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Nomenclature

a× = skew-symmetric cross-product matrix
associated with a ∈ R3

bb = Earth’s magnetic-field vector in F b coordinates, T
dij = viscous damping constant for panel i about axis

j, N ⋅m ⋅ s∕rad
hw = wheel bias momentum, N ⋅m ⋅ s
hw = wheel bias-momentum vector, N ⋅m ⋅ s
Jb = moment-of-inertia matrix for spacecraft central

body, kg ⋅m2

Jr = moment-of-inertia matrix for entire spacecraft in the
undeformed state, kg ⋅m2

kij = spring stiffness for panel i about axis j, N ⋅m∕rad
~M = mass matrix for flexible spacecraft
m = magnetic-torquer dipole vector, A ⋅m2

T = orbital period, s
um = desired control torque to be applied to a spacecraft by

the magnetic torquers, N ⋅m
uw = desired control torque to be applied to a spacecraft

by the wheel, N ⋅m
δω = angular velocity relative to an orbiting frame, rad∕s
�ϵ; ϵ4� = quaternion representation of attitude relative to an

orbiting frame
θibj = ith panel rotation about axis j, rad
~θba = �θibx ; θiby �T , rad
τ = total applied control torque, N ⋅m
τm = magnetic torque, N ⋅m
ω = inertial angular velocity, rad∕s
ωo = orbital angular rate, rad∕s
1 = identity matrix
1n = unit vector defined by f1ngi �

�
0; i ≠ n
1; i � n

I. Introduction

T HIS note presents a study on the attitude control of a flexible
satellite using three mutually perpendicular magnetic torque

rods (magnetorquers) and a single reaction wheel. The research is
motivated by JC2Sat, a proposed satellite-formation-flying mission
using differential drag as the means of formation control [1]. To
increase or decrease the atmospheric drag for each satellite, pitch-
attitude maneuvers are performed to increase or decrease the satellite
frontal (drag) area. The purpose of the momentum wheel is to
gyroscopically stabilize the pitch axis and perform rapid pitch
maneuvers. Roll and yaw stabilization is provided by magnetic
torquers. To make formation control using differential drag feasible,
this type of satellite generally has relatively small mass and large drag
panels (to increase the ballistic coefficient). This can result in
significant satellite structural flexibility, which could degrade the
performance of the attitude-control system. To the authors’ best
knowledge, simultaneous attitude control and vibration suppression
using magnetic actuation has not been treated in the literature
previously.
Themotivation for the study presented in this note is to seewhether

it is possible to actively suppress structural vibrations whenmagnetic
actuation is used as the means for attitude control. The answer to this
question is not immediately obvious for two reasons. First, magnetic
actuation has inherently low control authority. Second, spacecraft
with magnetic control are instantaneously underactuated. This is due
to the well-known fact that magnetic torquers can only generate
torques perpendicular to the local Earth’smagnetic-field vector [2]. It
is the variation of the local Earth’s magnetic field within an orbit that
provides on-average controllability when magnetic actuation is used
[3]. A recent survey outlines several methods used in magnetic
attitude control [3]. The different methods can be grouped into linear
and nonlinear approaches.
The most common method among the linear control-design

techniques is to take advantage of the (quasi)-periodic nature of
Earth’s magnetic field. This involves using the linearized state-space
model of the system and solving a periodic Riccati equation (PRE) to
get an optimal time-periodic set of control gains. Using the periodic-
control theory, it has been shown that the linearized closed-loop
system is asymptotically stable [4]. A similar approach has also been
used for disturbance-torque attenuation [5]. In [6], an infinite
horizon, a finite horizon, and a time-invariant controller are proposed
and compared. It is found for circular orbits that the finite horizon
controller performs much better than the infinite horizon and time-
invariant controllers. Another time-invariant controller was proposed
in [7], which uses a constant gain matrix that approximates the
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solution to the PRE. It, however, does not guarantee asymptotic
stability, unlike the time-varying solution.
Among the nonlinear control-design techniques, a number of

