematic methodologies for designing SPR control. In

this work, we adopt the technique of Lozano-Leal and

Joshi (1988) who demonstrated LQG weight selection
such that the Kalman-Yakubovich Lemma was satis-

fied, i.e., the LQG controller is SPR.
Small satellites have been increasing in importance

given the need to reduce spacecraft design costs.
Reduction in size and mass while continuing to require
tight performance objectives leads to active vibration
control as a possible design alternative. Microspacecraft

structures are typically simplistic in design and consist of
homogeneous materials arranged in simple geometries.
A box or stack of trays are common approaches.

Although many authors have looked at control using
of ‘‘smart’’ structural elements in beam (Bailey and
Hubbard, 1985; Halim and Moheimani, 2002) and plate

structures (Baz and Ro, 1996; Sun et al., 2001; Wang
et al., 2001), the box architecture has escaped notice.
In addition to the small satellite application, this is
a relatively simple structure with interesting but non-
trivial vibration mode shapes. This paper examines the

vibration control of box-type structures using a collo-
cated piezo-actuator/sensor combination in conjunction
with SPR control.

MOTION EQUATIONS

A schematic of a box structure is shown in Figure 1
along with the global axes fX ,Y ,Zg and corresponding
deflections fU,V,Wg and rotations f�x,�y,�zg. Each
side of the box is modeled as a thin plate.

A local coordinate frame is selected such that (x, y)
lies in the plane of the plate and z is aligned with the

surface normal. The x- and y-axes are parallel to the
sides of the plate. The corresponding extensional
deflections of the midplane are ½u0ðx, y, tÞ, v0ðx, y, tÞ�
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and the normal deflection is wðx, y, tÞ. For a homo-

geneous isotropic box of mass density � and panel

thickness h, thin-plate theory gives the corresponding

kinetic and potential energies for each plate as
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where E is Young’s modulus, � is Poisson’s ratio,

D ¼ Eh3=½12ð1� �2Þ� is the bending rigidity, and C ¼

Eh=ð1� �2Þ is the extensional rigidity.
For spatial discretization, rectangular finite elements

are used with the following expansions within each

element:

u0ðx̂x, ŷy, tÞ ¼ ½1 x̂x ŷy x̂xŷy�AuquðtÞ ð3Þ

v0ðx̂x, ŷy, tÞ ¼ ½1 x̂x ŷy x̂xŷy�AvqvðtÞ ð4Þ

wðx̂x, ŷy, tÞ ¼ ½1 x̂x ŷy x̂x2 x̂xŷy ŷy2 x̂x3 x̂x2ŷy x̂xŷy2 ŷy3 x̂x3ŷy x̂xŷy3�

� AwqwðtÞ ð5Þ

Here, ðx̂x, ŷyÞ 2 ½0, 1� � ½0, 1� are nondimensionalized

local coordinates and Au, Av, Aw are constant matrices

evaluated so that qu, qv, and qw contain prescribed nodal

degrees of freedom at the element corners. In the case
of qu and qv these are simply the four corresponding
displacements and in the case of qw, they are the corner
values of fw, @w=@x, @w=@yg. The global vector of degrees
of freedom, q, contains the assembly of nodal degrees of
freedom which are the three displacements and rotations
fU,V ,W ,�x,�y,�zg and is readily constructed from
simple transformations of qu, qv, and qw. With the above
expansions, the energies take on the familiar forms
T ¼ ð1=2Þ_qqTM_qq and V ¼ ð1=2ÞqTKq with symmetric
matrices M and K.

We assume that a single piezo-electric sensor is
located on the structure whose area coincides with a
single finite element. The corresponding piezo-actuator
is collocated with it. It is assumed that the sensor and
actuator are mounted on the same side of the plate and
contribute negligible mass and stiffness.

Following Lee (1990), the current created by the
piezo-sensor is yðtÞ ¼ dqs=dt where the sensor charge is

qs ¼
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where e031 and e032 are the piezo-electric charge constants,
Fðx, yÞ ¼ 1 if (x, y) contains sensor electrodes and
vanishes otherwise, and P0ðx, yÞ expresses the polariza-
tion profile which is taken to be identically unity here.
The height of the layer above the plate’s neutral axis is
z0k ¼ h=2 where we have neglected the sensor and
actuator thickness. Assuming uniform polarization
within a rectangular patch area Sp ¼ ½x1, x2� � ½y1, y2�,
we have

Fðx, yÞP0ðx, yÞ ¼ ½Hðx� x1Þ �Hðx� x2Þ�

� ½Hð y� y1Þ �Hð y� y2Þ�

where H(x) is the Heaviside step function. Substituting
the expansions in Equations (3)–(5) into (6) leads to the
output equation

yðtÞ ¼ cT _qq ð7Þ

where c is a constant column vector.
The virtual work stemming from a collocated

actuator is readily constructed from Lee (1990) as
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where uðtÞ is the applied voltage and �ep ¼ 1 if the
electric field and poling direction point in the same

