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Nomenclature

a = semimajor axis
b = magnetic field vector
e = eccentricity
e = orbital element vector

e�·� = matrix exponential
f = true anomaly
h = angular momentum magnitude
i = inclination
J = cost
Jn = nth zonal harmonic coefficient
M = mean anomaly
m = mass
m = magnetic dipole vector
N − 1 = number of thrusts
n = mean motion
p = semilatus rectum
q = electrical charge
r = orbit radius magnitude
r = position vector
t = time
u = continuous input/control vector
v = velocity vector
W = controllability Gramian
ΔV = delta-v magnitude
δ�t� = Dirac delta function

ζ = differential element error

λ = continuous co-state vector
μ = gravitational parameter
ν = discrete co-state vector
ω = angular velocity vector
Φ = state transition matrix
Ω = right ascension of ascending node
Hc∕d = continuous/discrete Hamiltonian

�·�× = skew symmetric matrix operator

Subscripts

c = chief
d = deputy
L = Lorentz force-related
r = reference quantity
� = Earth-related quantity

Superscripts

��·� = mean quantity
�·�� = optimal quantity
�·�� = postimpulse quantity
�·�− = preimpulse quantity
^�·� = unit quantity

I. Introduction

T HE use of the geomagnetic Lorentz force is considered in this
paper for the purpose of spacecraft formation control. A

spacecraft with an electrostatic charge will interact with the Earth’s
magnetic field and experience the Lorentz force. To employ the force
as a means of actuation, the spacecraft must be able to store and
modulate the charge in order to realize a desired acceleration.
Spacecraft in low Earth orbit (LEO) will accumulate a small

amount of charge [1], due to the ambient plasma, but not in sufficient
amounts to realize a significant Lorentz force. One possible way of
spacecraft charging is through ion and electron beam emission.
NASA’s SCATHA mission [2] demonstrated that spacecraft surface
potential can be controlled through charged particle emission. The
storage of charge on a capacitive sphere surrounding the spacecraft
has been proposed by Peck [3]. A large capacitive stocking was
proposed by Streetman and Peck [4] as an alternativemeans of charge
storage. In this work, it is assumed that a beam emission system is
used for charge modulation and that the spacecraft has a means of
charge storage; however, the feasibility of both control and storage of
charge at the charge quantities required for spacecraft formation
flight remains undemonstrated.
The use of the Lorentz force as ameans of propellantless spacecraft

actuation was first proposed by Peck [3]. Applications of the Lorentz
force such as low-orbit ground track repetition, propellantless orbital
maneuvers, insertion in Jovian orbit, and the augmentation of
gravity-assist fly-bys have all been proposed [4–7]. Lorentz force
actuation for spacecraft formation flight has been explored in [8–10].
In this paper, the control of a spacecraft formation in LEOusing the

Lorentz force actuation is considered. As will be shown within, an
analysis of the controllability of this situation reveals that the relative
spacecraft state is not fully controllable using only the Lorentz force.
Previous papers that have considered formation flight have con-
sidered reduced problems, such as in-plane rendezvous and
formation control. To render the full-state problem controllable, the
combined use of impulsive thrusting with Lorentz force actuation
is proposed. A novel continuous/discrete linear quadratic regulator
(LQR) is formulated to combine the two modes of actuation in an
optimal fashion. Previous work has considered the combination of
continuous thrustingwith theLorentz force, aswell as the nonoptimal
combination of impulsive thrusting [11]. In this work, through
judicious choice of weighting matrices, a significant reduction in
thruster delta-V requirement compared with conventional impulsive
formation-keep strategies is demonstrated with the hybrid LQR,
Lorentz-augmented strategy.
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II. Lorentz-Augmented Formation Flying Dynamics

Atmospheric drag and the J2 zonal harmonic of the Earth’s gravity
field, resulting from the Earth’s oblateness, are the two primary
perturbations for spacecraft formations in LEO. We are interested in
the case in which the spacecraft in formation have similar ballistic
coefficients, and, consequently, the effect of drag is not significant
compared with the effect of J2.
The J2 perturbation has three effects on a spacecraft’s orbital

elements: short-term oscillations, long-term oscillations, and secular
drift. It is the last of these, the secular drift of elements, that results in
formation degradation. To avoid expending additional control effort
in correcting for short- and long-term oscillations, the set of mean
orbital elements, in the sense of Brouwer [12], is adopted for
describing the state of a spacecraft. The classic mean orbital element
set of semimajor axis, eccentricity, inclination, right ascension of
the ascending node, argument of periapsis, and mean anomaly,
�e � � �a �e �i �Ω �ω �M �T , evolves according to

