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I. Introduction

F OR modern spacecraft, possession of large flexible structures

can result in vibration during attitude maneuvers, which can

have a great impact on attitude control performance. The kinds of

actuators that have been applied to vibration suppression [1–3]

include the single-gimbaled control moment gyroscope (SGCMG)

because of its high torque capacity and moderate interaction with the

elastic structure [4].

D’Eleuterio and Hughes [5,6] introduced the concept of a

gyroelastic body, referring to an elastic body comprising

infinitesimal angular momentum devices, which results in coupled

modes, shifted frequencies, and controllable damping. The dynamics

of an elastic truss arm with a scissored pair of SGCMGs was

examined by Yang et al. [7], who showed that SGCMGs could be

used for vibration control. A Lyapunov-based controller was

investigated by Shi and Damaren [8] for active damping of a

cantilevered beam with a SGCMG and an angular velocity sensor.

The collocation of a SGCMGwith an angular rate sensor is a strategy

that will be employed in the present work. The optimal distribution of

control moment gyroscopes on an elastic beam and an elastic plate

has been studied [9–11]. These works inform the current Note in

terms of suggesting where to locate SGCMGs on the flexible plate,

which is studied here. A set of control moment gyroscopes was

distributed on the elastic structure of a flexible spacecraft to provide

control torques and modal forces for attitude control and vibration

suppression in Ref. [12]. A modal force compensator was applied in

Ref. [13] to reduce vibration during attitude maneuvers by means of

canceling out the disturbance input to the elastic dynamics. However,

themethods inRefs. [12,13] require asmanySGCMGs as the number
of themodes selected to describe the elasticmotion,which is satisfied
only when using a distribution of many SGCMGs. It should also be
emphasized that additional actuators (possibly more SGCMGs or
reaction wheels) are required for the attitude control function in those
works. In the present Note, the number of SGCMGs can be as little as
four, and this arrangement can provide attitude control as well
vibration suppression (active damping) of all controllable modes.
This is a significant improvement.
It is believed that singularity prevents SGCMGs frombeingwidely

applied to attitude control, and considerable progress in singularity
avoidance has been made. At a singularity, gimbaled motion results
in no net torque.Margulies andAubrun [14] investigated nullmotion,
and they analyzed the possibility of singularity avoidance for a
general SGCMG system. Based on a perturbed matrix theory, Wie
[15] proposed a generalized singularity robust (GSR) steering law to
drive the control moment gyroscope system to escape from internal
singular surfaces. Torque singular states and modal force singular
states have been defined and visualized to demonstrate singularity by
Hu et al. [16] with a scissored pair of SGCMGs and pyramid-type
SGCMGs as examples.
A large flexible spacecraft is considered in this Note, which is

viewed as an unconstrained plate with SGCMGs mounted on the
elastic structure as actuators. A simple controller based on a
Lyapunov function and a GSR steering law incorporating proper null
motion are presented to realize the desired attitude maneuver and
vibration suppression. It is important to realize that, although null
motion produces no net torque, it can produce modal forces on the
vibration modes. The proposed method requires at least four
SGCMGs to control the attitude and all of the considered vibration
modes. A modal analysis is applied to the gyroelastic system with
consideration of the proposed method. The effectiveness of the
proposed method is demonstrated by attitude maneuver examples
using numerical simulations.

II. System Description

The considered system includes an unconstrained elastic plate and
a set of SGCMGs, as shown in Fig. 1. The equations of the rotational
and elastic dynamics for the system are given by [13]

J _ω� ω × Jω�M�τ � h0
Xn
i�1

ω × hi � h0
Xn
i�1

_βi × hi � ur � Td

(1)

MT _ω� �τ � Ξ_τ � Kτ − h0
Xn
i�1

RT
i hi × �ω� _βi� � ue (2)

whereω denotes the angular velocity of a nominal body-fixed frame
relative to inertial space, and τ denotes the generalized coordinate
vector for the elastic deflection; J and M represent the moment of
inertia of the system and the modal angular momentum matrix,
respectively. The external disturbance isTd, and themagnitude of the
angular momentum of each SGCMG is h0. The number of the
considered vibration modes is m, and the number of SGCMGs
satisfies n ≥ 4. The symbol Ξ � diagf2ξiωig, i � 1; 2; : : : ; m,
represents the damping matrix and K � diagfω2

