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This Paper presents a linear model for a square solar sail spacecraft containing four pretensioned triangular sails

supported by four flexible diagonal booms. The structural dynamics of the stretched sails and diagonal booms is

explored by using a two-stage model including a static finite element or analytic model to solve for the sails in-plane

stresses due to prestretching and a dynamic finite elementmodel to calculate the in- and out-of-plane deflections of the

interconnected sails and booms. The dynamic finite element model takes into account the effect of in-plane stresses,

which are calculated by the static finite element or analytic model. Once the structural dynamic model is established,

differentmodal cost analyses are used to evaluate and rank elasticmodes of the solar sail. Two attitude controllers are

developed for the solar sail, and the controller/structure interactions are studied using the linear model and

considering an attitude maneuver.

Nomenclature

A = area
B = control input (matrix)
C = boundary curve
C = measurement output (matrix)
E = Young’s modulus
F = torque to force conversion (matrix)
F = frame
f = force
h = sail thickness
I = second moment of cross-sectional area
K = stiffness (matrix)
k = controller coefficient
L = length
M = mass (matrix)
m = general mass
n = normal unit vector
p = position with respect to inertial frame
P = point
Q = generalized force
q = generalized coordinate
R = translational-to-rotational-coordinates conversion (matrix)
r = rigid position of mass element with respect to body frame
S = surface
s = sun unit vector
T = torque
T = kinetic energy
t = time
U = body frame displacement (position) with respect to

inertial frame
U = potential energy
u = elastic displacement with respect to body frame
W = work
w = weighting coefficient
x = spatial coordinate

y = sensor measurements vector
z = actuator actions vector
Θ = body frame rotational displacement with respect to

inertial frame
Ω = body frame rotational velocity with respect to inertial

frame
α = vane rotation (angular degree of freedom)
δ = virtual (displacement or work)
ε = vector part of quaternion
η = scalar part of quaternion
θ = body frame Euler angle with respect to inertial frame
ν = Poisson’s ratio
ρ = density
σ = stress
τ = boundary traction
ω = natural frequency
1 = identity (matrix)
k□k = Euclidean norm (2-norm) operator

Subscripts

B = body
b = boom
c = control
d = desired
e = error
I = inertial
nor = normal
s = sail
shr = shear
ss = solar sail
v = vane (single vane)
vs = vanes (all four vanes)

Superscripts

C = curve or line (per unit length density)
P = point or concentrated
S = surface (per unit area density)
T = transpose operator
× = skew-symmetric matrix associated with a vector cross

product
˚ = timederivativewith respect tobody frame (rotating frame)

I. Introduction

S OLAR sailing is a method of propulsion that makes use of
quantum packets of sunlight energy or more accurately the

momentum carried by sunlight photons, known as solar radiation
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pressure (SRP), to propel a spacecraft in space. The idea is based on

the fact that forces due to SRP on a spacecraft are orders of
magnitude larger and normally more steady and predictable than
other space environmental forces such as those from solar wind,

meteoroids, Newtonian drag, and magnetic field [1]; an ideal sail
(i.e., a perfectly reflecting one) facing the sun at a distance of

1 astronomical unit will experience a pressure of 9.12 μN∕m2 (μPa)
[2] (this is determined using the solar luminosity and the inverse

square law for the ensuing energy flux). Solar sailing propulsion is
known to reduce the overall mass of spacecraft and to be more
efficient than conventional chemical propulsion for interplanetary

(relatively close to the sun) and interstellar travels (requiring large
velocity changes).
In recent years, large-scale, lightweight, deployable solar sails,

so-called gossamer structures, have attracted lots of attention as a key

enabling technology for use in new human and robotic exploration of
the solar system. Design, analysis, and control of these structures are

therefore becoming important challenges in meeting the goals of the
future space technology road map. Since their introduction by

Garwin in 1958 [3], solar sails have been the subject ofmuch research
in a wide range of disciplines. From a mechanical engineering point
of view, research on solar sails can be categorized into orbits,

trajectories, and missions; design, packaging, and deployment;
structural dynamics; and trajectory (orbital), attitude, and shape

control. Among these, studies on solar sail orbits and trajectories and
on solar sail attitude control have attracted much more attention than
studies of other aspects [2,4–6]. Reviews byMcInnes [7],Macdonald

[8], and Fu et al. [1] include a nice summary ofmany different studies
on solar sail missions and trajectories. Fu et al. have also reviewed the

numerous works on solar sail attitude control (most of them being
based on rigid solar sail models).
There has been a number of studies that have explored the

structural dynamics of solar sails. These studies are based on either

the boom-dominant flexible models in which the sails are
neglected and only the support booms are taken into account

[9–11] or the geometrically nonlinear finite element models
(FEMs) in which the potentially large in- and out-of-plane
deformations of sails and booms are dynamically coupled together

[6,12–18]. Many other researchers have used rigid solar sail
models within their studies. This is despite the fact that

considerations such as overall mass, characteristic acceleration,
packaging, and deployment drive solar sail spacecraft to be large,

very thin, and ultraflexible. To the best of our knowledge, there
have been only a few preliminary studies on using structural
models of solar sails for model order reduction and designing

trajectory, attitude, and shape controllers (e.g., see [9,11,19–21]).
Recall that the previously proposed solar sail attitude controllers,

as summarized by Fu et al. [1], have been mainly designed (and
even tested) based on rigid solar sail models.
The general lack of structural analysis of solar sails and use of that

analysis in studying other aspects of solar sails is partially due to the

proprietary nature of the designs. The aforementioned (over-
simplified) boom-dominant models deliver no information about the

dynamics of the sails that are themost important component of a solar
sail. The aforementioned (high-fidelity) nonlinear finite element
models suffer from convergence and validation problems and high

computational costs [6,12,13,17,18]. Neither of these model classes
may be extensively used for model-based analyses, such as design

parameter optimization and controller development. There is,
therefore, a need for a new structural model (class) to fill the large gap

between the existing two model classes. While taking into account
the effect of sail membranes, the new model should ideally remain
linear. With a linear structural model, powerful modal analysis tools

become available for model truncation (order reduction) and model-
based optimal controller development [22–24].
This Paper is devoted to establishing a two-stage linear structural

model for structural dynamics of solar sails that is easy to solve and

allows for modal analysis. It is also illustrated how the developed
linear model can be used for modal cost analysis, modal truncation,

and attitude controllers development and examination.