_�e�t� � A� �e� � ∂ϵ�e�T
∂e

B�e�u�t� (1)

where A is the vector of the secular element drift rates

A� �e� �

2
66666666664

0

0

0

− 3
2
J2 �n

�
R�
�p

�
2

cos �i

3
4
J2 �n

�
R�
�p

�
2

�5 cos2 �i − 1�

�n� 3
4
J2 �n

�������������
1 − �e2
p �

R�
�p

�
2

�3 cos2 �i − 1�

3
77777777775

(2)

B�e� is the matrix containing Gauss’s variational equations (GVE)
relating accelerations in the spacecraft body frame to changes in
orbital elements:
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(3)

where h is the orbit’s specific angular momentum, R is the orbit
radius, b is the orbit’s semiminor axis, f is the true anomaly, θ is the
true latitude, and ϵ�e� is a function that transforms osculating
elements tomean elements and can be found in [13]. For the purposes
of designing a controller, ∂ϵ∕∂e can be approximated as identity
because off-diagonal terms are of the order of J2 or smaller [13]. For
the purpose of controller design, mean orbital elements are suitable
for use with the GVE, and the osculating to mean transformation can
be approximated by the identity matrix [13]. The control acceleration
u�t� is expressed in the spacecraft’s local-vertical, local-horizontal
(LVLH) frame, where the vector ĥr is in the direction of the chief’s
orbital radius, ĥh is aligned with the chief’s angular momentum
vector, and the vector ĥθ completes the right-hand rule.
Let the mean differential orbital element error be

ζ�t� � �ed�t� − �er�t� � δ �e�t� − δ �er (4)

where �ed � �ec � δ �e, and �·�r, �·�d, and �·�c denote the reference,
deputy spacecraft, and chief spacecraft orbital elements, respectively.
The linearized error dynamics are

_ζ�t� � ~Aζ�t� �B� �er�u�t� (5)

where

~A ≡
∂A
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(6)

The linearized term ∂B� �ec�
∂ �e δe is considered negligible and is not

included in Eq. (5) per Breger and How [14], where it is concluded
that the term is small and can be neglected for formations in LEOwith
relative positions and velocities of up to 25 km and 40 m∕s,
respectively.
The Lorentz force per unit mass experienced by a charged

spacecraft and expressed in the LVLH frame is

fL�t� �
q�t�
m
vrel�t�×b��t; e� (7)

where vrel is the velocity of the spacecraft with respect to the Earth’s
magnetic field and b��t; e� is the Earth’s magnetic field vector at the
location of the spacecraft. The quantity q�t�∕m is the ratio of
electrostatic charge tomass of the spacecraft andwill be referred to as
the specific charge. The operator �·�× denotes the skew-symmetric
matrix:

a× �

2
4 0 −a3 a2
a3 0 −a1
−a2 a1 0

3
5

The velocity relative to the Earth’s magnetic field is

vrel�t� ≡ v�t� − ω×
�r�t� (8)

where v�t� and r�t� are the spacecraft’s inertial velocity and position,
and ω� is the Earth’s angular velocity.
The controllability of the relative differential element time-varying

system with the Lorentz force as the sole input is now investigated.
The Lorentz-augmented linearized dynamics of the deputy
spacecraft’s differential orbital elements are

_ζ�t� � ~Aζ�t� �B� �er�v×rel�t�b��t; �er�
q�t�
m

(9)

where the spacecraft’s position and velocity vectors, and the Earth’s
magnetic field and angular velocity vectors, are all appropriately
expressed in the LVLH frame. A new input matrix is defined,

~B�t; �er� ≡B� �er�v×rel�t�b��t; �er� (10)

and the sole control variable is the charge-to-mass ratio
u�t� � q�t�∕m, such that

_ζ�t� � ~Aζ�t� � ~B�t; �er�u�t� (11)

The controllability of a linear time-varying system can be determined
by evaluating the controllability GramianW�t; t0� defined as