i g denotes the
stiffness matrix; ωi and ξi represent natural frequencies and the
corresponding damping coefficients, respectively. It is important to
note that a set of orthogonal constrained modes have been used for
spatial discretization, i.e., the elastic modes of the nongyric flexible
structure with cantilevered boundary conditions at the mass center.
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The rotational displacement of the node where the ith SGCMG is
mounted is βi � Riτ, i � 1; 2; : : : ; n; and Ri represents the
rotational modal matrices (the curl of themode shapes), which can be
obtained from the constrained modes of the structure.
The quantities representing the control torques and modal forces

generated by the SGCMG system can be expressed as

ur � Ar
_δ; ue � Ae

_δ (3)

where δ � � δ1 δ2 · · · δn �T denotes the gimbal angle vector,
and Ar and Ae represent Jacobian matrices expressed as

Ar � −h0� t1 t2 · · · tn �
Ae � −h0�RT

1 t1 RT
2 t2 · · · RT

ntn � (4)

where ti � gi × hi; i � 1.2; : : : ; n, represents the opposite
direction of the output torque; gi denotes the gimbal axis vectors;
and hi denotes the unit angular momentum vectors, as shown
in Fig. 1.

III. Controller Design

Because the kinematics and dynamics of a flexible spacecraft with
SGCMGs have been established, this section will consider controller
design to realize the desired attitude maneuver and vibration
suppression. Equations (1) and (2) can be combined to give

�
J M
MT I

��
_ω
�τ

�
�

�
Grr Gre

−GT
re Gee � Ξ

��
ω
_τ

�
�

�
0 0
0 K

��
θ
τ

�

�
�
ur − ω×Jω

ue

�

(5)

where Grr � −h0
P

n
i�1 h

×
i and Gee � −h0

P
n
i�1 Rih

×
i Ri are skew-

symmetric matrices: Gre � −h0
P

n
i�1 h

×
i Ri and θ is defined such

that _θ � ω. The symbol ω× returns the skew-symmetric matrix

ω× �

2
64

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3
75 (6)

Rewriting Eq. (5), it follows that

�M �p� � �G� �Ξ� _p� �Kp � f (7)

where

�M �
�

J M

MT I

�
; �G �

�
Grr Gre

−GT
re Gee

�
; �Ξ �

�
0 0

0 Ξ

�
;

�K �
�
0 0

0 K

�
; p �

� θ
τ

�
; f �

�
ur − ω×Jω

ue

�
(8)

Four quaternions (Euler parameters) are used to express the
attitude kinematics as follows:

�
_q0
_q

�
� 1

2

�
qT

q0I3 � q×

�
ω (9)

where q0 � cos�Θ∕2�, q � � q1 q2 q3 �T � e sin�Θ∕2�, and Θ
denotes the rotation angle about the Euler axis e.
To realize the desired attitudemaneuver and vibration suppression,

the following Lyapunov function is chosen:

V � kp��q0 − 1�2 � qTq� � 1

2
_pT �M _p� 1

2
pT �Kp ≥ 0 (10)

where kp is a positive scalar. The time derivative ofV can bewritten as

_V � kpq
Tω� _pT� �M �p� �Kp�

� kpq
Tω� _pT �−� �G� �Ξ� _p� f �

� kpq
Tω − _τTΞ_τ � ωT�ur − ω×Jω� � _τTue (11)

where _pT �G _p � 0 is used because �G is a skew-symmetric matrix.
The attitude controller is selected as a proportional-derivative

form:

ur � −kpq − kdω�ω×Jω (12)

where kd is a positive scalar. Then, the modal force can be calculated
by Eq. (3) so that Eq. (11) can be rewritten as

_V � −kdωTω − _τTΞ_τ � bT _δ (13)

where b � AT
e _τ can be expressed using _βi as

b � −h0� _βT1 t1 _βT2 t2 · · · _βTntn �T (14)

Because Eq. (13) depends on the steering law of the SGCMG
system, it is necessary to design a feasible steering law to satisfy the
condition of stabilization, which will be analyzed in the next section.