II. Two-Stage Linear Structural Model

Common solar sail spacecraft are composed of some ultrathin
membranes with a reflective coating, known as sails, supported by
lightweight structures, usually called booms or spars, that are
attached to a central hub [2,3,6,25]. Some designs have also
suggested the use of four plates (vanes) attached to the tips of the
supporting booms to help with the attitude control of the solar sail
[2,4–6]. Such a solar sail spacecraft is shown in Fig. 1.
In a solar sail, the ultrathin sail membranes have almost no

resistance against bending and are usually prestretched to keep their
surface flat during spacecraft travel in space. In the presence of out-
of-plane (lateral) loads, e.g., SRP, some billowing occurs within the
sails such that the in-plane stresses could withstand the out-of-plane
loads and transfer them to the support booms. The out-of-plane loads
and deformations and also the in-plane deformations are known to
change the in-plane stresses, which initially are a result of the sail
pretensioning. It is a common practice in modeling solar sails to
capture the couplings between the in-plane and out-of-plane loads
and deformations by using a complex and computationally expensive
geometrically nonlinear FEM [6,12,13,17,18]. However, there is
some evidence to indicate that the nonlinear terms in these models do
not significantly affect the dynamic behavior of solar sails. Indeed,
the simulation results presented by Li et al. [19] and Zhang et al. [20]
have demonstrated that (at least some of) the nonlinear terms have
relatively small effects on the overall dynamics of a square solar sail
spacecraft.
For a usual solar sail design, one can expect that out-of-plane loads,

mainly due to the SRP and orbital/attitude/structural accelerations, are
very small. Support booms in a solar sail are designed to withstand
these small out-of-plane loads and accelerations without undergoing
large out-of-plane deformations (as such large deformations defect
solar sail performance and attitude controllability).Moreover, in-plane
stresses are introduced in the sail membranes (by prestretching them)
to ensure that sails do not experience any large billowing when
subjected to out-of-plane loads and accelerations. The required
in-plane stresses are relatively small considering the absence of gravity
effects in space and the smallmagnitude of out-of-plane loads. It is also
expected that a solar sail experiences in-plane loads and accelerations
that are much (even orders of magnitude) smaller than out-of-plane
ones. The in-plane deformations during the spacecraft operationwould
therefore be much (orders of magnitude) smaller than out-of-plane
deformations.
For such a solar sail traveling in space, the changes in the in-plane

stresses, including those changes due to out-of-plane billowing, will
be insignificant. Consequently, the in-plane and out-of-plane
structural dynamics of the solar sail may be decoupled, and one
can derive the solar sail structural model as a combination of three
linear submodels: a linear static structural submodel for in-plane
deformations and stresses of prestretched sail membranes, a
linear dynamic structural submodel for in-plane deformations of
interconnected sails and booms, and a linear dynamic structural
submodel for out-of-plane deformations of interconnected sails and
booms. It is worthwhile to note that, as is the case with most of the
previously presented geometrically nonlinear FEM models (except,
e.g., the model developed by Choi and Damaren [17,18]), the
wrinkling and slacking of the sail membranes and the variation of
SRP due to shadowing or billowing (i.e., variation of the sail shape)
are neglected in these submodels. One might argue that a linear

Fig. 1 Schematic configuration of a square solar sail.
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structural dynamics model will not permit high-fidelity simulations

in a largegossamer structure such as a solar sail, but it does allow us to

address fundamental control issues such as the effects of sensor and

actuator noncollocation.

A. Linear Static Structural Model of In-Plane Deformations
and Stresses

Consider the traditional square solar sail, as shown in Fig. 1, with

four triangular sails or quadrants that are stretched between four

equal-length support booms. The quadrants can be connected

together and to the booms at discrete points or continuously. This

design is known to be robust enough for deployment in space and to

be scalable to solar sails as large as 150 m on a side [26]. Because of

the symmetry of the solar sail geometry, it is natural to assume that the

pretensioning forces on the quadrants are similar and to solve for the

in-plane stresses in only one of the quadrants.
An analytic model based on polynomial approximations/

expansions has been proposed in [27] to calculate the in-plane

stresses inside a quadrant that, as shown in Fig. 2, is under the action

of some normal and shear traction distributions τnor and τshr on its

boundaries 1 and 2. The boundary tractions, exerted by support

booms on the sail during the deployment and preserved afterward,

have been assumed to have a polynomial approximation form. To

generalize the analytic model in [27], an FEM-based model for the

prediction of static in-plane stresses and displacements will be

developed and used in this work.
Consider the sail quadrant shown in Fig. 2, which is under static

equilibrium conditions, and focus on the in-plane displacements. The

potential energy Us and virtual work δWs expressions for the sail

quadrant can be written as [28]

Us �
1

2

�
Eshs
1 − ν2s

�ZZ
As

��
∂u1
∂x1

�
2

�
�
∂u2
∂x2

�
2

� 2νs

�
∂u1
∂x1

∂u2
∂x2

�

� 1 − νs
2

�
∂u1
∂x2

� ∂u2
∂x1

�
2
�
dAs (1)

and

δWs �
ZZ
As

�δu1fS1 � δu2f
S
2� dAs �

I
Cs

�δu1fC1 � δu2f
C
2 � dCs

�
X
Ps

�δu1fP1 � δu2f
P
2 � (2)

where Es, νs, and hs are the quadrant Young’s modulus, Poisson’s

ratio, and thickness; As and Cs are the quadrant area and boundary

lines (curves); Ps are points of the quadrant where external point

forces are applied; u1 and u2 are the in-plane elastic displacements in

the x1 and x2 directions; and f
S
1 , f

S
2 and f

C
1 , f

C
2 and f

P
1 , f

P
2 are external

surface, linear, and point forces applied to the sail quadrant. Now,

a linear FEMbased on a three-nodeC0-continuous triangular element
with linear natural-coordinate basis functions [29,30] may be used to
derive discretized linear static equations. The sail quadrant FEM
model with a coarse (rough) mesh of triangular elements is shown in
Fig. 3. The quadrant is assumed to be fixed (clamped) at the origin
of FB.
By solving the discretized linear static equations, one will get the

(nodal) displacement distributions, which can be used to calculate the
in-plane stresses σ11, σ22, and σ12 as

σ11 �
Es

1 − ν2s

�
∂u1
∂x1

� νs
∂u2
∂x2

�
;

σ22 �
Es

1 − ν2s

�
∂u2
∂x2

� νs
∂u1
∂x1

�
;

σ12 �
Es

1 − ν2s

�
1 − νs
2

��
∂u1
∂x2

� ∂u2
∂x1

�
(3)

These static in-plane stresses will be fed into the dynamic
structural model, which is explained in the following subsection.

B. Linear Dynamic Structural Model of In- and Out-of-Plane
Deformations

Despite being decoupled (separated), the dynamic structural
submodels for in- and out-of-plane deformations are explained
simultaneously in this subsection. Consider again the square solar
sail with four quadrants supported by four equal-length booms as
shown in Fig. 4. The dynamics of such a solar sail is dependent on the
dynamics of interconnected booms and sails. Assume that a body
fixed frame FB is attached to the solar sail center. This body frame
FB is used to represent the location and orientation of the solar sail
with respect to an inertial reference frame F I .
Considering small elastic deformations (required to develop a

linear model), the position of each mass element dm of the solar sail
with respect to F I can be expressed as

p � U � r� u (4)

where U is the displacement (position) vector of FB with respect to
F I , r is the (rigid) position vector of dmwith respect toFB, and u is

Fig. 2 One quadrant of a square solar sail under normal and shear
boundary tractions (bnd., boundary).

Fig. 3 A sail quadrant meshed with triangular membrane elements.