works [8–10] again use the periodicity assumption of Earth’s
magnetic field and use Krasovskii–LaSalle-type arguments to prove
local asymptotic stability. The resulting controllers have the
challenges of being time varying. A different approach in [11,12],
which does not make any periodicity assumptions, provides a time-
invariant proportional–derivative-type control law. This has been
done for both an inertially pointing [11] and Earth-pointing [12]
satellites. A sufficient condition for stability in [11,12] is that the
control gains must be less than an upper bound. However, there is no
analytical way of determining the upper bound. As a consequence,
numerical simulations must be performed to verify closed-loop
stability. In [13], it is shown that, if a minimum level of an
independent three-axis control system, such as reaction wheels, is
used, the gain limitation in [11,12] can be removed. The methods in
the works mentioned here only treat the magnetic attitude control of
rigid spacecraft. To the authors’ best knowledge, the only published
work on using the magnetic attitude control of flexible satellites is
[14], which is an extension of thework in [11,12]. Similar to [11,12],
it is shown in [14] that, if the control gains are below some
upper bound (which cannot be determined analytically), asymptotic
stability is guaranteed even in the presence of perturbations from
flexible appendages. It does not, however, attempt to actively
suppress the flexible vibrations.
In this Note, we propose two controllers that perform simultaneous

attitude control and active vibration suppression using magnetic
actuation. The first controller is time invariant, and the second is
periodic. Both controllers are based on the linear-quadratic-regulator
(LQR) theory. The time-invariant controller commands a desired
magnetic control torque. The control torque is implemented
magnetically by projecting it onto the plane perpendicular to the local
Earth’s magnetic field. The second controller directly commands the
magnetic-torquer dipole moment as the control input. Because of
the approximate periodic nature of the local Earth’s magnetic field
as seen on orbit, the resulting controller is periodic. The periodic
controller takes inspiration from those presented in [4,5]. A
significant differentiating feature in this work from [4,5] is that,
unlike in those papers, the flexible dynamics are explicitly incor-
porated into the control design. The advantage of the time-invariant
controller over the periodic controller is that it has significantly less
computational storage requirements.

II. Satellite Model

The type of satellite under consideration has large drag panels
attached to the satellite body using tape springs. Tape springs provide
a lightweight and simple deploymentmechanism, but once deployed,
can be highly flexible. For small deflections, the tape springs can be
treated as torsion springs [15]. The satellite model is treated as a
central body with rigid drag panels attached by torsion springs such
that there is both flapping and torsional vibrations for both panels, as
shown in Fig. 1. The flapping and torsional vibrations are about the x
and y axes of the panel frames, with angles θibx and θiby , respectively,
for panels i � 1; 2. The satellite is assumed to be in a circular orbit,
and the commanded attitude is nominally nadir pointing, with
commanded pitch maneuvers every half-orbit (see Sec. IV for more

details). Attitude control is provided by three mutually perpendicular
magnetic torquers and a single momentum wheel aligned with the
satellite’s pitch axis.
The full set of nonlinear equations of motion can be found in [16].

These equations are not used for the design of the control laws (the
appropriate models are given in Sec. III.A), but they are used in
Sec. IV for the numerical simulation of the closed-loop system.

III. Controller Design

Four controllers are compared. All are linear, two are time
invariant, and two are periodic. The simplest is a time-invariant
controller that neglects flexibility (it assumes the satellite to be rigid).
The other, more complex time-invariant controller attempts to
actively suppress the panel vibrations by using an observer to
estimate the unmeasured panel states. Both have the advantage
of only needing a single constant gain matrix stored onboard the
satellite. The time-varying controllers take advantage of the roughly
periodic nature of Earth’s magnetic field to determine a periodic gain
matrix. The drawback is that the large amount of onboard data storage
required to save gain matrices over time may make the controller
infeasible to implement. However, the periodic nature of the gains
makes it possible to replace themusing Fourier series approximations
[17], greatly reducing the data-storage requirements. As for the time-
invariant case, one of the periodic controllers neglects flexibility, and
the other actively suppresses vibrations. The controllers will be
referred to as the time-invariant rigid (TIR), time-invariant vibration
suppression (TIVS), periodic rigid (PR), and periodic vibration
suppression (PVS), respectively.