IV. Steering Law Design

In this section, the steering lawof the SGCMGsystem is developed
to satisfy the constraints on the gimbal rates. According to the
controller design and stabilization analysis, the constraints on the
gimbal rate _δ are summarized as follows:

Ar
_δ � ur

bT _δ ≤ 0 (15)

where the first one is the control torque constraint, and the other one is
a stabilization constraint designed to render _V ≤ 0 in Eq. (13).
Because n ≥ 4, the Jacobian matrix Ar can be decomposed as

Ar � � u1 u2 u3 �
2
4 σ1 0 0 0 · · · 0

0 σ2 0 0 · · · 0

0 0 σ3 0 · · · 0

3
5
2
66664

vT1
vT2
..
.

vTn

3
77775 (16)

where σi denotes the ith singular value, ui denotes the ith basis vector
of the three-dimensional angular momentum space, and vi denotes
the ith basis vector of the n-dimensional gimbal angle space. In a
nonsingular state, only the first three of the vi can lead to a net control
torque. The gimbal rate vector can be divided into two parts as
follows:

_δ � _δT � _δN (17)Fig. 1 Model of flexible spacecraft with SGCMGs.
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where _δT represents the gimbal rate vector that generates a net control
torque; and _δN represents the gimbal rate vector satisfyingAr

_δN � 0,
which is referred to as null motion. They can be obtained using

_δT � VTaT; _δN � VNaN (18)

where aT ∈ R3, aN ∈ Rn−3, VT � � v1 v2 v3 � ∈ Rn×3 denotes
the tangent space, andVN � � v4 · · · vn � ∈ Rn×�n−3� denotes the
null space. Substituting Eqs. (17) and (18) into Eq. (15) yields

Ar
_δT � ur

bT _δT � bTVNaN ≤ 0 (19)

The control torque constraint can be solved by the pseudoinverse
as follows:

_δT � AT
r �ArA

T
r �−1ur (20)

which is the minimum two-norm solution without null motion.
To satisfy Eq. (19), we would like to select aN so as to reduce

bT _δT � bTVNaN to−bTQbwithQ � QT ≥ 0. Thus, the _δT needs to
be cancelled out and −bTQb added. To this end, we select

aN � −VT
Nb�bTVNV

T
Nb�−1�bT _δT � bTQb� (21)

The effect of the null motion is to eliminate the effect of _δT on the
elastic dynamics and add proper damping to the system at the same
time. Numerical experience has indicated that a suitable choice for

Q is kNVNV
T
N with kN > 0 (the simpler choice of Q � kNI did not

perform aswell in simulation). Then, the steering law can be obtained
by combining Eqs. (17), (18), (20), and (21) to give

_δ � AT
r �ArA

T
r �−1ur − VNV

T
Nb�bTVNV

T
Nb�−1�bTAT

r �ArA
T
r �−1ur

� kNb
TVNV

T
Nb� (22)

Theorem: Consider the system described by Eqs. (7–9) with
state x � fω; q; q0 − 1; _τ; τg. Assume that the control laws are
given by Eqs. (3), (12), (18), (20), and (22). Then, the equilibrium
xe � f0; 0; 0; 0; 0g is asymptotically stable.
Proof: Consider the Lyapunov function in Eq. (10), which is a
positive-definite function of the state x. Using Eq. (13) with Eq. (22)
yields

_V � −kdωTω − _τTΞ_τ − kN _τTAeVNV
T
NA

T
e _τ ≤ 0 (23)

wherewe have used b � AT
e _τ. The invariant set containsω � _τ � 0

that, when combined with the motion equations in Eqs. (7–9) and the
attitude control law in Eq. (12), leads to

kpq � 0; Kτ � 0

Therefore, the invariant set also contains q � τ � 0. Given the
unit length of the four-parameter quaternion, we conclude that
q0 � �1. In a linear analysis about the equilibrium q0 � 1, we can
take q0 � 1 in the invariant set. Hence, the invariant set consists only
of the equilibrium xe, which establishes (local) asymptotic stability
of the equilibrium using LaSalle’s theorem.
In a singular state, all the vectors ti of SGCMG system become

coplanar and are perpendicular to a singular vector us [14], which
satisfies tTi us � 0. A singularity measure can be applied to
describing the degree of singularity, which is expressed as
κ � det�ArA

T
r �, and κ � 0 indicates that the system is caught in a

singular state. To reduce the impact of singularity, Eq. (20) is
modified by the GSR steering law [15], which can be expressed by