B

I

r

u

Fig. 4 Square solar sail with four booms and four quadrants along with
inertial and body frames.
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the vector of elastic displacements with respect to FB. The

components of u inFB are u1, u2, and u3, representing the (dynamic

or time-varying) in- and out-of-plane elastic displacements in the x1,
x2, and x3 directions, respectively. Note that the just-introduced

(dynamic) in-plane displacements u1 and u2 are different from the

(static) pretensioning in-plane displacements u1 and u2 introduced in
Eq. (1) and should be added to (superimposed on) those to find the

total in-plane displacements.
By differentiating Eq. (4) with respect to time, the velocity vector

of each mass element is obtained as

_p � _U � _r� _u � _U� r
∘ �Ω × r� u

∘ �Ω × u ≈ _U �Ω × r� u
∘

(5)

where□
∘
represents the time derivativewith respect toFB (which is a

rotating frame),Ω is the rotational velocity ofFB (which is assumed

to be small so thatΩ × u is a second-order term and can be neglected),

and note that rigid position vector r does not change in FB (i.e.,

r
∘ � 0). Similarly, the virtual displacement vector associated with

each mass element can be written as [31]

δp ≈ δU� δΘ × r� δu (6)

where δΘ is the virtual rotational displacement vector of FB with

respect to F I . The relations of Eqs. (4–6) can be used within the

approach explained by Choi and Damaren [17,18] to derive potential

and kinetic energy and virtual work expressions of the solar sail.
To be more precise, the solar sail potential energy Uss will be

obtained as a summation of the potential energy of booms Ub and

potential energy of sails Us,

Uss �
X

Ub �
X

Us;

Ub � 1

2
EbAb

Z
Lb

�
∂u1
∂x1

�
2

dLb �
1

2
EbIb

Z
Lb

�
∂2u2
∂x21

�
2

dLb

� 1

2
EbIb

Z
Lb

�
∂2u3
∂x21

�
2

dLb;

Us �
1

2

�
Eshs
1 − ν2s

�ZZ
As

��
∂u1
∂x1

�
2

�
�
∂u2
∂x2

�
2

� 2νs

�
∂u1
∂x1

∂u2
∂x2

�

� 1 − νs
2

�
∂u1
∂x2

� ∂u2
∂x1

�
2
�
dAs

� 1

2
hs

ZZ
As

�
σ11

�
∂u3
∂x1

�
2

� σ22

�
∂u3
∂x2

�
2

� 2σ12
∂u3
∂x1

∂u3
∂x2

�
dAs (7)

whereEb, Ab, and Ib are the boomYoung’s modulus, cross-sectional

area, and second moment of the cross-sectional area; Lb is the boom

length; and σ11, σ22, and σ12 are the static (constant) in-plane stresses
precalculated by the static submodel in the previous subsection and

given by Eq. (3). In Eq. (7), note that booms are assumed as long and

slender linear Euler–Bernoulli beams (with small deformations) and

sails are considered as ultrathin membranes with constant in-plane

stresses and no bending resistance (or flexural rigidity/stiffness) [28].

The constant (static) in-plane stresses, established by prestretching

the membranes, are assumed to be large compared to time-varying

(dynamic) in-plane stresses due to lateral loads and deformations

when the sail membranes are in action. The sail potential energyUs in

Eq. (7) contains the contribution from the in-plane deformations and

the contribution from the coupling between the constant in-plane

stresses and the lateral displacement u3.
Analogously, the solar sail kinetic energy T ss and virtual work

δWss expressions will be

T ss �
X

T b �
X

T s;

T b � 1

2
ρbAb

Z
Lb

� _p ⋅ _p� dLb;

T s �
1

2
ρshs

ZZ
As

� _p ⋅ _p� dAs (8)

and

δWss �
X

δWb �
X

δWs;

δWb �
Z
Lb

�δp ⋅ fC� dLb �
X
Pb

�δp ⋅ fP�;

δWs �
ZZ
As

�δp ⋅ fS� dAs �
I
Cs

�δp ⋅ fC� dCs �
X
Ps

�δp ⋅ fP� (9)

where _p is given by Eq. (5), ρb is the density of the boom, ρs is the
density of the sail, δp is given by Eq. (6), and Pb are points of the
boom where external point forces are applied.
Having the potential and kinetic energy and virtual work

expressions, a linear FEM can be employed to derive discretized
linear dynamic equations for the solar sail in the form

M �q�Kq � Q (10)

where q is the matrix of generalized coordinates andM,K, andQ
are the finite element mass, stiffness, and generalized force matrices.
Note that q contains the translational and (small) rotational
displacements of FB at the center of the solar sail represented in FB

(these are known as the rigid body translational and rotational
displacements), i.e.,

�q �
2
4 �U

_Ω
�u

3
5; _q �

2
4 _U
Ω
_u

3
5; q �

2
4U
Θ
u

3
5 (11)

where u is the column matrix of all elastic displacements at nodal
points of the FEM. The linear dynamic equations are valid for solar
sails undergoing small rigid body rotations and rotational velocities
and accelerations (smallΘ,Ω, and _Ω), small rigid body translational
accelerations (small �U), and small elastic deformations (small u).
They can be used for modal analysis or can be integrated numerically
for dynamic simulations.
In this work, the Hermitian beam elements (i.e., two-node

C1-continuous linear elements with cubic Hermite basis functions)
are used to discretize the booms (i.e., Euler–Bernoulli beams), and
three-node C0-continuous triangular elements with linear natural-
coordinate basis functions are employed to discretize the sails
[29,30]. The schematic of the solar sail FEM model with a coarse
(rough) mesh of linear and triangular elements is shown in Fig. 5.

B

Fig. 5 A square solar sail meshed with triangularmembrane and linear
beam elements.
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In the FEMmodel, booms are fixed (clamped) at the origin ofFB, and
sails are connected (pinned) to the booms at least at the origin of FB

and at the boom tips. If desired, it is possible to add more connection
points between the sails and the booms at other nodal points along the
diagonals. In addition, rigid masses can be added at the solar sail
center and at the boom tips to represent the inertia of the central hub
and payload and the inertia of the (relatively small) control tip vanes.
For solar sails with large rotational displacements (the rigid body

translational acceleration �U, the rigid body rotational velocities and

accelerations Ω and _Ω, and the elastic deformations u are still
assumed to be small), the linear dynamic equations should be
complemented with some kinematic equations. The kinematic
equations enable integration of the rigid body translational

accelerations represented in FB (i.e., the �U part in �q) and the rigid
body rotational velocities described inFB (i.e.,Ω part in _q) to get the
rigid body rotational and translational displacements. Using
quaternions (Euler parameters) to parameterize the finite (large)
rotations, these differential kinematic equations can be written as

I �U �
�
1–2εTε1� 2εεT � 2ηε×

�
�U;"

_ε

_η

#
� 1

2

"
−Ω× Ω

−ΩT 0

#"
ε

η

#
(12)

where □T represents the transpose operator, □× denotes the skew-
symmetric cross-product matrix associated with a vector 1, is the
identity matrix, ε and η are the vector and scalar parts of the

quaternion, �U and Ω are the descriptions of rigid body translational

acceleration and rotational velocity vectors in FB, and
I �U is the

description of translational acceleration vector in F I . Despite

integrals of �U that do not have a physical meaning, successive

integration of I �U results in translational velocities and displacements

inF I , i.e.,
I _U and IU. The differential kinematic equations inEq. (12)

will be solved alongside the dynamic equations in Eq. (10) to provide
the rigid body motions of the solar sail.
Since visualization of encountered rotations from a given

quaternion set is not obvious, the solar sail rigid body rotations (solar
sail attitude) will be expressed in terms of x1–x2–x3 Euler angles,
denoted by θ1, θ2, and θ3 representing sequential rotations of solar
sail around x1, x2, and x3 axes of the rotating body frame FB, when
presenting the simulation results.