A. Linear Models Used for the Control Design

This section presents the linear state-spacemodels used for each of
the control-law designs.
It is assumed that both the attitude ϵ and angular velocity δω,

relative to the orbiting frame, are available as measurements.
As explained in more detail in Sec. IV, the commanded attitude is
piecewise constant relative to an orbiting frame, with changes
occurring each half-orbit. Assuming a momentum management
scheme for thewheel, thewheel biasmomentum hw will stay near the
set point. The only possibly significant deviations of hw occur during
maneuvers. However, thesemaneuvers are short, and so the deviation
of hw is temporary. Therefore, for the purposes of the control design,
it is assumed that hw is constant.

1. Linear Model for the TIR Control Design

When flexibility is neglected, the linear model is given by a
linearization of Euler’s equation together with the quaternion
kinematics about the nadir-pointing attitude [18]:

_x �
�

O 1
2
· 1

J−1r A21 J−1r A22

�
|���������������{z���������������}

AR

� ϵ

δω

�
|�{z�}

x

�
� O

J−1r � 12 1 �

�
|���������{z���������}

BTIR

�
uw

um

�
|�{z�}

uTI

y �
�
1 O

O 1

�
|����{z����}

HR

�
ϵ

δω

�
(1)

Fig. 1 Satellite showing hinge bending about x and y axes.
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in which

A21 � diagfaz; 0; axg (2)

with ai � 2�hwω0 − �Jry − Jri�ω2
0�, and

A22 �

2
4 0 0 b

0 0 0

−b 0 0

3
5 (3)

with b � hw � ω0�Jrx � Jrz − Jry�. Note that Jrx, Jry, and Jrz are
the moments of inertia about the x, y, and z axes, respectively,
assuming a principal axes frame for Jr. The control-law design will
provide laws for the desired torques uw and um. The actual wheel
torque, τw � � 0 uw 0 �, is the same as the desired torque.
However, the magnetic torquers cannot, in general, deliver um
because the actual torque τm is always perpendicular to bb, as
evidenced by [3]:

τm � m×bb (4)

Consequently, we project the desired magnetic torque um onto
the plane perpendicular to the local Earth’s magnetic field bb. The
commanded magnetic-torquer dipole momentm, which realizes this
torque, is computed from [3]:

m � kbbk−2b×
bum (5)

in which k · k denotes the Euclidean norm.

2. Linear Model for the PR Control Design

For the PR controller, we reuse the TIRmodel in Eq. (1), replacing
the control input um with the magnetic-torquer dipole moment m.
Therefore, using Eq. (4), the linear PR model is the same as Eq. (1),
with BTIR and uTI replaced by

BPR�t� �
�

O
J−1r � 12 − b̂×

b �

�
; uP �

�
uw
m̂

�
(6)

in which b̂b � bb∕kbbk and m � kbbkm̂.

3. Linear Models for the TIVS and PVS Control Designs

For the TIVS and PVS control designs, the panel states
are included, such that the state vector is xT � �εT ~θ1bT

~θ2bTδωT
_
~θ
1bT _

~θ
2bT

�. The linear model used for the TIVS controller is

_x �
�

O �A12

~M−1 �A21
~M−1 �A22

�
|�����������������{z�����������������}

AVS

x�
� O

~M−1
� 12 1

O

��

|������������{z������������}
BTIVS

uTI

y �
� 1 O O O

O O 1 O

�
|�������������{z�������������}

HVS

x (7)

in which �A12 � diag f0.5; 0.5; 0.5; 1; 1; 1; 1g, �A21 � diagfA21;

−k1x;−k1y;−k2x;−k2yg, and �A22 � diagfA22;−d1x;−d1y;−d2x;
−d2yg. Note that A21 and A22 are given in Eqs. (2) and (3),

respectively.
The linear model for the PVS controller is the same as that for the

TIVS model (7), with BTIVS replaced by

BPVS�t� �

2
4 O

~M−1
�
12 − b̂×

b

O

�35 (8)

and uTI replaced by uP in Eq. (6).