_δr � AT
r �ArA

T
r � γE�−1ur (24)

where γ � γ1 exp�−γ2 det�ArA
T
r ��, γ1 and γ2 are positive scalars, and

E is a symmetric matrix expressed as

E �
2
4 1 ϵ3 ϵ2
ϵ3 1 ϵ1
ϵ2 ϵ1 1

3
5 (25)

where ϵi � ϵ0 sin�kεt� ϕi�; i � 1; 2; 3; and ϵ0, kϵ, and ϕi are
constant scalars to be properly selected.
In addition, there is a computational problem in Eq. (22) when

bTVNV
T
Nb � 0, which can be solved by adding a small positive

scalar ε. Therefore, the modified steering law can be expressed as

_δ � AT
r �ArA

T
r � γE�−1ur − VNV

T
Nb�bTVNV

T
Nb� ε�−1

× �bTAT
r �ArA

T
r � γE�−1ur � kNb

TVNV
T
Nb�

(26)

Remark 1: The proposed steering law in Eq. (26) works without as
manySGCMGs as the considered vibrationmodes. In particular, four
SGCMGs can satisfy the requirement, which is much more feasible
than the methods in other papers [12,13]. Because the truncated
model with several low-frequencymodes is not used in the controller
and steering law design, and the rotational rates _βi are the integrated
results of all the modes, the method proposed in this Note is also
effective in dealing with the unconsidered residual modes of
vibration.

V. Modal Analysis

In this section, a modal analysis is applied to the system with
consideration of the proposed method to verify its effectiveness on
vibration suppression. Considering the controller in Eq. (12) and the
steering law in Eq. (22), Eq. (5) can be rewritten as

�
J M
MT I

��
_ω
�τ

�
�

�
Grr � kdI Gre

−GT
re Gee �D

��
ω
_τ

�

�
�

1
2
kpI 0
0 K

��
θ
τ

�
� 0

(27)

where D � Ξ� knAeVNV
T
NA

T
e represents the lumped damping

matrix on account of the control method presented in this Note and
the structural damping. A small angular rotation has been assumed so
that ω � _θ and q ≐ θ∕2. Rewriting Eq. (27), it follows that

�M �p� � �G� �D� _p� ~Kp � 0 (28)

where

�D �
�
kdI 0
0 D

�
; ~K �

�
1
2
kpI 0
0 K

�
(29)

Because the SGCMGs are mounted on the elastic structure, this
system is referred to as a gyroelastic body [5,6]. The equation of an
undamped gyroelastic body in a first-order form can be expressed as

W _X�NX � 0 (30)

where

X �
�
_p
p

�
; W �

�
�M 0
0 ~K

�
; N �

�
�G ~K

− ~K 0

�
(31)

Clearly, W is positive definite and N is skew symmetric. The
eigenvalue problem of the undamped gyroelastic system can be
expressed as

λαWχ α �Nχ α � 0; α � �1; �2; : : : ;��m� 3� (32)
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where λα � jΩα denotes the αth eigenvalue, and χ α � ϕα � jφα

denotes the αth eigenvector. The vectors ϕα and φα are real matrices

satisfying ϕα � φ−α, and they can be expressed as

ϕα �
�
−Ωανα
μα

�
; φα �

�
Ωαμα
να

�
(33)

where μα � ν−α, μ−α � να; and �μα; να� are referred to as gyroelastic
modes [5,6]. The following orthogonality conditions are satisfied:

ϕT
αWϕβ � φT

αWφβ � 2Ω2
αδαβ

ϕT
αNφβ � −2Ω3

αδαβ (34)

where δαβ denotes the Kronecker delta symbol.
In view of the light damping assumption, the damping is treated as

a perturbation to the undamped gyroelastic system [17], leading to

perturbed quantities as follows:

�λα � λα � δλα

�ϕα � ϕα � δϕα

�φα � φα − δϕα (35)

where δλα � ςαΩα, and ςα represents the αth damping factor that, for

small damping, can be expressed as

ςα � 1

4Ωα
�μTα �Dμα � νTα �Dνα� (36)

In the present context, D is given in Eq. (29) with

D � Ξ� knAeVNV
T
NA

T
e . Therefore, the damping factors are

increased due to the null motion. The vector δϕα can be expanded in

terms of the unperturbed eigenfunctions as follows:

δϕα �
Xm�3

i�−m−3
cα;iϕα (37)

where

cα;i �
ΩαΩiρ−α;i −Ω2

αρα;−i
2Ωi�Ω2

i −Ω2
α�

; i ≠ �α

cα;α � −
ρα;−α
4Ωα

; cα;−α � −
ρ−α;−α − ρα;α

8Ωα

(38)

and ρα;i � μTα �Dμi. The orthogonality conditions are similar to

Eq. (34) as follows:

�ϕT
αW �ϕβ � �φT

αW �φβ � 2Ω2
αδαβ

�ϕT
αN �φβ � 2Ω3

α�ςαδαβ − δ−αβ� (39)

The general solutions of Eq. (30) can be written as

X�t� �
Xm�3

α�−m−3

�ϕαηα�t�; α ≠ 0 (40)

where ηα�t� denotes a generalized coordinate.
Then, the state-space model of the gyroelastic system with

consideration of both proportional and derivative terms of the

proposed controller can be written as

2
66666666664

_η1

_η−1

..

.

_ηm�3

_η−m−3

3
77777777775
�

2
66666666664

−ς1Ω1 Ω1

−Ω1 −ς1Ω1

· · · 0

..

. . .
. ..

.

0 · · ·
−ςm�3Ωm�3 Ωm�3

−Ωm�3 −ςm�3Ωm�3

3
77777777775

×

2
66666666664

η1

η−1

..

.

ηm�3

η−m−3

3
77777777775

(41)

which illustrates that the rate of convergence is dependent on the

damping factors ςα.
Remark 2: Because of the null motion, the damping factors are

increased, which will make the elastic motion be damped out more

Table 1 System properties

Property Symbol (unit of measure) Value

Moment of inertia of spacecraft J �kg ⋅m2� diag (1646.3, 1924.7, 2678.3)

Moment of inertia of SGCMG Jcmg �kg ⋅m2� diag (1.1, 2, 1.2)

Angular momentum magnitude of SGCMG h0 �kg ⋅m2∕s� 100

Size l1 × l2 (m) 6 × 10
Structure damping ξ (—) 0.01
Initial quaternion � q0 qT �T �−0.4386 −0.4821 −0.5576 0.5140 �T
Initial gimbal angles δ0 (deg) � 56.1 −56.1 116.2 −116.2 �T
Maximum of the gimbal rates _δmax �deg ∕s� 20

Table 2 Installation properties

Number Placement coordinates Gimbal axes gi
1 �3; − 5� � � ���

6
p

∕3� 0 � ���
3

p
∕3� �T

2 (3, 5) � 0 � ���
6

p
∕3� � ���

3
p

∕3� �T
3 �−3; 5� �−� ���

6
p

∕3� 0 � ���
3

p
∕3� �T

4 �−3; − 5� � 0 −� ���
6

p
∕3� � ���

3
p

∕3� �T
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−15
−10

−5
0

5
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0.5

1
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−15
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−5
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5
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−1.5
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−0.5

0

0.5

1

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15
−10

−5
0

5
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15
−1

−0.5

0

0.5

1

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15
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−5
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5
10
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−1

−0.5

0

0.5

1

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15
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−5
0

5
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−0.5

0

0.5

1
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−5
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5
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−1
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0.5

1

a)    1 = 0.7681 Hz b)       2 = 1.1038 Hz c)    3 = 1.8733 Hz d)    4 = 2.5496 Hz e)     5 = 3.1438 Hz f)    6 = 3.592 Hz

Fig. 2 Free plate elastic modes.
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quickly. Although the damping factors are increased a little bit, they

have a major effect on the vibration. More important, the possible

undesirable effects of the modal forces on the elastic dynamics are

eliminated by the proposed method.

VI. Simulation

The properties of the considered unconstrained flexible spacecraft

are shown in Table 1. Four SGCMGs making up a pyramid type are

mounted on the four corners of the equivalent plate to realize the

desired attitude maneuver and vibration suppression. As shown in

Fig. 2, six constrained modes of the structure are considered.

Although scaled here for visualization purposes, they are normalized

to unity with respect to the mass distribution. The skew angle of the

pyramid-type SGCMG system is equal to 54.73 deg, and the

installation properties are given in Table 2.
The external disturbances are assumed to be

Td �

2
64

0.4 cos�0.1t� − 0.1

0.25 sin�0.1t� � 0.4 cos�0.1t�
0.4 sin�0.1t� � 0.1

3
75N ⋅m (42)

For comparison, the attitude controller in Eq. (12) and the steering

law in Eq. (24) without null motion are used in case I, and the

proposed method in this Note is applied to case II. The parameters of

the controller and steering law can be found in Table 3.