III. Case Study

To illustrate the FEM-based linear structural dynamic model
developed in the previous section and to undertake the desired modal
cost analysis andmodal truncation techniques, this section introduces
a 150 m square solar sail available in the literature [6,19] that will be
used in the rest of the Paper as a case study.

A. Selected 150 m Square Solar Sail

Consider the 150 m five-point connected square solar sail design
studied in [6]. The solar sail is composed of four booms and four
triangular sail quadrants that are connected at five points, i.e., at the
central hub and at the tip ends of booms. The booms are thin-walled
tubes of radius 0.229 m and thickness 7.5 μm. The sail quadrants are
right isosceles triangular membranes of thickness 2.5 μm. Each sail
quadrant is pretensioned by applying concentrated forces at its three
vertices. These forces are such that the von Mises stress at the
triangular quadrant centriod is 6895 Pa (1 psi) and the sail quadrant is
in static equilibrium (each force line of action passes through the
triangular quadrant centroid). A 291.05 kg concentrated mass,
representing the central bus, control mast, payload, and other
equipment and instrumentation, is located at the center of solar sail. In
this work, the moments of inertia associated with this concentrated
mass are assumed to be 1014.35, 1014.35, and 36.56 kg ⋅m2,
respectively, about the x1, x2, and x3 axes of the body frame FB. A
0.58 kg concentrated mass representing a control tip vane is also
located at the tip end of each boom. For the purpose of this work,

the tip vanes are assumed to be double-sided reflective right isosceles
triangles with a side length of 15 m, each having two angular degrees
of freedom (DOF) with respect to its supporting boom. The other
parameters needed by the linear structural model developed in the
previous section are calculated and listed in Table 1 [6].
For such a solar sail, the FEM-based linear structural model

developed in the previous section is used to derive discretized linear
dynamic equations in a linear matrix-second-order form as given by
Eqs. (10) and (12). Each boom is divided into 30 linear elements
(31 nodes), and each sail is meshed with 900 triangular elements
(496 nodes).

B. Constrained and Unconstrained Mode Shapes

The natural frequencies andmode shapes of the 150m solar sail are
obtained using linear algebra. Figure 6 illustrates the first six mode
shapes and their associated natural frequencies of the constrained
solar sail in whichFB is fixedwith respect toF I . In addition, the first
six unconstrained nonrigid (elastic) mode shapes and their associated
natural frequencies of the same solar sail are given in Fig. 7.
It is worthwhile to note that, employing geometrically nonlinear

FEM, natural frequencies and mode shapes of the 150m square solar
sail have been derived and presented in multiple publications before
[6,12,19,20]. It can be said that the natural frequencies obtained from
the linear model are in the same range as those from the nonlinear
models and there are satisfying similarities between the mode shapes
of these models.

C. Modal Cost Analysis

The FEM-based linear structural dynamic model developed in this
work may be used within different studies to acquire important
information about the dynamic behavior of solar sails. One such
study is modal cost analysis, which requires a knowledge of mode
shapes and natural frequencies of solar sail spacecraft.
Modal cost analysis is of particular interest for studying solar sail

spacecraft (and other so-called gossamer structures). These
ultraflexible large space structures possess numerous low natural
frequencies that are spaced very close to each other [32]. As a result, a
natural-frequency-based truncation criteria may not be effective for
model order reduction of these systems. Instead, mode-shape-based
truncation techniques, such as those based onmodal cost analysis, are
required (usually in combination with the natural-frequency-based
truncation criteria) to develop efficient control-oriented (reduced-
order) models.

D. Constrained Inertial Completeness Indices

A relatively simple criterion for evaluating modes of a flexible
spacecraft is the modal inertial completeness index [23]. It measures
the contribution of each mode of a flexible spacecraft to its effective
translational and rotational inertia (or overall linear and angular
momenta). The inertial completeness index can be calculated either
based on the spacecraft constrained mode shapes or based on the
spacecraft unconstrained nonrigid mode shapes. In this Paper, we
consider the constrained inertial completeness index. It can be
normalized with respect to the flexible inertia of the spacecraft [23].
For the 150 m square solar sail, the flexible inertia will be the inertia
associated to the sails, booms, and control vanes, and the rigid inertia
is the inertia corresponding to the central bus, control mast, payload,
and other equipment and instrumentation located at the center of the
solar sail.

Table 1 Summary of the square solar sail
model parameters

Sails Booms

Ls, m 150∕
���
2

p
Lb, m 150∕

���
2

p
As, m

2 5625 Ab, m
2 1.08 × 10−5

hs, m 2.50 × 10−6 Ib, m
4 2.83 × 10−7

ρs, kg∕m3 1572 ρb, kg∕m3 1908
Es, Pa 2.48 × 109 Eb, Pa 124 × 109

νs 0.34 νb 0.30
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The first and third plots inFig. 8 illustrate the normalized constrained

translational and rotational inertial completeness indices calculated for

the first 50 modes of the considered square solar sail. For each mode in

each of these plots, three indices are calculated, representing the

contribution of that mode to the translation or rotation in the x1, x2, and

x3 directions. The natural frequencies are shown in the same plots for

easy access (using downward bars). Note that indices corresponding to

a mode are represented with bars that have small overlaps. The second

and fourth plots of Fig. 8 show the cumulative value of constrained

inertial completeness indices for the first 50 modes.
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Fig. 6 The first six constrained mode shapes of the 150 m solar sail.

-1
-1

1

0

0

0

1

a) First unconstrained nonrigid mode b) Second unconstrained nonrigid mode c) Third unconstrained nonrigid mode

d) Fourth unconstrained nonrigid mode e) Fifth unconstrained nonrigid mode f) Sixth unconstrained nonrigid mode

-1

1

-1
-1

1

0

0

0

1 -1

1

-1
-1

1

0

0

0

1 -1

1

-1
-1

1

0

0

0

1 -1

1

-1
-1

1

0

0

0

1 -1

1

-1
-1

1

0

0

0

1 -1

1

Fig. 7 The first six unconstrained nonrigid mode shapes of the 150 m solar sail.