Figure 1. Box structure schematic.
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direction. Substituting the expansions, Equations (3)–(5),
into the above and recognizing the duality between
Equations (6) and (8) leads to �We ¼ �qTbuðtÞ where
b ¼ c. Applying Hamiltons principle to the energy
and work expressions leads to the standard motion
equations

Mqþ Kq ¼ buðtÞ ð9Þ

MODAL ANALYSIS AND CONTROLLER

DESIGN MODEL

The eigenproblem corresponding to (9) is

�!2
�Mq� þ Kq� ¼ 0, � ¼ 1, 2, 3, . . .

where !� are the undamped vibration frequencies with
corresponding eigenvectors q� normalized so that
qT�Mq� ¼ ���. There are also six zero-frequency rigid
body modes which are neglected in the subsequent
analysis since they are unobservable and uncontrollable
using the proposed actuator and sensor. The modal
expansion qðtÞ ¼

P
� q���ðtÞ introduced into (9) leads to

uncoupled motion equations of the form

€��� þ 2��!� _��� þ !2
��� ¼ b̂b�uðtÞ,

b̂b� ¼ qT� b, � ¼ 1, 2, 3, . . . ð10Þ

where we have taken the liberty of introducing light
structural damping in the form of modal damping
factors ��. Substituting the modal expansion into the
output equation in (7) leads to

yðtÞ ¼
X
�

ĉc� _���, ĉc� ¼ b̂b� ð11Þ

for the sensor measurement. Taking Laplace transforms
in Equations (10) and (11) leads to the transfer function

yðsÞ=uðsÞ ¼
X
�

ĉc�b̂b�s

s2 þ 2��!�sþ !2
�

This will be positive real when ĉc�b̂b� > 0, � ¼ 1, 2, 3, � � � .
Hence, small errors in collocation of the actuator and
sensor can be tolerated without losing the positive real
property.
With a view to constructing a state-space model of the

system, define the matrices

g ¼ colf��g, X ¼ diagf!�g,bDD ¼ diagf2��!�g, bBB ¼ colfb̂b�g

Then the modal equations in (10) and the output
equation in (11) can be represented by the model

_xx ¼ Axþ Buþ w ð12Þ

y ¼ Cxþ v ð13Þ

where

x ¼
_gg

Xg

� �
, A ¼

�bDD �X

X O

� �
, B ¼ CT

¼
bBB
O

� �
Note that we have also introduced a plant disturbance
vector w and sensor noise v. These are largely fictitious
and used to support the LQG controller design in the
next section.

Our primary motivation in introducing modal coor-
dinates is the ability to systematically reduce the order
of the plant model used for controller design. Clearly, a
reduced order controller has many advantages from the
point of view of real-time implementation. Also, the
robust stabilization of a positive real system provided by
an SPR controller is independent of the controller order.

CONTROLLER DESIGN

The proposed controller structure consists of a
dynamic LQG controller which possesses the SPR
property. In the frequency domain,

uðsÞ ¼ �HðsÞyðsÞ, HðsÞ ¼ KcðsI� AcÞ
�1Ke ð14Þ

where

Ac ¼ A� BKc � KeC ð15Þ

Kc ¼ R�1BTPc ð16Þ

Ke ¼ PeC
TR�1

v ð17Þ

and Pc and Pe are the solutions of the Riccati equations

PcAþ ATPc � PcBR
�1BTPc þQ ¼ O ð18Þ

PeA
T
þ APe � PeC

TR�1
v CPe þQw ¼ O ð19Þ

Here, Q ¼ QT > O and R ¼ RT > O are the state and
control weighting matrices, respectively, which occur in
the corresponding LQR problem. Rv ¼ RT

v > O and
Qw ¼ QT

w � O are the intensity matrices corresponding
to the Gaussian white noises v and w, respectively. It is
assumed that ðQ1=2

w ,AÞ is observable.
Since H(s) in Equation (14) is strictly proper, then

according to Ioannou and Tao (1987), it is SPR if
and only if

(i) H(s) is real for real s and H(s) is analytic for
Refsg � 0;
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(ii) RefHð j!Þg > 0, �1 < ! < 1;
(iii) lim!!1 !2RefHðj!Þg > 0.

A time domain characterization of the SPR property
uses the triplet ðAc,Ke,KcÞ (assumed minimal) and is
known as the Kalman-Yakubovich Lemma (Ioannou
and Tao, 1987; Wen, 1988): the system H(s) is SPR if
and only if there exists positive-definite matrices P0 and
Q0 such that

P0Ac þ AT
c P0 ¼ �Q0, P0Ke ¼ KT

c

Lozano-Leal and Joshi (1988) have shown that if Q, R,
Qw, and Rv are selected so that

Rv ¼ R

Q� BR�1BT ¼ Qb ¼ QT
b > O

Qw ¼ Qa þ BR�1BT , Qa ¼ �ðAþ AT
Þ

then the controller H(s) in (14) is SPR. Note that Qb and
R are free (positive-definite) design parameters.