B. Control Design

All four controllers (TIR, PR, TIVS, and PVS) are designed using
the LQR framework [19], together with a state estimator based on a
steady-state Kalman filter [19].
All systems in Sec. III.A take the form

_x � Ax�B�t�u y � Hx

in whichB is constant in the time-invariant case, andT periodic in the
periodic case. The control laws take the form

u�t� � −R−1BT�t�P�t�x̂e (9)

_̂xe � Ax̂e �Bτ �L�Hx̂e −Hxe� (10)

in whichL is the filter gain, and P�t� is the symmetric positive semi-
definite steady-state solution of the Riccati equation [20]

− _P�t� � P�t�A�ATP�t� − P�t�B�t�R−1BT�t�P�t� �Q (11)

and Q ≥ 0 and R > 0 are LQR weighting matrices. Note that P is
constant in the time-invariant case, and T periodic in the periodic
case. The vector xe is the difference between the actual states, x, and
the desired ones, and x̂e is the estimate ofxe. The distinction between
xe and x is made because, during the half of the orbit where the
desired attitude is pitched forward (see Secs. II and IV), xe and x are
different. The filter gain chosen according to L is given by

L � −PeHTQ−1
v

in which Pe > 0 is the solution to the algebraic Riccati equation

PeA
T �APe − PeH

TQ−1
v HPe �Qw � O

in which Qw > 0 and Qv > 0 represent the covariances of the
process noise and measurement noise, respectively, in a steady-state
Kalman filter [19], but are tuned manually using simulations in
Sec. IV.
If (A,B) are stabilizable and (Q1∕2,A) are detectable, and if (H,A)

are observable, then the control byEqs. (9) and (10) are stabilizing for
the linearized system [19]. However, these stability guarantees are
lost in the time-invariant cases when the control law is implemented
via Eq. (4). That being said, there are several specific cases in the
literature of magnetic attitude control using control implementations
of the form (4), for which analytical stability proofs have been
provided (see [1,11,12,14,21,22]). In the absence of an analytical
stability proof for the time-invariant controllers in this Note, we
provide a Monte Carlo-type analysis with numerical simulations in
Sec. IV to demonstrate stability.

IV. Simulation

In this section, the proposed controllers are evaluated numerically
using the exact nonlinear dynamic model for the JC2Sat satellites,
which may be found in [16]. The numerical simulation and control
parameters may also be found in [16].
As explained in Sec. I, JC2Sat is a proposed formation-flying

mission using differential drag as themeans for formation control. To
mimic the steady-state formationmaintenance, the commanded pitch
angle is zero for half of each orbit, and 60 deg for the other half of each
orbit. To reduce the sudden change in input to the control system, a
smoothing function is used when the commanded pitch angle
changes. The function spans 0.5% of the orbit (approximately 30 s).
Saturation constraints for the magnetic torquers are enforced.
Gaussian noise with a standard deviation of 0.5 deg is added to the
attitude measurements. Arbitrary 5% adjustments are made to the
satellite moment of inertia, the panel spring constants, as well as
the applied control torque. This is to model the uncertainties in
physical satellite parameters as well as actuator-output scaling and
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misalignment errors. Gravity gradient and residual magnetic dipole-
disturbance torques are included. The magnetic-field model used in
both the simulation and in determining the PRE solutions is a tilted
dipole model [2].
The 10th-order Fourier series is used to approximate P�t� in the

periodic cases.
For each controller type, a set of Monte Carlo-type simulations is

performed with randomly generated initial conditions. The purposes
of this are twofold: first, to demonstrate the stability of the controllers,
in particular the TIR and TIVS controllers for which there are no
analytical guarantees, and second, to compare the performances of all
four controllers across a broad range of initial conditions. The initial
attitude error, angular velocity, and panel deflections are randomly
generated from a zero-mean normal distribution, with standard
deviations of 3 deg (Euler angle), 0.6 deg ∕s (angular velocity), and
7 deg (panel deflection), respectively. Forty simulations are
performed for each controller type. It is important to note that, while
the initial conditions for each controller type are randomly generated,
each set of simulations (per controller type) is started with the
same random-number-generator seed value. This means that each
controller type has the same set of 40 initial conditions, making a
comparison among them fair.
A typical set of simulation results (with nonzero initial conditions)