6 Article in Advance / HASSANPOUR AND DAMAREN

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Se
pt

em
be

r 
16

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
34

85
 



E. Controllability and Observability Indices

Other very useful criteria for weighting mode shapes of a flexible
spacecraft aremodal controllability andobservability indices [23]. The
controllability index illustrates the manner in which control actuation
inputs (and potentially other external inputs) affect each mode. The
observability index, on the other hand, indicates theway inwhich each
mode is reflected by the sensor measurements. These criteria can be
used to rankmode shapes of a flexible spacecraft as well as to optimize
the position of actuators and sensors (measurements).
Themain inputs to the selected solar sail are the distributed surface

force from the SRP over the sail area, the (potential) point force and
moment exerted by some actuators on the rigid mass at the center of
the solar sail (central bus or hub), and the forces and moments from
the control vanes at the tip of support booms. Considering the linear
photonic thrustmodel for the SRP [33], the resulting distributed force
would have not only a component normal to the sail plane but also

components within that plane. The point force and moment at the
central busmay be provided by amicro- or nanothruster and a control
moment gyro to form a hybrid attitude and trajectory control system
along with the SRP and the control tip vanes. Finally, the force and
moment from each tip vane may be simplified and assumed as only
two lateral point force components perpendicular to the boom
supporting that vane [17,18,34,35] (with this assumption, a nonlinear
mapping between the angular DOF of each vane and its lateral force
components is required). Assuming these forces and moments as
(control) inputs to the solar sail spacecraft, one can rewrite the
dynamic equations in Eq. (10) as

M �q�Kq � Bz (13)

where B is the control input matrix and z is the column of actuator
actions (control vector). Based on the aforementioned assumptions,
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Fig. 8 Normalized constrained inertial completeness indices of the 150 m solar sail (Norm., Normalized).

Article in Advance / HASSANPOUR AND DAMAREN 7

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Se
pt

em
be

r 
16

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
34

85
 



z contains 17 elements; three elements correspond to the components
of the SRP in FB, 6 elements are associated with the components of
the bus point force and moment in FB, and 8 elements represent the
lateral point forces of four tip vanes in FB.
Using the unconstrainedmode shapes of the selected 150m square

solar sail and the control input matrix B, the normalized modal
controllability indices are calculated and shown in the first two plots
of Fig. 9. The controllability index associated with the SRP is shown
in the first plot to determine which modes are most affected by this
distributed force. The controllability indices associated with the
central bus point force and moment and the tip-vane lateral forces as
the key control inputs are of more interest and are represented
separately in the second plot. Note that the controllability index
corresponding to each input is normalized with respect to its own
maximum value and therefore the first two plots of Fig. 9 should not
be used to compare the controllability indices corresponding to
different inputs.

For modal observability index calculation, some information

about the location and type of sensor measurements (that are being

used to determine the state of the spacecraft) is needed. Having this

information, onemay complement the dynamic equations in Eq. (13)

and write

M �q�Kq � Bz;

y � Cq� C 0 _q (14)

where C andC 0 are measurement output matrices and y is the column

of sensor measurements (output vector). In regard to the considered

solar sail, it is of great advantage to assume the type and placement of

the sensor measurements in such a way as to create a passive plant

with collocated actuators and rate sensors, i.e., to form a dynamic

system of the form Eq. (14) in which C � 0 and C 0 � BT . Such a

collocated passive system is advantageous since it can be stabilized
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and boom tips lateral translational velocities as outputs

Fig. 9 Normalized modal controllability and observability indices of the 150 m solar sail (Lin., linear; Vel., velocity; Ang., angular; Vels., velocities).
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with a strictly positive real controller without worrying about the
control and observation spillover [32,36].
Recalling the considered solar sail (with the central bus point force

and moment and the vanes lateral point forces as the key control
inputs), a collocated system may be achieved, provided rate sensors
are used to measure the translational and rotational velocities at the
solar sail central bus and the lateral (perpendicular) translational
velocities at the boom tips (points where the control vanes are
attached), all described in FB. Assuming such sensors and
employing the unconstrainedmode shapes and natural frequencies of
the selected 150 m square solar sail, the modal observability indices
are calculated and illustrated in the third plot of Fig. 9. Note that the
observability indices in the third plot of Fig. 9 have trends similar to
the controllability indices in the second plot. This is due to the fact
that for a systemwith collocated actuators and rate sensors the modal
observability index is equal to the modal controllability index
multiplied by the mode natural frequency.

F. Modal Truncation

A direct application of the modal cost analysis is to derive reduced
models by keeping only those modes with the highest contribution to
the overall desired response (cost) of the spacecraft and truncating the
modes with the smallest effects. It is worthwhile to note that the
FEM-based discretized structural model with a finite (but usually
very large) number of DOF can be considered as a reduced-order
model of the infinite-dimensional distributed-parameter flexible
solar sail. However, this model may still be quite large
(computationally expensive) for model-based design, optimization,
and control purposes and real-time (online) applications. Therefore,
further model reductions are usually desired to achieve much more
efficient models.
Two truncated models were studied: one based on the combined

(averaged) constrained translational and rotational inertial
completeness indices, shown in Fig. 8 for the first 50 modes, and
one based on the combined (averaged) controllability indices, shown
in Fig. 9 for the first 50 modes. In each case, the first 500 nonrigid
(elastic) modes were looked at, evaluated, and ranked. Out of these,
the first 15 elastic modes with the highest index values were kept to
form the truncated model. These 15 elastic modes, summarized in
Table 2, are in addition to the rigid modes corresponding to the six
rigid body translations and rotations at the center of the solar sail
(the origin of the body frame FB), which are kept as essential
dynamic modes.
A dynamic example was considered to compare the performances

of the truncated models against the full FEM-based linear structural
model. It is assumed that the considered square solar sail, initially at
rest, is exposed to a SRP of 4.56 μN∕m2 perpendicular to its surface
that is formulated using the linear photonic thrust model [33]. There
are also some (randomly generated) external point (concentrated)
forces andmoments applied to the sail at its center (origin ofFB) and
at its boom tips (where control vanes are attached). The point forces at
the boom tips are intended to resemble the effect of control vanes
[18,35]. This example is chosen such that different dynamicmodes of
the solar sail, expected to be excited by practical controllers in
realistic maneuvers, are observable in the simulation results. To
achieve this, the external point forces and moments (not the SRP) are
about five to ten times larger than their real-world values.
To compare the models, the solar sail rigid body (central bus)

translational and rotational velocities and displacements and the

booms 1 and 2 tip elastic translational velocities and displacements
were calculated. The translational and rotational displacement plots
did not show noticeable discrepancies between the responses of the
two models. However, the velocity plots demonstrated significant
differences between the response of the first truncated model and that
of the full model. In particular, from the velocity comparison
calculations, the second truncated model had a superior performance
over the first truncated model in predicting the response of the
considered 150 m square solar sail.
It is worth mentioning that each of the presented truncated models

has only 21 DOF, 6 DOF corresponding to the rigid body modes and
15 DOF corresponding to the retained elastic modes. This is
substantially less than DOF of the presented full structural model
(about 6700 DOF). The truncated models are therefore significantly
faster to solve (to integrate over time) than the fullmodel and are ideal
candidates for real-time simulation, model-based design parameter
optimization, and (model-based) control development purposes.
Both truncated models presented in this section are about 500 times
faster than the full model.