W�t1; t0� �
Z
t1

t0

Φ�t1; τ�B�τ�BT�τ�ΦT�t1; τ� dτ (12)

where Φ�t; τ� � e ~A�t−τ� is the state transition matrix of the system
andB�t� is the inputmatrix of a generic linear time-varying system. If
W�t1; t0� is nonsingular, then the system is controllable [15].
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The semimajor axis and inclination of a charged spacecraft’s orbit
govern the behavior of the Lorentz force that it will experience. The
controllability Gramian has been calculated for t0 � 0, t1 � T, where
T is the orbital period, for a range of semimajor axes, from LEO (a �
6478 km) tomediumEarth orbit (a � 16378 km) and for inclinations
ranging from i � 0° to i � 90°. It was found that for the entire spec-
trum of orbits tested, there is consistently one near-zero eigenvalue in
the controllability Gramian, indicating that the linearized differential
element dynamics are not controllable using only the Lorentz force.
Figure 1 plots absolute value of the minimum eigenvalue and
compares it to the magnitude of the next smallest eigenvalue.
The lack of controllability stems from the cross-product expres-

sion in the Lorentz force. For this reason, the force is always perpen-
dicular to the inertial velocity of the spacecraft relative to the
magnetic field. These results motivate the investigation of formation
control strategies that combine thruster actuation with Lorentz force
actuation.

III. Optimal Hybrid Lorentz Force/Impulsive Thrust
Control

To render the relative dynamics controllable, Lorentz force
actuation is augmented with impulsive thruster firings. Impulsive
formation-keeping is an attractive formation-keeping strategy be-
cause the “quiet time” between thruster applications is desirable for
scientific missions and the small, constant accelerations required by
continuous strategies are typically too small to be continuously
realized [16].
The problem becomes one of designing an optimal control law for

a system with both continuous (Lorentz force) and discrete
(impulsive thrust) control inputs. Such a system is known as a hybrid
control system. For the linear time-varying case, the dynamics of
such a system can be written as

_x�t� � A�t�x�t� �B�t�u�t�; t ≠ tk (13)

x�t�k � � Ckx�t−k � �Dkvk; t � tk (14)

where x�t� is the state, u�t� is the continuous control input, vk is an
impulsive control input, and tk, k � 1; : : : ; N − 1 indicates different
times at which the discrete dynamics are applied. Impulsive
application time tk is assumed to be prescribed, and the superscripts
�·�− and �·�� denote, respectively, the instants immediately before
and after the discrete dynamics are applied. In the notation, we will
abbreviate the state just prior to and just after an impulse
to x	 � x�t	k �.
The discrete dynamics and control introduce discontinuities in the

states. Bryson and Ho [17] present a variational method for solving
optimal control problems with states experiencing discontinuities at
interior points. More recently, Hu et al. [18] applied the impulsive
maximum principle, originally developed by Blaquière [19], to the
problem of linear quadratic control of switched continuous systems
with impulsive control. In this paper, the work in [18] is extended to

explicitly show how the solution to Riccati equation behaves at the
application of the discrete dynamics.
We seek to minimize the hybrid performance index:

J�x; u; vk� � 1
2x
T�tf�Sx�tf� �

1

2

XN−1
k�1
�x−Tk Qkx−k � vTkRkvk�

� 1

2

XN−1
k�0

Z
t−
k�1

t�
k

�xT�t�Q�t�x�t� � uT�t�R�t�u�t�� dt (15)

where Q � QT ≥ 0, Qk � QTk ≥ 0, R � RT > 0, Rk � RTk > 0,
S � ST ≥ 0, t�0 � t0, and t−N � tf. The continuous and discrete
Hamiltonians, respectively, are defined as

Hc�t;x�t�; u�t�; λ�t�� �
1

2
xT�t�Q�t�x�t� � 1

2
uT�t�R�t�u�t�

� λT�t��A�t�x�t� �B�t�u�t�� (16)

Hd�tk; x−k ; vk; νk� �
1

2
x−

T

k Qkx
−
k �

1

2
vTkRkvk � νTk �Ckx−k �Dkvk�

(17)

where the continuous and impulsive dynamics are adjoined to the
cost function using the continuous and discrete co-states λ�t� and νk,
respectively. The cost function becomes

J�x; u; vk� �
1

2
xT�tf�Sx�tf� �

XN−1
k�0

Z
t−
k�1

t�
k

�Hc�t� − λT�t� _x�t�� dt

�
XN−1
k�1
�Hd�tk� − νTkx

�
k � (18)

Taking the first variation of J and setting it to zero yields the
following conditions:

λ�tf� � Sx�tf� (19)

−_λ�t� �
�
∂Hc�t�
∂x�t�

�
T

� Q�t�x�t� �AT�t�λ�t�; t ≠ tk (20)

λ�t−k � �
�
∂Hd�tk�
∂x�tk�

�
T

� Qkx�t−k � � CTk νk (21)

λ�t�k � � νk (22)

Fig. 1 Controllability plot of the differential orbital element system.
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0 � ∂Hc�t�
∂u�t� ; t ≠ tk (23)