is shown in Fig. 2, in which the TIR and TIVS controllers are
compared for a four-orbit simulation. The results indicate that
vibrations are mainly induced by nonzero initial conditions and the
twice-per-orbit pitch maneuvers. It can be seen that the TIVS
controller is able to stabilize the attitude slightly faster as well as have
significantly smaller panel deflections. The results for the PR and
PVS controllers are similar, and are therefore not shown. It can also

be seen that the closed-loop system converges within one-and-a-half
orbits. Therefore, all subsequent simulations are performed for two
orbits.
A summary of the controller performances may be found in

Tables 1 and 2. Both the mean and peak (worst case) performances
across each set of 40 simulations are presented. First of all, it is clear
from the peak-performance values that all controllers are stabilizing.
As seen from both themean and peak-performance values in Tables 1
and 2, the TIVS and PVS controllers (which actively suppress
vibrations) consistently outperform the TIR and PR controllers
(which neglect vibrations) in terms of both attitude regulation as well
as vibration suppression. However, this comes at a cost of slightly
increased magnetic-torquer activity, which is to be expected. This
confirms it is indeed possible to actively suppress spacecraft
vibrations using magnetic actuation. On the other hand, the periodic
controllers, PR and PVS (which incorporate Earth’s magnetic field in
the control design), only slightly outperform the time-invariant
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Fig. 2 Comparison of θ and ~θ2b for the TIR (left) and TIVS (right) controllers.

Table 1 Monte Carlo performance summary for all four controllers:
mean

TIR PR TIVS PVS

θ rms error, deg 1.20 1.03 0.779 0.707
ω rms error, deg ∕s 0.0748 0.0664 0.0505 0.0452
~θ1b rms, deg 0.476 0.468 0.260 0.247
~θ2b rms, deg 1.01 0.994 0.502 0.474
Average kmk1,
A ⋅m2

0.397 0.415 0.466 0.506

Average juwj,
N ⋅m

10.6 × 10−5 10.5 × 10−5 6.36 × 10−5 6.46 × 10−5
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controllers, TIR and TIVS (which do not incorporate Earth’s
magnetic field in the control design). Given the increased
computational requirements of storing periodic gains onboard, this
suggests that use of the time-invariant controllers is sufficient for
practical purposes.
Asmentioned, one of themain causes of vibration is the twice-per-

orbit pitch maneuvers. A possible approach to further reduce the
induced vibrations is input shaping of the pitch command [23].
This has been demonstrated to be quite effective in other attitude-
control configurations when used in conjunction with an active-
vibration-suppression scheme [24].

V. Conclusions

Time-invariant and periodic controllers have been proposed for
simultaneous attitude control and vibration suppression for a flexible
bias-momentum spacecraft using magnetic actuators.
The time-invariant controller projects a stabilizing control torque

onto the plane perpendicular to the local Earth’s magnetic field
for implementation by the magnetic torquers. By performing this
projection, analytical stability guarantees are lost. However, stability
is demonstrated by the Monte Carlo numerical simulation. The
periodic controller directly provides the magnetic-torquer dipole
moment as the control input. Analytical stability guarantees can be
made in this case.
The performances of these two proposed controllers have been

compared numerically with similar time-invariant and periodic
controllers, which neglect the satellite flexibility. It has been shown
that, despite the inherently low control authority and instantaneous
underactuation with magnetic control, the proposed controllers do
significantly reduce the induced vibrations and provide more
accurate attitude control (compared to the controllers that neglect
flexibility). It was found that the periodic controller performed only
slightly better than the time-invariant controller. Therefore, the time-
invariant controller is a very good candidate for simultaneous attitude
control and vibration suppression to reduce onboard computational
requirements.
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