IV. Noncollocated Attitude Controller

In this section, a simple noncollocated attitude controller will be
developed for the 150 m square solar sail with control tip vanes,
introduced and studied in the previous sections. The sensors are
assumed to measure the attitude and rotational velocity of the solar
sail at the central bus, and the actuators are assumed to be the control
tip vaneswith rotational DOF. For simplicity, the attitude controller is
divided into three stages that are connected in series. At the first stage,
a proportional-derivative (PD) controller will determine the required
control torques from the solar sail desired orientation and current
orientation and rotational velocity. At the second stage, a control
allocation algorithm solves an underconstrained allocation problem
to calculate the control forces that each of the four vanes has to
provide from the required control torques. Finally, at the third stage, a
nonlinear mapping and an optimization algorithm are used to derive
the proper vane angles from the (scaled) vane control forces using the
sun vector (i.e., the unit vector pointing from the sun to the solar sail).
These stages are outlined in the block diagram of Fig. 10.
In Fig. 10, Tc is the vector of control torques, fvs;c is the column

matrix of vanes control forces, αvs;c is the column matrix of vanes
control angles, fεd; ηdg is the desired orientation quaternion, fε; ηg is
the current orientation quaternion,Ω is the vector of current rotational
velocity in FB, and s is the current sun unit vector expressed in FB.
As shown in Fig. 10, the attitude controller as a whole takes the
desired orientation and current orientation and rotational velocity of
the solar sail and returns the vane angles. For dynamic simulations,
the vane angles devised by the attitude controller will be used to
calculate the actual vane forces that, due to vane limitations and the
actuators saturation, are usually different from (smaller than) the
control vane forces calculated at the second stage. The attitude
controller as a whole may be considered as a PD controller with
actuator saturation. Below the saturation point, the controller would
be asymptotically stable if the control torques were implemented
using torquers on the central rigid hub.
In the following, the three stages of the proposed attitude controller

will be explained in more detail, and an attitude maneuver will be

Table 2 Summary of the retained 15 elastic modes in the
truncated models (mode numbers sorted by their index values

in descending order)

Truncation criterion Modes type Retained elastic modes

Completeness index Constrained 17, 1, 2, 3, 27, 28, 19, 20,
66, 31, 32, 6, 7, 67, 68

Controllability index Unconstrained 7, 61, 62, 21, 22, 29, 30, 137,
138, 98, 99, 105, 106, 71, 139

cT vs,cf vs,c

s

Fig. 10 Blockdiagramof three-stage attitude controller for the solar sail
with control tip vanes.
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considered to examine the controller and its interaction with the
structural dynamics of the solar sail.

A. Stage 1: Proportional-Derivative Controller

A simple attitude controller suitable for both regulation
(stabilization) and tracking control is the quaternion-based PD
controller given as

Tc � �T1;c T2;c T3;c �T � −k1�2εe� − k 01�Ω�
� −2kεe − k 0Ω; k; k 0 > 0 (15)

whereTc is the control torque vector described inFB, εe is the vector
part of the attitude error quaternion, and k and k 0 are the proportional
and derivative coefficients of the controller. The attitude error
quaternion is calculated from the desired orientation quaternion
fεd; ηdg and the current orientation quaternion fε; ηg as

�
εe
ηe

�
�

�
ηd1 − ε×d −εd

εTd ηd

��
ε
η

�
(16)

Note that for small (infinitesimal) rotations the vector part of a
quaternion ε is half of the associated angle vector and the scalar part
of it η is always 1 (can be dropped). For such cases, 2εe in Eq. (15)
would be equal to the vector of infinitesimal error angles, and for set
point regulation at Θd � 0, one would have

Tc � −kΘe − k 0Ω � −kΘ − k 0Ω; k; k 0 > 0 (17)

B. Stage 2: Control Allocator

Consider the 150 m square solar sail with control tip vanes studied
in the previous sections. Assume that the sail attitude control is solely
based on the tip-vane control forces and there is no point moment
available at the central bus. Because of the small size of the vanes
relative to the solar sail, the dynamics of the vanes can be neglected,
and the control force generated on each vane can be simplified as a
point control force vector fv;c at the tip of the boom supporting
that vane.
Now, as shown in Fig. 11, let a frame F b to be attached to each

boom at its tip (where a control vane is connected). The boom frame
Fb is such that its first axis is parallel to the boom, pointing toward the
outside of the solar sail, and its third axis is parallel to the third axis of
the body frame FB. The second axis of each boom frame is so as to
form a right-handed frame. Each boom frame rotates with the boom
and solar sail but not with the vane. Using this boom frame F b, each
vane’s control force vector fv;c may be represented as

bfv;c � � bf1;v;c bf2;v;c
bf3;v;c �T (18)

Out of the three components of fv;c in Eq. (18), only those
perpendicular (lateral) to the support boom, i.e., bf2;v;c and

bf3;v;c,
have noteworthy contribution to the dynamics of the solar sail and are

of interest for attitude control purposes [18,35]. Therefore, a control

allocation algorithm will be defined here to only determine these

lateral control forces from the control torques. This allocation

algorithm, devising the eight lateral control forces of the vanes from

the three control torques, is simply formulated as

bf2;v1;c � bf2;v2;c � bf2;v3;c � bf2;v4;c �
T3;c

4Lb

;

−bf3;v1;c � bf3;v3;c �
T2;c

2Lb

;

bf3;v2;c � −bf3;v4;c �
T1;c

2Lb

(19)

It is readily verified that the torques produced by these tip-vane

forces about themass centermatchTc in the absence of sail and boom

deformations.

C. Stage 3: Mapper/Optimizer

As mentioned earlier, each control vane of the considered 150 m

square solar sail is assumed to be double-sided reflective and to

have two angular DOFwith respect to its support boom. Therefore, in

total, there are eight independent control inputs to the solar sail.

In general, if only attitude control is desired, one has to solve an

underconstrained control allocation problem and a nonlinear

mapping to find these eight control inputs, i.e., eight vane angles,

from the three control torques [18,35]. However, in the three-stage

attitude controller, a simple control allocation algorithm is first used

to derive eight lateral vane forces from the three control torques. This

control allocation algorithm is especially beneficial for the case in

which each vane is assumed to have two angular DOFwith respect to

its support boom. With this allocation, it would be enough to only

construct a mapping/optimization between the two lateral forces of

each vane and its two angular DOF. The goal of the mapper/

optimizer, as the third stage of the attitude controller, is to find the two

vane angles such that the two actual lateral vane forces match the two

control lateral vane forces, calculated by Eq. (19) in the second stage,

as close as possible.
As shown in Fig. 11, the two angularDOFof each vane are denoted

by α1 and α2, representing the rotations of the vane about the first and
the second axes of the associated boom frame; each vane is first

rotated about the second axis of F b by α2, followed by a rotation

about the first axis of Fb by α1. Since vanes are double-sided

reflective, one can assume −�π∕2� ≤ α1, α2 ≤ �π∕2�. The assumed

range for the vane angles can be justified by noting that rotation of a

vane through larger angles does not lead to a new set of vane lateral

forces that are not achievable by rotation angles within the assumed

range and increases the chance of falling into situations in which the

vane has almost no net effect (i.e., cases in which the vane is totally

shadowed by the main sails or in which the vane shadow is

completely on the main sails.
By assuming an ideal optical surface for the vanes that specularly