0 � ∂Hd�tk�
∂vk

(24)

Equations (23) and (24) yield the optimal control laws for continuous
and discrete control inputs, respectively:

u��t� � −R−1�t�BT�t�λ�t� (25)

v�k � −R−1
k D

T
k λ�t�k � (26)

Taking Eq. (13), with Eq. (25) substituted for u�t�, together with
Eq. (20) forms the continuous regulator two-point boundary value
problem for the time interval t ∈ �t�k ; t−k�1�, for which the linear
relationship

λ�t� � P�t�x�t� (27)

with the terminal condition P�tf� � S, is well known [15].
The optimal continuous feedback control is then

u��t� � −R−1�t�BT�t�P�t�x�t�; t ≠ tk (28)

Substituting Eq. (27) and its temporal derivative into Eq. (20) yields
the time-varying matrix Riccati equation:

− _P�t� � AT�t�P�t� � P�t�A�t� −B�t�P�t�R−1P�t�BT�t� �Q�t�
(29)

What remains is to determine how the solution to the Riccati equation
changes after the application of an impulse. Immediately after the
application of an impulse,

λ�t�k � � P�t�k �x�t�k � (30)

From Eqs. (21) and (22),

λ�t�k � � C−T
k �P�tk� −Qk�x�t−k � (31)

The closed-loop impulsive dynamics become

x�t�k � � �Ck −DkR
−1
k D

T
kC

−T
k �P�t−k � −Qk��x�t−k � (32)

where the optimal impulsive feedback control is

v�k � −R−1
k D

T
kC

−T
k �P�t−k � −Qk�x�t−k �; t � tk (33)

Equating Eqs. (30) and (31) and using Eq. (32), P�t−k � can be solved
for as a function of P�t�k �:

P�t−k � � Qk � CTk �1� P�t�k �DkR
−1
k D

T
k �−1P�t�k �Ck (34)

Applying the matrix inversion lemma and simplifying yields the
discrete-time matrix Riccati equation:

P�t−k � � Qk � CTkP�t�k �Ck
− CTkP�t�k �Dk�Rk �DT

kP�t�k �Dk�−1DT
kP�t�k �Ck (35)

What this means is that the solution to the continuous Riccati
equation will experience discontinuities across impulse application
times. To solve for P�t� for the optimal hybrid impulsive control
problem, Eqs. (29) and (35) must be used in concert. The terminal
error weightP�tf� is set as the initial condition, and _P�t� is integrated
backward using Eq. (29) from tf to t�N−1. Integration is stopped at
t � t�N−1, and P�t−N−1� is obtained from Eq. (35). P�t−N−1� is used as

the new “initial” condition to resume integrating _P�t� until the next
impulse time. Should the time-varying system be periodic, P�t� will
also be periodic and the backward integrationwill yield a steady-state
periodic solution.

IV. Numerical Examples

This section presents the results of numerical simulations that
implement the proposed formation-keeping strategies. The numer-
ical simulations integrate the inertial nonlinear equations of motion
for both chief and deputy spacecraft:

�r�t� � −
μ

r3
r�t� � fJ2�t; r� � fL�t; r; _r� �

XN−1
k�1
vkδ�t − tk� (36)

where μ is the Earth’s gravitational constant. The Lorentz force fL
and the impulsive thrusts vk are only applied to the deputy spacecraft;
the chief is assumed to be uncontrolled. The only disturbance
considered is the J2 zonal harmonic. The IGRF-11 magnetic field
model [20] is used to model the magnetic field. When solving the
Riccati equations for the different LQR controllers, however, the
simplified titled dipole model is used. Perfect state knowledge is
assumed in all simulations.
For the hybrid impulsive/continuous LQR, the state penalty

weights are chosen in a fashion that reflects the lack of controllability
of the Lorentz-augmented relative spacecraft state. Consider the
controllability Gramian W�t1; t0� given by Eq. (12). For a Lorentz-
augmented system without impulsive control [Eq. (9) for all t],
W�t1; t0� calculated for the desired orbit (where t0 � 0 and t1 � T)
will typically have five nonzero eigenvalues and one zero eigenvalue.
The eigenvectors of the nonzero eigenvalues, η1 : : : η5, ηk ∈ R6,
represent the linear combinations of the states that are controllable by
the Lorentz force. Likewise, the eigenvector corresponding to the
zero eigenvalue η0 denotes the linear combination of states that is
uncontrollable.
To minimize the thruster control effort being applied, it follows

that the discrete portion of the hybrid LQR should only target the
states that are uncontrollable by the Lorentz force. Conversely, the
continuous portion of the LQR should target only the states that are
controllable. To do so, the matrices Q and Qk are obtained by

Q � C1� η1 η2 η3 η4 η5 �� η1 η2 η3 η4 η5 �T (37)

Qk � C2η0ηT0 (38)

whereC1 andC2 are constants that scale theweights in an appropriate
fashion. For the results that follow, Q and Qk are kept constant.
HavingQ�t� andQk be time-varying remains unexplored at this time.
The spacecraft formation considered is a projected circular orbit.