Table 3 Controller and steering

law parameters

Symbol Value

kp 60
kd 400
γ1 0.01
γ2 10
ϵ0 0.021
kϵ 0.5
φ1 0
φ2 π∕2
φ3 π
kN 0.1
ε 0.000001

0 50 100 150 200 250 300
−200

−100

0

100

200

Time (s)

E
ul

er
 a

ng
le

s 
(d

eg
)

 

 

160 170 180
−0.2

0
0.2

 

 

a) Case I
0 50 100 150 200 250 300

−200

−100

0

100

200

Time (s)

E
ul

er
 a

ng
le

s 
(d

eg
)

 

 

160 170 180
−0.2

0
0.2

b) Case II
Fig. 3 Time histories of Euler angles.
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Fig. 4 Time histories of angular velocity.
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Fig. 5 Time histories of control torque.
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Fig. 6 Time histories of modal force.
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Figures 3 and 4 show the time histories of the Euler angles (ψ , θ,
and ϕ correspond to a 3-2-1 sequence) and the angular velocity,
respectively. Considering the allowable attitude pointing accuracy
and attitude stability arewithin 0.2 deg and 0.02 deg ∕s, respectively,
the attitude maneuver times (i.e., the time to obtain the desired limits)
are 233.3 and 169.1 s, respectively. When compared with case I, the
system is much quicker to become stable on account of the damping
added by null motion in case II. The time histories of the control
torques and modal forces are shown in Figs. 5 and 6, respectively.
Figure 7 shows the time histories of the modal coordinates, which
illustrate that vibration is effectively suppressed by the proposed
method. The time histories of the singularity measure are shown in
Fig. 8,which illustrates that the system is not caught in a singular state
during the attitude maneuver. Figures 9 and 10 show the time
histories of the gimbal angles and gimbal rates, respectively, which
meet the requirements in Table 1.All of these figures illustrate that the
singularity modifications [γ and ϵ in Eq. (26)] do not result in
graphically discernible residual motions.
In Ref. [13], a structurewith identical mass and stiffness properties

was employed with an identical attitude maneuver under study. The
external disturbance torques were slightly different, but they were of
the same order of magnitude as those used here. In that study [13],
eight SGCMGs were used for vibration control and additional torque

actuation was required for attitude control. The attitude performance
was somewhat faster in Ref. [13] (settling times for the Euler angles
were on the order of 20 s as compared to approximately 50 s in the
present work. This can be attributed to larger attitude control gains in
Ref. [13]). In the present work, the modal coordinates in Fig. 7b are
on the order of one, whereas in Ref. [13], they were on the order of
10−4 (see figure 14 in Ref. [13]). Hence, the use of additional
SGCMGs dedicated to vibration control in Ref. [13] provided more
effective vibration suppression than the current approach. However,
in the present work, four SGCMGs are solving the attitude control
problem and vibration control of all controllable modes.

VII. Conclusions

A new methodology for flexible spacecraft that realizes attitude
maneuvers and vibration suppression has been proposed in the Note. A
set of single-gimbaled control moment gyroscopes (SGCMGs) was
mounted on the elastic structure as actuators to generate net control
torques and modal forces. A simple controller based on a Lyapunov
function and a generalized singular robust steering law have been
presented. To suppress thevibration, proper nullmotion has been added
to the steering law to eliminate the possible undesirable effects ofmodal
forces on the elastic dynamics. The proposed method works without as

0 50 100 150 200 250 300
−2

−1

0

1

2

Time (s)
M

od
al

 c
oo

rd
in

at
es

a) Case I

0 50 100 150 200 250 300
−2

−1

0

1

2

Time (s)

M
od

al
 c

oo
rd

in
at

es

b) Case II

Fig. 7 Time histories of modal coordinates.
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Fig. 8 Time histories of singularity measure.
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Fig. 9 Time histories of gimbal angles of SGCMGs.
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Fig. 10 Time histories of gimbal rates of SGCMGs.
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many SGCMGs as the vibration modes, and four SGCMGs can be
effective in dealing with all the consideredmodes. Amodal analysis on
the system with consideration of the proposed method illustrates that
the damping is increased and the system becomes stable more quickly.
Furthermore, the proposed control strategies have been applied to an
unconstrained flexible plate with four SGCMGs mounted on the
corners. The simulation results have verified the effectiveness of the
proposed method for vibration suppression during attitude maneuvers.
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