reflects off the entirety of SRP, the force generated on each vane will

be always normal to the vane surface. The vane (actual) force vector

fv, potentially different from the vane control force vector fv;c given

by Eq. (18), can be expressed in F b in terms of the vanes angles α1
and α2 as

bfv �
2
4 bf1;v

bf2;v
bf3;v

3
5 � kfvkbnv � kfvk

2
4 sin α2
− sin α1 cos α2
cos α1 cos α2

3
5 (20)

where k□k denotes the Euclidean norm (2-norm) operator and bnv is

the normal unit vector of the vane surface described in F b. Note that

kfvk depends on the vane surface area, SRP magnitude, and

orientation of the vane with respect to the sun, which itself is

dependent on α1, α2, and s (i.e., the sun unit vector).
Having the vane lateral control forces and recalling Eq. (20),

one can use the relation

B 1x

2x
3x

b1 1x

2x3x

b31x

2x

3x
b2

1x2x 3x

b4

1x 2x

3x

1,v3

2,v3

1,v2
2,v2

1,v4 2,v4

1,v1

2,v1

Fig. 11 Solar sail with four two-DOF control tip vanes along with body
and vane frames.
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α1 � − arctan
bf2;v;c
bf3;v;c

; −
π

2
≤ α1 ≤

π

2
(21)

to first calculate α1 and then use the single-variable optimization to

find α2,

minimize
α2

w1�bf2;v;c − bf2;v�2 � w2�bf3;v;c − bf3;v�2;

subject to −
π

2
≤ α2 ≤

π

2

(22)

where w1 and w2 are dimensionless weighting coefficients (0 ≤ w1,

w2 ≤ 1) and note that bf2;v and
bf3;v are relatively complex functions

of α1 and α2 and s.
This simple approach, however, will face some difficulties when

rotation of the vane by α1, as calculated by Eq. (21), results in a

situation inwhich, despite the value of α2, the vane normal unit vector

nv is always perpendicular to the sun unit vector s and therefore

kfvk � 0 for all values of α2. For such cases, one may use the

following (relatively more complex and harder-to-solve) two-

variable optimization to find α1 and α2 at the same time:

minimize
α1;α2

w1�bf2;v;c − bf2;v�2 � w2�bf3;v;c − bf3;v�2;

subject to −
π

2
≤ α1 ≤

π

2
;

−
π

2
≤ α2 ≤

π

2

(23)

It is worth mentioning that the two-variable optimization approach

in Eq. (23) may permanently replace the single-variable optimization

approach in Eqs. (21) and (22) for all cases. In either case, i.e., whether

using Eqs. (21) and (22) with single-variable optimization or Eq. (23)

with two-variable optimization, the problem is much easier to solve

compared to the case without the control allocation algorithm (i.e.,

stage 2), which requires the solution of an eight-variable optimization

problem. Additionally, one may use the approach taken by Choi and

Damaren [35] to define an analytic convex form for the attainable force

set of each vane and use that convex form within the single-variable

and two-variable optimization problems. This will help with the

convergence of numerical optimization algorithms used to solve the

problems and can guarantee arrival to the global optimum point.

D. Dynamic Equations with Noncollocated Attitude Controller

Consider the square solar sail with control tip vanes and the

explained noncollocated attitude controller. The eight lateral forces

of four tip vanes may be combined as a control input vector z,

z� � bf2;v1 bf3;v1
bf2;v2

bf3;v2
bf2;v3

bf3;v3
bf2;v4

bf3;v4 �T
(24)

and used to rewrite the dynamic equations in Eq. (10) as

M �q�Kq � Q�Bz (25)

where the control input matrix B would have eight columns

corresponding to the eight lateral vane forces in z and the generalized
force matrix Q will contain the effect of noncontrol external forces

and moments, such as the solar radiation pressure and the first

components of the vanes forces in F b (i.e., bf1;v1,
bf1;v2,

bf1;v3,

and bf1;v4).
As mentioned earlier, the sensors are assumed to measure the

attitude and rotational velocity of the solar sail at the central bus, and

assuming small rigid body rotations, the measurement vectors are

y � Cq � Θ; y 0 � C 0 _q � Ω (26)

and the control torque is

Tc � −kΘ − k 0Ω � −ky − k 0y 0; k; k 0 > 0 (27)

Below the saturation point, for each vane, the actual lateral forces
bf2;v and

bf3;v and the control lateral forces
bf2;v;c and

bf3;v;c become
equal, and recalling Eq. (19), one can write

z � 1

4Lb

2
4 0 0 0 0 2 0 0 0

0 −2 0 0 0 2 0 0

1 0 1 0 1 0 1 0

3
5T

2
4T1;c

T2;c

T3;c

3
5 � FTc

(28)

whereF is the torque-to-force-conversion matrix and Lb is the boom
length.
By combining Eqs. (25–28), the integrated dynamic equations of

the solar sail and the noncollocated controller will be obtained as

M �q�BFk 0C 0 _q� �K�BFkC�q � Q (29)

In Eq. (29), there is no guarantee that the matrices BFkC and
BFk 0C 0 are symmetric and positive semidefinite. In fact, one can
show that both matrices would have symmetric parts with some
positive and some (small) negative eigenvalues. The negative
eigenvalues correspond to negative stiffness and damping effects
added to some of the elastic modes of the solar sail and may
destabilize the solar sail. The negative damping effects are more
critical considering the fact that the solar sail has a very limited
structural damping and its elastic modes, if at all, are only slightly
damped. One can conclude that the noncollocated attitude controller
may destabilize the solar sail through interaction with the structural
dynamics of the spacecraft (this is also known as the control and
observation spillover [32,36]).

E. Attitude Control Maneuver

To illustrate the performance of the developed noncollocated
attitude controller, an attitude maneuver will be presented in this
section. In the maneuver, the solar sail, initially at rest, starts from
an orientation with x1–x2–x3 Euler angles of θ1 � π∕2, θ2 � π∕4,
and θ3 � −�π∕3�, and it is desired to rotate the sail to a final
orientation in which θ1 � θ2 � θ3 � 0. The desired orientation is
given to the controller as a step input (without any input shaping).
During the manuever, the solar sail is under the action of a SRP of

4:56 μN∕m2 (formulated using the linear photonic thrust model
[33]) that is perpendicular to the sail surface when
θ1 � θ2 � θ3 � 0. The controller coefficients are chosen to be
k � 5 N ⋅m and k 0 � 2500 �N ⋅m ⋅ s�∕rad, and the optimization
weighting coefficients are set to be w1 � w2 � 1∕2. The two-
variable optimization approach, given by Eq. (23), is employed in
the maneuver. The optimization problem is solved using a particle
swarm optimization algorithm toolbox [37]. It is worth noting that
attitude control strategies relying on SRP and a controlled offset
between the solar sail’s center of mass and center of pressure
(e.g., strategies that use sliding and gimballed masses) provide
no attitude control at the considered initial condition, when the
sun is near the edge of the solar sail, and cannot handle this
maneuver.
The control vane angles and the dynamic response of the solar sail

during the attitude maneuver are plotted in Fig. 12. The results are
obtained by employing the full FEM-based linear structural model of
the solar sail. Although the controller proves to be capable of rotating
the solar sail to the desired orientation, one may notice that the
controller interaction with the structural dynamics of the spacecraft
results in some instability after a while. This is more obvious in the
velocity plots of Fig. 12 after about t � 4000 s.