SIMULATION RESULTS

For our numerical example, we consider an aluminum
box (E ¼ 70GPa, � ¼ 2700 kg=m3, � ¼ 0:33) with
dimensions a� b� c ¼ 1m� 1:25m� 1:5m and thick-
ness h ¼ 1mm. The number of finite elements in the X,
Y, and Z directions are 4, 5, and 6, respectively, which
leads to square elements of identical size. The finite
element mesh and the location of the actuator/sensor
combination are illustrated in Figure 2. The first eight
vibration mode shapes (neglecting the six rigid body
modes) are shown in Figure 3 along with the corre-
sponding vibration frequencies. The properties of the
actuator/sensor are given by e031 ¼ 59:1N=m=V and

e032 ¼ 24:5N=m=V. The thickness of each layer is

ha ¼ 28� 10�6 m.
For purposes of the simulation, it will be assumed

that the elastic behavior of the system is described by

Equations (12) and (13) where the model is constructed

using N¼ 20 modes. This is designed to act as a truth

model and demonstrate the lack of spillover problems

which can occur when higher order modes are destabi-

lized by a lower order controller. The damping ratio for

each mode is set at � ¼ 0:01. It is assumed that the

controller is designed using a reduced number of modes

given by Nc¼ 5. Hence the matrices ðA,B,CÞ in

Equations (15)–(19) are of reduced dimension relative

to those in Equations (12) and (13). The SPR controller

is designed using the values R ¼ 5� 10�5 and Qb ¼ I.

The choice of Qb was made so that the corresponding

term in the LQR cost function, ð1=2ÞxTQbx is equal to

Figure 2. Finite element mesh with sensor/actuator location.

ω1 = 20.6 rad/s ω2 = 26.6 rad/s ω3 = 31.3 rad/s ω4 = 32.4 rad/s

ω5 = 34.5 rad/s ω6 = 37.9 rad/s ω7 = 45.6 rad/s ω8 = 45.6 rad/s

Figure 3. Box mode shapes.
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the sum of the kinetic and potential (strain) energies in
the modeled modes. The scalar R was selected to
maximize the damping injected into the first mode and
as shown below is close to minimizing the time integral
of this energy measure.
Prior to enabling the control system, the box is subject

to a disturbance force d(t) acting normal to the box
surface at ðX ,Y ,ZÞ ¼ ð0:5, 0:5, 0Þm. For this situation,
w in (12) can be written as w ¼ BddðtÞ where

Bd ¼
bBBd

0

� �
, bBBd ¼ colfqT� bdg

where bd is a column of zeroes with the exception of a
single one located at the degree of freedom where the
disturbance is applied. With quiescent initial conditions,
the state-space motion equation is integrated for 6 s with

dðtÞ ¼ ½1000 sinð1:2tÞ þ 2500 sin t

þ 1000 sinð0:6tÞ þ 5 sinð0:3tÞ�N

The state vector obtained after 6 s is then used as
an appropriate initial condition for the controlled plant.
Letting xc correspond to the state of the controller in

Equation (14), the coupled box and controller equations

are given by

_xx
_xxc

� �
¼

A �BKc

KeC Ac

� �
x

xc

� �
ð20Þ

Zero initial conditions are used for the controller states.
The performance of the controller is determined by

monitoring the transverse deflection w(t) at three

locations corresponding to nodes of the finite element
mesh. Hence w can be related to the state vector using

wðtÞ ¼ Czx, Cw ¼ ½0 ĈCw�, ĈCw ¼ rowfqT� cw=!�g ð21Þ

where cw is a column of zeroes with the exception of a

single one located at the degree of freedom correspond-
ing to where the measurement is made. The three

locations are located on orthogonal faces at ð0:5, 0, 0:5Þ
m, ð1, 0:75, 0:5Þ m, and ð0:5, 0:5, 0Þ m, the last of which is
the location of the disturbance.

The open- and closed-loop responses at the three

locations are shown in Figures 4–6. The controller

clearly injects damping into the vibration response and
there are no signs of spillover instabilities. The control

signal, u(t), is depicted in Figure 7. In order to determine
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Figure 4. Response at ðX, Y,ZÞ ¼ ð0:5, 0,0:5Þm.
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Figure 5. Response at ðX, Y ,ZÞ ¼ ð1, 0:75,0:5Þm.
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the effect of the control weighting R on the controller

performance, the integral of energy measure

J ¼
1

2

Z T

0

xTx dt, T ¼ 20 s:

was calculated for varying R. A plot of J versus R is

given in Figure 8 and clearly shows the superiority of

our original choice of R.

CONCLUDING REMARKS

We have examined the vibration control of a flexible
box structure using a single collocated piezoelectric
sensor and actuator pair. Robustness with respect to
unmodeled modes was achieved by using an LQG
design which also possessed the SPR property. The
simulation results showed that it was possible to obtain
good damping of the elastic response to a disturbance.
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Figure 6. Response at ðX, Y,ZÞ ¼ ð0:5, 0:5, 0Þm.
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Figure 7. Control signal u(t).
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Figure 8. Energy integral J vs. R.
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