Chief mean orbital elements and deputy mean differential elements
are given in Table 1.
Note that in order for all the relative states to be approximately the

same order of magnitude, the differential semimajor axis state is
normalized by the reference semimajor axis, δ �a∕ �ar. This results in
equal LQR weighting for all the relative states. The terminal state
penalty ofP�tf� � 1010 · 16×6 is chosen. The control effort penalties
are R� 106 and Rk � 108 · 13×3 for continuous and impulsive
controls, respectively. A single impulsive thrust per orbit is applied at
a chief true anomaly of f � 0. The optimal impulse application time
is not explored in this paper.
The Riccati solution that was obtained is periodic, but not with the

period of the orbital motion; it has the same period as the magnetic

Table 1 Projected circular orbit initial conditions

a, km e, − i, ° Ω, ° ω, ° M, °

�ec 7092 0.05 90.0 180.0 0.0 0.0
δ �e 0.0 0.0 8.0890 × 10−3 0.0 −8.0789 × 10−2 8.0688 × 10−2
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field. For a nontilted dipole model, this would be the same as the
orbital period. For the tilted dipole model, however, the period of the
magnetic field experienced by the spacecraft is basically one day.
The relative position error for a 100-orbit formation-keeping

simulation using the hybrid LQR is shown in Fig. 2. The along-track
and out-of-plane directions see the most error, with maximum errors
of just over 4 and 5 m, respectively. The relative error in the radial
direction is smaller, with a maximum of just over 1 m. The average
total delta-V per orbit for this example was 17.73 mm∕s, with
thrusters providing an average of 0.4 mm∕s per orbit and the
remainder being provided by the Lorentz force. As can be seen in
Fig. 3, individual thrust magnitudes are typically no larger than
1 mm∕s. Thruster control effort is considerably smaller than that
required by conventional thruster formation-keeping strategies. For
comparison, the two-impulse scheme from [21] uses an average of
13.2 mm∕s of delta-V per orbit to control the same formation
considered here. The specific charge for this example is shown in
Fig. 4 and has root-mean-square (RMS) and maximum absolute
values of 2.11 × 10−5 and 2.49 × 10−4 C∕kg, respectively. Per the
assessment in [22], these specific charge magnitudes are within the
range of what is considered achievable with existing technologies.
To employ the continuous/impulsive LQR, a numerical solution to

the time-varying matrix Riccati equation is required, which can be
calculated a priori to the launch of a mission, for a given set of
reference orbital elements. Rather than storing the solution itself, the
solution can be fitted with a Fourier series whose coefficients would

require lessmemory than the entire time series of the Riccati solution.
For the simulation results in the preceding section, a 500-termFourier
series approximates the solution to the Riccati equation for the
continuous control; however, it was found that the best performance
was achievedwhen the true values of theRiccati solutionwere used at
the impulse application times t � t−k . It is recommended that the
actual values obtained from Eq. (35) be stored and used for the
impulsive control and not be approximated by the Fourier series.

V. Conclusions

A novel method for optimally combining continuous and discrete
control inputs has been presented and applied to the Lorentz-
augmented, formation-keeping problem. Employing the Lorentz
force as a means of actuation was shown to considerably reduce
thruster delta-V required for formation-keeping. However, perfect
spacecraft state knowledgewas assumed in the presented simulation,
and the sensitivity of the control strategy to errors in knowledge of
local magnetic field requires further investigation. Additionally, in
the design of the hybrid LQR, constant state penalty matrices were
employed, but investigating the use of time-varying matrices that
reflect favorable dynamics performing corrections is worthwhile.
Although the specific charge quantities required by the control
strategy were within what is considered feasible with existing
technology, there remains work to be done in designing the hardware
necessary for a Lorentz-augmented spacecraft.

Fig. 2 Relative position error in the LVLH frame achieved with the Lorentz force and impulsive thrusting.

Fig. 3 Thrust magnitudes required for maintenance of a 1 km projected circular orbit using the hybrid LQR.

Fig. 4 Specific charges required for the maintenance of 1 km projected circular orbit using the hybrid LQR.
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