V. Collocated Attitude Controller

A more advanced attitude controller without worrying about
control and observation spillover may be designed for the considered
150 m square solar sail by assuming the measurement sensors to be
collocated with the control actuators, i.e., tip vanes. Recall that, with
the eight lateral forces of four tip vanes forming the control vector z,
the dynamic equations of the solar sail are given by Eq. (25). Now,
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to form a collocated (passive) system, the sensor measurements

should take the form

y � Cq � BTq; y 0 � C 0 _q � BT _q (30)

One can show that, assuming small rigid body rotations, the

measurement vectors y and y 0 would correspond to the total

translational displacements and velocities in the directions of the

vanes lateral forces, i.e.,

y� �bp2;v1
bp3;v1

bp2;v2
bp3;v2

bp2;v3
bp3;v3

bp2;v4
bp3;v4 �T;

y 0 � �b _p2;v1
b _p3;v1

b _p2;v2
b _p3;v2

b _p2;v3
b _p3;v3

b _p2;v4
b _p3;v4 �T

(31)

where Eqs. (4) and (5) are recalled. Using themeasurements y and y 0,
the solar sail overall (average) attitude and rotational velocity can be

obtained as

�Θ1 �
1

2Lb

�bp3;v2 − bp3;v4�;

�Θ2 �
1

2Lb

�bp3;v3 − bp3;v1�;

�Θ3 �
1

4Lb

�bp2;v1 � bp2;v2 � bp2;v3 � bp2;v4�;

�Ω1 �
1

2Lb

�b _p3;v2 − b _p3;v4�;

�Ω2 �
1

2Lb

�b _p3;v3 − b _p3;v1�;

�Ω3 �
1

4Lb

�b _p2;v1 � b _p2;v2 � b _p2;v3 � b _p2;v4� (32)

or in the matrix form

�Θ � Ry � FTy;

�Ω � Ry 0 � FTy 0 (33)

-2
0 1000
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d) Rotational displacements (Euler angles) at the center
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Fig. 12 Solar sail dynamics with a noncollocated attitude controller (represented in FB) during the attitude maneuver from θ1 � π∕2, θ2 � π∕4,
θ3 � −�π∕3� to θ1 � θ2 � θ3 � 0.
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where R � FT is the translational to rotational coordinates

conversion matrix and recall thatF is the torque-to-force-conversion
matrix defined in Eq. (28). Now, a PD control law can be defined to

calculate the required control torque as

Tc � −k �Θ − k 0 �Ω � −kFTy − k 0FTy 0 (34)

This can replace the PD control law (stage 1) of the noncollocated
attitude controller in the previous section and can combine with the

control allocator and mapper/optimizer defined there (stages 2 and 3)
to form a complete collocated attitude controller that calculates the

control vanes angles from the measurement vectors.
Again, below the saturation point, the control input vector

(containing the vanes lateral control forces) would be

z � FTc (35)

and by combiningEqs. (33–35)with Eq. (25), the integrated dynamic
equations of the solar sail and the collocated attitude controller will

become

M �q�BFk 0FTBT _q� �K�BFkFTBT�q � Q (36)

where note that for k, k 0 > 0 matrices BFkFTBT and BFk 0FTBT

are symmetric and positive semidefinite. One can conclude that the

collocated controller is only adding positive stiffness and damping

effects to rigid body rotations and some of the elastic modes of the

solar sail and may not destabilize the spacecraft. Such a controller

would not result in any spillover issues.

Analogous to the noncollocated controller case, for large rigid

body rotations and attitude tracking control purposes, the

infinitesimal rotation vector Θ should be replaced with twice the

vector part of the attitude error quaternion, i.e., 2εe, calculated using
the desired orientation quaternion fεd; ηdg and the current orientation
quaternion fε; ηg. In fact, one can show that FTy contains

contributions from the rigid body rotations at the solar sail center and

from some of the elastic modes, and in practice, the contribution of

rigid body rotations should be replaced with 2εe.
Consider again the attitude control maneuver explained in the

previous section. Employing the developed collocated attitude

controller, the control vane angles and the dynamic response of the

solar sail during this maneuver are plotted in Fig. 13. One may

observe that, with the collocated controller, no spillover instability

occurs during the attitude maneuver.
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Fig. 13 Solar sail dynamics with a collocated attitude controller (represented in FB) during the attitude control maneuver from θ1 � π∕2, θ2 � π∕4,
θ3 � −�π∕3� to θ1 � θ2 � θ3 � 0.
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VI. Conclusions

A new approach has been taken to develop a two-stage linear
model for structural dynamics of a square solar sail with
pretensioned sails supported by flexible diagonal booms. In the
model, a static finite element or analytic model was first employed
to calculate the static in-plane stresses in the pretensioned sails.
Then, a dynamic finite element model calculated the in- and out-of-
plane deformations and displacements of the solar sail by taking
into account the effect of static in-plane stresses calculated by the
static finite element or analytic model. This linear model is valuable
since it allows for powerful tools and theories to be used for modal
analysis, model truncation (order reduction), and model-based
controller development.
The linear model was used to study a 150 m square solar sail with

two-degrees of freedom (DOF) control tip vanes. The constrained
and unconstrained mode shapes of the selected sail were presented,
and modal cost analyses based on different criteria were used to
evaluate and rank thesemodes. The constrained inertial completeness
index proved to be an effective criterion to evaluate the elastic modes.
The mode shapes were also examined based on controllability and
observability indices, and it was disclosed that with control tip vanes
and boom tips velocitymeasurementsmost of the elasticmodes of the
solar sail are controllable and observable.
Results of the modal cost analysis based on constrained inertial

completeness index and controllability indexwere used to derive two
truncated (reduced-order) structural dynamic models for the solar
sail. Dynamic simulations showed that both reduced models, with
only 21 DOF, were reasonably accurate when predicting the
translational and rotational displacements of the solar sail. It is
noteworthy that accurate prediction of these rigid body motions is of
great importance for trajectory (orbital) and attitude control of solar
sails. For predicting the translational and rotational velocities,
however, the truncated model based on the controllability index
proved to be much more accurate. These truncated models can be
used for model-based attitude and shape (vibration suppression)
controller developments.
Two attitude controllers, with noncollocated and collocated

actuators and sensors, were also presented for the (undamped) 150m
square solar sail with two-DOF control tip vanes. Both controllers
had a three-stage structure including a proportional-derivative
controller to calculate needed control torque from the current attitude
and rotational velocity, a control allocator to determine eight lateral
control forces of four vanes from the needed control torque, and a
(nonlinear) mapper/optimizer to find the two angles of each vane
from its two lateral control forces. Both controllers proved to be
capable of reorienting the solar sail to the desired attitude. However,
the noncollocated controller showed signs of destabilizing the
dynamics of the undamped solar sail due to control and observation
spillovers. This was not the casewith the collocated controller, which
is known to be spillover proof. Finally, it should be noted that none of
the presented controllers was designed to exclusively damp the
elastic modes of the solar sail. Developing such controllers is left to a
future work.
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